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Experience with the SLAC Linear Collider (SLC) has indicated that backgrounds caused by the transverse and
energy tails of the beam distribution will be a serious problem for a next-generation linear collider. At small
emittances mechanical scrapers do not provide a solution, because they can be damaged by the tiny, intense
beams, and also because they induce wakefield kicks which cause emittance dilution.

In this paper, we present a possible solution which uses several nonlinear lenses to drive beam tails to
large amplitudes where they can be more easily scraped mechanically. We present a design for transverse and
energy collimation and study the optimization of such systems including wakefield effects and optical aberrations.
Protection and design of the scrapers are discussed.

KEY WORDS: Beam transport, particle dynamics

1 INTRODUCTION

Experience with the SLAC Linear Collider (SLC) has indicated that backgrounds caused
by transverse and energy tails of the beam distribution will be a fundamental problem of
next-generation linear colliders. Even one high energy particle hitting the wall in the final
quad can create unacceptable detector background.

Any collimation design for the next-generation linear colliders must satisfy the following
requirements:

(1) It must provide an effective scraping despite the small (of the order of a micron)
beam sizes. In Figure 1 we show the layout for a typical final doublet for X-Band beam
parameters. The beam energy is 250 GeV. The magnet aperture is dictated to be about 2mm
from wakefield considerations, allowing for 1aabeam jitter. With a pole tip field of 1.2
Tesla and a free length to the interaction point (IP) of 1meter, the geometry is uniquely
determined. The plot for 500 GeV is quite similar.

* Work supported by Department of Energy contract DE-AC03-76SF00515.

a The definitions of some basic accelerator physics concepts that we will encounter frequently in this work are
reviewed in Appendix A.
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FIGURE 1: Layout of a typical final doublet for X-Band beam parameters.

The curved lines are beam particle trajectories at 100-x and 100-y. The straight lines tangent
to these curves indicate the synchrotron radiation envelope of these rays. For satisfactory
operation, we assume that no beam particles and only a few synchrotron photons may hit
the inner bore of the magnet.

Allowing some safety margin, we conclude that the x motion must be collimated at
about 50-x and the y motion at 15o-y • Though our analysis will be for general "n" sigma
collimation, the specific lattice we construct will illustrate that it is possible to collimate at
50- in both x and y planes.

(2) It must protect scrapers against mis-steered beams which may hit them and possibly
damage them. There are two problems associated with a train often bunches of 1010 electrons
per bunch at 250 GeV hitting a scraper.1 The first problem occurs at the surface of the scraper
which may melt because of energy deposited in.a small area. More quantitatively, we are
interested in the largest spot size to cause failure of the scraper surface. For Ti, which is
one of the best candidates according to SLC experience, the onset of melting at the surface
occurs when the rms cross-sectional beam area is l

(1)

The second problem occurs within the body of the scraper where the energy deposition
from the shower peaks typically at several radiation lengths (Xo) (~ 8Xo for Ti).

(3) It must keep scraper-induced wakefield kicks on the beam below a tolerable level.
If the beam does not pass exactly through the middle of the scrapers, it gets transverse
deflections due to geometric and resistive wall wakefields. If these kicks are coniparable to
the angular divergence of the beam, the emittance will increase.
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FIGURE 2: Kick of one scraper edge for beam size O'z=1.0 mm and scraper gap g=O.5 mm. The dotted line is
the charge distribution.

The kick due to geometric wakefields varies longitudinally as the bunch density along
the bunch,2 as shown in Figure 2. An expression for this kick, which includes the effect
of both edges of a scraper, has been derived analytically and verified numerically2 under
the assumption that the scraper gap is small compared to the scraper length, and the bunch
length o-z is comparable to or longer than the scraper gap. For small offsets the transverse
deflection of a particle is produced by the dipole wakefield only, and hence it is proportional
to ~ {y} Ig where ~ {y} is the beam offset from the middle of the scrapers and 2g is the
scraper gap. The wakefield kick, which is valid for cylindrically symmetric geometry, is
given approximately by

z2

~y'(z) = 4reN ~(y) __l_e - 20';
Y g $o-z

where y = E I mc2 , Nand E are the number ofparticles per bunch and energy respectively,
z is the longitudinal position in the bunch and r e the classical radius of the electron. If the
scraper consists of parallel plates separated by 2g, the kick is larger by a factor of rr218. To
reduce the effect of the geometric wakefield kick, one can taper the scrapers with a taper
angle etap (etap = rr12 for a step scraper.) For small taper angles (etap ~ lOOmrad) the
dependence on the taper angle is linear, 3,4

~y'(z)

z2etap 4reN il{y} 1 - 2(12
---- -- ---e z
(rr16) y g $o-z

(3)
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The wakefield kick resulting from the interaction of the dipole moment of the beam
distribution, with the resistive wall of the scraper with conductivity K, is (see Appendix
C):

where

~y'(r)
( )

1/24reNL scr ~

Y TiO"z
~(y) f(r:)

g3
(4)

fer)
00

1 f dr' _1(r-r')2-- --e 2

y'2rr R
o

1
A -

J10CK

(5)

(6)

L scr is the length of the scraper, and r == zlO"z denotes the location within the bunch. This
expression assumes a smooth, cylindrically symmetric geometry of radius g. If the scraper
consists of parallel plates separated by 2g along the y-axis, the kick is larger by a factor of
Ti 218, 5 as in the case of geometric wakefields. The above expression is valid in the range

(7)

For scrapers made of Ti with K ~ 2.8 X 1017sec-I, and typical bunch length for next
generation linear colliders of 100 JLm, A = 8.5 X 10-11 m and Equation (4) is valid for all
g such that

O.lJLm « g « 10 cm . (8)

Both conditions will be satisfied in our design. For small gaps this is the dominant wakefield
effect. K. Bane has numerically integrated Equation (5) and the result is plotted in Figure 3.

In the next section we find the conditions that must be satisfied in order for mechanical
collimation to be a workable collimation technique for a next-generation linear collider.
Furthermore we demonstrate that mechanical collimation is precluded for the vertical degree
of freedom in the Next Linear Collider (NLC), SLAC's next-generation linear collider
design. In the following section we present the nonlinear collimation scheme as a possible
alternative. We introduce the principle and write the conditions such a design must satisfy.
These conditions determine a set of lattice parameters for the collimation systems. We
present a possible lattice design, calculate its tolerances and discuss energy collimation.
Before we conclude we examine the possibility of nonlinear collimation with octupoles.
Finally we summarize the issues and point out the problems of the current design as well
as questions remaining to be answered.
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FIGURE 3: Resistive wall wakefield as a function of the longitudinal position inside the bunch.

2 MECHANICAL COLLIMATION

89

The design of a mechanical collimation section must satisfy the following requirements:
(a) The scraper half-gap must be equal to nay,

for scraping particles beyond nay.
(b) The rms value of the geometric wakefield kick must be less than a;/5,

1
(~Y~w)2}1/2 :s :5 a~

(9)

(10)

This requirement leads to a maximum 2% increase of the spot size. Equation (10) becomes
for untapered, parallel-plate scrapers (see Appendix B),

where

~(y)
Cl-

g

1 ,
< - a5 y

(11)

1 Jr2 4re N

Cl = 31/4 8" 5ya
z

For N = 1 x 1010 particles per bunch, beam energy E = 250 GeV and az
Cl = 0.84 x 10-6 .

100/Lm,
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(c) The rms resistive wall wakefield kick must be less than 0';/5,

1
((ilY;w)2) 1/2 :s 5a;

For a parallel-plate scraper this condition reads (see Appendix C),

L\ (y) 1 I
C2 -3- Lscr < - a

g 5 Y

where

C2 = 71:
2[K(~/2)]1/2 4reN (~)1/2

8 2,.j1i y rrO'z

(12)

(13)

where K is the complete elliptic integral. C2 = 1.12 x la-13m for the parameters quoted
above.

(d) As mentioned in the Introduction, in order to ensure protection of the scrapers when
a mis-steered beam hits them, the beam area at the scrapers must satisfy

(14)

(15)

It is often the case that tapered scrapers must be used in order to satisfy the geometric
wakefield condition (b). However tapered scrapers are necessarily longer and hence the
resistive wall wakefield is increased as it varies proportionally with the length of the scraper.
Therefore we must evaluate the resistive wall wake for tapered scrapers and find the common
solution of both conditions (11) and (13).

To estimate the resistive wall wake of a tapered scraper we can, to a first approximation,
substitute Lscr1g3 by the integral

I = Tg:~)
o

where LTOT is the total length of the scraper (see Figure 4), and g(z) is the gap as a function
of z.

Assuming the geometry ofFigure 4 where the scraper varies linearly with the longitudinal
coordinate z in the regions A and C, we have

{

r+(2/L)(gO-r)z forO:sz:sL/2
g(z) =

gO for L/2 :s z :s Lo

Then the integral I is

(16)

I (17)
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FIGURE 4: Definition of the parameters entering the calculation of tapered scrapers.

Hence the resistive wall wakefield condition, Equation (13), becomes

[
L(r + go) LO] 1 I

C2~(Y) 2 2 + 3" :::; - ay
2go r go 5

The geometric wakefield condition, Equation (11), becomes

(18)

12Cl (r - go) ~(y)

Jr L gO

where we have approximated Otap by

1 I
< - a5 y

(19)

(20)
~ 2(r - go)

Otap L

If we now require that the equalities of both Equations (18) and (19) be satisfied, we can
eliminate L and solve for Lo in terms of {Jy at the scraper. For a beam offset equal to lay,
Lo is given by

n3E~/2 1/2 30Cl
Lo = 5C2 {Jy, scr - ~ {Jy,scr

and the value of {Jy, scr that maximizes Lo is given by

(21)

[
Jr 3 3/2]2

{3y,scr = 3 x 102CIC2 n Ey

We have assumed r » go. The maximum Lo is then,

(22)

(23)
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Notice the strong dependence of the last two expressions on n. A necessary condition for
mechanical collimation to work is Lo,max to be of the order of a few radiation lengths of
the scraper material,

Lo,max 2: 3 Xo (24)

This is because a thin scraper will not be able to disrupt the beam sufficiently in order for
significant changes of the beam parameters to take place. From Equation (23) we calculated
the minimum vertical normalized emittance Ey,N for which (24) is satisfied, assuming
scraping is at 10ay and the beam energy is 250 GeV: EyN,min = 0.75 x 10-6m rad. We
also calculated the number of sigma beyond which we can scrape without violating (24),
for Ey == 10-13m rad: nmin ~ 39.

On the other hand the protection condition, Equation (14), imposes a constraint on the
product of the beta functions at the scraper,

81 X 10-20

fJx, scrfJy, scr 2: m
2

ExEy
(25)

Both conditions (24) and (25) must be satisfied in order for mechanical collimation to work.
Let us consider the NLC example. NLC beams are flat with a ratio of horizontal to

vertical emittance equal to 100 to 1. The incoming beam to the collimation section, which
is assumed to be at the end of the linac and before the final focus, has horizontal and vertical
normalized emittances equal to

Ex,N = 5 X 10-6 m rad, . -8
Ey,N = 5 x 10 m rad . (26)

For beam energy equal to 250 GeV, and scraping beyond 5ay , Lo,max = 1.5 /-lm, which
corresponds to about 4 x 10-4 of a radiation length for Ti. Thus condition (24) is not
satisfied, and simple mechanical collimation for the NLC vertical plane at the 50'y level is
impossible. However, it is possible for the horizontal plane.

3 THE PRINCIPLE OF NONLINEAR COLLIMATION

The idea here is to blow up the part of the beam we want to collimate so that mechanical
scrapers can be used effectively without inducing significant wakefield kicks. Throughout
this process, the core - which contributes to the luminosity of the machine - must remain
unaffected.

Linear optical magnification has been excluded for the NLC as we demonstrated in
the preceding section. On the other hand, higher-order multipoles such as decapoles,
dodecapoles, etc., are not useful because they don't penetrate to the small distances
necessary. However, for a TeV linear collider beam, skew sextupole and normal octupole
fields, placed at a point where the beam size is large, seem promising. This is demonstrated
in Figure 5, which displays the initial phase space of the beam distribution extended to 200' ,
with a equal to 8/-lm. (We have assumed fJ = 2, 000 m.)
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FIGURE 5: Phase space plot of a beam distribution extended to 200'. The two curves are the angular deflections
of a beam particle as functions of its position due to sextupole and octupole fields (0'=8 jlm, ,8=2,000 m).

Normalized coordinates have been used so that the phase space is circular. Superimposed
are plotted the angular deflections of a beam particle as functions of its transverse position
due to skew sextupole and normal octupole fields, which are given by

Bpole L sext 2

D.Y~ext = a2 (Bp) Y (27)

and

(28)
Bpole L oct 3

~Y~ct = 3 Ya (Bp)

Notice that these expressions are highly simplified. The justification lies on the fundamental
design consideration of the nonlinear collimation shceme of minimizing coupling effects at
the nonlinear elements. This design requirement, which is presented later (Section 4.1.6),
ensures that

y2 »x2

at the skew sextupoles. Quantitatively, aff,sext ~ 600a;,sext. The same assumption holds true
for normal octupoles. Thus, the x-y coupling at the nonlinearelements will be systematically
neglected.
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y

FIGURE 6: Nonlinear collimation.

In the above, Bpole denotes the pole-tip field, a denotes the pole-tip radius, L denotes
the length of the magnet, and (Bp) denotes the magnetic rigidity. The plot of Figure 5 uses
parameters entering the above formulre which assume their maximum values achieved by
the current technology of conventional magnet construction. These values are: 1.2 T for
the pole-tip field, 1 m for the magnet length, and 1 mm for the pole-tip radius. The energy
is assumed to be 250 GeV. Notice that the sextupole field reaches deeper into the beam
distribution; the octupole field does not affect the core as much as the sextupole field does.
Eventually, we shall present results using both nonlinear forces. For the time being, we
employ the octupole field to describe the proposed nonlinear collimation scheme.

The initial beam distribution whose phase space plot is shown in Figure 6(a) goes through
an octupole magnet. The resulting phase space is shown in Figure 6(b). Then follows a
rotation in betatron phase by 17: /2. The new beam distribution is plotted in Figure 6(c)
where the mechanical scrapers are shown by the shaded area. So by passing the beam
through an octupole magnet followed by a 17:/2 rotation, we have created long, angular
tails which are subsequently turned into position tails and cut off by the scrapers. The
core, which has been modified in the process, can be put back together by adding to the
above lattice its mirror image.6 Figures 6(d) and (e) are the phase space plots of the beam
distribution through this last section of the lattice. This technique is well known. A system
consisting of two nonlinear elements of the same or opposite polarity (depending on their
multipolarity), placed 17: apart in phase advance with unit magnification, ignoring chromatic
and chromo-geometric aberrations, amounts to a - I, where I is the identity transformation.

Since in a real machine both position and angle tails cause background problems, one
would like to clean up the beam profiles in both phases (say x and x'). The following
schemes take this into account. It includes two lattice sections, each of which consists of
two nonlinear elements 17: apart; thus collimation in both phase space directions is possible.
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FIGURE 7: Schematic representation of the collimation systems in the NLC, located between the linac and final
focus (FF). Sstands for skew sextupole; x, y, E stand for horizontal, vertical and energy scraper respectively.

The two lattice sections are next to each other, separated by a phase advance of Jr/2. Next
we demonstrate how this scheme can be used to collimate the vertical plane for the NLC.

4 NONLINEAR COLLIMATION IN THE NLC

4.1 Scheme with skew sextupole pairs

Collimation in the NLC is proposed to be done mechanically in the horizontal plane
and nonlinearly in the vertical plane (scheme with skew sextupole pairs). The horizontal
scrapers will be placed at high horizontal beta function points, interleaved with the vertical
scrapers. Energy scraping takes place downstream from transverse scraping. A schematic
representation of the collimation section of the NLC is shown in Figure 7.

The collimation design must satisfy all of the following conditions.

(a) It must scrape transverse tails beyond n 0' in both planes.

(b) It must scrape energy tails.

(c) Resistive wall wakes at all scrapers must be acceptably small.

(d) Geometric wakes at all scrapers must be acceptably small.

(e) Geometric and resistive wall wakes at the sextupoles must be acceptably small.

(f) Long sextupole aberrations must be acceptably small.

(g) Protection of horizontal, vertical and energy scrapers must be insured.

(h) Stability tolerances on sextupole and scraper offsets must be acceptable.

(i) The collimation systems must not create unacceptable chromatic or chromo-geometric
aberrations.

Next we elaborate on each of the above conditions and thus arrive at the allowed design
parameters of the collimation system.

4.1.1 Scraping in the vertical plane This condition implies that particles whose
vertical coordinates are greater or equal to n O'y at the sextupole must be mapped into
vertical positions greater or equal to gy at the scraper,
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~Yscr(IYsextl 2: n ay,sext) 2: gy

An nay particle at the skew sextupole will experience a kick

,1 2
~Ysext = 2ks(nay )

where ks is the integrated sextupole strength,

(29)

(30)

2Bpole L sext
ks =

a2 (Bp)

Here Bpole denotes the pole-tip field, L sext is the sextupole length, a is the pole-tip radius
of the sextupole and Bp is the magnetic rigidity. Again, the minimization of x-y coupling
gives rise to the above simplified expression of the skew sextupole kick. This kick will in
tum·give rise to an offset at the scraper

(31)

where RY is the vertical transfer matrix between sextupole and scraper. Combining the
above equations we arrive at the condition

1 y 2"2 R12 ks n Ey {Jy,sext > gy (32)

4.1.2 Resistive wall wakes at the vertical scrapers
wall wakefield kick at the scraper is given by

As we showed earlier the resistive

I f(r) ~(Yscr) L
b.Yscr = C2 <j2(r))1/2 g~

which becomes at the downstream sextupole

(33)

(34)

(35)

An offset through the skew sextupole gives rise to a normal quadrupole kick of magnitude

~Y~ext = (ks ~Ysext) Y

We require that the rms value of these kicks be less than 0';/5 (to avoid unacceptable
longitudinal jitter of the final focal point),

ks {(b.Ysexty)2)l/2 < ~ a~

Condition (35), combined with eqs.(33) and (34) becomes,

(36)
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The jitter at the scraper can arise from two sources:

(a) The jitter in the beam emerging from the linac, which can be written in terms of the
jitter in the slope at the skew sextupole,

y~y~(Yser) = taser = tR12 --
f3y ,sext

where we assume that the jitter emerging from the linac is "t" sigma. In subsequent
calculations t is chosen to be 1/5.

(b) Jitter created by the skew sextupole kick because of beam centroid jitter at the skew
sextupole. After subtracting out the average jitter, this term equals

(37)

(38)

In our design the main source of jitter is (b), hence we can write condition (36) from
item (b) alone,

2 y 2 2 2 -J2 3
C2ks Ey (R 12) L ser f3y ,sextt :::; 5 gy

Another possible source of jitter at the scraper is incoming energy jitter at the sextupoles.
In our design however the vertical dispersion at the sextupoles is small, and hence this term
is negligible.

4.1.3 Long sextupole aberrations
by7,s

The potential for long-sextupole aberrations is given

1 2 4
VLS = 48 ks L sext Y

assuming small horizontal beam size. Therefore the long-sextupole kick is

I 1 2 3
~Y = 12 ks L sext Y

and we require

1 I
< - a5 y

This leads to the condition

5-Ji5 2 2--u ks L sext Ey f3y ,sext < 1
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For the two sextupoles of the - I transformation, the above equation determines the
maximum allowed vertical ,8-function,

{Jy,sext S 23, 000 m . (39)

We assumed a pole-tip field of 1 Tesla, pole-tip radius of Imm and sextupole length of 10
cm.

Equations (32), (38) and (39) determine the parameter space for the vertical plane, once
the values of Ri2 and L scr are specified. The scraper length was chosen to be equal to three
radiation lengths of Ti, namely 11.3 cm. To arrive at this value we used the code EGS9 to
calculate the number of electrons that make it through the 3Xo ofTi, with energies between
245 and 250 GeV. We found that 5 out of 107 electrons belong to this energy bin. A plot of
the penetration probability versus target thickness in radiation lengths is shown in Figure 8.

If one assumes 1011 initial electrons with 1% in the tails, 109 particles may hit the scraper.
The attenuation of 5 x 10-7 implies 50 particles have lost less than 2% of their energies.
Hence another scraping section might be necessary for sufficient attenuation. Also particles
hitting the scrapers near the edge may exit the scraper with little energy loss and subsequent
scraping is required to remove them from the beam.

The value of Ri2 is directly related to the total length of the system and hence it should
be kept minimum. For Ri2 = 50 m (which corresponds to a length between sextupole and
scraper of about 30 m), an 11.3 cm long scraper and scraping beyond 5ay, we plotted the
above equations in Figure 9.
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FIGURE 9: Parameter space for nonlinear collimation with sextupoles.

The region A enclosed by the three curves corresponds to the allowed space. Now we
can choose the parameters of the collimation design in the vertical plane:

{Jy, sext = 6, 000 m and gy = 95JLm .

Next we check to see that the geometric wakefield condition is satisfied both at the scrapers
and the sextupoles for the above choice of parameters.

4.1.4 Geometric wakefields at the vertical scrapers Following arguments similar to
the ones employed before, and assuming untapered scrapers we arrive at

g2
fi < y

y,sext - 25 C2 k2 (RY )4
1 s 12 Ey

This equation implies that

fiy,sext < 14, 000 m ,

which is satisfied.

4.1.5 Geometric and resistive wall wakes at the sextupoles
condition Equation (10) at the sextupoles, for an offset

The geometric wakefield
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~ (y) = ay,sext

is satisfied for fJy,sext ::s 240 m. In our design fJy,sext = 6, 000 m so we clearly have to taper
the beam pipe at the sextupoles. In order for Equation (10) to be satisfied, the taper angle
must be

Btap, sext ::s 20 mrad .

Each tapered section of the sextupoles is then 25 cm long, assuming that the beam pipe
radius is 5 mm.

To calculate the magnitude of the resistive wall wakes from the tapered sextupoles we
use Equation (18) with Lo = 10 cm, L/2 = 20 cm and gO = 1 mm. For ~(y) = ay,sext,

((~ I )2) 1/2 I"'V 1 I
Yrw - 10 ay,sext

hence the resistive wall wakefield condition is satisfied at the sextupoles.

4.1.6 Horizontal considerations An important consideration that determines the
x-plane parameters is the x-y coupling at the sextupoles. To minimize coupling effects
we must ensure that at the sextupoles,

ks y2 » ks x2

which establishes a condition on fJx at the sextupoles,

Ey
fix ,sext « fiy,sext 

Ex

In our case,

fJx,sext « 60 m .

If we place the horizontal scrapers at a relatively high fiy point, i.e., at fiy ~ 600 m, then
in order to ensure scraper protection, fJx at this point must be greater than 1,400 m. In fact
we chose

fix,scr = 2, 000 m

which implies a scraper gap gx = 700 Mm for 5ax scraping. Once the fJ-function at the
scraper is fixed, the fJ-function at the sextupoles follows,

fix,sext = 0.1 m .

The condition ks y2 » ks x 2 implies that the kick in the vertical plane due to a horizontal
displacement is small. In addition, there is a horizontal kick proportional to xy. However,
this kick can also be neglected, since the resulting displacement at the horizontal scraper is
negligible (of the order of 0.1 Mm), which is a result of the relatively small horizontal beam
size at the sextupoles.
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FIGURE 10: Optics design for the collimation systems in the NLC.

We now address the question of geometric and resistive wall wakefields at the horizontal
scrapers. Again here both wakefield kicks must be below a~/5. These conditions are
simultaneously satisfied if the horizontal scrapers are tapered by an angle of 43 mrad.
Each tapered section of the scrapers is then 10 cm long.

Finally we check to see if the horizontal geometric wakefield kick from the sextupoles
is below the a~ /5 limit. It turns out that this condition is satisfied for

{Jx ,sext :s 240 m ,

well above our design value of O.lm for {Jx,sext.

4.1.7 Lattice - Energy collimation A lattice design which satisfies the above speci-
fications is presented in Figure 10.

It starts with a - I transformation where horizontal and vertical scraping of the first
phase space direction takes place. This is followed by a 2 'JT section dedicated to energy
collimation. Next there is a 3 'JT /2 phase advance in the horizontal plane and 'JT/2 in the
vertical plane transformer section. A phase advance of 'JT/2 in both planes would have been
possible at the expense of considerable increase in length. The last section of the line is
identical to the first one. It is used to scrape the second phase space direction and energy
again. The total length of the system is about 500 m.

Energy collimation is done by transforming off-energy particles to large amplitude ones
through the introduction of horizontal dispersion. There are two scrapers in each energy
scraping section placed at high dispersion points. The horizontal and vertical {J-functions
at these locations are the same as the ones at the horizontal scrapers. Both energy scrapers
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consist of a thin (~ 3Xo) and a thick part (~ 20Xo). The thin part will be responsible for
the primary beam energy collimation. By making it thin we bypass protection problems that
occur within the body of the scraper, if the whole beam is offset. The role of the thick part
will be to absorb the debris from both horizontal and energy collimation that has occurred
upstream. If the beam is offset, the beam area at this second scraper is much larger and thus
protection of the scraper is insured.

Furthermore each of the two energy collimation sections includes a normal sextupole
pair forming a - I transformation. Their function is to correct the horizontal chromaticity.
To correct the vertical chromaticity a small amount of vertical dispersion has been added
to the lattice at the skew sextupoles. Simulations show that this entire lattice demonstrates
an excellent behavior with respect·to chromatic and chromo-geometric aberrations in both
transverse planes.

4.1.8 Stability tolerance on scraper offset We mentioned earlier that beam jitter at the
sextupoles is the main source of beam jitter at the scraper. Thus, in order to determine the
stability tolerance on the scraper offset, we use Equation (37) to find

YO,scr :::; 0.20 {tm .

From Equation (4) one can estimate an absolute steering tolerance by requiring that

1
((dy' )2) 1/2 < - a'

rw - 5 y,scr

and solving for d (y). It turns out that this tolerance is

d(Yscr) :::; 6.6 {tm .

Notice that as the scrapers are moved in to place the beam must be held steady at the
sextupole with a steering corrector. The above tolerance requires that the scraper motion be
smooth at the 0.2 {tm level.

4.1.9 Stability tolerance on sextupole offsets In order to get some insight into the
question of tolerances we derive a general result for the tolerance on the sextupole offset~ If
we combine the scraping condition Equation (32) with the requirement that the quadrupole
like kick due to the sextupole offset YO,sext must satisfy Equation (35),

1k ( 2)1/2 < a's Yo, sext Y - 5" y

we arrive at

n2 Ri2 Ey
YO,sext < - -- (40)

- 10 gy

Notice that the only parameters that can affect this offset tolerance are effectively the length
of the system (via Ri2)' the scraper gap and the number of a's we are scraping at. For our
choice of parameters this jitter tolerance on sextupole motion, is
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YO,sext < 0.13 JLm .
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4.1.10 Protection of scrapers As we mentioned in the Introduction there are two
problems associated with a train of bunches hitting the scrapers: the first occurs at the
surface of the scraper while the second occurs in the body of the scraper. The surface of the
scrapers is protected by design. More precisely, at the horizontal scrapers the area occupied
by 1a of the beam is

ax ay = 140 j1m x 7.9 j1m = 1, 100 j1m2

close to the 900 j1m2 limit quoted earlier. Later designs will improve on this.
For the vertical scraper one can calculate the maximum particle density on the scraper

for a beam which is mis-steered by more than nay,

dN

dxdy

N
y 1/2 1/2

21T nks R12 Ey Ex {Jy, sext {Jx,scr

where N is the number of particles per train now. In order for the vertical scrapers to be
protected,

dN

dxdy
N -2

< 2,000 X 10-12 m

where the more stringent limit of 2, 000j1m2 has been chosen instead of the 900j1m2 quoted
earlier. For ten bunches of 1010 particles per bunch the above criterion becomes

dN
5 x 1019 m-2-- < (41)

dxdy

In our design

dN
= 3 x 1018m-2--

dxdy

far beyond the 5 x 1019 m-2 limit of Equation (41).
The problem of the body of the initial scrapers is solved by making the scrapers short,

three radiation lengths of the material.

4.2 Scheme with octupole pairs

It is of interest to calculate the stability tolerances for octupole magnets. It turns out that
for octupoles

2 RY
n 12 Ey

Yo. oct < 3.J3---g;-
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which leads to tolerances about a factor of 2 looser than for Equation (40) with the same
choice of parameters. However, displaced octupoles give rise to sextupoles. Thus there is
a need to have correctors for such aberrations, or diagnostic techniques to eliminate them.
Also, the jitter tolerance at the octupoles is more than a factor of two tighter than for the
sextupoles. This is because jitter at the scraper due to beam jitter at the nonlinear element
varies linearly with the offset for octupoles, whereas it varies quadratically for sextupoles.

5 CONCLUSIONS

We have illustrated a possible collimation scheme for a TeV linear collider. We have
precluded the possibility of using mechanical scraping for the vertical plane in the NLC
design. We presented a possible alternative which employs mechanical collimation for the
horizontal plane and nonlinear collimation (scheme with skew sextupole pairs) for the
vertical. This design succeeds in satisfying all of the requirements imposed on collimation
systems, including effective collimation of transverse and energy tails, control.of wakefield
effects, protection of scrapers, and control of geometric and chromatic aberrations. The
stability tolerances at the scrapers and sextupoles are similar to those occurring in the NLC
Final Focus system; given the precision of the beam position monitors envisioned for an
NLC Final Focus, these tolerances should not rule out nonlinear collimation as a candidate
for beam scraping in a future linear collider.
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APPENDIX A: BASIC CONCEPTS

The transverse motion of a particle in a linear accelerator consists of betatron oscillations
about a central trajectory. The transverse displacement of the particle x fJ from the central
trajectory can be expressed as

XfJ = A fJl/2(s) cos [1/I(s) + 8] (A.I)

where A and 8 are constants determined by the initial conditions, and fJ(s), the Courant
Snyder amplitude function, 10 is a periodic function of s, with periodicity determined by
the magnetic lattice. This is a pseudoharmonic oscillation with varying amplitude fJ 1/2(s),
and wavelength

2n f3(s) (A.2)
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The phase advance 1/1 (s) is given by
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(A.3)ir(s) = j f3~::)
o

and is equal to the number of oscillations in radians, per period of s .
Let us now consider a Gaussian distribution of particles, instead of a single particle. The

rms emittance E is then related to the betatron amplitude by

(A.4)

In the presence of linear fields the emittance is an invariant; therefore, the betatron amplitude
becomes a local measure of the beam size. For an arbitrary distribution of particles, the
emittance is defined by

(A.5)

where the average is taken over the beam particles.
Note that throughout this paper, a will denote the standard deviation of the Gaussian

distribution of the beam in either of the transverse dimensions x or y. Similarly, a', often
referred to as the angular divergence of the beam, will denote the standard deviation of the
Gaussian distribution of the beam in either of the angular dimensions x' or y'.

APPENDIX B: EMITTANCE GROWTH DUE TO TRANSVERSE WAKEFIELD KICKS
FROM A SCRAPER

We calculate the effect of a wakefield kick of the form

Z2
I 4 re N ~ (y) I - -22

~y (z) = -- -- e az (B.l)
y g -J2ii az

on the beam emittance. The emittance with respect to the beam centroid is defined by

E
2 = (y - (y))2)( (y' - (y') )2) - (y - (y) )(y' - (y'))f (B.2)

where y and y' are the vertical displacement and slope ofa particle from the central trajectory,
and the average is taken over the beam distribution, along y, y' and z, given by

f(y,y',z)dydy'dz = f3 e
(2rr)3j2 a 2az

Under a transverse kick of the form (B. I),

(B.3)

(y) = 0 and (B.4)
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since the kick simply displaces the beam distribution along the y' axis by a constant amount
!::J. (y) / g, without changing the distribution along the y-axis.

Furthermore,

(y') =

and

where

Also,

(B.5)

(B.6)

(B.?)

(yy')

Thus the total emittance is given by

fJ
(B.8)

E2= E2[1 + (2 - .J3) (81)2]
o 2.J3 a'

where EO = a 2
/ fJ and a '2 = Eo/fJ·

(B.9)

APPENDIX C: EMITTANCE GROWTH DUE TO RESISTIVE WALL WAKEFIELD

Cl Resistive wall wakefield

The transvere wake force experienced by a test particle e, as a result of the interaction of the
dipole moment II of the beam distribution with the resistive wall of a smooth, cylindrically
symmetric pipe of radius g and conductivity K is,11

where

F.1. = 2e It (~)1/2 _1_
Jr g3 K ZI/2 '

(C.1)

(C.2)
q

II = ~ !::J.(y).
'V 4Jr EO

Upper case.Z designates the longitudinal separation between the test charge and the beam,
i.e., Z = ct - z, where z is the longitudinal coordinate for the test particle. This expression
is valid in the range
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where Ais defined as

1
A ==
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(C.3)

(C.4)
J10CK

To calculate the total force on e at point z within a Gaussian bunch, we integrate over
the appropriate distribution ahead of z. For Z near (Ag2)1/3, the exact wake force has a
maximum and then goes to zero at Z = O. However, since (Ag2)1/3 « az, even if we
replace the correct wake by continuing the expression (1.1) in this region, we make a
negligible error. Thus the total force is given by

e2 N c Zo (A )1/2 ~ (y) /00 dz' z'2Fe(z) = __ - __ e- 2o}

,J2iiaz Jr Jr g3 (z' - zJ/2
z

and the transverse kick is given by

(C.5)

~y'(z)
Fe(z) L

myc2 '
(C.6)

where L is the length of the finite conductivity element, e.g., the scraper.
Thus, the wakefield kick is given by

, 4re N L ( A )1/2 ~(y) 1 100 dr' -(r-r')2
~y (r) = -- -- -- --e-2-

y Jr az g3,J2ii 0 #

where r = z/az denotes the location within the bunch.

(C.7)

C2 Emittance growth

Now we calculate the effect of this wakefield kick on the beam emittance. The emittance
with respect to the beam centroid is given by (B.2) and the average over the beam distribution
yields

(y') (C.8)

(yy')

(C.9)

(C.10)
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where K is the complete elliptic integral and 82 is defined by

The total emittance is given by

2 211 e~ [K(J3/2) - r:~4)]I'E = EO + 2,J1ia'2

where 0"2 = EO/fJ.
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