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operation the parameters are tested to be within specification.

The gains are implemented in a particle-tracking code, and with the closed loop system in

shown to predict and shape the optimal gains starting from the specification on the parameters.

system with amplitude, phase, and tuning loops. Flow charts of the computer program are

cavity dynamics. Later we include the cavity model and cover the dynamics of the accelerator

studied by considering the radial, synchronization, and beam phase loops and by ignoring the

current, phase of the generator current, and tuner bias current. The low-intensity machine is

cavity phase error, cavity tuning error, frequency of the rf system, amplitude of the generator

synchronization phase error, beam position error, radial position error, cavity gap voltage error,

control loops is shown for a low- and a high-intensity circular accelerator. The parameters are:

Application of optimal control theory to optimize the parameters of the low-level rf beam
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equations embedded with control quantities having physical input points. Since most of the OCR Output

entire coupled system, since the physical system is described by a set of first-order differential

assumes a highly decoupled system. The modern optimal control theory can deal with the

Classical control approach is based on the single-input single—output method, which

control approach is well-suited.

changing with time in a fast-cycling machine. For such complex problems modem optimal

gains in each loop is further complicated by the fact that the accelerating parameters are

the modern feedback control methods are used to predict the gains. Having to know the right

‘yes" provided the control system model, including the cavity dynamics, is known and some of

other loops so that the parameters are within specification? The answer to this question can be

challenge is: if the dynamics of one loop are changed, can we predict the change required in the

the dynamics of the amplitude loop alone may affect the dynamics of the phase loop. The

are many loops in the low-level rf system that interact with one another in some way. Change in

voltage by looking at the voltage error. Compare this to a typical circular machine, where there

only an amplitude loop (with the rest of the loops opened) the effects can be seen on the cavity

change the closed-loop properties of the whole system. In an isolated case, in the presence of

in one of the loops—say, the cavity amplitude loop-—or adding dynamics to it will invariably

energy received by the beam each time the beam passes through the cavity. Changing the gain

accelerating bucket height, and varying the phase of the rf signal driving the cavity changes the

of parameters. For example, varying the amplitude of the cavity voltage changes the

operation of the machine has been the usual practice to improve the performance specifications

although the control loops are highly coupled. Fiddling with them by trial and error during the

been done using the classical approach (based on the single-input single-output method),

is to know the gains in various loops as the beam is accelerated. Most control analyses have

An important problem with low-level rf beam control in fast-cycling circular accelerators



later extend the techniques to include the global loops with the loops around the cavity: OCR Output

machine in which only the global loops (radial, synchronization, and beam phase) are used. We

We first show the application of the optimal control theory to a low-intensity circular

stability is tested.

control quantities. We achieve this with feedback with right gains; while doing that, the loop

Hence, in our system minimizing the energy leads to minimizing the states as well as the

amplitude of the generator current, phase of the generator current and the tuner bias current.

cavity phase error, and cavity tuning error and control quantities: frequency of the rf system,

synchronization phase error, beam phase error, radial position error, cavity gap voltage error,

close to zero. In this paper we define the performance function in terms of the states:

weighting factor, then minimizing the energy corresponds in some sense to keeping the state

energy in a system where the energy is defined by the sum of the product of the state and a

function in terms of the quantities we need to minimize. Suppose we want to minimize the

the minimization of a prescribed performance function of the system, we need to formulate a

capture and acceleration efficiencies. Since the optimum control teclmique is associated with

techniques are applied to accelerators with proper knowledge of the model, we may get better

efficiency in industries such as petrochemical, steel, aircraft, and fusion research! When these

high-intensity beam. The application of the optimum control technique has increased

recently applied to rf systems for circular accelerators at CERN! to optimize the injection of a

The optimum control technique, also known as the linear quadratic regulator method, was

functions, frequency and phase shift of the master oscillator, etc.

control quantities: the amplitude and phase of the generator currents, cavity detuning

optimal control method is well-suited on occasions where we may need to shape the state and

the distributed nature of the cavities. Hence decoupling may still prove useful. Also, the

necessary. However, in a typical accelerator, the loop configurations have limitations due to

beam and cavity dynamics are used in the model, decoupling of the system is usually not



y = Q 1
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x = A x + Q u + d ` ` `

model is given by

u = [0, O, u3, ull, , u6| . If A is the system matrix and Q the input matrix, then the state-space

current phase, and u6 = tuning bias regulator current, embedded in a control vector

the control variables be ul = frequency shift, u4 = generator current amplitude, us = generator

state vector, x = [xl, x2, xl, , x6| . Here Tis used to define the transpose of a matrix. Also, let

voltage error, x5 = cavity gap phase error, and x6 = cavity tuning error, embedded in a column

position error at high momentum dispersion region, x3 = beam phase error, x4 = cavity gap

one equivalent cavity system. Let the states be xl = synchronization phase error, x2 = radial

A linear model for the beam control loops is derived in Reference 3 for an accelerator with

2 LINEAR STATE-SPACE BEAM CONTROL MODEL

predicting optimal gains.

stable, since the stability tests are carried out by taking the physical system into account while

as we fiddle with any of them. When the gains are implemented, the entire system will be

matrices. At the end a computer program will be able to predict the gains required in each loop

complex system with decoupling filters in some of the loops simply by modifying the state

low-level rf system. The optimal control techniques shown here can be extended to a more

described with a flow chart. The state-space model described in Reference 3 characterizes the

unwanted gains to zero, then recalculating those needed in the loop. The method is clearly

that the loop structure can be freely altered. We overcome this restriction by forcing some

distributed nature of the cavities in a circular machine. The optimum control method assumes

becomes a "fixed structure" because the loop configuration cannot be altered. This is due to the

amplitude, phase, and tuning. When the loops around the cavity are included, the system



performance function is minimized. We will follow the exact procedure described in OCR Output

system is driven along a three-dimensional optimal state trajectory such that a predefined

respectively. Our specified objective is to calculate the values for kl, k2, and k3 so that the

The loop gains kl, k2, and k3 are specified for synchronization, radial, and beam phase loops,

k 1 kz ks

(2)k = I 0 0 0

O 0 0

matrix is l_g given by

E = O,O,u3,definedby g = -— kg, wherethe state matrix is; = xl,x2,x3,andthe gain[][]

Figure 1, then the system structure has a dimension of three with the feedback control vector

low-intensity machine). For low-intensity machines, if we follow the loop configuration of

in Appendix A are used to optimize the gains (see Table I for a state-space model of the

common summing point as in Figure 1, the conventional optimal control techniques outlined

Here, when the radial loop, beam phase loop, and synchronization loops are connected to a

3 LINEAR OPTIMAL CONTROL FOR LOW-INTENSITY OPERATION

for a complete low-level rf system.

compared to global loops and hence are ignored. Later we show the application of this method

low-intensity machines, where the cavity low-level rf feedback loops are considered fast

the complexity, we apply the optimal control theory at first to beam control loops for

summarized in Table I of Reference 3, which will not be repeated here for simplicity. To limit

choosing feedforward terms to the control quantities. The exact description of the model is

effect the acceleration process. This matrix is deterministic since it can be compensated by

cavity gap voltage, synchronous phase, steady-state generator current, and cavity tuning error

disturbance matrix 4 is non-zero, since terms associated with the time rate of change of the

Q = diag{ 1, 1, 1, l, 1, 1} with the state vector g. For a fast-cycling accelerator, the

The output quantity defined by the vector y is the product of the output matrix



matrix Riccati equation as shown below: OCR Output

terms of Q, Q, { matrices, and a function, Q matrix, which is a solution of the differential

Hamiltonian system, two important equations are derived: the optimal control, g = y_""’, in

dynamics as described by Eq. (1), a Hamiltonian system is constructed. By solving the

optimal control, since we are required to minimize J, which is constrained by the linear system

resemblance to least-squares: it corresponds in some sense to energy in the control system. In

earlier, the quadratic form shown in Eq. (3) is not the only way, since it has the intuitive

these weights determines the time response of the overall control system. As we mentioned

Q for the controlled parameters (states) and weights in Q for the frequency shift. Selection of

to and 7}·are the initial and final time of the control process. Thus we have specified weights in

where the weighting matrices Q and Q are defined in Eqs. (A.2) and (A.3), respectively, and

(3)J = % I (_.{T_Q.; + y_T_Ij g)dt ,

performance function to weigh the state and control variables as follows:

variable u3, in Hz with the acceleration cycle time. Based on these constraints let us choose a

specification on the state variables, we have a limited allowable deviation in the control

be maintained to within specific maximum values at a given time in the cycle. To achieve the

allowable deviations in states. To control the beam we would require the states xl , x2, and x3 to

performance function, J, with emphasis on the maximum control quantities and the maximum

problem with system dynamics described by state equations. We will formulate the trial

In theory, there is no unique way of defining a performance function for a specific control

3.1 Performance Function

cycle.

Appendix A and show how kl, k2, and k3 can be evaluated at each point in the accelerating



acceptable, repeat the entire process for a new set of scalar multipliers. According to optimal OCR Output

optimal states. Compare the optimal states to the specified values again. If the states a.re still not

matrices in Eqs. (A.2) and (A.3) to higher than 1, and then solve for the optimal gain and

If the values are greater than specified values, then change the scalar multipliers in the Q and _R_

the states fp'. Now compare the calculated optimal states with the specifications for the states.

Appendix A. The optimal gain matrix is substituted in Eq. (7) to solve for the optimal values of

Eq. (6). The steady-state value of matrix Q is obtained from the procedure described in

rz = 1, and r3 = l for Q at t = 0 in the acceleration cycle, and then substituting the results in

differential matrix Riccati Eq. (5) for ql = 1, q2 = 1, and q3 = l for Q, and rl = l,

The optimal gain vector, Kp', is solved by solving for the steady-state value of the

3.2 Evaluation of Optimal Gain

involved in evaluating the optimal gains and the optimal states.

parameters in matrices A and Q are not time-varying. We describe below the essential steps

where 50 are the initial values of the states at injection. Eq. (7) must be used when the

(7)g""’ = exp( (lg — Q _lg°’”)r>;0

constant matrix. Then the optimal trajectory is given by

using numerical methods to solve for ;(t). In the case where T, —>¤<> in Eq. (3), fpis a
!

Hence the optimal state trajectories are determined by substituting Eq. (4) in system Eq. (1) and

(6)k°pt = R`1BTS

The new time-varying gain matrix lfrepresents the optimal feedback gains:pt

(5)§=A'§+§.A·§§EQ§+Q
`lT

towe = - Dah; = — {P';



tuning is usually controlled by changing the bias current, which has inherent limitations on the OCR Output

the phase and amplitude of the generator currents with fast phase and amplitude loops. The

loading transients on the gap voltage. The amplitude and phase control is done by modulating

system having amplitude, phase, and tuning loops local to the cavities arranged to reduce beam

practice with proton accelerators to have more than one accelerating cavity system, with each

mentioned in Appendix A without considerable modifications. This is because it is normal

When the cavity loops are considered, it becomes almost impossible to apply those techniques

problems, we must consider the cavity dynamics and associated loops surrounding the cavity.

To illustrate the application of linear optimal control for machines with beam loading

4 FDCED-STRUCTURE OPTIMAL FEEDBACK (HIGH-INTENSITY CASE)

interval.

at 1 ms. However, while implementing the gains they can be computed at a much finer time

particle-tracking code. The dashed lines are not smooth since the time—varying gains have steps

Figure 5 is shown to compare the control, fp', when computed using Eq. (7) and the

trajectories xl, x2, and x3 when computed using Eq. (7) and the particle-tracking code.

Figure 3 shows the optimal gain profile with time. Figure 4 is plotted to show the state

applied in the aerospace industry. ln Figure 2 a flow chart of the iteration steps is shown.

cycle. In control literature this approach is also known as "gain scheduling" and is successfully

gain matrix. In this way we can calculate the time-varying gains during the entire acceleration

of values in A and Q matrices. For each value of r = O, t = 1 ms ,..., 50 ms, tabulate the optimal

any other subintervals in the acceleration cycle), and compute optimal gains with a new set

quantities of the states and control vector, we can then go to a second time interval, t = 2 ms (or

computed once at t = O in the acceleration cycle. After we reach a compromise on the optimal

specified value. During the iterations we have kept the matrices A and Q unchanged; these were

all the elements of Q and Q by a larger and larger value, the state vectors will converge to a

control theory (see how to select Q and Q matrices in Anderson, Reference 4), by multiplying
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the loop configuration shown in Figure l. In vector form Eq. (8) can be written as:

local loops for an equivalent cavity system. The placement of these gains in Eq. (8) is based on

The gain elements kl, k2, k3 correspond to global loops, and elements k4, k5, k6 correspond to

(8)

and the state vector as follows:

Let the control vector for the loops shown in Figure l be defined in terms of feedback gains

below.

will be more clear when we look at the optimal solution by first defining the control strategy as

in the gain matrix resulting from the solution of the non-linear Riccati equation. The argument

this depending on the solution of the optimal gain matrix, _lg, because of unwanted elements°’”

control will not be so effective. While applying optimal control techniques, we may need to do

although the individual cavity loops can be brought to one point to control all the states, the

amplitude—modulating the rf signal global to the ring accelerating system. By this we mean that

cavity. In other words, we cannot control the voltage on an individual cavity by

sum of all the cavity voltage changes, provided there are no local amplitude loops on each

the beam. Hence, if we change the amplitude of the global rf signal alone, then the effective

change the amplitude and phase of the voltage of the entire rf system together with respect to

voltage of each cavity as compared to the global beam control loops, since the global loops

bandwidth duc to slow tuners. These loops affect thc amplitude and phase of the cavity gap
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" = ‘ OP+ — opt+ OWOPI +(A BEWE §(A. Qk) (KVBEQ. (10)

we get the new Riccati equation in terms of the optimal gain matrix _lgand system matrix A:°p'

B k0ptS = S B kcpt = k0ptR kopt()' ()’

By making use of Eq. (6) and the following known relationship:

S B EB li§§ + Q— A_lT

- S = ATS — (B k°”’)'S + (B k°"’)'S + S A — S B k°”’ + S B k""'

follows. Reairanging Riccati Eq. (5) in terms of the optimal gain matrix we get:

order to do this we need the Riccati Eq. (5) in terms of the gain matrix, I;. This can be done as

new optimal gains by solving the Riccati equation with the new set of forced gain matrices. In

zero and then test for the stability of the loops. If the system is still stable we then recalculate the

we force the unwanted non-zero gain elements, such as k43, from the optimal gain matrix to

the control loops is changed. To alleviate this problem, i.e., to fix the loop structure unchanged,

good as adding another loop on top of all the loops described in Figure l. Thus the structure of

inputs from two states—namely, the beam phase error (x3) and the amplitude error (x 4). It is as

amplitude of the generator current of one of the power amplifiers has to be modulated with the

element k4, then the control u4 will be in the form u4 = — (k43x3 + k4x4). This means the

element in the 4th row and 3rd column is non-zero, (kn), with a magnitude comparable to

out with more than six non-zero elements, kl, k2, ..., k6, shown in Eq. (8). For example, if the

equation using the method described in Appendix A, then the optimal gain matrix may come

the form shown in Figure 1. If we compute the optimal gain matrix, fp, by solving the Riccati
'

Many elements of the gain matrix, li, are set equal to zero to arrange the loop configuration to
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then observing whether all the eigen values lie in the left half of the s-plane.

stage the stability can be checked by calculating the eigen values of the matrix, A - Q Q, and

Eq. ( 8) so that the closed loop characteristic matrix, A — Q 1;, is asymptotically stable. At this

Step 2.· Assume some initial estimated gain values for kl , k2, k3 ,..., k6 in the gain matrix in

model summarized in Table I of Reference 3.

Step 1: Calculate matrices A and Q from the machine parameters at, say, T= 1 ms, using the

Figure 6 is a flow chart of the computational steps outlined below:

5 DESCRIPTION OF THE METHOD

optimal solution.

reach a convergent optimal solution. Section 5 outlines the individual steps to determine the

we need to observe the stability bounds and the way the performance function is behaving to

Overall computations involve several iterations, because for each set of forced gain matrices

J = e —<¢-.w‘>·+ ·~’~···e—<¢-wl dt . on]' [Q (;)M][ l E0é [ g H

Eq. (3), and then simplifying:

substituting the time domain state Eq. (7) and the optimal control matrix _tg""' = - lc_;°p' in°p’

we have to define the performance function in terms of the optimal gain matrix. This is done by

zero, we need to monitor the way the performance function, J, is behaving. In order to do this,

While computing the optimal gain matrix, K, by forcing the unwanted gain elements top'

(shown in Appendix A) even for heavy beam loading cases.

control, if there is only one cavity we can compute the gains using conventional techniques

integrated with more than one cavity system. Otherwise, in the implementation of optimal

configuration. As we said earlier, the fixed structure is due to the way the global loops are

We use Eq. (10) in place of Eq. (5) to compute the optimal gains for the fixed-structure loop
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yields optimal state trajectories. The local minimum after 4 iterations is only the transient in J

time in the iteration the performance function is minimal, and hence the forced gain matrix

plotted at l ms for 20 iterations. It has converged to a steady value within 10 iterations. At this

function J no longer differs from the previous iteration. In Figure 7 the normalized value of J is

progressing toward an optimal solution. Then, repeat Steps 5 to 7 until the performance

iteration of this step. If the new value of J is lower than the previous value, then we are

Step 2. After obtaining J, compare the new value of J with that calculated in the previous

of J by using Eq. (1 1) with the gain matrix as f. Otherwise, change the gain matrix and go top'

_A_ - Q k, using the forced gain matrix. If it is asymptotically stable, then compute the valuem

Step 7: Check for stability by looking at the eigen values of the characteristic equation,

gain matrix in order to retain the structure of the overall feedback system.

non-zero, then force them to be equal to zero. This is the constraint we have imposed on the

Step 6: If some of the elements other than kl, k2, k3, ..., k6 in the gain matrix, k, are
m

state value to determine the optimal gain matrix, g, using Eq. (6).m

Step 5: Solve the Riccati differential matrix equation shown in Eq. (l0). Use the steady

Step 4.· Calculate the performance function, J, using Eq. (ll).

(12)

(#6),,,(xt),.

(**2);,02),,,

= L 5 {lull,.: A Q IW,.

Step 3: Assume the Q and Q matrix as follows:
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weighting factors in the optimal function, J. The simulations will be close to the predicted

system time response can be shaped with off-line simulation iteratively by changing the

optimal state trajectories compare very well with the real-world situation, since the control

predicted by merely solving the linear state—space model. Clearly. there is an advantage if the

a real machine when it becomes available. Then we could see whether the optimal states can be

linear state-space model compared to the tracking code. A better comparison could be made in

plots, the transients do not compare very well due to the non—linea1ities we have ignored in the

lines and the dashed lines use the same optimal gains in the feedback loops. As we see from the

trajectories obtained by numerically integrating the linear state-space model. Both the solid

particle-tracking code that includes the cavity dynamics.5 The solid lines are the optimum

beginning of the acceleration cycle. The dashed lines are those obtained using the

cormol quantities are shown in Figures 9 and 10, respectively, for a short duration at the

which compares well with those shown in Figure 3. The optimal state trajectories and the

time-varying gains in the global loops when computed by including the cavity dynamics,

structure. Figure 8 shows the time-varying optimal gains in all the loops; Figures 8(a—c) are the

values so that the state trajectories are within the specifications in spite of the fixed loop

in increments of 1 ms, 2 ms, 3 ms, and so on. In this way we can compute the optimal gain

The process is continued through the whole acceleration cycle by increasing the time step

specifications.

Step 3. Then follow Steps 4 to 8 until the states and control quantities are within the

ql, q2,..., q6 and rl, r2,..., rg on appropriate elements of the weighting matrices Q and K in

control quantities are not within the specifications, then change the weighting elements such as

respectively, by using the forced optimal gain matrix obtained in Step 7. If the states and

Step 8: Calculate the optimal state trajectories and control quantities using Eqs. (7) and (8),

optimum solution.

before reaching steady state. The forced gain matrix at local minima does not correspond to
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specifications on different state variables in the presence of extemal disturbances and other

The optimal control technique may become well—suited for calculating the gains to meet the

allow flexibility to change the structure of the loops.

around the cavity, since the distributed nature of the cavities in a circular machine does not

straightforward. But several alterations were required in the algorithm to consider loops

model is known, the application of optimal control to the low beam intensity case is

the cavity model) and for a high beam intensity case (with the cavity model). Once the system

trajectories are compared with the particle-tracking code for a low beam intensity case (without

the Superconducting Super Collider Low Energy Booster. The predicted optimal state

The linear optimal control method is applied to a fast-cycling circular accelerator such as

6 CONCLUSIONS

knowledge of noise and other uncertainties when the basic approach works on a real machine.

modern control theory. For a complete design, fine tuning of the gains can be done with some

was largely to show a new approach to rf feedback system design using well established

analysis is essential to justify the robustness of the control system. The emphasis as a first step,

model variations on the optimal trajectories is not covered in this paper although such an

methods may very well give the same results! Also the effects of external disturbances and the

classical trial-and-error approach of the past with lots of beam study time. At the end, both

on the computer first before trying on the real machine, rather than choosing to follow the

used on the machine. Effectively, this approach boils down to investigating the control effects

get a priori information on the possible consequences on the beam if the same gains were to be

loop gains, depending on the practical limits of the rf system. Off-line gain shaping is helpful to

While designing the optimal gains, constraints may need to be introduced on some of the

injection.

settling time of the transients are good. Also, the transients are predicted well some time after

optimal trajectories if the model we have used is accurate. On the whole, our predictions of the
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matrices _of the state and control quantities, and to and 1} are the initial and final times in the

Twhere Q and Q are symmetric and positive definite matrices, { and Eare the transposed

<A.1>J = Q | (fg; + Ja md:

unstable. One such performance function can be assumed in the following form:

energy), to a value as low as possible. Under no circumstances is the system permitted to go

limits (or to reach zero), and while doing so to keep the frequency shift, g, (quantifying control

control is to find the right frequency shift, g, to keep the states xl, x2, and x3 under specified

must first be created. For example, in the low beam intensity case, the objective of the optimal

In generating an optimal control, a function representing the ultimate system performance

A.l OPTIMAL FEEDBACK CONTROL

APPENDD( A

precedence over the complexity of the technique.

system and still allow the flexibility to shape the gains and the control quantities may take

Furthermore, the ability of the optimal control to guarantee stability of the entire low-level rf

decoupled classical design practices may be of overall benefit to the accelerator operation.

control to deal with the entire multi-input, multi-output coupled system rather than the

and extraction efficiencies. The optimal part may not be that critical, but the ability of the

models of the cavity and beam dynamics, it may very well increase the capture, acceleration,

oscillations. Since the approach is based on the total system description that includes accurate

limited simulation studies that the time-varying gains tend to give reduced beam phase

capture and acceleration efficiencies is unknown. There is, however, some indication in our

uncertainties. At this stage, the extent to which the optimal gains will help in optimizing the
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m 2 . 1 I A E + Q E

B! (A.6)
6H = = T 0 £u+§L

ai (A.5)
il - - ’ = T — L Q;+AL

series expansion,° which is given by

not need to compute it. The necessary condition for J to be minimal is derived from a Taylor

Multipliers. This is an intermediate vector used in the derivation of optimal control, fp'. We do

The new function L' is the transpose of the vector containing elements known as Lagrange

(A.4)
TTTH = %(¤rQ; + EB al + LQ4.; + Ez)

ways to minimize the performance function is to create a Hamiltonian:

that the performance function, J, over a specified time is minimal. One of the straightforward

system, it drives the system states described by the state Eq. (1) along a trajectory J; = ,;""' such

problem is to find the control vector E = !°"' such that when the control vector is applied to the

After having defined the performance function and Q and _I§ matrices, the optimal control

scientific method available to select an optimal performance function for a given system.

matrices is purely optional and depends on final performance objectives. There is, however, no

are the maximum values of the control variable. Arranging the elements inside the weighting

where (xi)"1, i= 1,2, ..., 6, are the specified maximum values of the states and (uilm, i= 1, 2 ,... , 6,

, = 1, 2_ ,6 , (A2,)E = di¤g{/(ut"nf}

i = 1 2 6 (A-2)= di¤gqr/(xi.Q [ii}
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obtained by substituting Eq. (A. 12) into Eq. (A. 1), which is given by

off-line, since the states are not required in Eq. (A.l1). Optimal performance function is

The optimal gain is determined by solving the Riccati Eq. (A.l1) backward in time for §(t)

(A.13)k""' = R' IBTS

where the feedback gain matrix _lgis given by°’”

(A-12)u°"' = — R_lBTSx = — k°ptx

equation, then the optimal control is given by

This is a Riccati equation, and §_(t) will be its solution. Thus, if we can solve the Riccati

(A.l1)§ = A.’§+§4—§Q£`Q§+ Q
lT

Substituting Eq. (A.l0) into Eq. (A.9), we obtain

yl = § E (A.10)

This Hamiltonian system equation has a solution for 2, that can be assumed as

(A 9) `
i A — @“ aQT 4 ` - Q - if A

Eq. (A.5) to get the following Hamiltonian system equation:

Furthermore, we substitute Eq. (A.8) into Eq. (A.7) and rewrite the resulting equation and

(A.8)att) = — K QL
IT

From Eq. (A.6) the optimal control in terms of Lagrange Multipliers is written as follows:
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given time in the accelerating cycle, each time by using the steady—state solution of §(t).

summarized. The gain @(t) is computed for known values of ig, Q, Q, and Q matrices at a°p’

sufficient in calculating the optimal gain. In Table A.I the computational sequence is

50 ms. For the parameters of the LEB we found that only the steady-state solution of §(t) was

value Qb(0) is obtained by solving Eq. (A. 16) under steady state for §b(0) and Q, Q, Q and Q at

50 ms down to 0 ms as we integrate Eq. (A. 16) forward in time from t = 0 to t= The initial

corresponds to 0 ms. Thus, the parameters A, Q, Q and Q have to be selected starting from

Booster, wl1ile solving Riccati equation, (A. 16), t = 0 corresponds to 50 ms and t = 7}

reverse the results to obtain _.S;(t), as in Eq. (A. 17). For example, in the case of the Low Energy

To solve the Riccati equation, integrate Eq. (A. 16) forward in time from t = 0 to t = 7} and then

(A.17)§(r) = §T— rb(f `)
<A.16>s,. = 4*;,, + sha — s,,as‘as,, + Q

1T

Eq. (A.11), we obtain the following Riccati equation:

Then by differentiating Eq. (A. 15) with respect to time, t, and then substituting for dt = —d·c in

r = T, — t (A. 15)

which is

following method to integrate Eq. (A. 1 1) by changing the time variable, t, to a new variable 1:,

than the initial.° Since most Runge-Kutta routines work forward in time, we can use the

The Riccati equation must be iterated backward in time since final conditions are known

A.2 SOLUTION OF RICCATI EQUATION

J°"' = %;T§(r)a
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weighting matrix so that A, is observable.Q (

control." With these gains to keep the overall system stable, we have to carefully choose the

to the optimal situation. Hence this type of optimal control is also known as "suboptimal

the Riccati equation. However, the feedback gains represented by l;(t) give conditions close°'”

practice, since the parameters will have changed before we have found a limiting solution of

solving Eq. (A. 1 1). For the Low Energy Booster we can never have the true optimal gains in

of Reference 6. The limiting solution is nothing but the steady—state value of §(t) obtained by

§( ¤¤ ) is a limiting solution of the Riccati equation. This statement is proved in Theorem 3.4-2

feedback gain f= k( ¤¤) = lj ` Q_.SQ( oc) results in a stable closed-loop plant. Here,p! °'” lT

If the system is stabilizable" and if we select so that A, `) is observable,’ then theQ (/Q

A.3 OVERALL LOOP STABH..IT Y



20 OCR Output

x2=6R u = Bfc

xl=6S X3 = 6(ps

a22

if zz ?a12
_ 2¤1"n‘v% a· _v‘n’Y%

a1! A1 = T
<B*>’v%E’

Energy of particle

speed of light

v‘/c

ideal radius

rf frequency

slip factor

·yT transition gamma

velocity of a synchronous particle

x = A x + B u

2 = O azz azz X2+ O O O*[] [O]

TABLE I. Linear state-space beam control model for low-intensity machine.
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JOM:) = %;’(r>§<r>;<¢>

Optimal Performance Function:

!0pI(t) = — t"”‘<»>r

Optimal Control:

x0pI ¢xp( (A - §k°'”)¢)10
Optimal States:

0pt R"BTs

Optimal Gains:

§<r> ;b(Tf - I)
l n-§b+§bé··§b§£`y§b+Q

L T_ T S1. = A
Rjccati Equation:

TABLE A.I. Closed-loop optimal control.
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Transients in cavity voltage phase error.FIGURE 9(c)

Transients in amplitude error.FIGURE 9(d)

FIGURE 9(c) Transients in beam phase error.

FIGURE 9(b) Transients in radial position error.

FIGURE 9(a) Variation of synchronization phase error with time.

Gain in cavity tuning loop with time.FIGURE 8(f)

Gain in cavity phase loop with time.FIGURE 8(c)

Gain in amplitude loop with time.FIGURE 8(d)

Gain in beam phase loop with time.FIGURE 8(c)

Gain in radial loop with time.FIGURE 8(b)

Gain in synchronization loop with time.FIGURE 8(a)

Normalized optimal function, J, at 1 ms.FIGURE 7

Flow chart to evaluate optimal gains for high-intensity machines.FIGURE 6

Variation of control (frequency shift) with time.FIGURE 5

Variation of beam phase error with time.FIGURE 4(c)

Variation of radial position error with time.FIGURE 4(b)

Variation of synchronization phase error with time.FIGURE 4(a)

Gain in beam phase loop with time.FIGURE 3(c)

Gain in radial loop with time.FIGURE 3(b)

Gain in synchronization loop with time.FIGURE 3(a)

Flow chart for calculating the optimal gains for low-intensity machines.FIGURE 2

Energy Booster.
Schematic loop diagram of low-level rf beam control loops for the SSC LowFIGURE 1

FIGURE CAPTIONS
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FIGURE 10(c) Transients in the phase of the generator current.

FIGURE 10(b) Transients in the amplitude of the generator current.

FIGURE 10(a) Transients in frequency control.
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solution of matrix Riccati equation

costates

Hamiltonian

control inputs

gain matrix

system states

weighting matrix for control inputs

weighting matrix for states

performance index

(•)m maximum valuc of (•)

(•)°P‘ optimal valucs of (•)

(•)S quantity (•) of a synchronous particle

LIST OF PRINCIPAL SYMBOLS
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