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ABSTRACT

We show how the Newtonian potential between two heavy masses can be com-

puted in simplicial quantum gravity. On the lattice we compute correlations between

Wilson lines associated with the heavy particles and which are closed by the lattice

periodicity. We check that the continuum analog of this quantity reproduces the

Newtonian potential in the weak �eld expansion. In the smooth anti-de Sitter-like

phase, which is the only phase where a sensible lattice continuum limit can be con-

structed in this model, we attempt to determine the shape and mass dependence of

the attractive potential close to the critical point in G. It is found that non-linear

graviton interactions give rise to a potential which is Yukawa-like, with a mass

parameter that decreases towards the critical point where the average curvature

vanishes. In the vicinity of the critical point we give an estimate for the e�ective

Newton constant.
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1 Introduction

The lattice formulation presents a natural framework for determining the structure

of nonperturbative e�ects in quantum gravity. Since Einstein gravity is not per-

turbatively renormalizable, the computation of radiative corrections in the weak

�eld expansion around a at metric cannot be controlled until at least a partial

resummation of the perturbative series can be performed. Even then, contributions

which are non-analytic in the coupling cannot be determined. From the analytical

side there is some hope that an expansion in the coupling can be performed close

to two dimensions, and thus provide some insight into the qualitative properties of

the theory, while a numerical approach has the advantage that it can attack the

four-dimensional case directly, without having to rely on an expansion in a small

parameter.

Among the properties that should emerge from a consistent theory of quantum

gravity one can list the recovery of almost at space at large distances, and the

appearance of an attractive Newtonian potential between heavy bodies. In a con-

sistent lattice formulation of gravity the computation of the Newtonian potential is

in principle no more di�cult than the determination of the static potential in QCD.

The Equivalence Principle could then in be tested by employing di�erent sources

for the gravitational �eld.

A crucial question, which has up to now only been partially addressed, is the

existence of a lattice continuum limit. As in any lattice �eld theory, a continuum

theory can only be recovered if the lowest lying excitation of the theory (the graviton)

can be made to vanish, at least in some region of bare parameter space. It is only

in this region that the details of the underlying lattice structure are washed out and

the long distance universal properties of the continuum theory start to emerge. In

this respect the correct excitation spectrum of the weak �eld expansion represents

only a necessary, but not a su�cient requirement.

Even the existence of a continuum limit by itself (whose appearance would be

signaled by the presence of long wavelength uctuations in coordinate invariant

uctuations and correlations) does not prove that General Relativity is recovered at

large distance until one is able to show that the behavior of correlations is associated

with a massless spin two particle. There is some hope though that if the action and

measure have the correct symmetry properties, and if the correct states propagate

in the weak �eld limit, then the same should be true in the full nonperturbative

treatment of the theory. In this respect the determination of the Newtonian potential

provides a crucial ingredient, since its long distance properties (combined with the
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Equivalence Principle) are characteristic of General Relativity.

Regge's formulation of gravity in terms of simplicial manifolds with varying edge

lengths is the natural discretization for General Relativity [1]. At the classical level,

it is the only lattice model known to reproduce in four dimensions General Relativity,

with continuous curvatures, classical gravitational waves, and no graviton doubling

problem in the weak �eld limit. The correspondence with continuum gravity is

particularly transparent in the lattice weak �eld expansion, with the invariant edge

lengths playing the role of in�nitesimal geodesics in the continuum. In the limit of

smooth manifolds with small curvatures, the continuous di�eomorphism invariance

of the continuum theory is recovered [2, 3]. But in contrast to ordinary lattice

gauge theories, the model is formulated entirely in terms of manifestly coordinate

invariant quantities, the edge lengths, which form the elementary degrees of freedom

in the theory [4, 2]. Of course in perturbation theory, the lattice theory remains

non-renormalizable just as the continuum theory [5, 6]. This does not exclude the

possibility that the theory might exist non-perturbatively, and well-known examples

of such a behavior exist for simpler models both in the continuum and on the lattice

[7].

Recent work based on Regge's simplicial formulation of gravity has shown in pure

gravity the appearance in four dimensions of a phase transition in the bare Newton's

constant, separating a smooth phase with small negative average curvature from a

rough phase with large positive curvature. For su�ciently large higher derivative

coupling the transition is continuous, with the curvature vanishing at the critical

point with a universal exponent which has been determined to be approximately

� = 0:63(3) [8, 9]. While the fractal dimension seems rather small in the rough

phase, indicating a tree-like geometry for the ground state, it is very close to four in

the smooth phase close to the critical point. A calculation of the critical exponents in

the smooth phase and close to the critical point seems to suggest that the transition

is continuous (at least for su�ciently large higher derivative coupling) with divergent

curvature uctuations, and that a lattice continuum might therefore be constructed.

If the model has any resemblance to General Relativity at large distances, it

should give rise to an attractive potential between heavy particles which should

fall o� like 1=r, with subleading classical relativistic and quantum corrections. In

general this is only expected to happen in the vicinity of the critical point at Gc,

where the lattice continuum limit is to be taken, following the general prescription

of Wilson for determining the low energy properties of quantum cuto� theories [10].

In the context of the weak-�eld expansion, the problem of determining the potential

from the correlations of world-lines associated with two heavy particles has been
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discussed recently by Modanese in [11], and part of our work can be regarded as an

extension to the non-perturbative case.

In this paper we will present some �rst qualitative result regarding the nature

of the potential in simplicial gravity, as derived from numerical studies (on a lattice

with 24� 164 = 1; 572; 864 simplices), and will begin by considering the determina-

tion of the potential from the correlations of Wilson lines in the framework of the

weak �eld expansion. The paper is organized as follows. In Sec. 2 we introduce

the simplicial action and measure for the gravitational degrees of freedom. We then

discuss the formulation and properties of Wilson line correlations and the potential

in QED (Sec. 3) and quantum gravity, in the context of the continuum weak �eld

expansion (Sec. 4) and on the lattice (Sec. 5). In Sec. 6 we present our results

and in Sec. 7 some discussion. In Sec. 8 we discuss a simple mean �eld model for

quantum gravity, and �nally Sec. 9 contains our conclusions.

2 Action and Measure

We write the four-dimensional pure gravity action on the lattice as

Ig[l] =
X

hinges h

Vh
h
� � k Ah�h=Vh + aA2

h�
2
h=V

2
h

i
; (2.1)

where Vh is the volume per hinge (which is represented by a triangle in four dimen-

sions), Ah is the area of the hinge and �h the corresponding de�cit angle, proportional

to the curvature at h. All geometric quantities can be evaluated in terms of the lat-

tice edge lengths lij, which uniquely specify the lattice geometry for a �xed incidence

matrix (for a complete list of references on Regge gravity see for example [12]). The

geometry is varied by varying the lengths of the edges, while the topology is �xed

by assigning the incidence matrix 1. The underlying lattice structure is chosen to

be hypercubic, with a natural simplicial subdivision to ensure its overall rigidity

[2, 13, 14, 15]. In the classical continuum limit the above action is then equivalent

to

Ig[g] =
Z
d4x

p
g
h
� � 1

2
k R+ 1

4
aR����R

���� + � � �
i
; (2.2)

with a bare cosmological constant term (proportional to �), the Einstein-Hilbert

term (k = 1=8�G), and a higher derivative term proportional to a [16, 17, 18]. For

an appropriate choice of bare couplings, the above lattice action is bounded below,

1In the discrete dynamical triangulation model one keeps the edge lengths equal to one, and

varies the incidence matrix. In this approach continuos di�eomorphism invariance is absent even

for at space. It is unclear if such models have a lattice continuum limit above two dimensions

[30, 31].
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due to the presence of the higher derivative term. In the continuum one �nds that

the action is bounded below for a > 3k2=8�, while for the regular tessellation of

the four-sphere �5 represented by a 5-simplex one �nds that the action is bounded

below in the weak �eld expansion for a > 0:471 k2=� [13].

In the quantum case, for non-singular measures and in the presence of the �-term,

a stable lattice can be shown to arise naturally for su�ciently small k [14, 13, 15],

thus allowing a non-perturbative de�nition of the Euclidean path integral. The

higher derivative terms can be set to zero (a = 0), but they nevertheless may be

necessary for reaching the lattice continuum limit [9], and are in any case generated

by radiative corrections already in weak coupling perturbation theory. They are also

present in the weak �eld expansion of the Regge-Einstein action.

The cosmological constant term with � > 0 ensures that the volumes are bounded,

while the measure prevents any of the edge lengths from becoming too small. With-

out loss of generality, one can set the bare cosmological constant � = 1, in which

case all lengths are measured in units of ��1=4. The theory then contains a natural

ultraviolet cuto�, related to the average lattice spacing, l0 =
p
<l2>. It can be

considered as a fundamental length scale [19], as an arti�cial device necessary in

order to construct a lattice continuum limit, where it is sent to zero keeping physi-

cal quantities �xed, or as a quantity inherited from some more fundamental theory

such as superstrings (where l0 = g
p
�0). We should add that since the model is for-

mulated in a �nite box, one does not expect any infrared divergences as long as the

box size is �nite. The box size can then be considered as an additional parameter

which can be varied in order to study the renormalization properties of the theory

[21].

The gravitational measure contains an integration over the elementary lattice

degrees of freedom, the edge lengths. For the edges one writes the lattice integration

measure as [13, 14, 15] Z
d�[l] =

Y
edges ij

Z 1
0

V 2�
ij dl2ij F [l] ; (2.3)

where Vij is the 'volume per edge', F [l] is a function of the edge lengths which

enforces the higher-dimensional analogs of the triangle inequalities, and the power

� = 0 for the lattice analog of the DeWitt measure for pure gravity. The factor

V 2�
ij plays a role analogous the factor (

p
g)2� which appears for continuum measures

[22, 23]. A variety of measures have been proposed in the continuum [22, 23, 24, 25]

and on the lattice [26, 27], some of which are even non-local. Since there is no

exact gauge invariance on the Regge lattice away from smooth manifolds (nor in

any other local lattice formulation of gravity), one cannot uniquely decide a priori
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which is the most appropriate gravitational measure. On the other hand the above

measure integrates over the invariant degrees of freedom of the lattice theory, the

edge lengths. Di�erent gravitational measures which have been proposed di�er only

in the volume factors
p
g appearing in the measure. We regard therefore the above

measure as the most natural one on the Regge lattice.

We note that no cuto� is imposed explicitly on small or large edge lengths, if a

non-singular measure such as dl2 is used. We believe that this fact is essential for

the recovery of di�eomorphism invariance close to the critical point, where on large

lattices a few rather long edges, as well as some rather short ones, start to appear

[9]. On the other hand an e�ective ultraviolet cuto� is generated dynamically, due

to the presence of the cosmological constant term (at large l), and from the measure

(at small l). This cuto� is of the order of the average edge length, l0 =
p
<l2>.

We also note that no gauge �xing is necessary in this approach, since the volume

of the di�eomorphism group, which appears for smooth enough manifolds, cancels

out between numerator and denominator when invariant averages are computed.

The inuence of the measure and the dependence of the results on the underlying

lattice structure have also been systematically investigated recently in [28], where

a one-parameter family of measures has been introduced in the Regge formalism.

The results seem to indicate that the e�ects of changing the measure are small for

appropriately scaled physical quantities such as the average curvature, as long as

the basic form of Eq. (2.3) is preserved, and in particular the generalized triangle

inequality constraints.

3 Wilson loop and potential in QED

In an ordinary gauge theory such as QED and QCD the static potential can be

computed from the Wilson loop [32]. To this end one considers the process where

a particle-antiparticle pair (an electron and a positron in QED, a quark anti-quark

pair in QCD) are created at time zero, separated by a �xed distance R, and re-

annihilated at a later time T (see Fig. 1.).
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Fig 1. Square Wilson loop in QED.

In QED the amplitude for such a process associated with the closed loop � is

given by the Wilson loop

W (�) = < exp
n
ie

I
�
A�(x)dx

�
o
> ; (3.1)

which is a manifestly gauge invariant quantity. We recall here briey the essen-

tial ingredients of the calculation in QED, in order to prepare for the perturbative

quantum gravity computation in the next section. From the Euclidean QED action,

I(A) = 1
4

Z
d4x F��(x)F

��(x) ; (3.2)

one obtains the photon propagator in real space

���(x� y) =
1

4�2
���

(x� y)2
: (3.3)

If the calculation is done with a lattice cuto�, then the photon propagator at the

origin is �nite.2 Since the integrals over the �elds appearing in the QED Wilson

loop are Gaussian, one gets immediately

< exp
n
ie

I
�
A�dx

�
o
> = exp

n
�1

2
e2
I
�

I
�
dx�dy� < A�(x)A�(y) >

o
(3.5)

= exp
n
�1

2
e2
I
�

I
�
dx�dy����(x� y)

o
: (3.6)

2On a hypercubic lattice one hasZ
�

��

d4p

(2�)4
1

4
P

�
sin2

p�

2

= 0:154933::: (3.4)
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Two types of contributions arise (from x and y on the same side versus opposite

sides). These involve the two types of integral,

Z T

�
dy

Z T

0
dx

1

(x� y)2 + �2
= �

T

�
� 2 log

T

�
; (3.7)

where �! 0 is an ultraviolet cuto� of the order of the lattice spacing, and

Z T

0
dy

Z T

0
dx

1

(x� y)2 +R2
= 2

T

R
arctan

T

R
� log(1 +

T 2

R2
) : (3.8)

Adding all contributions together, and specializing to the case T � R, one getsI
�

I
�
dx�dy����(x� y)

o
' 1

2��
(T +R) � 1

2�

T

R
� 1

�2
log(

T

�
) ; (3.9)

and therefore for the Wilson loop itself

< exp
n
ie

I
�
A�dx

�
o
> ' exp

n
� e2

4��
(T +R) +

e2

4�

T

R
+

e2

2�2
log(

T

�
) + � � �

o
(3.10)

�
T�R

exp
h
�V (R) T )

i
; (3.11)

where use has been made of the fact that for large times the exponent in the ampli-

tude involves the energy for the process times the time T . Then for V (R) itself one

obtains, up to a constant,

V (R) = � lim
T!1

1

T
log < exp

n
ie

I
�
A�dx

�
o
> � cst.� e2

4�R
; (3.12)

which is the correct Coulomb potential for two oppositely charged particles.

To obtain the potential it is not necessary to consider closed loops. Alternatively,

in a periodic box one can introduce two long parallel lines in the time direction,

separated by a distance R and closed by the periodicity of the lattice, and associated

with oppositely charged particles,

< exp
n
ie

Z
�
A�dx

�
o
exp

n
ie

Z
�0
A�dy

�
o
> (3.13)

' exp
n
�e2

Z
�
dx�

Z
�0
dy� < A�(x)A�(y) > �1

2
e2
Z
�

Z
�
� � � � 1

2
e2
Z
�0

Z
�0
� � �
o
> ;

(3.14)

which gives

�
T�R

exp
n
� e2

4��
T +

e2

4�

T

R
+

e2

2�2
log(

T

�
) + � � �

o
� e�TV (R) ; (3.15)

and therefore the same result as before for the potential V (R). This second setup

is quite useful in practical applications in lattice QCD [33], and provides for an

e�cient and accurate method for computing the potential, since the time T can be

taken as large as the box size allows.
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4 Gravitational Case - Perturbation Theory

In the gravitational case there is no notion of \oppositely charged particles", so one

cannot use the closed Wilson loop to extract the potential [34]. One is therefore

forced to consider a process in which two separate world-lines for the two particles

are introduced.

It is well known that the free fall equation for a heavy spinless particle can be

obtained by extremizing the space-time distance travelled [37]. The length of the

geodesic connecting the two points is then

dmin = min
x�(�)

d(a; b j g) ; (4.1)

where the distance along a path x�(� ) between the points a and b in a �xed back-

ground geometry, characterized by the metric g��, is given by

d(a; b j g) =
Z �(b)

�(a)
d�
q
g��(x)

dx�

d�
dx�

d�
: (4.2)

Thus the quantity

�

Z �(b)

�(a)
d�
q
g��(x)

dx�

d�
dx�

d�
; (4.3)

where � is the mass of the heavy particle, can be taken as the Euclidean action

contribution associated with the heavy particle.

Next consider two particles of mass �1, �2, propagating along parallel lines in the

`time' direction and separated by a �xed distance R. We can consider space-time to

be asymptotically at in the time direction, but as we shall discuss below this is not

necessary. We shall consider here a process of the type described in Fig. 2. Then

the coordinates for the two particles can be chosen to be x� = (�;�R=2; 0; 0). The
amplitude for this process is a product of two factors, one for each heavy particle

[11]. Each is of the form

L(0; �1) = exp
n
��1

Z
d�
q
g�� (x)

dx�

d�
dx�

d�

o
: (4.4)

For the two particles we write the amplitude as

Amp. � W (0; R; �1; �2) = L(0; �1) L(R; �2) : (4.5)
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0

T

0

T

R R

Fig 2. Worldlines for two heavy particles at rest and lowest order graviton exchanges.

For weak �elds we set g�� = ���+h�� , with h�� � 1, and therefore g��(x)
dx�

d�
dx�

d�
=

1+h00(x). Then for above geometry (two parallel worldlines) the amplitude reduces

to

W (�1; �2) = exp
n
��1

Z T

0
d�
q
1 + h00(� )

o
exp

n
��2

Z T

0
d� 0
q
1 + h00(� 0)

o
: (4.6)

Expanding the square roots,

e�T�1 exp
n
�1

2
�1

Z T

0
d� h00(� )+ � � �

o
e�T�2 exp

n
�1

2
�2

Z T

0
d� 0 h00(�

0) + � � �
o

; (4.7)

and factoring out the metric-independent rest mass contribution one has

� e�(�1+�2)T
n
1 + 1

4
�1�2

Z T

0
d�

Z T

0
d� 0 h00(� )h00(�

0) + � � �
o

: (4.8)

After averaging over the h�� �eld (with < h�� > = 0) one obtains

< W (�1; �2) > = e�(�1+�2)T
n
1 + 1

4
�1�2

Z T

0
d�

Z T

0
d� 0 < h00(� )h00(�

0) > + � � �
o

:

(4.9)

In momentum space the graviton propagator, in the DeWitt-Feynman gauge @�h�� =

0, is given by [38]

�����(k) = 16�G
������ + ������ � ������

k2
; (4.10)

and therefore in real space

< h��(x)h��(y) > =
4G

�

������ + ������ � ������

(x� y)2
: (4.11)

In our case we just need

< h00(� )h00(�
0) > =

4G

�

1

(� � � 0)2 +R2
; (4.12)
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and the averaged amplitude then becomes

e�(�1+�2)T
n
1 + �1�2

G

�

Z T

0
d�

Z T

0
d� 0

1

(� � � 0)2 +R2
+ � � �

o
; (4.13)

or, since G is assumed to be small,

� exp
n
�(�1 + �2) T + �1�2

G

�

Z T

0
d�

Z T

0
d� 0

1

(� � � 0)2 +R2
+ � � �

o
: (4.14)

The integrals are easily evaluated,

Z T

0
d�

Z T

0
d� 0

1

(� � � 0)2 +R2
= 2

T

R
arctan

T

R
�log(1+T 2

R2
) �

T�R
�
T

R
�2 log T

R
+� � � ;

(4.15)

and thus the averaged amplitude is given by

< W (0; R; �1; �2) > = exp
n
�T (�1 + �2 �G

�1�2

R
) + � � �

o
: (4.16)

Since the amplitude gives, for large times, the energy E for the state, <Amp.>

� exp(�ET ), one �nds that the potential has indeed the expected form, V (R) =

�G �1�2=R. Incidentally we note that, had we done the calculation in d dimensions,

we would have obtained for the coe�cient of the R-dependent part 2(d � 3)=(d �
2)R3�d which vanishes, as expected, in d = 3 [39].

The contribution involving the sum of the two particle masses is R independent,

and can be subtracted, if the Wilson line correlation is divided by the averages of

the individual single line contribution. For one particle one has to lowest order in

the weak �eld expansion

< L(0; �1) > � < exp
n
��1

Z
d�
q
g��(x)

dx�

d�
dx�

d�

o
> �

T�R
e��1T : (4.17)

One can then compute the correlation between (closed) Wilson lines of length T ,

separated by an average distance R, and extract the Newtonian potential from

V (R) = � lim
T!1

1

T
log

< W (0; R; �1; �2) >

< L(0; �1) >< L(R; �2) >
� � G

�1�2

R
: (4.18)

If one is only interested in the spatial dependence of the potential, one can simplify

things a bit and take the two masses to be equal, �1 = �2 = �.

To higher order in the weak �eld expansion one has to take into account multiple

graviton exchanges [40], contributions from graviton loops and self-energy contribu-

tions to the heavy particles. The �rst two modify the shape of the Newtonian

potential, while the latter has the e�ect of renormalizing the mass of the heavy

particles which enter in the potential. According to the Equivalence Principle, one
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would then expect the potential to involve these e�ective, renormalized masses only
3. To see this e�ect, it is instructive to compute the average of one Wilson line,

exp
n
��

Z T

0
d�
q
1 + h00(� )

o
; (4.19)

for which the lowest order diagrams are shown in Fig. 3.

Fig 3. Lowest order graviton exchange contributions to the Wilson line.

Expanding again the square root,

e��T exp
n
�1

2
�

Z T

0
d� h00(� ) +

1
8
�

Z T

0
d� h200(� ) + � � �

o
; (4.20)

one gets

� e��T
n
1�1

2
�

Z T

0
d� h00(� )+

1
8
�

Z T

0
d� h200(� )+

1
8
�2
Z T

0
d�

Z T

0
d� 0 h00(� )h00(�

0)+� � �
o

:

(4.21)

One then averages over the h�� �eld (< h�� > = 0), using the graviton propagator

given previously.

Next one needs the regulated integral (�! 0)

Z T

0
d�

Z T

0
d� 0

1

(� � � 0)2 + �2
= 2

T

�
arctan

T

�
� log(1 +

T 2

�2
) �

T��

�

�
T � 2 log

T

�
;

(4.22)

and the expectation value then becomes

e��T
n
1 + 1

8
�T

4G

��2
+ 1

8
�2

4G

�

�
�

�
T � 2 log

T

�

�
+O(G2)

o
; (4.23)

or

< L(0; m) > = exp
n
��T [1� G

2��2
� �G

2�
+O( log T

T
)]
o

�
� �
T

��2G=�
e�~�T ; (4.24)

3We thank P. Menotti for a discussion on this point.
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where we have introduced the e�ective mass ~�,

~� = �

�
1� G

2��2
� �G

2�
+ � � �

�
: (4.25)

A partial resummation of the perturbation expansion can be done without having

to rely on the weak �eld expansion. Introduce the operator associated with the

exponent of one Wilson line operator

L� =
Z
�
d�
q
g��(x)

dx�

d�
dx�

d�
; (4.26)

where � is the path associated with the heavy particle. We have paths in mind that

are close or equal to geodesic and are very long (of lengths comparable to the box

size) and separated from each other by a large distance. Then we can write

< e��1L�1 e��2L�2 > = (4.27)

< (1 � �1L�1 +
1

2!
�21L�1L�1 + � � �)(1� �2L�2 +

1

2!
�22L�2L�2 + � � �) > ; (4.28)

or

< 1� �1L�1 � �2L�2 + �1�2L�1L�2 +
1

2!
�21L�1L�1 ++

1

2!
�22L�2L�2 +O(�3) > :

(4.29)

Next we write the part that does not involve correlations between the lines �1 and

�2 as

1� �1 < L�1 > +
1

2!
�21 < L�1L�1 > + � � � ' e�~�1T ; (4.30)

which should be valid if the path �1 is very long. We shall also assume here that the

two very long paths have comparable lengths T . Here ~�1 = �1+ ��1 is the e�ective,

renormalized mass. Then the whole expression above in Eq. (4.29) can be factored

as

(1 � �1 < L�1 > +
1

2!
�21 < L�1L�1 > + � � �)�

(1 � �2 < L�2 > +
1

2!
�22 < L�2L�2 > + � � �)�

(1 + �1�2 < L�1L�2 > � �1�2 < L�1 >< L�2 > + � � �) ; (4.31)

which one can exponentiate

' exp f�~�1Tg exp f�~�2Tg exp f+ ~�1~�2 < L�1L�2 >c + � � �g ; (4.32)

where < � � � >c denotes the connected correlation. Higher order terms will then

involve triple correlations of the type < L�1L�1L�2 >. In the front of the last

correlation we have also replaced � by ~�. Thus

T V (r) = � ~�1~�2 f< L�1L�2 > � < L�1 >< L�2 >g+ � � � ; (4.33)
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where r is some average separation between the two particle paths. This last equa-

tion shows that the potential itself is related to the connected line-line correlation

function. If the correlation is positive, then the potential should be attractive. The

above expansion shows therefore the correspondence between the potential and the

connected correlation between line operators. In the weak �eld expansion it of course

just reproduces the result obtained previously, namely

T V (r) = � �1�2
n
<

Z T

0
d�
q
1 + h00(� )

Z T

0
d� 0
q
1 + h00(� 0) >

� <

Z T

0
d�
q
1 + h00(� ) > <

Z T

0
d� 0
q
1 + h00(� 0) >

o

= � �1�2
n
T 2 + 1

4

Z T

0
d�

Z T

0
d� 0 < h00(� )h00(�

0) > + � � � � T 2 � � � �
o

= � T �1�2
G

r
(4.34)

5 Gravitational Case - Lattice Theory

At this point, the prescription for computing the Newtonian potential for quantum

gravity should be clear. For each metric con�guration (which is a con�guration of

edge lengths on the lattice) one chooses a geodesic that closes due to the lattice

periodicity (and there might be many that have this property for the topology of

a four-torus), with length T . One then enumerates all the geodesics that lie at

a �xed distance R from the original one, and computes the associated correlation

between the Wilson lines. After averaging the Wilson line correlation over many

metric con�gurations, one extracts the potential from the R dependence of the

correlation of Eq. (4.18). Indeed, by this method it should be even possible to check

for homogeneity and isotropy of the underlying random lattice.

On the lattice one can construct the analog of the Wilson line for one heavy

particle,

L(x; y; z) = expf��X
i

lig ; (5.1)

where edges are summed in the \t" direction, and the path is closed by the periodicity

of the lattice in the t direction. Since we envision the simplicial lattice as divided

up in hypercubes according to the prescription of Ref. [2], the points x; y; z can be

taken as the remaining labels for the Wilson line.
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R

T

Fig 4. Correlations between Wilson lines closed by the lattice periodicity.

For a single line we expect

< L(x; y; z) > = < expf��X
i

lig > � e�~�T ; (5.2)

where T is the linear size of lattice in the chosen t direction, T =< V >1=4, where

< V > is the average volume of the space-time lattice. The correlation between

Wilson lines at average \distance" R is then given by

� 1

T
log

h < L(x; y; 0) L(x; y;R) >

< L(x; y; 0) >< L(x; y;R) >

i
�

T � R
V (R) : (5.3)

In practice it is better to assume that for large R� l0 the potential has the form

V (R) �
R� m�1

� G(R) �1�2
e�mR

R
; (5.4)

corresponding to a Yukawa potential, allowing for the possibility of a small graviton

\mass" m. This is suggested by the fact that in anti-de Sitter space the graviton

propagator has an exponential tail at large distances, which should reect itself in

the behavior of the potential [41, 42]. And in fact the \smooth phase" of lattice

gravity, which is the only physically acceptable phase in this model, has <R>< 0

up to the critical point at Gc [9]. Classically, the characteristic \mass" appearing

in this case is related to the non-vanishing scalar curvature R < 0 of anti-de Sitter

space,

m = 1=a0; with R = �12=a20 : (5.5)
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This happens in spite of the fact that no explicit mass is given to the graviton, and

therefore presumably no Ward identities need to be violated in the quantum case (a

similar situation arises in three-dimensional gravity, where the transverse-traceless

mode (the graviton) can acquire a mass without violating gauge invariance [43] ).

On the other hand such a behavior should not be unexpected given the presence of

the infrared cuto� a0 that appears in an anti-de Sitter space.

A similar result is found in the weak �eld expansion around at space [38, 45],

where the presence of a cosmological term gives rise to a \mass" for � < 0,

m2 = �2�=k = �R=2 ; (5.6)

although arguments based on the weak �eld expansion about at space in the pres-

ence of a cosmological constant should be taken with care, due to the presence of

the tadpole term, linear in the weak �eld h��. For de Sitter space (R > 0), it is

known that no such mass term can arise, and in fact it has been argued recently

that (Minkowski) de Sitter space is inherently unstable [44].

In the anti-de Sitter case the Einstein equations for the vacuum become

� @2g�� � 2�g�� = 0 ; (5.7)

with � related to the Ricci scalar via R = 4� = 4�=k. Thus for negative scalar

curvature the mass is real. The range associated with the potential is then� �h=(mc).

In the real world this number must be very small. From the fact that super-clusters

of galaxies apparently do form, one can set a limit on the range, > 1025cm, or

m < 10�30eV [45].

6 Numerical Results

Let us now discuss the numerical methods employed in this work and the analysis of

the results. As in our previous work, the edge lengths are updated by a straightfor-

ward Monte Carlo algorithm, generating eventually an ensemble of con�gurations

distributed according to the action of Eq. (2.1) and measure of Eq. (2.3). Further

details of the method as applied to pure gravity are discussed in [14, 9], and will

not be repeated here. In this work the edge length con�gurations already generated

in [9] were used as a starting point.

For computing the potential, we considered lattices of size 16 � 16 � 16 � 16

(with 65536 sites, 983040 edges, 1572864 simplices). Even though these lattices

are not very large, one should keep in mind that due to the simplicial nature of

the lattice there are many edges per hypercube with many interaction terms, and
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as a consequence the statistical uctuations can be comparatively small, unless

measurements are taken very close to a critical point, and at rather large separation

in the case of the potential. The results we present here are rather preliminary,

and in the future it should be possible to repeat such calculations with improved

accuracy on a much larger lattice.

As usual the topology is restricted to a four-torus (periodic boundary condi-

tions). We have argued before that one could perform similar calculations with

lattices employing di�erent boundary conditions or topology, but the universal in-

frared scaling properties of the theory should be determined only by short-distance

renormalization e�ects. The renormalization group equations are in fact expected

to be independent of the boundary conditions, which enter only in their solution

as it a�ects the correlation functions through the presence of a new dimensionful

parameter, the linear system size L =<V >1=4.

In this work the bare cosmological constant � appearing in the gravitational

action of Eq. (2.1) was �xed at 1 (this coupling sets the overall scale in the problem),

and the higher derivative coupling a was set to 0 (pure Regge-Einstein action).

For the measure of Eq. (2.3) this choice of parameters leads to a well behaved

ground state for k < kc � 0:060 for a = 0 [9, 28]. The system then resides in the

`smooth' phase, with a fractal dimension close to four; on the other hand for k > kc

the curvature becomes very large (`rough' phase), and the lattice tends to collapse

into degenerate con�gurations with very long, elongated simplices [14, 13, 15]. For

a = 0 we investigated six values of k (0:00; 0:01; 0:02; 0:03; 0:04; 0:05). The case

a = 0, which we have chosen to analyze �rst, represents the simplest situation, where

explicit higher derivative terms are absent. In the future we plan to investigate the

behavior of the potential for a small but nonzero, and in particular in the regime

a > 3k2=8�, where the Euclidean action is bounded below in the continuum.

From physical considerations it seems reasonable to impose the constraint that

the scale of the curvature in magnitude should be much smaller than the average

lattice spacing, but much larger than the size of the system, or in other words

<l2> � <l2> jRj�1 � <V >1=2 : (6.1)

This corresponds to the statement that in momentum space the physical scales

should be much smaller that the ultraviolet cuto�, but much larger than the infrared

cuto�. It also corresponds to the fact that in ordinary lattice �eld theory we usually

require

L�1 �< m �< l�10 ; (6.2)

where L is the linear size of the system, m a typical mass, and l0 the lattice spacing.
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This fact prevents us from studying values of k close to the critical point kc, where

the curvature becomes small and the correlation length (or inverse graviton mass)

becomes larger than the system size. Conversely, far away from kc the curvature

becomes rather large in magnitude, and the results become sensitive to the details

of the ultraviolet cuto�. The above constraint then requires that k be rather close,

but not too close, to kc, so as to be located within the \scaling window" of Eq. (6.2),

where results relevant for the continuum theory should hopefully be obtained.

Another source of error comes from the fact that on a �nite lattice there will

be uctuations in the critical value of k, kc. We have considered lattices where the

number of degrees of freedom is of order 106. The energy density is not �xed, and

there are uctuations of order N�1=2. For k close to kc in a rough approximation

kc � k is proportional to the energy E, and one expects uctuations in kc from con-

�guration to con�guration, with a Gaussian distribution and a width proportional

to �E=E � N�1=2,

P(k) � exp
h
�A(kc � k)2N=k2c

i
; (6.3)

where A is some numerical coe�cient. One must therefore stay in a region where

Nconf � exp
h
A(kc � k)2N=k2c

i
; (6.4)

where Nconf is the number of con�gurations one is considering. This means in

particular that one cannot get too close to kc on a small lattice, or otherwise one

will encounter an instability [46].

On the 164 lattice we generated 1100 consecutive con�gurations at a = 0, for each

value of k. The results for di�erent values of k can be considered as completely sta-

tistically uncorrelated, since they originated from unrelated con�gurations. Results

for a larger statistical sample are in progress and will be presented elsewhere.

We computed the potential following the method described in the previous sec-

tions, using several values for k close to kc. Before one computes the potential, a

choice has to be made for the mass of the heavy particle �. In principle one would

like to make � as large as possible. On the other hand when � is very large, the av-

erage of a single Wilson line becomes very small and one runs into numeric precision

problems; for example for � = 1 the Wilson line on a 164 lattice is of order 10�16.

So one is forced to consider smaller values of � such that they can be handled by

the precision of the machine. We have tried initially three values for �, 0:5 0:25 and

0:125, and have found roughly consistent results for the scaled potential V (r)=�2

(see discussion below). In the following (except in one case) we will use � = 0:5 for

which we believe that double precision (<16 decimals) is adequate. For this choice

of bare heavy mass the renormalization e�ects for the mass itself are rather small.
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We �nd for all values which we have studied �� ' �0:026 to �0:036, with the renor-

malization e�ect increasing slightly towards the critical point. In the following we

shall neglect such a small e�ect and present the results for the potential in scaled

form by dividing by �2 = 0:25.

Figs. 5 to 7 present our results for the potential. As discussed previously,

the expectation is that the potential in the quantum theory close to the critical

point should be attractive (V (R) < 0), that it should decrease like 1=r close to the

ultraviolet �xed point at Gc, and that it should scale like ~�2, for �1 = �2 = �.

The �rst encouraging result is that close to the critical point the potential is indeed

clearly attractive, V (r) < 0. At very short distances, comparable to one or two

average lattice spacings, we expect the potential to show some oscillations due to

the underlying lattice structure, and this is indeed what is observed, like in the

case of the curvature-curvature correlation [47]. The oscillations could be reduced

by using a larger bin width for the distance and averaging the potential within the

bins, but then only few points would be left to display. This could be useful on a

larger lattice. In fact, we have chosen to average the potential at distances of zero

and one lattice spacing and present one single point at r = l0=2 � 1:18, since at

such short distance we expect to see mostly lattice artifacts. As usual the errors in

the potential are estimated by using a standard binning procedure. For distances

greater than 5 average lattice spacings (r > 12) the errors become quite large and

we would need higher statistics to get useful results. Not unexpectedly, the potential

is more di�cult to determine at large distances, where it becomes small and tends

to be drowned in the statistical noise. Also for k < 0:03 the potential becomes

very small (which makes it di�cult to measure accurately) and for k close to zero

it turns positive at large distances (corresponding to a repulsive potential). This is

not completely unexpected, since, at least in the weak �eld expansion, the potential

changes sign when k < 0. But of course the weak �eld expansion loses much of its

validity when we move away from almost at space, which corresponds to k ' kc.

Here we seem to �nd that this happens at a slightly larger value of k � 0:02. We

will return to this issue later in the paper.

In Fig. 8 we show the heavy mass dependence for the potential as obtained at one

value of k and for a small statistical sample (100 con�gurations of the edge lengths),

but using always exactly the same set of con�gurations for � = 0:5; 0:25; 0:125. As

can be seen from the graph, the results are quite consistent with a �2 dependence of

the potential (if we �t the mass dependence to a power by averaging over all points

at distance 0-14, we �nd that this power is about 1:94 � 0:40, quite close to the

expected value of 2).
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To further analyze the behavior of the potential, one can attempt to �t it at

'large' distances, here meaning r � l0, to an exponential decay, as indicated by the

Yukawa form of Eq. (5.4),

V (r) = � c
e�mr

r
: (6.5)

Alternatively, one can try to �t them to a power law close to the critical point at kc

V (r) = � c
1

r�
: (6.6)

If the potential is �tted to an exponential decay, one �nds that the behavior is

consistent, close to kc, with a small mass that decreases as one approaches the

critical point. This is shown in Fig. 5. We clearly do not have at this point a lot

of points which would allow us to give a precise estimate for this mass or its error.

Close to this critical point let us write for the mass of the particle, which is expected

to determine the long distance behavior of the potential,

m2 �
k!kc

Ap (kc � k) : (6.7)

We �nd some evidence for a decrease in the mass towards the critical point, and for

the amplitude we estimate Ap = 1:09(60). Here we are making the implicit assump-

tion that the mass will indeed go to zero at the same critical point. The results

for the potential are certainly consistent with this assumption, but the accuracy of

the results and the systematic errors associated with the fact that the distances r

are still rather small do not allow one yet to determine in a clean way if this is

indeed what is happening. We will leave a more accurate determination of the mass

parameters for future work.

The motivation for using the mass squared in the preceding equation is as follows.

In our previous work we estimated the critical exponent �, which determines how

the dynamical graviton mass approaches zero at the critical point, m � (kc � k)�,

and found that it was close to 1=2 (our best estimate, from Ref. [9] gave � ' 0:41

for a = 0:005). (Also it should be added for the sake of clarity, that the values we

quote refer to `physical' masses, and not to masses in units of the lattice spacing,

which would be larger by about a factor of two, since, as we mentioned previously,

the average lattice is not one, but about l0 � 2:36).

Alternatively, we can plot the mass m versus the average curvature. In general

this procedure is quite useful since it avoids the problem of having to rely on an

accurate determination of the critical point in k. Naively one would expect on the

basis of dimensional arguments that

m2 �
R!0

ApR jRj ; (6.8)
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but we cannot exclude that a non-trivial exponent appears in this case as well.

Clearly again our results are not accurate enough at this point to determine the

exponent with any accuracy. We shall return to the issue of the exponents later.

Under the above assumption we estimate in this case ApR ' (0:06)2, which seems a

rather small number. On the other hand one gets a number closer to one if one uses

a more natural scale, the e�ective average anti-de Sitter radius (see Eq. 5.5), de�ned

here by a0 = l0
q
12=jRj), as a scale instead of the average curvature. We �nd here

m ' 0:49=a0. We should add that a hard breaking of di�eomorphism invariance

should induce a graviton mass of the order of the ultraviolet cuto�, m � �=l0, which

at this point is inconsistent with all our results. On the other hand a �rst order

transition cannot be excluded, where the ground state would become unstable before

the mass (or the average curvature) reaches the value zero.

When the mass of the particle is rather small, it becomes di�cult to distinguish

an exponential decay from a pure power behavior. Close to the critical point one

can �t the potential to a pure power instead, and one �nds the quality of the �ts

to be comparably good (for a comparison see for example Fig. 6). In Fig. 11 this

e�ective power is plotted versus k, and one �nds that it is somewhat greater than

one, reecting the fact that the potential falls o� more rapidly in distance as one

moves away from the critical point. From Fig. 11 we estimate the power at the

critical point to be about � = 0:99(68) (the smallest power we actually measure at

k = 0:05 is about 1.67, so we get the smaller values only by following the general

trend and extrapolating to k ' 0:60).

If we exclude from the potential the point at r = 1:2 which corresponds more or

less to the \origin", one �nds that the decrease in distance r is not very far from

a 1=r behavior. In Fig. 7 we show a �t to the potential which is purely 1=r for

r > l0, and it seems that also this �t is rather good close to the critical point. This

would give further support to the claim that the potential is very close to 1=r in the

vicinity of the critical point, with some small mass or other correction. A radical

possibility would be that the mass is actually zero, but this would seem unlikely in

the presence of an average negative curvature, and would be at variance with the

fact that the curvature-curvature correlation appears to be exponentially decaying

close to the critical point [47]. At the present moment our results are not su�ciently

accurate to determine inequivocably what those corrections are, and we can only

give estimates for the size of the corrections given an assumed form. Needless to

say, if we try to �t the potential to a function with more than two parameter such

as �c exp(�mr)=r�, we run into the problem of not having enough statistically

signi�cant points to constrain the parameters su�ciently.
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In conclusion, our �rst results are not inconsistent with the expectation that

close to the critical point the potential between heavy particles should be propor-

tional to the mass squared of the particles, and that it should decreases like 1=r at

short distances. A careful study of the above issues should give further support to

the argument that coordinate invariance is indeed recovered in this model at large

distances, and that the correct low energy theory is recovered in the vicinity of the

�xed point.

7 Discussion

It is of interest to extract the e�ective Newton constant in the vicinity of the critical

point. In general we expect that the Newton constant will depend on the distance

r, and so we should write G(r) for it. Furthermore, we should take into account

the fact that all our dimensionful quantities are measured in units of some unit

cuto� (it was set to one in Eq. (2.1)), and that our average lattice spacing l0 is not

quite equal to one (this is a small e�ect). At short distances r � l0 we measure the

coupling at scales close to the ultraviolet cuto�, while at larger distance we should

see some renormalization e�ects, if they are there (Some time ago in a very nice

paper the short distance behavior of pure Einstein gravity was discussed, exploiting

the invariance of the classical Einstein action under dilatations [48]). Since we only

have a few points in r for the potential at any given k, we will restrict here our

attention to the behavior of G at short distances, close to the �xed point. Let us

de�ne here Geff = c as the coe�cient of the potential obtained from the three �tting

procedures used previously (�c exp(�mr)=r, �c=r�, and �c=r). In the end we shall

only be interested in the values in the close vicinity of the critical point.

As a function of k, the three sets of coe�cients are shown in Fig. 12. One

notices, not unexpectedly, that the values for Geff de�ned in the above way start

to di�er signi�cantly as one moves away from the critical point, a reection for

example of the fact that the assumption of almost pure 1=r behavior is only valid

in the vicinity of the critical point, and possibly only at rather short distances. On

the other hand all three estimates seem to converge more or less to one value at kc,

which we estimate to be about 0:14 if we look at the results in Fig. 12. It is certainly

encouraging that the value for the e�ective Newton constant at short distances in the

vicinity of the �xed point is not zero or in�nite in lattice units. Both values are close

to the bare value, Gc = 0:63. Indeed the e�ective Newton constant we computed

contains necessarily the cuto�, so we can write Geff = 0:15 = G0(l0=s)
2, where G0

is comparable to Gc and s is a number of order one (it is � if we use a momentum
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cuto� on a regular hypercubic lattice). In our case a discrepancy between Gc and

G0 can be resolved by taking s ' 4:84.

We should keep in mind that even at the critical point where the curvature

vanishes the lattice is by no means regular, and l0 =
p
<l2> only represents an

\average" cuto�. We should also perhaps recall here the fact that a bare cosmological

constant �, which could appear in the original action (as indicated in Eq. (2.1)) has

been scaled out, when we set it equal to one by rescaling all the edge lengths. If we

put it back in, then the e�ective Newton's constant would have to be multiplied

by that scale, Geff = G0(l0=s)
2=
p
�, and G0 and s are the numbers discussed

previously. As far as the distance dependence of the coupling G(r) is concerned,

we have nothing to say, based on our results so far on the potential. Of course if

the potential decreases exponentially at large distances, one should factor out this

dependence before determining the distance dependence of the coe�cient G(r).

Let us now return to a discussion of the fact that the potential seems to vanish

when k gets close to k = 0. From our results in fact we estimate that as we move

away from the �xed point the potential becomes very small close to k = 0:02,

and turns repulsive beyond that value. If we look at the weak �eld expansion for

the graviton propagator (see Eq. (4.11)), we see that there are two contributions of

opposite sign, the one with the wrong (repulsive) sign being associated with the trace

part �������=x2 of the metric. In the Landau gauge a similar situation arises, since

the graviton propagator contains two terms of opposite sign, one associated with

the spin-2 part, and one associated with the spin-0 part, �(x) = [P (2) � 1
2
P (0)]=x2,

where P (2) and P (0) are spin-2 and spin-0 projection operators [49]. Let us assume

here that this description based on the weak �eld expansion is more or less reliable

in the vicinity of the �xed point, where the average curvature is very small and

(almost) at space is recovered on the average.

But we know that as we approach the value k = 0 the Einstein term switches o�

and there cannot be any propagating gravitons (or their non-perturbative counter-

parts), at least for a = 0. The only remaining term in the action is the cosmological

term, which contains no derivatives. On the other hand the lattice gravitational mea-

sure (Eq. (2.3)) contains a residual interaction between the volumes which is due

to the generalized triangle inequality constraints. These constraints will be present

for almost any sensible local lattice measure, irrespective of the detailed form of

the overall volume factors that enter in it. The triangle inequality constraints will

induce a residual interaction between the volumes and edges, which will be non-

vanishing when k = a = 0. Indeed when the correlation function between volumes

at �xed geodesic distance is computed directly, one �nds that such a correlation is
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nonzero at k = 0 [47, 29], and the corresponding mass is about 0:44(3). Based on

the previous discussion one would therefore expect that the potential should become

repulsive in this case, since the spin-2 kinetic term in the action is completely absent

in this limit.

A possible interpretation of our results for the potential is therefore the following:

At k = 0 only the trace part of the metric propagates, and the potential is repulsive.

Away from, but close to, k = 0 the spin-2 part starts to propagate, with a mass that

is roughly m � j log kj=l0, since the amplitude for moving n steps on the lattice is

proportional to kn = exp(�nj log kj) in this limit. As we approach the �xed point

k ! kc the spin-2 part starts to propagate over larger distances, since its mass is

decreasing. The potential eventually turns attractive, as it should, and for k close to

kc the correct admixture of spin-2 and spin-0 is recovered as determined by general

covariance for uctuations in the vicinity of almost at space. We should stress that

there is no reason to expect that the spectrum of excitations will come out correctly

at in�nitely strong coupling (k = 0); after all this certainly does not happen even in

lattice QCD. One would expect that the potential, as well as any other coordinate

invariant correlation function, would start to scale properly only when the mass of

the two particles (spin 0 and spin 2) becomes comparable, and in turn comparable to

the natural curvature scale, 1=a0 =
q
jRj=12 l�10 . From the results on the potential,

the correlations and the average curvature we estimate that at k = 0:03 these three

scales become comparable m � 1=a0 ' 0:3.

Let us now return to the issue of the critical exponents for gravity. In statistical

�eld theory one associates the singularities in the thermodynamic functions and

in the correlations with the divergence of a correlation length (or inverse mass) at

the critical point [10]. In the lattice gravity case we can follow a similar line of

reasoning. The natural candidate for the correlation length in the gravitational case

is the inverse of the graviton mass, m = ��1. Let us assume that the singular part

of the free energy F = �V �1 log Z scales like ��dH where dH is a (perhaps fractal)

dimension, which we expect to be close or identical to four. The �rst derivative with

respect to k of the log of the partition function should then scale like

R �
k!kc

�AR (kc � k)� ; (7.1)

up to a constant (which we �nd to be zero, at least for su�ciently large a), with an

exponent � = dH� � 1 (Josephson scaling law), if we de�ne the exponent � by the

usual relation [10]

m �
k!kc

Am (kc � k)� : (7.2)
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The uctuations in the curvature, obtained from the second derivative of the log of

the partition function should in turn scale like

�R �
k!kc

A�R (kc � k)��1 : (7.3)

The relationship expected on the basis of scaling, � = (1 + �)=dH , also implies for a

continuous phase transition where the curvature vanishes,

R �
k!kc

mdH�1=� � m
dH

dH��1

dH� : (7.4)

In Ref. [8, 9] the exponent � was estimated, in the presence of a small higher deriva-

tive term (a = 0:005 in Eq. (2.1)) to control the uctuations in the curvature, at

about � = 0:63(3), which then gives �dH = 1:63, and for the power in Eq. (7.4)

about 0:39�dH . For a = 0 a smaller value was found, but with a much larger error,

� = 0:0�0:3. A variety of methods can be used in principle to determine accurately

the values of the critical exponents (such as direct determinations, �nite size scaling

[10, 21, 9], and real-space renormalization group methods based on block-spin ideas

[13]).

Now if dH = 4 then we get � = 0:41(1), in which case the power appearing in

Eq. (7.4) would be 1:55 4. In principle � and therefore dH could be determined either

directly from Eq. (7.2) or from Eq. (7.4), but our results so far are not su�ciently

accurate to determine this power independently. It is amusing to note that ifR � m2

(as assumed in Eq. (6.8), see also Fig. 10.) then dH � 1=� = 2, which would imply a

fractal dimension slightly above four, dH � 5:20 and � = 0:31. (We also note that in

this case the inverse mass m becomes precisely (up to a constant) the anti-de Sitter

radius, m � a�10 ). To a certain extent we can exclude very large values for dH ,

since these would imply (given the known value of dH� = 1:63(3)) that the power

in Eq. (7.4), 0:39 � dH is very large. But this does not seem the case if we look at

Fig. 10. More accurate results would help in resolving this issue.

Let us recall here that a relationship like the one written in Eq. (7.1) and Eq. (7.2)

is also suggested by the perturbative expansion for pure gravity about two dimen-

sions. In the 2 + � perturbative expansion for gravity [51, 52] one analytically

continues in the spacetime dimension by using dimensional regularization, and ap-

plies perturbation theory about d = 2, where Newton's constant is dimensionless.

For the non-linear sigma model this is a completely sensible procedure, which gives

reasonably accurate quantitative predictions in three dimensions [53]. It is not clear

4It is amusing to note that a similar value (� = 0:401) was found, using real space renormaliza-

tion group methods, in the Abelian U (1) lattice gauge theory in four dimensions [50]. We thank

G. Parisi for reminding us of this result.
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yet whether this approach makes sense for gravity beyond perturbation theory due

to the unboundedness of the conformal mode, but it provides for a nice framework

in which one can do controllable analytic calculations. In this expansion the dimen-

sionful bare coupling is written as G0 = �2�dG, where � is an ultraviolet cuto�

(corresponding on the lattice to a momentum cuto� of the order of the inverse av-

erage lattice spacing, � � 1=l0). A double expansion in G and � = d � 2 then leads

in lowest order to a nontrivial �xed point in G above two dimensions. Close to two

dimensions the gravitational beta function is given to one loop order by

�(G) � @G

@ log �
= (d � 2)G � �0G

2 + � � � ; (7.5)

with �0 > 0 for pure gravity. To lowest order the ultraviolet �xed point is then at

Gc = 1=�0(d � 2). Integrating Eq. (7.5) close to the non-trivial �xed point one

obtains for G > Gc

m = � exp

 
�
Z G dG0

�(G0)

!
�

G!Gc
� jG�Gcj�1=�0(Gc) � � jG�Gcj1=(d�2) ; (7.6)

where m is an arbitrary integration constant, with the dimensions of a mass, and

which should be associated with some physical scale. It would appear natural here

to identify it with the graviton mass, or the scale of the average curvature. The

derivative of the beta function at the �xed point de�nes the critical exponent �,

which to this order is independent of �0,

�0(Gc) = �(d� 2) = �1=� : (7.7)

The possibility of algebraic singularities in the neighborhood of the �xed point, ap-

pearing in vacuum expectation values such as the average curvature and its deriva-

tives (Eq. (7.1) and Eq. (7.2), is then a natural one, at least from the point of view

of the 2 + � expansion.

The previous results also illustrate how in principle the lattice continuum limit

should be taken [10]. It corresponds to �!1, G! Gc with m held constant; for

�xed lattice cuto� the continuum limit is approached by tuning G to Gc. Alterna-

tively, one can choose to compute dimensionless ratios directly, and determine their

limiting value as one approaches the critical point. Away from Gc one will in general

expect to encounter some lattice artifacts, which reect the non-uniqueness of the

lattice transcription of the continuum action and measure, as well as its reduced

symmetry properties.

In four dimensions we de�ne the exponent � by

m �
G!Gc

� jG �Gcj� ; (7.8)
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where m is proportional to the graviton mass. Knowing � is then equivalent to

knowing �0(Gc) = �1=�. The value of � determines the running of the e�ective

coupling G(�), where � is an arbitrary momentum scale. The renormalization group

tells us that in general the e�ective coupling will grow or decrease with length

scale 1=�, depending on whether G > Gc or G < Gc, respectively. For G > Gc,

corresponding to the smooth phase, one expects

G(�) = Gc +
�m
�

�1=�
+O

��m
�

�2=��
: (7.9)

There are indications from the lattice theory that only the smooth phase with G >

Gc exists (in the sense that spacetime collapses onto itself for G < Gc), which would

suggest that the gravitational coupling can only increase with distance, as indicated

by Eq. (7.9) [9].

Let us digress on possible corrections to the above formulae, which we have in

general no reason to exclude. Let us assume that close to the ultraviolet �xed point

at Gc one can write the following expansion

�(G) = � 1
�
(G �Gc) � c (G�Gc)

2 +O((G�Gc)
3) ; (7.10)

We are assuming here that at least the beta function is analytic at Gc, which is

usually the case. After integrating as before, one �nds for the structure of the

correction

�m
�

�1=�
= (G �Gc)� c � (G �Gc)

2 +O((G �Gc)
3) : (7.11)

The hope of course is that these corrections are small (c� 1), at least in the vicinity

of the �xed point; the higher order term is unimportant if (G �Gc)� 1=(c�). For

the e�ective running coupling one then has the corresponding relation

G(�) = Gc +
�m
�

�1=�
+ c �

�m
�

�2=�
+O

��m
�

�3=��
: (7.12)

One cannot exclude in principle more pathological behavior. If the leading term

in the beta function in the vicinity of the �xed point vanishes,

�(G) = � c (G�Gc)
� + � � � ; (7.13)

(with � > 1), one obtains an essential singularity in the mass gap,

m

�
= expf� 1

c(� � 1)
(G �Gc)

1��g : (7.14)
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It is not clear what should be the mechanism for such a cancellation in gravity, but if

we consider such a possibility then one obtains instead of a power law a logarithmic

scaling for the e�ective coupling (similar to what happens in QCD),

G(�) = Gc +
h
c(� � 1) log

�

m

i�1=(��1)
: (7.15)

But we should point out that this does not seem to happen in the 2 + � expansion,

nor is there any evidence that it happens in the lattice model, but for now one should

leave such a possibility open. We would like to add that even in the at case one does

not have in the Regge case anything resembling a regular lattice, although, contrary

to lattices with random coordination number [54], the coordination number here

stays �xed. It is known that already for at random lattices novel critical behavior

can arise, under certain conditions [55, 56]

The mass m determines the size of scaling corrections, and plays therefore a

role similar to �MS in QCD. It cannot be determined perturbatively (as it appears

here as an integration constant). It separates the short distance, ultraviolet regime

with characteristic momentum scale � � m, or, more precisely, since we have an

ultraviolet cuto�,

l�10 � �� m ; (7.16)

from the large distance, infrared region

m� �� L�1 ; (7.17)

where L =<V >1=4 is the linear size of the system.

In quantum gravity it is of great interest to try to determine the value of the low

energy, renormalized coupling constants, and in particular the e�ective cosmological

constant �(�) and the e�ective Newton's constant G(�) = 1=(8�k(�)). Equiva-

lently, one would like to be able to determine the large distance limiting value of

a dimensionless ratio such as �(�)G2(�), and perhaps even its dependence on the

linear size of the system L = V 1=4 (which is another parameter in the model). (In

the real world one knows that at laboratory scales Geff = (1:6160 � 10�33cm)2,

while �effG
2
eff � 10�120 is very small). In the continuum, these issues have been

addressed in the context of Feynman diagram perturbation theory [57].

If � is positive, then the beta function has a negative slope at the �xed point.

This seems to be the case in the lattice theory. The increase or decrease in coupling

as a function of scale is determined by what phase one is in. But on the lattice only

the smooth phase is found to have an apparently sensible continuum limit. One

immediate consequence of this result is that in the smooth phase with G > Gc the

28



gravitational coupling constant G must increase with distance (anti-screening), at

least for rather short distances. The opposite behavior (screening) would be true in

the phase with G < Gc, but such a phase is known not to be stable and leads to no

lattice continuum limit [9]. On purely physical grounds one would expect gravity to

anti-screen (since it couples to everything with the same sign), and it is therefore

not surprising that in the lattice theory the rough phase, where the opposite would

be true, is pathological.

In conclusion, one then obtains for the dimensionful Newton's constant the fol-

lowing scale dependence, valid for short distances, �� m,

G(�) �
��m

l20 �
�1=2

2
4Gc +

 
m

�

!1=�
3
5 ; (7.18)

(where Gc is a pure number and 1=� ' 2:46 if dH = 4). Here again l0 is of the

order of the average lattice spacing, and we have restored the correct dimensions for

G(�) (length squared) and re-introduced the bare cosmological constant �, which

was previously set to one in Eq. (2.1) (it only sets the overall length scale).

As discussed in [8], the vacuum expectation value of the scalar curvature can be

used as a de�nition of the e�ective, long distance cosmological constant,

R � <
R p

g R >

<
R p

g >
�
 
4�

k

!
eff

: (7.19)

One can also introduce a classical anti-de Sitter radius a0, by setting jRj = 12l20=a
2
0.

If the curvature vanishes at kc (see Eq. (7.1)) this radius diverges at kc, and thus

(�=k)eff ! 0 in lattice units. The exponent �, which is expected to be universal, was

estimated previously to be about � ' 0:63 [8, 9]. The standard scaling arguments

discussed previously then tell us that � and � are related via � = dH� � 1, where

� is the correlation length exponent appearing in Eq. (7.8), and dH is the e�ective

dimension of space (here close to four).

A more suitable de�nition of the running cosmological constant �(�) is as follows.

Introduce a sphere 
 of size r, and compute the magnitude of the average curvature

within that region,

R
(r) �
< j R
(r)pg Rj >
<
R

(r)

p
g >

: (7.20)

At short distances (small spheres) the curvature uctuates wildly and R
(r) is of

the order of the ultraviolet cuto�, � l�20 . At larger distances (larger spheres) the

curvature decreases, since the uctuations tend to average out, andR
(r) approaches

some average curvature value R0, which is determined by the chosen values for the
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bare parameters k, � and a chosen in Eq. (2.1). Thus away from the critical point

one expects

R
(r) � R0 + c l�20 e�mr ; (7.21)

whereas very close to the critical point, where both R0 and m should go to zero, we

expect that the exponential decay should turn into a power law decay

R
(r) � l�20 (l0=r)
 ; (7.22)

with an exponent  = �=� = dH � 1=�. Thus for the cosmological constant itself we

obtain

�(�) �
��m

l�40 (l0�)
dH�1=� � [1 +O(m=�)] ; (7.23)

(with again dH�1=� ' 1:54 if dH = 4), and we have restored the correct dimensions

for �(�) (inverse length to the fourth power). For the dimensionless ratio �G2 one

then obtains, from Eqs. (7.18) and (7.23),

(�G2)(�) �
��m

G2
c (l0�)

dH�1=� [1 +O(m=�)] : (7.24)

In conclusion, it seems that the dimensionless product G2� can be made very small,

provided the momentum scale � is small enough, or, in other words, at su�ciently

large distances. We should add also that the �xed point value for the dimensionless

gravitational constant, Gc, is in general non-universal, and depends on the speci�c

way in which an ultraviolet cuto� is introduced in the theory (here via an average

lattice spacing). In our model it is of order one for very small a, but for larger a it

decreases in magnitude. It would be of course of some interest to determine the scale

dependence of the average curvatureR
(r), and verify directly the behavior described

above. Alternatively, one could study the behavior of de�cit angles associated with

large loops. Since the average curvature becomes very small close to the critical

point. One would expect these de�cit angles (which correspond to physical processes

in which coordinate vectors are parallel transported around large, macroscopic loops)

to be rather small.

How can one �x the fundamental lattice spacing l20 (or l
2
0=
p
�, if � is not equal

to one in the original action) in this model? While there are apparently large uc-

tuations in the curvature at short distances, these uctuations tend, as we said, to

average out at large distances, if one is su�ciently close to the �xed point (otherwise

the interactions are short ranged, and there is no noticeable gravitational potential).

At such large distances it seems reasonable to assume that the only surviving contri-

bution to the macroscopic energy E is represented by the average curvature. Within

a very large region of size a0 the macroscopic action is then given only by the R term,
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Ea0 = �(16�G)�1
R p

gR. Let us estimate this contribution. The integral should be

restricted to a region of size a0, since the gravitational interaction apparently falls

o� exponentially beyond distances of the order of a0. Thus Ea0 � G�1(a0)a
4
0� a�20 ,

and since G(a0) � l20 one obtains E � l�20 a0. In other words, the macroscopic en-

ergy only grows linearly with size. Solving for l0, one obtains an estimate for the

lattice cuto� l20 � a0=E, and for Newton's constant at \short" distances, r � a0,

G � Gca0=E, where Gc is a dimensionless number of order one.

Let us add that the larger Gc, the smaller the distance dependence of G(r), since

one has for the distance variation the (lowest order) result

�G(r)

G(r)
=

��1

Gc (mr)�1=� + 1

�r

r
; (7.25)

(we have set r = 1=�), so in practice Gc cannot be too small, and m has to be very

small.

We conclude that a possible interpretation of our results up to now is that in this

model the e�ective gravitational coupling close to the ultraviolet �xed point grows

with distance. For the gravitational coupling our results suggest an infrared growth

away from the �xed point of the type G(�) � ��1=� , while for the cosmological

constant we have found a decrease in the infrared, �(�) � �dH�1=� , with an exponent

� given approximately by � ' 0:41 if dH ' 4, and perhaps only weakly dependent

on the matter content [58]. The scale that seems to separate the short from the long

distance behavior is m, which should be very small close to the �xed point, of the

order of the inverse anti-de Sitter radius a0.

8 Mean Field Theory

In this section we will describe a simple mean-�eld approach to quantum gravity,

which contains some (but not all) of the essential features observed in the numerical

simulations. Write for the e�ective action (or e�ective potential) for the average

curvature R, neglecting the metric degrees of freedom entirely,

Ieff(R) = (kc � k)VR + aV (�R)� : (8.1)

Classically one has of course kc = 0, but uctuations will give rise to a nonzero value

for the critical coupling that separates the smooth (k < kc) from the rough phase

(k > kc). The last term can be thought of parametrizing the lattice and continuum

higher derivative terms, and the e�ects of radiative corrections, which also include

the measure contribution. In the smooth phase of gravity R < 0, so we can write
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R = �jRj in this phase. As we mentioned, a physically acceptable phase with

R > 0 (rough phase) does not seem to exist [9]. Then

@Ieff

@R = (kc � k)V � a�V (�R)��1 ; (8.2)

with stationary point at

R0 = �(a�)�1=(��1) (kc � k)1=(��1) ; (8.3)

and we therefore identify the curvature critical exponent � with � = 1=(�� 1). This

in a sense justi�es the original form for Ieff , since it is known that the average

curvature is non-analytic at kc, (see Eq. (7.1)), with � universal, and kc and AR

dependent on a. The uctuation in the curvature is then given by

�R0
= (a�)1=(��1) (�� 1)�1 (kc � k)�(��2)=(��1) ; (8.4)

with an exponent � = 2 � dH� = (�� 2)=(� � 1), where � is the correlation length

exponent,

m �
k!kc

Am (kc � k)� ; (8.5)

with m the graviton mass and dH the e�ective dimension of space-time, which,

as we mentioned, should be close or perhaps identical to the physical space-time

dimension. Classically one has � = 1 and therefore � = 1, but it is known that in 3

and 4 dimensions � < 1 [9]. As long as R < 0 the above solution is stable, since

@2Ieff

@R2
= +aV � (� � 1) (�R)��2 ; (8.6)

= a V � (�� 1) (a�)�(��2)=(��1) (kc � k)(��2)=(��1) ; (8.7)

which also requires � > 2 (� < 1 or � < dH=2) for the second derivative of Ieff to be

�nite at the origin R = 0. In this approach there is always only one minimum for

k < kc and the transition can never be �rst order (which requires two non-degenerate

minima). For R > 0 the e�ective action is complex, as it should, since no stable

ground state is found in the lattice theory for R > 0. Two further predictions arise

out of this model. The �rst one is that the amplitude of the average curvature

should diverge when a is small,

AR � a�1=(��1) : (8.8)

(From the numerical results in four dimensions it is unclear whether this happens

precisely for a = 0, close to the critical point in k). The second one is that the
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minimum becomes increasingly shallow as a! 0, which can lead to large uctuations

in the average curvature, unrelated to the approach at the critical point at kc. This

is also apparently observed, since it has been quite di�cult to extract the critical

exponent � when a is very small (or zero). Indeed it is possible that the model

becomes unstable close to the critical point when a = 0, and that the transition is

�rst order in this case [9]. Of course one does not expect this mean �eld theory to be

quantitatively accurate, just as it is not for scalar �eld theories in low dimensions.

It only represents an e�ective theory for the curvature, which is represented here as

a single scalar quantity, neglecting the metric degrees of freedom entirely.

9 Conclusions

In the previous sections we have presented some �rst results regarding the properties

of the Newtonian potential in the context of a model for quantum gravity based

on Regge's lattice formulation. We have proposed a method for determining the

potential which is based on the computation of Wilson line correlations. We have

shown that the Wilson line correlations give the expected result to lowest order in

the weak �eld expansion. Later we have then presented some �rst numerical results

which seem to indicate that the correct qualitative features of the potential should

emerge close to the critical point. In particular it was found that the potential

is attractive close to the critical point, in agreement with previous results which

also indicated the presence of an attractive interaction between dynamical scalar

particles [58]. Our numerical results have been rather limited since we investigated

for simplicity only the case a = 0 (no explicit higher derivative terms), and we have

not performed yet a systematic study of the lattice continuum limit for the potential.

As for any correlation in gravity, the accurate determination of the potential as a

function of distance is a di�cult task, since at large distance the correlations are

small and the statistical noise becomes large. Still, our preliminary results suggest

that the potential has more or less the expected classical form in the vicinity of the

critical point, both as far as the mass dependence and the distance dependence are

concerned.

Away from the critical point our results suggest that the potential is Yukawa-

like, with a \mass" that decreases with the average curvature. We have not been

able to determine with any precision how this mass scales with the curvature as the

curvature approaches zero. We have argued that the appearance of such a mass is

natural in the quantum analog of Euclidean anti-de Sitter space, and is likely to be

a consequence of the non-linear interactions of gravitons with a non-at uctuating
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background, and the presence of a natural infrared cuto� in an anti-de Sitter space.

In any case a systematic study of the potential should provide one more quantitative

handle on the approach to the lattice continuum limit: the mass associated with the

potential has to scale to zero close to the critical point in order for the theory to

describe gravity. Based on previous work, where curvature uctuations were found

to diverge close to the continuous critical point, there is hope that this will happen

when the accuracy of the present calculations will be improved.

We have not been able to determine in this work the distance dependence of the

e�ective Newton's constant, although we expect on the basis of the phase diagram

and the values of the critical exponents that in the smooth phase with G > Gc gra-

vitational interactions will increase slowly with distance. We have argued that the

scale for such deviations from scale independence is set by the average curvature,

which is very small close to the �xed point. Let us add that it would be very inter-

esting to compute the Newtonian potential in three dimensions, where the leading

spatial dependence is expected to be logarithmic, but with a vanishing coe�cient

(for zero cosmological constant).
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Fig. 5 . Computed scaled potential �V (r)=�2 for � = 1 and a = 0, and k=0.03 (�), 0.04

(4), and 0.05 (�). (kc � 0:060). The lattice has 164 sites, and the average lattice spacing

for this range of parameters is l0 ' 2:36. The lines represent best �ts to the data of the

form c exp(�mr)=r.
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Fig. 6 . Potential V (r) for k =0.05 (�) only. The continuous lines represent best �ts to

the data of the form c exp(�mr)=r (with m = 0:12), while the dotted lines represent �ts

to c=r� (with � = 1:67).
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Fig. 7 . Potential V (r)=�2 on a linear scale, again for � = 1 and a = 0, and k=0.03 (�),

0.04 (4), and 0.05 (�). (kc � 0:060). The lines represent best �ts to the data of the form

�c=r for r > l0 = 2:36.
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relations at �xed geodesic distance (from Ref. [47]) (2) for a = 0 (points at large R) and
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Fig. 12. Three methods of estimating the e�ective short distance Newton constant at the

critical point. The e�ective Newton constant versus the bare coupling k is computed using
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(2), and c exp(�mr)=r (3). The value estimated in the vicinity of the critical point at

k = kc is represented by the horizontal line.
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