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1 INTRODUCTION

While at LEP 1 the basic process is two-fermion production via a single Z-boson (or
photon) exchange, at LEP 2 the typical process will be the `double-resonance' production
of four-fermion �nal states. LEP 2 will operate just in the threshold region ofW - or Z-pair
production and, if the Higgs-boson mass ful�ls 60 �MH � 100 GeV, of ZH production.
Already in the tree level approximation, the double-resonance physics is much richer and
much more interesting and complex than the single Z-boson production.

A speci�c four-fermion �nal state can be produced by many Feynman diagrams with
many possible virtual states, including all the carriers of fermion interactions in the Stan-
dard Model: 
; Z;W�, g, and H. We will distinguish between `basic' diagrams, which
contain two potentially resonating virtual states (W , Z, H) in the s-channel and `back-
ground' diagrams, which are just the rest. The general topology of the basic diagrams
is shown in �gure 1. The contribution of background diagrams to a given �nal state
is usually suppressed. Some background diagrams for W -pair production are given in
�gure 2.

The analytical result for the Born on-shellW -pair production has been known for long
in the literature [1]1. The o�-shell case was treated in [3]. A calculation of o�-shell Z-pair
production was done in [4].

In this paper we present semi-analytical results for o�-shell production of bosonic pairs
(WW; ZZ; ZH) including universal lowest-order Initial State Radiative (ISR) corrections
with soft-photon exponentiation. For the case of W -pairs, we also present results with
completeO(�) ISR corrections and some examples of four-fermion background processes.

The paper is organized as follows: In the next section, we classify the four-fermion
production processes in e+e� annihilation. In section 3 we introduce the notations and
present the formulae for the basic processes. In section 4, the contributions of the back-
ground diagrams to the simplest �nal state are characterized. The ISR corrections are
described in section 5. In section 6, we present concluding remarks and prospects.

2 A CLASSIFICATION OF FOUR-FERMION

PROCESSES

In this section we will classify the four-fermion production in the Standard Model 2. The
number of Feynman diagrams depends crucially on the �nal state. In general all possible
�nal states can be subdivided into two classes.

The �rst class comprises production of up (anti-up) and anti-down (down) fermion
pairs,

(Ui
�Di) + (Dj

�Uj) ;

where i; j are generation indices. The �nal states produced via virtual W -pairs belong to
this class. We will call these `CC' type �nal states. The second class is the production of

1Some approximate results on the analytical treatment of o�-shell W -pair production near threshold

can be found in [2].
2The classi�cation is done with the use of CompHEP [5].
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Figure 1: The basic contributions to o�-shell boson-pair production: crayfish and crab;
B = W�; Z;H.

two fermion-antifermion pairs,

(fi �fi) + (fj �fj) ; f = U; D:

As it is produced via a pair of two virtual neutral vector bosons we will call this a �nal
state of the `NC' type. Obviously these two classes overlap for certain �nal states.

The number of Feynman diagrams in the `CC' class is shown in table 1. Three di�erent
cases occur in the table:

�du �sc �e�e ���� ����
d�u 43 11 20 10 10

e��e 20 20 56 18 18
���� 10 10 18 19 9

Table 1: Number of Feynman diagrams contributing to the production of `CC' type �nal
states.

(i) The two produced fermion pairs are di�erent (i 6= j) and the �nal state does not
contain an e� (numbers in boldface). For this case, the number of diagrams varies
between 9 and 11, depending on the �nal state's neutrino content. The background
diagrams for this simplest case are shown in �gure 2.

(ii) The four-fermion �nal state contains one e��e- or �e�e-pair (roman numbers); the
number of diagrams grows to 18, 19 or 20, due to the additional t-channel exchange
diagrams.

(iii) Two mutually charge-conjugated fermion pairs (i = j) are produced (italic num-
bers). Here, the diagrams may contain neutral-boson (Z, 
, H, gluon) exchanges.
One should emphasize that this overlaps the `NC' classi�cation.

For the �nal states corresponding to the `NC' class the number of Feynman diagrams
is presented in table 2:
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Figure 2: Background contributions to o�-shell W -pair production: up and down
reindeers.

(i) The simplest case (numbers in boldface) does not contain electrons or identical
fermions3.

(ii) With identical fermions f (f 6= e; �e), the number of diagrams (in typewriter)
grows drastically, since it is necessary to satisfy the Pauli principle (i.e. to antisym-
metrize the amplitude).

(iii) The numbers in romans correspond to the �nal states that include f = e; �e except
those covered by item (iv). The large number of diagrams here is due to additional
t-channel diagrams.

(iv) The numbers in italics correspond to �nal states that are also present in table 1,
case (iii). The basic diagrams proceed via both WW - and ZZ-exchanges.

So far we have investigated semi-analytically only the two simplest cases of the `CC'
and the `NC' classi�cations. In section 4 we will present the production of two di�erent
fermion pairs:

e+e� ! (W+W�;W� �ff 0)! �f 01f1f
0
2
�f2;

fi; f
0
j 6= e; �e :

An example of the `NC' type process with 24 Feynman diagrams (case (i) of table 2) will be
discussed in another contribution to this conference [6]. For the more involved processes,
especially for case (ii) of table 1 with �nal states containing an e��e pair, investigations
have been started. We expect that the topologies indicated with roman numbers may
also be treated by our method.

Another classi�cation of four-fermion processes was presented recently [7]. This refer-
ence separates leptonic, semileptonic, and hadronic four-fermion �nal states. For leptonic
processes they agree with our number of Feynman diagrams. For semileptonic processes
agreement is found in all cases but one, namely q�q�e��e. The authors of [7] have 19 dia-
grams instead of our 21 for this case. The explanation is that for this process a W -fusion
diagram exists, where two W -bosons produce a q�q state with a virtual q0 in the t-channel.

3We exclude the Higgs-boson exchange diagrams from the classi�cation in the tables.
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�dd �uu �ee ��� ��e�e �����
�dd 4�16 43 48 24 21 10

�ss 32 43 48 24 21 10

�uu 43 4�16 48 24 21 10

�ee 48 48 4�36 48 56 20
��� 24 24 48 4�12 19 19

��� 24 24 48 24 19 10

��e�e 21 21 56 19 4�9 12
����� 10 10 20 19 12 4�3
����� 10 10 20 10 12 6

Table 2: Number of Feynman diagrams contributing to the `NC' type production of two
fermions pairs.

For a given q, say d, q0 may be u; c or t (due to Cabibbo-Kobayashi-Maskawa mixing).
In our classi�cation we count all three diagrams, while in [7] this is counted only once.
Finally, for hadronic processes we agree only in one of seven cases, namely in our example
with 11 diagrams. The reasons for these di�erences are twofold. Firstly, once more, quark
mixing is neglected in [7]. Secondly, we count gluon-exchange diagrams while this is not
done in [7]. Taking these di�erences into account, both classi�cations agree.

At the end of this section we introduce some notations. Background diagrams may
contain one resonating virtual s-channel state or none (non-resonating background). We
will denote by a sub-index n the total number of resonating s-channel propagators in a
separate contribution �n to the cross-section of four-fermion production,

e+e� ! (W+W�; ZZ;ZH; : : :)! 4f:

Therefore, the basic contributions carry sub-index 4, the background-basic interferences
3 or 2, and the pure background contributions have sub-index 2, 1 or 0. With appropriate
kinematical cuts, certain resonating states may be selected and contributions with indices
4, 3, 2, 1, and 0 should be hierarchically less and less important.

3 BASIC CROSS-SECTIONS

Here we present the basic cross-section formulae for the three cases described by the
diagrams of �gure 1 with WW , ZZ, and ZH intermediate states. They all may be
expressed by twofold convolutions of a hard-scattering o�-shell cross-section with Breit-
Wigner density functions. For the WW case, this representation was invented in [3]:

�WW (s) =

sZ
0

ds1 �W (s1)

(
p
s�ps1)2Z
0

ds2 �W (s2)

� �WW
4 (s; s1; s2); (1)
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where

�W (si) =
1

�

p
si �W (si)� BR(i)

jsi �M2
W + i

p
si �W (si)j2 (2)

is the Breit-Wigner density function originating from the W� s-channel propagators
and BR(i) is the corresponding branching ratio. Similar densities �Z and �H associ-
ated with Z (H) s-channel exchanges can be obtained by the replacements MW ;�W !
MZ;�Z ; (MH;�H). They are normalized so that

�B(s)
�B!0�! �(s�MB)� BR(i); B = W;Z;H: (3)

Further,

�W (s) =
G�M

2
W

6�
p
2

p
s
X
f

Nc(f) (4)

is the o�-shell (s-dependent) W -width and Nc(f)=1(3) for leptons(quarks). The sum
in (4) extends over all open fermion channels. At extremely high energies, additionally
opening channels may substantially contribute to �W (s).

The cross-section �WW
4 (s; s1; s2) contains six pieces but is described by only three

functions Ga
4(s; s1; s2), which are di�erent for the s- and t-channel and the st-interference:

�WW
4 (s; s1; s2) =

(G�M
2
W )

2

8�s

"�
c

 + c
Z + cZZ

�
Gs
4(s; s1; s2)

+ (c�
 + c�Z)Gst
4 (s; s1; s2)

+ c��Gt
4(s; s1; s2)

#
: (5)

The coe�cients c�� consist of Z(
)ee- and Z(
)WW -couplings and 
; Z-propagator ratios:

c

 = 8s4W Q2
e;

c
Z = 4s2W ve jQej <e s

s�M2
Z + iMZ�Z(s)

;

cZZ =
1

2

�
v2e + a2e

� ����� s

s�M2
Z + iMZ�Z(s)

�����
2

;

c�
 = �4s2W jQej;
c�Z = �(ve + ae)<e s

s�M2
Z + iMZ�Z(s)

;

c�� = 1;

(6)

with Qe = �1; ae = 1; ve = 1 � 4s2W ; s2W = sin2 �W . The three irreducible kinematical
functions are

Gs
4(s; s1; s2) =

�3=2

s3s1s2

"
�

6
+ 2s(s1 + s2) + 2s1s2

#
;
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Gst
4 (s; s1; s2) =

�1=2

s2s1s2

(
�

6
[s+ 11(s1 + s2)]

+ 2s(s21 + 3s1s2 + s22)� 2(s31 + s32)

� 4s1s2 [s(s1 + s2) + s1s2]L4

)
;

Gt
4(s; s1; s2) =

�1=2

ss1s2

"
�

6
+ 2s(s1 + s2)

� 8s1s2 + 4s1s2(s� s1 � s2)L4

#
; (7)

with

� � �(s; s1; s2)

= s2 + s21 + s22 � 2ss1 � 2s1s2 � 2s2s (8)

and

L4(s; s1; s2) =
1p
�
ln
s� s1 � s2 +

p
�

s� s1 � s2 �
p
�
: (9)

In the limit (3), the on-shell W -pair production cross-section is obtained as given in [1].
The corresponding set of formulae for basic o�-shell ZZ production is:

�ZZ(s) =

sZ
0

ds1 �Z(s1)

(
p
s�ps1)2Z
0

ds2 �Z(s2)

� �ZZ4 (s; s1; s2): (10)

The o�-shell Z-boson width, which enters the de�nition of �Z , has the form

�Z(s) =
G�M

2
Z

24�
p
2

p
s
X
f

(v2f + a2f )Nc(f): (11)

The cross-section �ZZ4 (s; s1; s2) is extremely compact and can be described by only one
function Gt+u

4 (s; s1; s2), which is the sum of three others:

Gt+u
4 (s; s1; s2) = Gt

4(s; s1; s2) + Gu
4 (s; s1; s2)

+ Gtu
4 (s; s1; s2): (12)

Here the functions Gu
4 (s; s1; s2) = Gt

4(s; s2; s1) correspond to u- and t-channel diagrams
and Gtu

4 (s; s1; s2) describes the tu-interference. The cross-section �ZZ4 is given by:

�ZZ4 (s; s1; s2) =

(G�M
2
Z)

2

64�s
(v4e + 6v2ea

2
e + a4e)Gt+u

4 (s; s1; s2) (13)

6



with the kinematical function

Gt+u
4 (s; s1; s2) =

�1=2

s

"
s2 + (s1 + s2)2

s� s1 � s2
L4 � 2

#
:

Finally, the basic o�-shell ZH cross-section is:

�ZH(s) =

sZ
0

ds1 �H(s1)

(
p
s�ps1)2Z
0

ds2 �Z(s2)

� �ZH4 (s; s1; s2): (14)

Below the threshold of the decay H ! W+W�, the o�-shell width has the form

�H(s) =
G�

4�
p
2

p
s
X
f

m2
fNc(f): (15)

The cross-section �ZH4 (s; s1; s2) is given by

�ZH4 (s; s1; s2) =
(G�M

2
Z)

2

96�s

M2
Z

s

�
v2e + a2e

�

�
����� s

s�M2
Z + iMZ�Z(s)

�����
2

GBj
4 (s; s1; s2): (16)

Again, it contains only one kinematical function, namely GBj
4 (s; s1; s2):

GBj
4 (s; s1; s2) =

�1=2

s2s2
(� + 12ss2) : (17)

The energy dependences of the o�-shell WW , ZZ, and ZH basic cross-sections are
presented in �gures 3{5. For comparison we also show on-shell cross-sections for all
three cases. With respect to the on-shell case, o�-shell cross-sections are substantially
reduced in the threshold region and develop tails at high energies so that boson widths
cannot be neglected for s � (MB1

+MB2
)2. Going o�-shell, the cross-section peaks are

shifted to higher energies. Using constant widths, i.e.
p
s�B(s) ! MB�B, corresponds

to rede�nitions of the boson masses [8]: MB ! �MB = MB + 1
2
�2
B=MB . For the W this

results in �MW � MW + 26 MeV [9]. That lowers the cross-section around threshold by
at most � �1:7%, while for

p
s > 180 GeV the e�ect is small and positive (� 0:1%).

Numerical results were obtained with the Fortran program GENTLE [10].

4 BACKGROUND

In this section we brie
y sketch our results for the semi-analytical treatment of the pro-
cess (1), the production of four di�erent fermions excluding electron or electron neutrino
(case (i) in table 1). This is described by the basic diagrams of �gure 1 and by the
eight background diagrams of �gure 2. In the unitary gauge, there are no other dia-
grams for this particular �nal state. All results were obtained with the help of FORM [11],
SCHOONSCHIP [12], and CompHEP [5].
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Figure 3: The basic W -pair production.
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Figure 5: The basic ZH production.

After the analytical integration over �ve angular variables, one arrives at a doubly-
convoluted representation for the cross-section:

�4f(s) =

sZ
0

ds1�W (s1)

(
p
s�ps1)2Z
0

ds2 �W (s2)

� [�WW
4 (s; s1; s2) + �

4f
3 (s; s1; s2)

+�4f
2 (s; s1; s2)]: (18)

The basic contribution �WW
4 is given by (5). The term �

4f
2 corresponds to �gure 2 and

�4f
3 are interference contributions.
We obtained explicit representations for the cross-sections �4f

3 (s; s1; s2) and �
4f
2 (s; s1; s2)

in terms of seven new kinematical functions (three functions Ga
3 and four functions Ga

2 ),
coupling constants and propagator ratios (similar to (5)). The formulae for the cross-
sections themselves are rather appealing, while only three of the kinematical functions
are of the same compactness as those of the basic processes. Four interference functions
(two Ga

3 and two Ga
2 ) could be written only with the aid of a cumbersome polynomial

presentation of the following type:

Ga
3(s; s1; s2) =

p
�

1X
i;j=0

[s1L3(s; s1; s2)]
i

� [s1s2L4(s; s1; s2)]
j Pa

ij(s; s1; s2); (19)

Ga
2(s; s1; s2) =

p
�

1X
i;j=0

[s1L3(s; s1; s2)]
i

� [s2L3(s; s2; s1)]
j Pa

ij(s; s1; s2); (20)

9



Pa
ij(s; s1; s2) = pa0(ij)

+
3X

n=1

(s1s2)n�1

�n
pan(ij); (21)

with L4(s; s1; s2) given by (9) and

L3(s; s1; s2) =
1p
�
ln
s+ s1 � s2 +

p
�

s+ s1 � s2 �
p
�
: (22)

In (19) the a stands for U;D, and in (20) for UD;U �U . The pan(ij); n = 0; 1; 2; 3 in (21)
are polynomials of order n in s; s1; s2. A complete analytical result will be presented
elsewhere [13]. Here we restrict ourselves to a comment and some numerical results. As
may be seen from (19){(21), the cumbersome interference functions contain inverse powers
of � (up to the third power), which vanish at the upper limit of integration over s2. This
is a typical example of so-called kinematical singularities. Expanding L3;4 in Taylor series
in �, one may see that all these inverse powers cancel and the cross-section has a proper
threshold behaviour. However, these kinematical singularities may create complications
for numerical calculations.

In �gure 6, we present the ratios (basic+background)/(basic),

R =
�4f(s)

�WW (s)
; (23)

for three di�erent channels with 11, 10, and 9 diagrams respectively (see case (i) of table
1) as functions of

p
s. As is seen from the �gure, the background contributions for these

processes are relatively small, especially at LEP 2 energies. Below threshold of the W -
production and at high energies, the relative contribution of such background increases
and reaches � 2%.

5 INITIAL STATE RADIATIVE CORRECTIONS

IN FOUR-FERMION PRODUCTION PROCESSES

Since the background contribution is comparatively small, it is quite reasonable to re-
strict oneself to the basic diagrams when calculating the complete lowest-order ISR QED
corrections.

Let us recall that the ISR corrections are known to be dominating in single Z-resonance
production. A similar property holds for four-fermion processes at LEP 2, which will
proceed near the corresponding B1B2-thresholds and the intermediate-state bosons will
be nearly at rest [14].

The ISR corrections for a cross-section described by s-channel diagrams with 
- and
Z-exchanges (i.e. including the background terms) may be presented by a universal
formula [15]- [16],

�
B1B2;s
univ (s) =

sZ
0

ds1�B1
(s1)

(
p
s�ps1)2Z
0

ds2�B2
(s2)

10
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Figure 6: The (basic+background)/basic ratio R for o�-shell W -pair production with
li 6= e.

sZ
(
p
s1+

p
s2)2

ds0

s

h
�ev

�e�1(1 + �S) + �H
i

� �B1B2

4 (s0; s1; s2);

(24)

where v = 1 � s0=s. The soft plus virtual photon part �S and the hard part �H(s0=s) are
given by

�S =
�

�

"
�2

3
� 1

2

#
+
3

4
�e +O(�2); (25)

�H(s0=s) = �1

2

 
1 +

s0

s

!
�e +O(�2); (26)

and �e = 2�=�[ln(s=m2
e) � 1].

Equation (24) may be directly applied to the case B1B2 = ZH and to the s-channel
contribution of B1B2 = WW . We have rederived by explicit calculations that (24) may
be obtained straightforwardly from the usual vertex and bremsstrahlung QED Feynman
diagrams after up to seven sequential angular integrations (�ve for the vertex part and
seven for bremsstrahlung). The situation becomes much more complicated if t- and u-
channel exchange diagrams are involved. Here we face two kinds of problems. The
factorized form (24) is no longer valid for the squared t- and u-channel diagrams and
for st-,su-, and tu-interferences. One of the reasons is the angular dependence of t- and
u-cha nnel propagators. This leads to the appearance of additional non-factorizable (non-
universal) QED corrections.

For the ZZ process this is the only problem, although technical complications arise
due to additional Feynman diagrams with real and virtual photons attached to the virtual
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electron line in t- and u-channels. For the WW basic diagrams another problem persists.
There, the electric charge 
ows from the initial state electron through an intermediate
W -boson to a �nal state fermion. Therefore, only the complete set of all QED diagrams
is gauge-invariant. A `na�{ve' subset of diagrams with ISR corrections corresponding to
the diagrams with a (real or virtual) photon attached to the external electron legs is not
gauge-invariant. This is di�erent from the ZZ basic diagrams, where the electric charge

ows continuously through the initial state.

A straightforward solution of the problem would be a complete numerical calculation
of all the O(�) corrections, including also intermediate and �nal state corrections. This
was done for the on-shell case in [17], but it seems to be incredibly complicated for the
o�-shell case (see [18]). In such a complete approach one must also include all electroweak
corrections and properly treat the radiation from virtual intermediateW�-states.

We used a completely di�erent approach to the problem, namely to take advantage of
the fact that ISR corrections should yield the main fraction of the net correction. There-
fore, we tried to de�ne a gauge-invariant ISR correction by splitting the electrically neutral
neutrino 
ow in the t-channel into two oppositely 
owing charges {1 and +1. The charge
{1 is then combined with the `na�{ve' ISR diagrams in order to build a continuous 
ow of
electric charge in the initial state. The charge +1 is combined with the intermediate-state
photon emission and is neglected here. This technique, which is explained in more detail
in [14], is called the Current Splitting Technique (CST).

Within the CST, the ZZ and WW t-channel QED amplitudes are identical. The
di�erence between the two cases arises at the level of cross-section calculations. For
the WW case, there are st and tt interferences, while for the ZZ case one �nds t- and
u-channel contributions and the tu interference. In all cases the cross-section has the
following structure:

d3�
B1B2;a
non�univ(s)

ds1ds2ds0
=

1

s
�B1

(s1)�B2
(s2)

�
h
�ev

�e�1Sa +Ha

i
; (27)

with

Sa(s; s0; s1; s2) =
h
1 + �S(s)

i
�B1B2;a
0 (s0; s1; s2)

+ �B1B2;a

Ŝ
(s0; s1; s2); (28)

Ha(s; s
0; s1; s2) = �H(s; s0)�B1B2;a

0 (s0; s1; s2)

+ �
B1B2;a

Ĥ
(s; s0; s1; s2); (29)

where �B1B2;a

Ŝ
(s0; s1; s2) and �B1B2;a

Ĥ
(s; s0; s1; s2) are non-universal, non-factorizable soft

and hard contributions. Equation (27) possesses several remarkable properties. The
leading ISR correction contributions to the cross-section, containing mass singularities
via �e, factorize for any a = st; su; tu-interferences and t- and u-channel exchanges. This
is necessary to ensure that the gauge cancellation is not spoiled.

The non-universal terms are calculated so far only for the WW -case [14]. As one
should expect, the non-universal contributions do not contain mass singularities. An
analogous study for the ZZ case is in progress [19].
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The numerical in
uence of the universal part of the ISR corrections (i.e. setting non-
universal parts equal to zero) is presented in �gures 3{5 for the WW , ZZ, and ZH cases.
Universal ISR yields large, negative contributions in the vicinity of the threshold. At
high energies these corrections are positive and one observes the e�ect of the radiative
tail similar to the Z-peak. This radiative tail phenomenon is more pronounced than the
high energy tail due to the bosons' o�-shellness. We do not show the radiatively corrected
on-shell cross-section �on

univ, but only mention that the relative di�erences between �on
Born

and �o�
Born on the one hand and between �on

univ and �o�
univ on the other are similar.
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Figure 7: The non-universal initial state and Coulomb corrections to o�-shell W -pair
production.

The e�ect of the non-universal contributions in the WW -case is illustrated in �gure 7
(solid line). This contribution is seen to be small, at LEP 2 energies it does not exceed
0:4%. At high energies the relative contribution of the non-universal term becomes as
large as 1.4% at

p
s = 1 TeV. To a great extent the smallness of the non-universal terms

at high energies is due to the screening property of the non-universal corrections. They
have a damping overall factor,

�
st;t

Ŝ;Ĥ
(s0; s1; s2) � s1s2

s2
: (30)

The screening property ensures the unitary behaviour of the non-universal terms at high
energy for the individual (st and t) contributions.

In �gure 7, we also show an important part of the �nal state corrections { the so-
called Coulomb singularity. It yields a positive correction, which has its maximum value
of about 6% at the threshold and vanishes at high energies. At

p
s=1000 GeV it amounts

to 0.75%. The Coulomb correction is taken into account according to equation (5) of [20].
However, at high energies, other �nal state corrections are important [17].
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6 CONCLUSIONS AND PROSPECTS

For a variety of purposes, the semi-analytical treatment of four-fermion production is an
interesting alternative to the Monte Carlo approach.
Within the GENTLE project, we have calculated so far

(i) the O(�) ISR corrections to and the average radiative energy loss hEradi in o�-shell
W -pair production;

(ii) the background contribution for this process with the simplest �nal state con�gu-
ration;

(iii) the o�-shell ZH production with universal ISR corrections and the background
contributions for the ����bb decay mode.

We are presently studying

(iv) the O(�) ISR corrections to o�-shell Z-pair production.

We intend to study

(v) background contributions to Z- and W -pair production with other topologies;

(vi) background contributions with t-channel exchanges and �nal states with e� and �e
or ��e.

(vii) �nal state QED corrections to on-shell W -pair production with the current-splitting
technique;

(viii) the inclusion of virtual weak corrections.

The annihilation of two particles into four (�ve particles in the case of real
bremsstrahlung corrections) has a limited variety of topologies in the tree approximation
for the basic process. Thus, its systematic treatment is of principal theoretical interest.
Apart from the case of LEP 2, it �nds additional applications in e.g. the study of the Z
line shape at LEP 1 (initial state QED or �nal state QED and QCD higher order pair
production corrections) or in QCD corrections at the LHC. A study of certain problems
beyond the Standard Model is, of course, also within reach.
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