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ABSTRACT

We reconsider two-dimensional topological gravity in a functional and lagrangian

framework. We derive its Slavnov-Taylor identities and discuss its (in)dependence on

the background gauge. Correlators of reparamerization invariant observables are shown

to be globally de�ned forms on moduli space. The potential obstruction to their gauge-

independence is the non-triviality of the line bundle on moduli space Lx, whose �rst

Chern-class is associated to the topological invariants of Mumford, Morita and Miller.
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1. Introduction

Two-dimensional topological gravity [1] is locally trivial as any topological �eld theory and

its "physical" content reduces to the coordinates of the moduli space of the \world-sheet"

Riemann surfaces. It is natural to consider these variables of infrared nature. However, it

has been shown [2] that the short distances play a crucial and unexpected rôle in topological

gravity. It turns out that, for a suitable parametrization of the moduli space, almost all

the correlation functions of the known "observables" of the theory can be made to vanish

at the interior points of this space. Their only non-trivial contributions come from contact

terms with the possible nodes of the \world-sheet", that is from the boundary of moduli

space. This looks very much like an ultraviolet phenomenon.

To have a better understanding of this double nature of the correlation functions it

is necessary to use a local formulation of the theory. This motivates the present paper,

which seeks to de�ne a �eld functional framework for two-dimensional topological gravity.

With the same purpose in mind, we have discussed and identi�ed in [3] the �eld

structure of a class of "observables" that are covariant under reparametrizations of the

\world-sheet" and that correspond to the known relevant operators of the theory. To

compute their correlation functions it is necessary to identify a non-degenerate action for

the theory. The existence of 6g�6 moduli parametrizing the possible inequivalent complex

structures of surfaces of genus g automatically induces the existence of the same number of

zero-modes for each antighost �eld. It is therefore necessary to introduce a suitable gauge

�xing for these zero-modes.

After the introduction of the suitable gauge �xing, the theory is characterized by a

family of Slavnov-Taylor identities exhibiting its BRS invariance. We show that, in the

case of BRS invariant operators that are independent of the antighost zero-modes, these

identities signify that the correlation functions are closed forms on the moduli space. To

understand if these correlation functions are globally de�ned we study their properties

under arbitrary variations of the gauge slice. We show that in general such variations

change the correlation functions by terms which are locally exact forms on the moduli

space. However these terms vanish in the case of modular transformations constant on

moduli space. From this we conclude that the correlation functions are globally de�ned

forms on moduli space when one chooses gauge slices whose transition functions are mod-

ular transformations. We also point out that a potential obstruction to the background

gauge independence of such globally de�ned forms is the non-triviality of the line bundle

Lx associated to the topological invariants of Mumford, Morita and Miller [4]-[7].
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The paper is thus organized: in the following section 2, we revisit the known observ-

ables of the theory; Section 3 contains the construction of the Lagrangian; the Slavnov

Taylor identities are discussed in Section 4; and the variations of the gauge-slice in section

5.

2. The Observables

Two-dimensional topological gravity [1] is a topological quantum �eld theory characterized

by the following BRS transformation laws:

sg�� = Lcg�� +  ��

s �� = Lc �� � L
g�� ;
(1)

where g�� is the two-dimensional metric,  �� is the gravitino �eld, c� is the ghost vector

�eld and 
� is the superghost vector �eld. Lc and L
 denote the action of in�nitesimal

di�eomorphisms with parameters c� and 
� respectively.

A class of observables local in the �elds g�� ;  �� ; c
� and 
� can be constructed [2],[3]

starting from the Euler two-form

�(2) =
1

2

p
gR���dx

� ^ dx� ; (2)

where R is the two-dimensional scalar curvature and ��� is the antisymmmetric numeric

tensor de�ned by �12 = 1. Since s and the exterior di�erential d on the two-dimensional

world-sheet commute among themselves, the two-form in Eq.(2) gives rise to the descent

equations:

s�(2) =d�(1)

s�(1) =d�(0)

s�(0) =0:

(3)

The zero-form �(0) and the one-form �(1) are computed to be

�(0) =
p
g���

�
1

2
c�c�R+ c�D�( 

�� � g�� �� ) +D�
� � 1

4
 �� 

��

�

�(1) =
p
g��� [c

�R+D�( 
�� � g�� �� )] dx�:

(4)

The Euler form, being a topological invariant, is locally d-exact,

�(2) = d!(1): (5)
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This, together with the descent equations (3), implies that

�(1) =d!(0) + s!(1)

�(0) =s!(0):
(6)

Thus �(0) is locally BRS trivial. However, since !(1) cannot be chosen to be a globally

de�ned 1-form, it follows from Eqs. (6) that !(0) cannot be chosen to be a globally de�ned

scalar �eld either. This means that �(0) is a non-trivial class in the cohomology of s acting

on the space of the reparametrization covariant tensor �elds. One can verify explicitly

that such cohomology is in one-to-one correspondence with the semi-relative state BRS

cohomology de�ned on the state space of the theory quantized on the in�nite cylinder

in the conformal gauge. In fact, choosing a complex structure � on the two-dimensional

surface, with (ds)2 � jdz + �d�zj2, one obtains

!(1) =
2

�

�
@�� ��@��+

1

2
( �r� �r) ln�

�
d�z � c:c:

!(0) =rcz + �c�z!
(1)
�z +

�� z

�
� c:c:;

(7)

where � � 1����, r � @���@, cz and  z are the holomorhic components of the ghost �eld

and of the traceless part of the gravitino �elds, and c:c: denotes the complex conjugate

expression in which all quantities are substituted with their barred expressions. In the

(super)-conformal gauge,

!(0) = @c� �@�c; (8)

and, at the level of states:

!(0)(0)j0 >= c�0 j0 >; (9)

where j0 > is the SL(2; C) invariant conformal vacuum. Thus the state created by the

operator �(0)(0) | the so-called \dilaton" state | is non-trivial in the cohomology of the

BRS operator acting on the space of states annihilated by b�0 :

�(0)j0 >= s(c�0 j0 >): (10)

This is known, in the operator formalism, as the semi-relative BRS state cohomology [8],

[9].

Since the superghosts 
� are commutative, one can build an in�nite tower of cohomo-

logically non-trivial operators by taking arbitrary powers of �(0):

�(0)n � (�(0))n (11)
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with n = 0; 1; : : : The corresponding 2-forms

�(2)n = n(�(0)n )n�1�(2) +
n(n� 1)

2
(�(0)n )n�2�(1)n ^ �(1)n (12)

all belongs in the s-cohomology modulo d on the space of the reparametrization covariant

tensor �elds.

3. The Lagrangian

In order to evaluate correlators of observables �n, the choice of a lagrangian is required.

The theory being topological, the choice of a lagrangian amounts to �xing the gauge.

LetMg be the moduli space of two-dimensional Riemann surfaces of a given genus g,

and let m = (mi), with i = 1; : : : ; 6g � 6, be local coordinates on Mg. Fixing the gauge

means choosing a background metric �g��(x;m) for each gauge equivalence class of metrics

corresponding to the point m of Mg.

It is convenient to decompose �g�� as follows:

�g��(x;m) � pg �̂g�� (x;m) � e�' �̂g��(x;m); (13)

with det(�̂g)�� = 1. ĝ�� is given by the analogous de�nition for g�� . We also introduce the

the tensor density,

 ̂�� � pg( �� � 1
2
g�� �� );

in correspondence with the traceless part of the gravitino �eld. �g�� de�nes a gauge-slice

on the �eld space whose associated lagrangian reads as follows:

L = s
h
1
2
b��(ĝ

�� � �̂g
��
) + 1

2
���( ̂

�� � dP �̂g��) + �@�(ĝ
��@�('� �'))

i
: (14)

In Eq.(14) we have introduced the \exterior derivative" operator

dP � pi
@

@mi
;

where pi are the anti-commuting supermoduli, with i = 1; : : : 6g � 6, the superpartners of

the commuting moduli mi. b�� , ��� and � are the anti-ghost �elds, with ghost numbers

�1;�2 and 0 respectively. Their BRS transformation laws are given by

s b�� =���; s��� = 0

s ��� =L�� ; s L�� = 0

s� =Lc� + �; s � = Lc� � L
�;

(15)
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where ��� , L�� and � are Lagrangian multipliers. The Lagrangian in Eq.(14) written out

in extended form reads:

L =1
2
���(ĝ

�� � �̂g
��
) + 1

2
L��( ̂

�� � dP �̂g��)

� 1
2
b��Lcĝ�� � 1

2
���L
 ĝ��

+ 1
2
 ̂�� [(Lc�)�� + b�� + 2@��@�('� �')]

+ �@�(ĝ
��@� ('� �')) � �@�(ĝ

��@� 
0);

(16)

where

 0 � �D�c
� + 1

2
 �� : (17)

Eq.(16) shows the standard form of a topological Lagrangian that, however, in the

present case is degenerate due to the presence of 6g�6 moduli. Indeed, �(i) �
R
���

@
@mi �̂g

��
,

de�ne 6g � 6 zero-modes of the antighost �eld �.

To remove this degeneracy we must introduce further gauge �xing terms. The natural

way of generating these terms is to extend the de�nition of the BRS generator s, assuming

the following BRS transformation laws for the moduli and super-moduli:

smi =Ci; s Ci = 0

s pi =� �i; s�i = 0;
(18)

where Ci and �i are respectively anti-commuting and commuting Lagrange multipliers.

After this extension of the BRS transformations four new terms appear in the la-

grangian:
1
2
���d� �̂g

��
+ 1

2
b��dC �̂g

��
+ 1

2
���dP dC �̂g

��
+ �@�(ĝ

��@�dC �'); (19)

where the notation dC � Ci @
@mi and d� � �i @

@mi has been introduced. The �rst term in

Eq.(19) is the wanted zero mode �xing term. The second term generates the compensating

term for it determinant.

After this second gauge �xing, integrating out the Lagrangian multipliers ���, L�� ,

�0 and � forces the metric and the gravitino �eld to take their background values,

ĝ�� ! �̂g
��
; '! �';  ̂�� ! dP �̂g

��

1
2
 �� +

�D�c
� ! dC �';

(20)

and the lagrangian becomes

L0 =1
2
(�b��Lc �̂g�� � ���L
 �̂g�� + dP �̂g

��
(Lc�)��

+ b��(dC �̂g
�� � dP �̂g

��
) + ���d� �̂g

��
+ ���dP dC �̂g

��
):

(21)
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In the following we will repeatedly make use of the fact that, when the observables

do not contain the anti-ghost zero modes b(i), integrating them out introduces into the

correlators the factor
6g�6Y
i=1

�(Ci � pi): (22)

If moreover there are no antighost zero modes �(i) and no antighost �elds b�� in the

observables, one can integrate out �(i) as well. This produces a further factor

6g�6Y
i=1

�(�i): (23)

4. B.R.S. Identities

Let us now consider expectation values of observables On�(�) �
R
�
(2)
n� , where by � we

denote collectively all the quantum �elds but the moduli and the super-modulimi and pi.

It is useful to consider functional averages in which one integrates only with respect to the

quantum �elds � :

Zfn�g(m
i; pi) �

Z
[d�]e�S(�;m

i ; pi)
Y
�

On�(�)

� <
Y
�

On�(�) > :

(24)

Because of ghost number conservation, Zfn�g is a monomial of the anti-commuting

super-moduli:

Zfn�g(m
i; pi) = Zi1:::iN (m

i)pi1 : : : piN ; (25)

where N is the total ghost number of the observables On� :

N =
X
�

(ghost#On�) = 2
X
�

(n� � 1): (26)

Under a reparametrization ~mi = ~mi(m) of the local coordinates mi on the moduli space

Mg, the supermoduli transform as follows:

~pi =
@ ~mi

@mj
pj :

One can therefore identity the anti-commuting supermoduli with the di�erentials on the

moduli space, i.e. pi ! dmi: Correspondingly, the function Zfn�g(m
i; pi) of the moduli
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and super-moduli can be thought of as a N-form on the moduli spaceMg, at least locally

onMg. The question of whether or not such local form extends to a globally de�ned form

onMg, will be addressed shortly.

Assume for the moment that form Zfn�g(m) is globally de�ned on Mg. Whenever

the following ghost number selection rule is satis�ed,

N = 2
X
�

(n� � 1) = 6g � 6; (27)

Zfn�g(m) de�nes a measure on Mg which can be integrated to produce some number.

The collection of these numbers encode the gauge-invariant content of two-dimensional

topological gravity.

It is easy to show that the action of BRS operator s on the quantum �elds � translates

into the action of the exterior di�erential dP � pi@i on the forms Zfn�g(m). More precisely,

one can prove the following BRS identities:

(i) sOn�(�) = 0) dPZfn�g(m) = 0

(ii) On� = sXn�(�)) Zfn�g(m) = dPW (m)
(28)

whereW (m) �< Xn�

Q
� 6=�On� >, with the provision that neither On� nor Xn� contains

the anti-ghost zero modes and the antighost �eld b.

The proof of (i), for example, goes as follows:

dPZfn�g =< �dPS
Y
�

On�(�) >

=< �dCS
Y
�

On�(�) >

=<
X
�

s�
�S

��

Y
�

On�(�) >

=< s
Y
�

On�(�) >= 0;

(29)

since, under the stated conditions, one can perform the substitutions Ci ! pi and �i ! 0

(see Eqs.(22) and (23)). The proof of (ii) is analogous.
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5. (In)dependence on the gauge and global properties

We would like to study the dependence of Zfn�g(m) on the gauge-�xing function �g��(x;m)

which speci�es for each point m of the moduli spaceMg a representative two-dimensional

metric.

Given the gauge-slice corresponding to �g��(x;m), a di�erent gauge choice correspond-

ing to �g0��(x;m) will be related to �g�� by a di�eomorphism ��(x;m) depending on m:

�g0��(x;m) =
@��

@x�
@��

@x�
�g��(x;m): (30)

Consider for simplicity the case of an in�nitesimal di�eomorphism �� � x�+v�(x;m),

for which

�g0��(x;m) � �g��(x;m) + (Lv�g)�� (x;m): (31)

Denoting by Wv the action of the in�nitesimal di�eomorphism in Eq.(31) on the form

Zfn�g, one has

WvZfn�g =<

Z
s 1

2

�
b��(Lv �̂g)�� + ���dP (Lv �̂g)�� + 2�@�(ĝ

��@�Lv �')
�Y

�

On� >

=< s

Z
1
2

�
b�� (Lv �̂g)�� � (Lv�)��dP �̂g�� + ���(LdP v �̂g)�� + 2�@�(ĝ

��@�Lv �')
�Y

�

On� >

=< s

Z
IvS

Y
�

On� >;

(32)

where LdP v � piL@iv and where we introduced the operator Iv acting on the �elds � as

follows:
Ivc

� = v�(x;m)

Iv

� = �dP v�(x;m)

Iv� = 0 for the other �elds.

(33)

By considering the anticommutator of Iv and s,

L̂v = fs; Ivg; (34)

one obtains an operator L̂v acting on a generic �eld supermultiplet � � (�; �̂) as follows:

L̂v� =Lv�

L̂v�̂ =Lv�̂+ LdP v�:
(35)
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In terms of Iv and L̂v, the Ward identity in Eq.(32) becomes:

WvZfn�g = < s Iv
Y
�

On� >=< L̂v
Y
�

On� >

=dP < Iv
Y
�

On� >;
(36)

where in the last line we used (ii) of Eq.(28). Eq.(36) is the fundamental equation to

understand both the global properties of Zfn�g and its gauge dependence.

Let us consider �rst the question of the global de�nition of Zfn�g. What makes this

property not obvious is that �g��(x;m) cannot be chosen to be a continuous function of m.

In fact �g��(x;m) is a section of the bundle overMg de�ned by the space of two-dimensional

metrics of given genus. This bundle is not trivial, and therefore it does not admit a global

section. On some coordinate patch on Mg, �g�� must jump to a �g0�� related to �g�� by a

di�eomorphism ��(x;m) as in Eq.(30). From Eq.(36) it follows that, for a generic local

section �g�� , Zfn�g jumps as well, and hence is not globally de�ned. However, the bundle

in question is non-trivial only because of modular transformations. This means that it

is possible to choose sections �g�� whose transition functions ��(x;m) are m-independent

modular transformations.

Eq.(35) implies that for in�nitesimal di�eomorphisms v�(x;m) which are independent

on m, the operator L̂v reduces to usual di�eormophisms, i.e.

@iv
� = 0) L̂v = Lv: (37)

Thus, under such di�eomorphisms and for observables which are reparametrization invari-

ant, Zfn�g is invariant:

WvZfn�g =< Lv
Y
�

On� >= 0: (38)

It is not di�cult to see that this remains true for �nite, m-independent di�eormophisms

��.

In conclusion, the Ward identity in Eq.(36) ensures that if we consider sections �g��

whose transition functions are m-independent modular transformations and restrict ou-

selves to reparametrization invariant observables, the corresponding Zfn�g are globally

de�ned forms on the moduli spaceMg. For the same reason, observables like �(0) = s!(0)

which are locally BRS trivial, give rise to forms < �(0) : : : >= dP < !(0) : : : > which are

locally but not globally exact onMg. This is the reason why the relevant BRS cohomology

9



is the BRS cohomology acting on the space of reparametrization covariant tensor �elds.

As we have seen, this cohomology precisely corresponds to the semi-relative b�0 BRS state

cohomology of the operator formalism.

Eq.(36) also implies that two di�erent sections �g�� and �g0�� , whose transition functions

are modular transformations, give rise to globally de�ned forms Zfn�g and Zfn�g
0 which

di�er by a locally exact form on Mg,

Zfn�g � Zfn�g
0 = dP < Iv

Y
�

On� >; (39)

where v = (v�(m;x)) is the in�nitesimal di�eomorphism relating �g�� to �g0�� . Gauge

independence of the theory would require that the integral over Mg of the form in the

r.h.s. of Eq. (39) vanishes. Thus, the question of independence on the background metric

�g�� is the one of the global de�nition of the form < Iv
Q

�On� >.

The vector �eld v�(m;x), for a �xed point x on the world-sheet, is a section of the

complex line bundle Lx on Mg, whose �ber is the cotangent space of the world-sheet at

x. This bundle is non-trivial, and its �rst Chern-class c1(Lx) is related to the topological

invariants of Mumford, Morita and Miller [4]-[7]. It follows that c1(Lx) is precisely the

obstruction to choose a globally de�ned v�(m;x). Since v�(�;x) is not globally de�ned,

the form in the r.h.s. of Eq.(39) is potentially not globally exact.

In this sense, the non-trivial content of two-dimensional topological gravity is captured

by the \anomaly" Equation (36). The work of Verlinde and Verlinde [2] suggests that there

exists a suitable rede�nition of the functional measure of two-dimensional gravity at the

boundary of the moduli space Mg which restores background gauge independence while

preserving BRS invariance. We hope to come back to this issue in the future.
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