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1. Introduction:

Complete intersection Calabi-Yau manifolds embedded in products of projective
spaces (CICY) are the most prominent candidates for the compacti�cation of the heterotic
string. They have been intensively studied. Let us point out brie
y the main results; a de-
tailed account from a physical point of view can be found in [1]. Using the c1 = 0 condition
and curve identities it was recognized in [2] that all CICY's can be described by �nitely
many con�gurations of polynomials in products of projective spaces. Each con�guration
leads to a family of Calabi-Yau spaces whose generic member is smooth. By a computer
classi�cation 7868 con�gurations with Euler numbers between �200 and 0 were found in
[3] [4]. In [5] all their Hodge numbers were calculated. There occur 265 di�erent com-
binations. Application of a theorem of Wall [6] which states that the homotopy types of
Calabi-Yau three-folds X can be classi�ed by their Hodge numbers, their topological triple
couplingsK0

ijk �
R
X
Ji^Jj ^Jk and c2 �Ji �

R
X
c2^Ji, reveals that there are at least 2590

topologically di�erent models in this class [7]. Green and H�ubsch have shown in [8] that
all families of CICY's are connected by the process, already described in [3], of contracting
a family to a nodal con�guration and performing a small resolution of the latter. Certain
quotients of them by discrete groups were constructed in [9] and [10] which have Euler
number � = �6. Two of them, discussed below, have a nontrivial fundamental group
(�1(X) = ZZ3) and give rise to heterotic string compacti�cations with three generations
and a natural option to break the E6 gauge group by Wilson lines.

In this paper we want to extend the analysis of the Picard-Fuchs equations, the con-
struction of the mirror map and the calculation of the instanton corrected Yukawa cou-
plings, which was performed for one moduli hypersurfaces in a (weighted) projective space
in [11] [12] [13] [14] and generalized to higher dimensional moduli spaces of general hyper-
surfaces in toric varieties in [15] [16] to the class of complete intersections in products of
weighted projective spaces. It is natural to focus on the derivation of the prepotentials for
the complex structure and the K�ahler structure deformations, which encode all informa-
tion of theses two (topological) subsectors of the theory at tree level. The knowledge of
the prepotentials is quite relevant for the low energy phenomenology of the subsector of
the moduli- and the 27, 27 matter �elds in the e�ective �eld theory.

We will show that there is an easily exactly solvable subsystem of the complex struc-
ture deformations, namely the one which is, by the mirror map, associated to the quantum
cohomology of the subset of the elements in H1;1(X;ZZ) induced from the K�ahler forms of
the projective spaces. We focus on this subsystem and present results in a closed form for
the instanton corrected cohomology of this system. In general the moduli space is enlarged
due to exceptional divisors coming from the resolution of possible singularities. This sit-
uation we have treated quite generally for hypersurfaces in [16]. Here we will give two
simple but illustrative examples how to deal with the exceptional divisors in the complete
intersection case.

Even in the smooth case there are usually more elements in H1;1(X;ZZ) than the ones
mentioned above. For the counting and the calculation of intersections of the latter see
[1]. If they correspond under the mirror map to complex structure deformations, which
can be represented as deformations of the polynomials by vector monomials, they can
in principle be incorporated. This is e.g. the situation for the Tian-Yau manifold. If a
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Landau-Ginzburg prescription of the model is available, also perturbations which are not
of this kind, can be represented as roots of monomial deformations, as was suggested in
[17].

Our approach covers all cases treated in [11][12][13][14][18] [19] [20]. Due to threefold
isomorphisms, it also covers the two two-moduli Calabi-Yau spaces which were treated in
[15] and among others in [16], namely the degree 8 hypersurface in IP4[2; 2; 2; 1; 1] and the
degree 12 hypersurface in IP4[6; 2; 2; 1; 1]. We will see moreover that the described subsys-
tems provide simple examples of higher dimensional Calabi-Yaumoduli spaces, the simplest
case being the subsystem of the Tian-Yau manifold. Apart from being phenomenologically
interesting, there exists also a detailed mathematical study on the rational curves of this
manifold [21].

We organize the material as follows. In section two we shortly review how to calculate
classical intersections numbers. In the third section we explain our method of deriving the
system of Picard-Fuchs equations. In section four we exhibit the general structure of the
solutions of the Picard-Fuchs equations. This, when combined with the mirror hypothesis,
leads to the main result of this section, namely a concise formula for the prepotential.
This solves the problem of determining the moduli dependence of the instanton corrected
Yukawa couplings and theWeil-Petersonmetric for the states associated to the K�ahlerforms
of the ambient space for the class of (2; 2) compacti�cations on CICY's in the large radius
limit completely1.

We demonstrate our method with some selected examples in section �ve. In section
six we discuss the connection of certain complete intersection CY manifolds with rational
superconformal �eld theories. This way we can also explain the occurrence of identical
invariants for the rational and elliptic curves on some pairs of hypersurfaces and complete
intersections by an identity of conformal �eld theories. Following the approach of [22] we
extend in section seven the analysis to the topological one-loop partition function, which
is a moduli dependent quantity describing the di�erence between the threshold corrections
to the E8 and E6 gauge couplings [23] (see also [24]). The expansion of the one-loop
partition function has a conjectural interpretation in terms of Gromov-Witten invariants
for elliptic curves. As the geometrical understanding of these predictions is in a somewhat
preliminary state, we found it useful to use our data to calculate them explicitly for various
one, two and three moduli examples of di�erent type. In the �nal section we discuss some
open problems and possible avenues for future work.

2. Calculation of the classical topological data of CICY's

We consider in the following complete intersections of l hypersurfaces in products of k
projective spaces. Since most formulas allow for an incorporation of weights we will state

1 Instead of presenting a lengthy list of examples, we distribute the Mathematica program

INSTANTON which calculates the Yukawa couplings and counts the numbers of rational curves

for any complete intersection Calabi-Yau manifold discussed in [3],[4] and other examples in

singular ambient spaces. It is appended to the HEP-TH version of this paper.

2



them for the general case. Denote by d
(i)

j the degree of the coordinates of IPni[~w(i)] in the
j-th polynomial pj (i = 1; : : : ; k; j = 1; : : : ; l). We will use the notation

0
B@
IPn1 [w

(1)

1
; : : : ; w

(1)

n1+1
]

...
IPnk [w

(k)

1
; : : : ; w

(k)

nk+1
]

�������
�������
d
(1)

1
; : : : ; d

(1)

l

...
...

d
(k)

1
; : : : ; d

(k)

l

1
CA
h1;1

�

(2:1)

for a con�guration. Let us associate to the K�ahler forms induced from the i'th projective
space the formal variable Ji and consider the map � : ZZ[J1; : : : ; Jk] ! ZZ de�ned on the
generators Js as

�(Js) =

 
kY

r=1

@nrJr
nr!

! Qk

i=1

Qni+1

j=1 (1 + w
(i)

j Ji)Ql

j=1(1 +
Pk

i=1 d
(i)

j Ji)

! Ql

j=1

Pk

i=1 d
(i)

j JiQk

i=1

Qni+1

j=1 w
(i)

j

!
Js

�����
J1=:::=Jk=0

:

(2:2)
It follows from the adjunction formula that the term in the second bracket on the right-
hand side yields, by formal expansion, the total Chern class

c(X) = 1 + c1 + c2 + c3 = 1 + ca
1
Ja + cab

2
JaJb + cabc

3
JaJbJc (2:3)

of the Calabi-Yau manifold X. The coe�cients are given by

ca
1
=

na+1X
i=1

w
(a)

i �

lX
i=1

d
(a)

i � 0

cab
2
=

1

2

"
��ab

na+1X
i=1

�
w
(a)

i

�2
+

lX
i=1

d
(a)

i d
(b)

i

#

cabc
3

=
1

3

"
�abc
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�

lX
i=1

d
(a)

i d
(b)

i d
(c)

i

#
:

(2:4)

Here we have enforced the vanishing of the �rst Chern class. The numerator of the third
term in (2.2) is the top Chern class of the normal bundle of X and the denominator is a
normalization of the volume of the weighted projective space. Applying � to a monomial
of the Ji's is equivalent to the integration of the wedge product of the corresponding (1; 1)
forms, also denoted by Ji, wedged with the Chern class of dual form degree over X. We
have therefore

� =

Z
X

c3 = �(1);

Z
X

c2 ^ Jm = �(Jm); K0

ijk =

Z
X

Ji ^ Jj ^ Jk = �(JiJjJk): (2:5)

Note that these formulas, with the exception of the �rst line in (2.4), are valid only for
the case in which X has no singularities. For the singular case the triple intersection gets

modi�ed to
R
X
hi^hj^hk = �(JiJjJk)n

(i)

0
n
(j)

0
n
(k)

0
, where n

(i)

0
is the least commonmultiple
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of the orders of the isotropy groups of all �xed points of the manifold under C�-actions
in the i-th weighted projective space. The modi�cation of the �rst two integrals is more
involved. E.g. for complete intersections in one weighted projective space one has [25]

Z
X

c2 ^ J =
12

n0!

�
@

@J

�n0 Ql

i=1(1� Jdi)Qn+1

i=1 (1� Jwi)

�����
J=0

� 2

Z
X

J ^ J ^ J: (2:6)

In section four we will provide a more illuminative generalization of the formulas (2.4) to the
case of hypersurfaces and complete intersections with desingularized quotient singularities.

For example, in a product of two (weighted) projective spaces we have a smooth
con�guration

�
IP4[3; 1; 1; 1; 1]

IP1

����
���� 6 1
0 2

�2
�252

:
K0 = 4J3

1
+ 2J2

1
J2;

c2 � J1 = 42; c2 � J2 = 24;
(2:7)

where we use the notation of [16] to display the intersection numbers.

3. Derivation of the Picard-Fuchs equations

We will begin this section by deriving some general results on the Picard-Fuchs equa-
tions as they apply to the models considered here, using the toric data of the manifolds.
This approach gives one period by explicit integration and a holonomic system of linear
di�erential operators, which are satis�ed by all periods, but which allows for additional
solutions. Among the �nitely many solutions the periods can be singled out by the require-
ment that the monodromy acts irreducibly on them. Technically the problem of specifying
them is solved here by factorizing the di�erential operators.

Let us �rst show how the system of Picard-Fuchs equations for a restricted set of k
complex structure deformation parameters can be obtained from toric data of the (mirror)
manifolds according to [20]. This system of Picard-Fuchs equations is equivalent to the �rst
order Gauss-Main di�erential system which describes the variation of the Hodge structure
of H3(X;ZZ), restricted to the holomorphic and antiholomorphic (3; 0) and (0; 3) forms
and k (2; 1) and (1; 2) forms. By the mirror map we will identify the k complex structure
deformations with the K�ahler deformations in the restricted basis of K�ahler forms speci�ed
in the previous section.

Here we consider only con�gurations in which the complete intersection does not
intersect with singular loci of the ambient space IPn1 [~w(1)] � � � � � IPnk [~w(k)]. Without

further restricting the generality we may choose w
(i)

ni+1
= 1 for all i. Each projective space

IPni [~w(i)] is a toric variety which can be described by a (re
exive) simplicial polyhedron
�i with integral vertices in IRni (see refs. [26] [16] for its determination).

Since the ambient space is a direct product of all IPni [~w(i)], it is also a toric variety
described by the re
exive polyhedra � = �1 � � � � ��k in IRn1 � � � � � IRnk .

In refs. [20] [27] it was conjectured that the mirror manifold of the CICY of type
(2.1) is given by the CICY constructed from the combinatorial data of the dual polyhedron
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�� of �. � is re
exive and the corners of the dual �� are the integral points ��i;1 =

(1; 0; � � � ; 0); � � � ; ��i;ni = (0; � � � ; 0; 1) and ��i;ni+1 = (�w
(1)

1
; � � � ;�w

(i)
ni ) in IR

ni of IRn1�� � ��

IRnk . These vertices satisfy the relations
Pni+1

j=1 w
(i)

j ��i;j = 0; (i = 1; � � � ; k). We group the
vertices ��i;j into l (= number of de�ning polynomials) sets (a so-called as nef-partition)

f��i;jg1�i�k;1�j�ni+1 = E1 [ � � � [El (3:1)

by de�ningEm (1 �m � l) so that it contains d
(i)
m vertices from f��i;jg1�j�ni+1 for each i =

1; � � � ; k. We extend each vertex ��i;j of Em to ���i;j = (~e (m); �i;j) in IR
l�IRn1�� � ��IRnk with

~e (m) being the unit vector in them'th direction of IRl. After adding the additional vertices
���
0;p = (~e (p);~0) one �nds, as a consequence of the �rst relation in (2.4), k independent linear

relations between the
Pl

i=1(ni + 2) vertices ���i;j of the formX
l(s)���i;j = ~0: (3:2)

The l(s) (s = 1; : : : ; k; j = 1; : : : ; l) are given by

l(s) = (�d
(s)

1
; : : : ;�d

(s)

l
; : : : ; 0; w

(s)

1
; : : : ; w

(s)

ns+1
; 0; : : :) � (fl

(s)

0j g; fl
(s)

i g) (3:3)

The mirror manifold X� can then be written conjectually as the complete intersection
of the vanishing locus of the following Laurent polynomials in the variables Xm;n; m =
1; : : : ; k; n = 1; : : : ; nm (using the notation of ref.[16])

Pr = ar �
X

��
i;j
2Er

ai;jX
��
i;j (r = 1; : : : ; l) (3:4)

where the sum is over the (unextended) vertices in the m'th set Em. The vanishing loci of
(3.4) are considered in a toric variety IP��

(1)
+���+��

(l)
with ��

(i)
being a convex hull of f0g

and the set Ei. In ref.[27] the combinatorial aspects of this construction has been nicely
formulated.

Choosing a cycle �0 determined by jXm;nj = 1 8m;n, the corresponding period
integral (see [26] and [16])

w0(a) =

Z
�0

a1 � � � al

P1 � � �Pl

kY
m=1

nmY
n=1

dXm;n

Xm;n

: (3:5)

can be performed explicitly by expanding the integrand in a multiple power series in the
1=am and using the residue formula. After introducing the variables

zs =
a
w
(s)

1

s;1 � � � a
w
(s)
ns+1

s;n+1

a
d
(s)

1

1
� � � a

d
(s)

l

l

� al
(s)

(s = 1; � � � ; k) (3:6)
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it can be easily veri�ed that the period w0(a) is given by2

w0(z) =
X
ns�0

c(n)zn (3:7)

with

c(n) =

Q
j

�
�
Pk

s=1 l
(s)

0j ns

�
!Q

i

�P
s l

(s)

i ns

�
!

=

Ql

j=1

�Pk

i=1 nid
(i)

j

�
!Qk

i=1

Qni+1

j=1 (w
(i)

j ni)!
(3:8)

It satis�es the generalized hypergeometric system of Gelfand-Kapranov-Zelevinsky with
the k linear di�erential operators

Ls =

ns+1Y
j=1

�
w
(s)

j �s

��
w
(s)

j �s � 1
�
� � �
�
w
(s)

j �s � w
(s)

j + 1
�

�

lY
j=1

� kX
i=1

d
(i)

j �i

�
� � �
� kX
i=1

d
(i)

j �i � d
(s)

j + 1
�
zs

(3:9)

associated to the vector of the coe�cients of the linear relations l(s), s = 1; : : : ; k given
in (3.3). Here the �i are logarithmic derivatives �i = zi

@
@zi

. Similarly as in [16] one can
show that these equations are satis�ed for all periods wj as they re
ect the in�nitesimal
symmetries of (3.5), independent of the cycle chosen. This system is holonomic, which
means that the left ideal I generated by (3.9) in the ring of linear partial di�erential
operatorsD is of �nite rank rk(I). This implies the existence of rk(I) independent solutions
[28] where rk(I) is always larger than the expected number of periods.

We are interested in a subset of solutions of the system (3.9) which corresponds to
period integrals over the 2k + 2 cycles dual to the restricted basis of H3(X;ZZ). These
solutions can be characterized by the requirement that the monodromy acts irreducibly on
them [29]. Solving the Riemann-Hilbert problem for the reduced monodromy leads to a
reduced system of (lower degree) di�erential operators L1; : : : ; Lh. h denotes the number
of Picard-Fuchs equations; cf. below. In many examples such a system can be speci�ed
by factorizing di�erential operators from (3.9) in the form pi(�)Li :=

Pk

j=1
qj(�)Lj , where

p(�) and qj(�) are polynomials in �. We remark that this is however not the generic
situation (see [16]). The system L1; : : : ; Lh is again holonomic and generates a left ideal
whose rank is 2(k + 1). In fact this is our criterium to check that a given system of PF
equations is complete (cf. below).

Let us demonstrate the derivation of the system L1; : : : ; Lh for the following complete
intersection Calabi-Yau manifold �

IP3

IP2

����
���� 3 1
0 3

�8
�54

: (3:10)

2 Here and in the following we denote by �; z; n and � the k-tuples �1; : : : ; �k; z1 : : : zk; n1; : : : ; nk

and �1; : : : ; �k. We use obvious abbreviations such as zn :=
Qk

s=1
znss , n! :=

Qk

s=1
ns! etc.
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The toric description of the mirrormanifold was already given in [20]. One has two re
exive
simplicial polyhedra ��

1
;��

2
with vertices in IR3 � IR2:

��
1;1 = (1; 0; 0; 0; 0); ��

1;2 = (0; 1; 0; 0; 0); ��
1;3 = (0; 0; 1; 0; 0); ��

1;4 = (�1;�1;�1; 0; 0);

��
2;1 = (0; 0; 0; 1; 0); ��

2;2 = (0; 0; 0; 0; 1); ��
2;3 = (0; 0; 0;�1;�1):

(3:11)
We now group the vertices into two setsE1 = f��

1;1; �
�

1;2; �
�

1;3g andE2 = f��
2;1; �

�

2;2; �
�

2;3; �
�

1;4g

and de�ne the extended vertices ��� = (~e1;2; �
�) in IR7 where we choose ~e

(1)

1
= (1; 0) and

~e(2) = (0; 1) for the vertices in the �rst and second sets, respectively. The results derived
in the following are independent of how we group the vertices into two sets as long as the
�rst set contains three vertices ��

1;i and the second set contains the remaining vertices.

After adding the two vertices ��
0;k = (~e(k);~0), k = 1; 2 this leads by (3.4) to the following

two Laurent polynomials:

P1 = a1 � a1;1X1 � a1;2X2 � a1;3X3

P2 = a2 � a2;1Y1 � a2;2Y2 �
a2;3

Y1Y2
�

a1;4

X1X2X3

(3:12)

We now have independent linear relations3
P
l(k)���i;j = 0, k = 1; 2 between the vertices,

namely

l(1) = (�3;�1; 1; 1; 1; 1; 0; 0; 0) and l(2) = (0;�3; 0; 0; 0; 0; 1; 1; 1) (3:13)

They are of the form (3.3) and de�ne the variables z1 =
a1;1a1;2a1;3a1;4

a31a2
; z2 =

a2;1a2;2a2;3

a32

via (3.6). The parameters ai;j correspond to trivial automorphisms of (3.12) and can be
set to one. Using (3.9) we can associate the following GKZ system to the l(i)'s

L1 = �4
1
� 3 �1 (�1 + 3 �2) (3 �1 � 1) (3 �1 � 2) z1

L2 = �3
2
� (�1 + 3 �2) (�1 + 3 �2 � 1) (�1 + 3 �2 � 2) z2 :

(3:14)

In addition to the power series solution the system has eleven logarithmic ones. To obtain
an irreducible subsystem we factorize in the following way: L1 =: �1L1 and L1 + 27L2 =:
�1(�1 + �2)L2, which leads to the reduced system

L1 = �3
1
� 3 (�1 + 3 �2) (3 �1 � 1) (3 �1 � 2) z1

L2 = (�2
1
� 3 �1�2 + 9 �2

2
) � 3 (3 �1 � 1)(3 �1 � 2) z1 � 27 (�1 + 3 �2 � 1) (�1 + 3 �2 � 2) z2:

(3:15)
The fact that the number of equations equals the number of moduli is special to the
example here. In fact we will see in example (5 vii) that the numbers of linear di�erential
operators describing the Picard-Fuchs system locally can vary in the di�erent patches of
the moduli space.

3 The components of the l(k) refer to vertices ���i;j with i; j in lexicographic order.
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Let us �nally comment on some generic features of the moduli space of the mirror
manifold and its compacti�cation, as far as we will need them for �xing the holomor-
phic ambiguity in section seven. It is always easy to �nd the invariance group of the
Laurent polynomials, which acts by phase multiplication on the parameter ai and the co-
ordinates Xi; Yi; : : :. In our example one �nds a ZZ9 invariance group of (3.12) acting by
(Xi; Yj ; a1; a2) 7! (�kXi; �

6kYi; �
ka1; �

6ka2), with � = exp 2�i
9

and k 2 ZZ. Because of
this invariance of the parameter space of (3.12), we have to de�ne the moduli space of the
mirror manifold as the quotient M = ~M=ZZ9, where ~M is parametrized by a1; a2. It is
easy to see that the parameters (3.6) are in general invariant under the group action on
the Laurent polynomials and hence well de�ned on the quotient4. The fact that (3.6) are
invariant under the group action and hence well de�ned on the quotient can be seen in
general5.

The singularity of the moduli space of the Laurent polynomials at ai = 0 due to the
phase symmetries can now always be described by toric geometry. In general one has
to consider as second step also the quotient with respect to invariances of the Laurent
polynomials which are not acting simply by phase multiplication. In our example such
symmetries are not present and we see that ~n1 = a9

1
, ~n2 = a3

1
a2 and ~n3 = a3

2
generate

the multiplicative semigroup of invariant monomials under the ZZ9 but satisfy the relation
~n1~n3 = ~n3

2
, describing a rational A2 double point. It is now straightforward to give a toric

description of the moduli space using the secondary fan construction of ref. [30]. The
secondary fan, whose dimension equals the number of K�ahler moduli, contains the K�ahler
cone. Since it is a complete fan, it gives a toric description of the compacti�cation of
K�ahler moduli space; for a review, see also [31]. If we de�ne a matrix B whose rows are
the generators l(s) of the Mori cone, then the columns of B generate the one-dimensional
cones of the secondary fan. Their minimal generators for the model considered here are
the vectors e1; e2; �(e1+3e2) and �e1, where e1; e2 generate a square lattice. The cone

6

he1; e2i is the K�ahler cone and the cone h�e1;�(e1 + 3e2)i describes the A2 double point.
This description of the A2 double point is related to that given e.g. in [32] by a change of
basis e1 !�e2; e2 ! �e1 + e2.

The general theory, due to Hironaka, tells us that the compacti�ed moduli space can
be resolved in such a way that all singularities of the Picard-Fuchs equation are regular
divisors with normal crossings and part of the resolutions necessary to achieve this goal
can be described by toric resolution if we start as above. Finding auch a resolution is
necessary in order to analyse the full modular group. A thorough analysis of the modular
groups for Calabi-Yau compacti�cations were given for one moduli examples in [11][13][14]
and for two types of two moduli examples in [15].

4 This generalizes the reasoning, which leads for the quintic to the consideration of z = 1=a5

[11]as the natural variable.
5 This generalizes the reasoning, which leads for the quintic to the consideration of z = 1=a5

[11] as the good variable.
6 Here the conventions are as in [32].
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4. Local behaviour of the solutions, mirror map and instanton corrected

Yukawa couplings

In this section we calculate the singular locus of the Picard-Fuchs equations and discuss
some essential parts of the local behaviour of their solutions. We explain how to introduce
canonical coordinates and �x a canonical form of the period vector. This leads to simple
expressions of the instanton corrected Yukawa couplings and the K�ahler potential in terms
of the solutions. We will see that all topological data of the Calabi-Yau manifold appear
naturally in this period vector.

It was shown in [33] that general Picard-Fuchs systems have only regular singular
points, i.e. locally the solutions are given by power series or series involving �nite powers
of logarithms in zi.

Let us now describe the singular locus (cf. [28]). Denote the linear partial di�erential
operators of degree m, de�ned in a neighborhood U of z 2 M (the subspace of the com-
plex structure moduli space to which our analysis applies), by Li =

P
jpj�m a

p

i (z)
�
d
dz

�p
.

They de�ne a left ideal I in the ring of partial di�erential operators on U . We now intro-
duce the symbol of Li: �(Li) =

P
jpj=m a

p

i (z)�
p1
1
� � � �pkk , where �1; : : : ; �k is a coordinate

system in the �ber of the cotangent bundle T �U at z. The ideal of symbols is de�ned
by �(I) = f�(L)jL 2 Ig. The singular locus is S(I) = �(Ch(I) � U � f0g), where the
characteristic variety Ch(I) is the subvariety in T �U speci�ed by the ideal of symbols and
� is the projection along the �ber of T �U . The fact that �(I) is generated by �(Li) is a
special property of Picard-Fuchs systems. This follows e.g. from the way the Picard-Fuchs
equations are derived by the Gri�th-Dwork-Katz reduction method and simpli�es the cal-
culation of S(I). Let us demonstrate this for L1; L2 given in eq. (3.15). The symbols
are

�(L1) = z3
1
(�1(1 � 27z1)� 81z2�2)�

2

1

�(L2) = z1
2(1� 27z1 � 27z2)�

2

1
� 3z1z2(1 + 54z2)�1�2 + 9z2

2(1� 27z2)�
2

2
:

(4:1)

Case by case analysis reveals that Ch(I) decomposes into the following components

Ch(I) =f81z2�2 � (1 � 27z1)�1 = (1� 27z1)
3 � 27z2 = 0g [ fz1 = z2 = 0g

[ f�1 = (1� 27z2) = 0g [ f�1 = z2 = 0g [ f�2 = z1 = 0g:
(4:2)

Denoting the projections of the components on U by �i we have S(I) =
Q

3

i=0
�i, with

�0 = (1 � 27z1)
3 � 27z2, �1 = (1 � 27z2), �2 = z1, �3 = z2.

The singularities �i = 0 detected so far correspond to the discriminant locus in
the moduli space on which the de�ning polynomials cease to be transverse, i.e. where
p1 = : : : = pl = 0 and dp1 ^ � � � ^ dpl = 0 or, equivalently, where the Laurent polynomials
fail to be �� regular [26]. We calculate for comparison the discriminant of (3.12) at the
end of section (5i). To study further singularities we have to compactify the moduli space.
We can describe the compacti�cation by the toric variety corresponding to the secondary
fan constructed in the previous section. Then we �nd with the same method as above a
singular locus of the Picard-Fuchs equation at the origin of the patch de�ned by �3, which
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is due to the ZZ9 identi�cation of the parameter space discussed above. Such an analysis
can be made for the general case and the singular locus determined this way is used in
section seven in order to �x the holomorphic ambiguity for various examples.

From the de�nition of the (unnormalized) Yukawa-couplings (coe�cients of the cubic
form � in [34]) and the variational property of the (3; 0)-form [34] one �nds (see also
[35]) that the vanishing of the symbols at degree three gives relations for the Yukawa-
couplings by the simple replacement �i�j�k ! Kzizjzk ; e.g. from �(L1) = 0 one has

Kz1z1z2 =
(1�27z1)

81z2
Kz1z1z1 . This determines the Yukawa couplings up to a gauge dependent

overall function. The gauge in which the Picard-Fuchs equation are derived is de�ned by
(3.5) , and the corresponding gauge dependent function can be calculated, up to a constant,
by the methods outlined in [11][16].

These unnormalized Yukawa couplings have singularities on the discriminant of the
Calabi-Yau manifold. From the derivation of the Yukawa couplings in [34][16] it follows
that there is always one component which will appear in the denominator of all the Yukawa-
couplings, which we call the general component �0, following [36].

In the following we will demonstrate that the calculation of those Yukawa-couplings
on X� which are functions of the complex structure moduli is not necessary for the purpose
of determining the number of rational and elliptic curves. I. e. one can directly compute
the instanton corrected couplings on X.

Because of the fact that the symbols of I generate the ideal of symbols it is a rather
simple algebraic problem to write down the associated �rst order Pfa�an system, equiva-
lent to the Gauss-Manin connection. However we found that some local properties of the
solutions are most easily obtained directly from L1; : : : ; Lh. Most important is the analysis
of the solutions around z = 0, which is obviously a singular point in every system derived
by factorization from (3.9). For the analysis it is useful to introduce the ring R, which we
de�ne as the polynomial ring C[�] modulo the ideal I generated by the principal parts Is
of the operators Ls

Is(�) = limz!0Ls(�; z); (4:3)

i.e. R = C[�]=I: First we note that the Is(�) are homogeneous polynomials and the
solution to Is = 0, 8 s is (2k + 2)-times degenerate at � = 0. C[�] has a natural vector
space structure with the monomials as orthogonal basis. We can choose representatives
of R as homogeneous polynomials orthogonal to I. The subspace R of C[�] spanned by
them has in all cases dimensions f1; k; k; 1g at degrees f0; 1; 2; 3g. As we will now show ,it
can be identi�ed with the vector space of solutions to L1; : : : ; Lh. The grading translates
to the fact that we have one pure power series solution, k solutions with a part linear in
logarithms of z, k solutions with a part quadratic in the logarithms of z and one solution
which has a part cubic in the logarithms. This identi�es z = 0 as a point where all but
one cycle in H3(X) are degenerate[37], which is also referred to as point of maximally
unipotent monodromy[38] and provides precisely the structure of solutions one needs for
the mirror map.

Extending the de�nition of x! = �(x + 1) to x 2 IR, we de�ne the coe�cient c(n+ �)
for arbitrary values of the k parameters �i and de�ne the �-dependence of (3.7) as

w0(z; �) =
X
ni�0

c(n+ �)zn+�: (4:4)
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By the method of Frobenius, the logarithmic solutions are obtained by taking linear com-
binations of derivatives D� =

P
(bn=n!)@

n
� of w0(z; �) evaluated at � = 0. Here we de�ne

@�i :=
1

2�i
@
@�i

. The factor 2�i will make the monodromy matrix around z = 0 integer. As

[Ls; @�i ] = 0, it is then su�cient to check whether

D� (Lsw0(z; �))j�=0 = 0; 8s (4:5)

to establishD�w0(z; �)j�=0 as a solution. By consideration of the explicit form of the series
(4.4) one can show that the conditions for vanishing of the constant terms in (4.5)

D�(Is(�)c(0; �)z
�)j

�=0
= 0; 8 s; (4:6)

are in fact also su�cient.
We introduce an identi�cation of the ring C[�] with the ring of the partial derivatives

w.r.t. �

' :
X
ni�0

bn�
n 7!

X
ni�0

bn

n!
@n� ; (4:7)

which induces an isomorphism between the vector space R and the vector space of solutions
to L1; : : : ; Lk, as can be seen as follows. An element r 2 R is orthogonal to all polynomials
of the form m(�)Is, where m(�) is monomial in �. As r and Is are homogeneous one has
to check orthogonality only for monomials m(�) of degree deg (r) � deg (Is). Suppose r
is of lower degree, then Is (4.6) will obviously hold for D� = '(r), because all terms in
D�(Is(�)c(0; �)z

�) have positive degree in � and will vanish, after setting � to zero. If
deg (r) = deg (Is) + n, then deg (r) � n derivatives of D� = '(r) have to act on Is to give
a nonvanishing term. By our choice of the factorials the vanishing of these contributions
is equivalent to r ? m(�)Is = 0 for any m(�) with degm(�) = n. Hence r 2 R i�
'(r)w0(z; �)j�=0 is a solution.

Besides the unique power-series solution (3.7) we choose for the k solutions linear in
the logarithms the basis @�iw(z; �)j�=0. They are given by

wi(z) =
X
ni�0

di(n)z
n + w0(z)

logzi
2�i

(4:8)

with

di(n) =
1

2�i

@

@�i
c(n+ �)

�����
�=0

The top element of R is unique, up to a constant, which we will �x in a moment, and
so is the solution cubic in the logarithms.

De�ning now

D
(1)

i := @�i ; D
(2)

i :=
1

2
~Kijk@�j@�k and D(3) := �

1

6
~Kijk@�i@�j@�k ; (4:9)
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where summation is implicit, we have a natural basis for the period vector

�(z) =

0
BB@

w0(z)

D
(1)

i w0(z; �)j�=0

D
(2)

i w0(z; �)j�=0
D(3)w0(z; �)j�=0

1
CCA : (4:10)

When one actually performs the derivatives w.r.t. �i, one has to be careful when treating
the poles of the Gamma-function and its derivatives. We clear up these technical details
in Appendix A.

So far we have only dealt with the complex structure deformation parameters zi. To
describe the mirror map between the subsectors of the theory depending only on the com-
plex structure parameters and the complexi�ed K�ahler structure parameters7, respectively,
we will brie
y review their common structure. They can be identi�ed with topological �eld
theories de�ned by the BRST operators QC = G+ + �G� and QK = G+ + �G+, respec-
tively. The G�; �G� in QC and QK are related to the zero modes of the superpartners
of the energy momentum tensor of the underlying N = 2 superconformal �eld theory by
two di�erent kinds of twist procedures which make either QC or QK to scalar operators
[40][23]. At string tree level all relevant information is encoded in two prepotentials (free
energy) FC ; FK , which are sections of holomorphic line bundles L2 over the complex and
K�ahler structure moduli spaces respectively. There exists a coordinate choice, so-called in-
homogeneous special coordinates ti, such that the Yukawa couplings (structure constants)
are ordinary third derivatives (@i =

@
@ti

)

Kijk = @i@j@kF (4:11)

of the prepotential. For general coordinate choices the derivatives have to be covariantized
w.r.t. the connection of the line bundle L and the metric on the moduli space. Unlike for
e.g. topological models on manifolds with c1 > 0 [41] the prepotential F for Calabi-Yau
threefolds cannot be derived from the associativity of the structure constants alone. For
these cases one has on the other hand an additional geometrical structure known as special
geometry, which was discovered �rst in the context of N = 2 supergravity theories [42] and
derived for the K�ahler and complex structure moduli spaces of Calabi-Yau and/or N = 2
string compacti�cation in [43] [44] [45][39]. It implies that also the K�ahler potential for
the Weil-Peterson metric derives from the prepotential (hence the name) as

K = �log
�
(ti � �ti)(@iF + �@i �F ) + 2 �F � 2F

�
: (4:12)

On the complex structure side the Yukawa couplings are expressed for a choice of the
holomorphic threeform 
 as [34] Kijk =

R

@i@j@k
 and the K�ahler metric is given by 8

7 Recall that the moduli describing the variation of the Riccic 
at K�ahler metric and the

antisymmetric tensor background �eld can be parametrized by �gi�|dz
i
^ d�z�| =

Pk

i=1
�t̂iJi and

�Bi�|dz
i
^ d�z�| =

Pk

i=1
�~tiJi where one can combine ti = ~ti + it̂i to the so-called complexi�ed

K�ahler structure parameter [39].

8 � =

�
0 ��

� 0

�
, � =

�
0 1

1 0

�
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K = �log(�y��) where � is the period vector for a symplectic basis of H3(X). As the
holomorphic three-form 
 is de�ned only up to gauge transformations 
 ! f(z)
 (f(z)
holomorphic) it takes values in a holomorphic line bundle L over the moduli space. The
transformation properties of the quantities introduced are: 
 2 L, F 2 L2, the Yukawas
Kijk transform as components of elements in L2 
 Sym((T �

M
)
3) and e�K 2 L 
 �L.

e2Kgi�{gj�|gk
�kKijk

�K
�{�|�k is then invariant under K�ahler and coordinate transformations. The

physical Yukawa couplings appearing in the e�ective Lagrangian are those for canonically
normalized matter �elds.

To relate the solution of the Picard-Fuchs equations directly to F we may use the
form of the Picard-Fuchs di�erential operators in special coordinates in the K�ahler gauge
[46],

kX
i=1

@j@p(K
�1

r )li@r@i: (4:13)

The period vector is then trivially expressed in terms of F : �(t) = (1; ti; @iF; 2F � t
i@iF )

(here and below we again use summation convention). The relation of the coordinates
in K�ahler gauge ti to the homogeneous special coordinates (X0;Xi), in which the period
vector reads (X0;Xi; (@F=@Xi); (@F=@X0)), is given by ti = Xi=X0 with F = (X0)2F .

Guided by the mirror hypothesis we should have the same structure for the K�ahler
side and therefore, for a formal large radius expansion of FK

FK =
1

6
K0

ijkt
itjtk +

1

2
aij t

itj + bit
i +

1

2
c+ Finst: (4:14)

around Im(ti)!1, the \period vector"

X0

0
BB@

1
ti

1

2
K0

ijkt
jtk + aij t

j + bi + @tiFinst:

�1

6
K0

ijkt
itjtk + bit

i + c+ (2Finst: � ti@tiFinst:)

1
CCA = X0�(t) (4:15)

Here K0

ijk are the classical intersections calculated in section two and Finst: is a power

series in qi = e2�it
i

, which encodes the instanton corrections.
Starting from (4.10) in zi coordinates we have now to make a coordinate transforma-

tion to suitable inhomogenous coordinates, which are de�ned by ratios of solutions of the
Picard-Fuchs equations as

ti(z) =
wi(z)

w0(z)
: (4:16)

The reason for picking this quotient is that the invariance of the theory under the mon-
odromies around zi = 0 can be identi�ed with the invariance of the topological sigma model
under real shifts ti ! ti + 1 of the antisymmetric background �eld or equivalently of the
e�ective �eld theory under discrete Peccei-Quinn symmetries. As will become clear below,
this choice identi�es the form of the prepotential for the complex structure moduli space on
X� with the one expected for the K�ahler structure moduli space on X. It strongly resem-
bles the elliptic curve case where the ratios of two arbitrary solutions of the period equation
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and its inverse satisfy a third order non-linear di�erential equations introduced by Schwarz.
Inserting the solutions z(t) in the J invariant of the elliptic curve gives the wellknown ex-

pansion J(at+b
ct+d

) = 1

1728
(q�2 + 144 + : : :) of the J function in terms of q = e2�i(

at+b
ct+d

).
The choice of the logarithmic solution for w1 and the power series solution for w0 at the
point of maximal unipotent monodromy corresponds then to a = d = 1; b = c = 0. For
Calabi-Yau spaces one likewise �nds that the mirror maps zi(q1; : : : ; qh) always have an
integral expansion, which is a necessary condition for obtaining integer instanton num-
bers. One therefore expects that the mirror map plays an important rôle for the theory of
modular forms on the moduli space of Calabi-Yau space, which however seems to be much
more intrigate as the modular group acts in general non-arithmetically on the geometrical
parameters.

Inserting the inverse map of (4.16) into (4.10) we obtain the transformed period vector

~�(t) = w0(t)

0
BB@

1
ti

1

2

~K0

ijkt
jtk + b̂i + @ti

~Finst:

�1

6

~K0

ijkt
itjtk � b̂it

i + ĉ+ (2 ~Finst: � ti@ti
~Finst:)

1
CCA : (4:17)

By comparison with (4.15) we can view all quantities marked with a tilde, up to one
overall normalisation, as predictions of mirror symmetry. Especially we have to identify
K0

ijk with ~K0

ijk. In fact, for all complete intersection cases the top element of the ring R
encodes the intersection numbers in the integral basis of divisors coming from the ambient
spaces. This turns out to be true also for the hypersurfaces discussed in [16], for the basis
of divisors which generate H2(X;ZZ).

After �xing the normalisation, we see that the instanton corrected Yukawa coupling
Kijk can be uniquely expressed by the solutions of the Picard-Fuchs equations as

Kijk(t) = @ti@tj
D
(2)

k w0j�=0

w0

(t) (4:18)

or, equivalently, by the derivatives of the prepotential

F (t) =
1

2

�
1

w0

�2 n
w0D

(3)w0 +D
(1)

l w0D
(2)

l w0

o
(t) j�=0 : (4:19)

We will use formula (4.18),(4.19), which does not require the evaluation of the Yukawa
couplings on the mirror manifold, to compute a convergent expansion for the instanton
corrected Yukawas and the prepotential in the large radius limit and to predict the number
of rational curves for various manifolds.

So far we have seen that the natural choice for the period vector (4.10) matches the
leading terms in t of the components of (4.15) and leads to a prediction of the instanton

corrections. Let us now compute also the lower order terms in t i.e. the constants b̂i; ĉ.
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For this purpose one has to take the derivatives w.r.t. � explicitly

@

@�i
c(0) = �

 X
�

l
(i)

0� +
X
�

l(i)�

!
�0(1) =: ci

1
�0(1) = 0

@

@�i

@

@�j
c(0) =

�2

6

 X
�

l
(i)

0�l
(j)

0� �
X
�

l(i)� l(j)�

!
=:

�2

3
c
ij
2

@

@�i

@

@�j

@

@�k
c(0) = 2

 X
�

l
(i)

0�l
(j)

0� l
(k)

0� +
X
�

l(i)� l(j)� l(k)�

!
�(3) =: 6cijk

3
�(3)

(4:20)

where the coe�cients cn coincide for complete intersections in products of nonsingular
weighted projective spaces with the ones given in (2.4). Using the Gauss-Bonnet formula
we get from this the following remarkable identitiesZ

X

c2Ji =

Z
X

c
jk
2
JjJkJi =

3

�2

Z
X

JjJkJi
@

@�j

@

@�k
c(0) = �24D

(2)

i c(0)

� =

Z
X

c
ijk
3
JiJjJk =

1

6�(3)

Z
X

JiJjJk
@

@�i

@

@�j

@

@�k
c(0) = i

(2�)3

�(3)
D(3)c(0);

(4:21)

with D
(2)

i and D(3) de�ned in (4.9), which express the Euler number and
R
M
c2Ji in terms

of the intersection numbers and the generators of the Mori cone l(i). These identities
hold also for the canonically resolved manifolds, if the complete intersection had canonical
quotient singularities. The linear terms in the third row of (4.17) are thus b̂i = � 1

24

R
M
c2Ji

and in the last row ĉ = �i �(3)
(2�)3

�.

The imaginary part of the constant ĉ can be identi�ed with a �-model loop contribu-
tion and is proportional to the Euler number of the manifold. The constant of proportion-
ality seems to be universal and has been calculated explicitly for the quintic hypersurface

in IP4 and other one moduli cases [14][13] as �i �(3)
(2�)3

. Im(aij ) = Im(bi) = 0 is a necessary

condition for having a continuous Peccei-Quinn symmetry tj ! tj + �j ; �j real, which is
broken by instanton corrections to discrete shifts ti ! ti + 1 as mentioned before.

While the real constants bi, aij in (4.15) are irrelevant for physical quantities, they
are important for �xing an integral symplectic basis for the period vector. In fact we
�nd that the constant b̂i for the one moduli cases [13][14] is also correctly reproduced
in the third line. The constants in front of the �rst subleading terms in (4.17) do not
correspond to a choice of an integral basis as can be seen by comparison with (4.13).
Especially the constants aij do not seem to be directly related to topological numbers;
in fact there are no further at our disposal. They have to be �xed by analysing the
monodromy matrices themselves. The monodromy operation Ti : t

i ! ti + 1 on (4.15) is
obvious. The requirement that it is integral and symplectic yields restrictions on aij , e.g.
for the one moduli cases a = (K

o

2
modZZ) (and 2b = ((1 � K

o

6
)mod ZZ)). The integer part

is irrelevant as it can be absorbed by an SP (4;ZZ) transformation, hence the basis can be
speci�ed. Although we have no general proof, it is tempting to conjecture that occurence of
the topological numbersK0

ijk , � and, up to SP (2h+2;ZZ) transformations, also
R
X
c2Ji in
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F at the point of maximal unipotent monodromy in a integral sympletic basis is a general
feature.

The instanton part of the Yukawa couplings comes from stationary points of the
classical string action, which correspond to holomorphic mappings from IP1 to the CY
manifold. In the coordinates ti de�ned in (4.16) it enjoys the following expansion

Kklm =

Z
X

Jk ^ Jl ^ Jm +
X
d

Z
MCd

d�
e
2�i
R
Cd

K(X)

1� e
2�i
R
Cd

K(X)

= K0

klm +
X

d1;:::;dk

nrd1;:::;dkdk dl dm

1�
Qk

i=1 q
di
i

kY
i=1

qdii

: (4:22)

Here we have de�ned the degree of the curve as di =
R
C
Ji, which is an integer for a

basis Ji 2 H1;1(X̂;ZZ). The denominator (1 � e

R
Cd

K(x)
) gives the correct combinatorical

contributions from multi-covers of the curves s.t. the integral d� of the Euler class over
the compacti�ed moduli space MCd

of holomorphic maps of multi-degree d from IP1 [47]
can be taken over single cover curves only. The resulting invariants nrd1;:::;dk are expected
to be integers, for isolated curves they just count their numbers. In [16] examples of
negative invariants nr were found. They admit only the interpretation that there are non-
isolated singular curves at the corresponding degree. The occurence of the terms dk dl dm
in the second line is due to the integral of the part of the moduli space describing the
reparametrisation of IP1, as was explained for isolated curves in [48].

5. Selected examples

(i) As our �rst example we will calculate the topological invariants nr for the manifold
(3.10). The ideal I is generated by I1 = �2

1
� 3 �1�2+9 �2

2
and I2 = �3

1
, so R is spanned by

1

�1; �2

9 �1�2 + 3 �2
2
; 9 �2

1
+ 3 �1�2

9 �2
1
�2 + 3 �1�

2

2
:

(5:1)

By (4.7) this translates to a basis of solutions for L1; L2 as one may verify. The fact that
the top element of R coincides, up to scaling, with K0 = 9J2

1
J2 + 3J1J

2

2
, calculated by

(2.5), is a nontrivial check on the mirror hypothesis. Using (4.18) one obtains concise
formulas for the instanton corrected intersection numbers

Ki;j;1(t) = @ti@tj
(9 @�1@�2 +

3

2
@2�2)w0j�=0

w0

(t) Ki;j;2(t) = @ti@tj
(9
2
@2�1 + 3 @�1@�2)w0j�=0

w0

(t)

(5:2)
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from which the topological invariants nr follow by comparison with (4.22). Below we
display them for multi-degrees (dJ1 ; dJ2), dJ1 + dJ2 � 6.

(1,0) 243

(2,0) 243

(3,0) 54

(4,0) 243

(5,0) 243

(6,0) 54

(0,1) 63

(0,2) 63

(0,3) 54

(0,4) 63

(0,5) 63

(0,6) 54

(1,1) 972

(2,2) 156249

(3,3) 60018786

(2,1) 15309

(4,2) 111401163

(3,1) 179901

(4,1) 1558845

(5,1) 11558295

(1,2) 3402

(2,4) 4803867

(3,2) 4830597

(1,3) 9720

(2,3) 977589

(1,4) 25515

(1,5) 61236

In fact, Ji is a basis of a subspace of H2(X;ZZ) in which the K�ahler cone is simply given
by

�(K) = f
X
i

tiJijti > 0g (5:3)

In [10] a three generation model (� = �6) was constructed, by dividing the manifold
(3.10) by a G = ZZ3 � ZZ3 symmetry and resolving the singular quotient. The group G
is generated, on the homogeneous coordinates of IP3 � IP2, by (x0; x1; x2; x3; y1; y2; y3) 7!
(x0; x1; x2; x3; �y1; y2; �

�1y3) (� = exp2�i
3
), with three �xed tori Ti = fx 2 IP3jxi =

0; p1 = 0g, i = 1; 2; 3, and a freely acting cyclic permutation (x0; x1; x2; x3; y1; y2; y3) 7!
(x0; x2; x3; x1; y2; y3; y1). This action is only compatible with a subspace of the moduli
space of complex structure deformations, namely with the following perturbations

p1 =

3X
i=1

xiy
3

i � ~a1x0y1y2y3

p2 =

3X
i=0

x3i � ~a2x1x2x3:

(5:4)

To relate this description to (3.4), one relates the variablesX1;i (i = 1; � � � ; 4) andX2;j (j =
1; 2; 3) in (3.4) to the following Laurent monomials of the homogeneous coordinates of
IP3 � IP2,

X1;1 =
y3
1
x1

x0y1y2y3
; X1;2 =

y3
2
x2

x0y1y2y3
; X1;3 =

y3
3
x3

x0y1y2y3
;

X1;4 =
x3
0

x1x2x3
; X2;1 =

x3
1

x1x2x3
; X2;2 =

x3
2

x1x2x3
; X2;3 =

x3
1

x1x2x3
;

(5:5)

by which we can identify (3.12) with (5.4) and the parameter ai with ~ai (aij = 1).
Furthermore we see that (3.12) is invariant under G, which implies that the subsystem of
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the moduli space we are considering is in the invariant sector of G and part of the moduli
space of the three generation model.

The mirror manifold can also be constructed as the quotient of (5.4) w.r.t. the group
of order 27 generated by (x0; x1; x2; x3; y1; y2; y3; a1; a2) 7! (x0; �

3(m+n)x1; �
6mx2; �

6nx3;

��m�ny1; �
�8my2; �

�8ny3; a1; a2) with � = e
2�i
9 m;n 2 ZZ. The full invariance group

of (5.4) is generated by the above transformations and (x0; x1; x2; x3; y1; y2; y3; a1; a2) 7!
(x0; �

3kx1; x2; x3; �
�ky1; y2; y3; �

ka1; �
6ka2), k 2 ZZ, i.e. we have the same identi�cation

of the parameter space of the mirror manifold as we found for (3.12).

We can always �nd a map analogous to (5.5) which maps the Laurent polynomials
P1; : : : ; Pl to quasi-homogeneous polynomials p1; : : : ; pl. In terms of those the fundamental
period w0 can be obtained as the integral [17]

w0 =

lY
i=1

(�ai)

Z
1

p1 � � � pl
dx1;1; : : : dxk;nk+1 (5:6)

with integration contours jxi;j j = 1. While we can always de�ne a map such that w0 is
given by this expression, in most of the cases however this map cannot be chosen such that
the polynomials p1; : : : ; pl de�ne a transverse con�guration in IPn1[~w(1)]� � � �� IPnk [~w(k)].
An example of such a case will be given at the end of section six.

Let us demonstrate the direct calculation of the discriminant locus for the manifold
de�ned in (3.12) by examining the conditions of �-regularity which reads that for all faces
��
1
and ��

2
of �1 and �

�

2
we need P��

1
= P��

2
= 0 and that all 2�2 sub-determinants of the

matrix whose two rows are Xi;j

@P��
1

@Xi;j

and Xi;j

@P��
2

@Xi;j

= 0 (no sum) vanish simultaneously.

For convenience we rename the parameters ai, ai;j occuring in P1 and P2 as a0; : : : ; a4
and b0; : : : ; b3. If we introduce variables Ui � U1;i and Vj � U2;j such that Xi;j =

Uij

Ui0
the

conditions for non-regularity become for ��
1
= ��

1
and ��

2
= ��

2

3X
i=0

aiUi = 0 ;

3X
j=0

bjVj + a4U4 = 0

a4U4

V0U0
(aiUi � ajUj) = 0 ;

aiUi

U0V0
(b3V3 � bkVk) = 0 ; i; j = 1; 2; 3 ; k = 1; 2

(5:7)

Note that U1U2U3U4
U3
0V0

= V1V2V3
V 3
0

= 1. There are several ways to satisfy the second set of

equations. E.g. if we choose to satisfy them by equating the expressions in parantheses to
zero, we �nd, using the variables z1 =

a1a2a3a4
a30b0

; z2 =
b1b2b3
b30

and introducing A = a4U4 and

B = b0V0, z1 = � 1

27

A
B
and z2 =

1

27

(A+B)
3

B3 , which satisfy (1� 27 z1)
3 � 27 z2 = 0. Another

possible choice is to set a4U4 = 0 and (b3V3�bkVk) = 0. This leads to 1�27 z2 = 0. Other
components of the discriminant can be obtained by considering other (lower-dimensional)
faces of ��

1
and ��

2
.
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(ii) Our next example is the Tian-Yau manifold given by the con�guration

�
IP3

IP3

����
���� 3 0 1
0 3 1

�14

�18

:
K0 = 9J2

1
J2 + 9J1J

2

2
;

c2J1 = c2J2 = 36:
(5:8)

The quotient of this manifold w.r.t. the ZZ3 group acting by (x0; x1; x2; x3; y0; y1; y2; y3) 7!

(x0; x1; x2; �x3; y0; y1; y2; �
2y3) (� = e

2�i
3 ) on the homogeneous coordinates of IP3 � IP3

yields a simple realisation of a three generation compacti�cation, which is di�eomorphi-
cally equivalent to the one discussed in (5 i). A preliminary phenomenological discussion
was given in [49] and [50]. For the above con�guration all complex structure deforma-
tions can be represented as monomials. Hence the full moduli dependence of all Yukawa
couplings and the K�ahler potential for 27's and 27's can be in principle calculated by a
straightforward, though very tedious, application of the methods described in [16] and [15].

The vertices of the dual polyhedra are now ��
1;1=(1; 0; 0; 0; 0; 0); : : : ;

��
2;4 = (0; 0; 0;�1;�1;�1) which we group into three sets as E1 = f��

1;1; �
�

1;2; �
�

1;3g; E2 =
f��

2;1; �
�

2;2; �
�

2;3g and E3 = f��
1;4; �

�

2;4g
9. This corresponds to the three Laurent polynomials

P1 = a0 � a1X1 � a2X2 � a3X3 ; P2 = b0 � b1Y1 � b2Y2 � b3Y3 ;

P3 = c0 �
c1

X1X2X3

�
c2

Y1Y2Y3
:

(5:9)

The period (3.7) follows straightforwardly by performing the integral (see (3.5))

w0(z1; z2) =

Z
jXij=jYjj=1

a0b0c0

P1P2P3

Y dYi

Yi

dXi

Xi

(5:10)

which gives w0(z1; z2) as in eq.(3.7) with z1 =
a1a2a3c1
a30c0

and z2 =
b1b2b3c2
b30c0

. This corresponds

to introducing extended vertices ��� = (~ei; �
�), where ~e1 = (1; 0; 0); ~e2 = (0; 1; 0) and

~e3 = (0; 0; 1) for the vertices in the three sets. The linear relations between the ��� are then
in accordance with the general formula (3.9) and read

l(1) = (�3; 0;�1; 1; 1; 1; 1; 0; 0; 0; 0) l(2) = (0;�3;�1; 0; 0; 0; 0; 1; 1; 1; 1): (5:11)

The associated di�erential operators

L1 = �3
1
� 3 (�1 + �2) (3 �1 � 1) (3 �1 � 2) z1

L2 = �3
2
� 3 (�1 + �2) (3 �2 � 1) (3 �2 � 2) z2

(5:12)

can be factorized L1 + L2 � (�1 + �2)L2 with the second order operator (L1 = L1)

L2 = (�2
1
� �1�2 + �2

2
) � 3 (3 �1 � 1)(3 �1 � 2)u� 3 (3 �2 � 1) (3 �2 � 2) z2: (5:13)

9 The results are of course again independent of the way we group the vertices into three sets,

as long as the �rst and second sets contain three vertices pertaining to the �rst and the second

IP3, respectively.
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The Yukawa couplings are

~K(3;0) =
1

z2
2
�0�2

1

; ~K(2;1) =
1

27 z2
1
z2�0�1;

(5:14)

where the general component of the discriminant surface is �0 = 1 � 27 z1 � 27 z2 and a
second component reads �1 = (1 � 27z1). For symmetry reasons ~K(0;3), ~K(1;2) are given
by the above expressions but with z1 and z2 exchanged. Due to this symmetry we list
below the invariants nrd1;d2 only for d1 � d2.

(0,1) 81

(0,2) 81

(0,3) 18

(0,4) 81

(0,5) 81

(0,6) 18

(1,1) 729

(2,2) 33534

(3,3) 5433399

(1,2) 2187

(2,4) 1708047

(1,3) 6885

(1,4) 18954

(1,5) 45927

(2,3) 300348

The number of curves up to degree three agree with those calculated by algebraic
counting methods in [21]. This calculation con�rms the lines (0; 1) and the degree (0; 2),
(2; 1) curves on this CICY. According to [21] there are no (0; 3) curves and 567 degree
(1; 1) curves, leaving aside the possibility of nodal cubics and degenerate rational curves
respectively. More recently, all entries up to degree three have been con�rmed [51]. The
invariant nr

0;3 = 18 was calculated as the Euler number of the tangent bundle of the moduli
space of a family of nodal cubics.

In Appendix B we present general formulas for the predicted numbers of lines for all
possible manifolds of type (5 i) in IP3 � IP2 and of type (5 iii) in IP3 � IP3. In deriving
these formulas, we utilized formula (4.18) for the instanton corrected Yukawa couplings.

Next we will treat two examples, which involve a somewhat more complicated factori-
sation procedure, but skip in the following most of the details.

(iii) For the manifold de�ned by the con�guration matrix

�
IP3

IP3

����
���� 3 1 0
1 1 2

�12

�120

the linear di�erential operators (3.9) are, after trivial factorization, of fourth and third
order, respectively. We get a second order operator by factorising 27L1+(40�1+13�2)L2 =
(�1 + �2)(3�1 + �2)L1 with

L1 = (9�1� 12�1�2+13�2
2
)� 27(3�1+ �2� 1)(3�1+ �2� 2) z1 � 2(2�2 � 1)(40�1 +13�2) z2:

(5:15)
Due to their complexity, we refrain from giving the Yukawa couplings explicitly. The
expansion of the prepotential by (4.19) does not require their knowledege. From the �rst
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few term in the expansion of the prepotential

F =
2

6
(t1)3 +

6

2
t1(t2)2 +

8

2
(t1)2t2 +

44

24
t1 +

48

24
t2 + 120

i�(3)

(2�)3
+ 180q1 +

405

2
q2
1
+
380

3
q3
1

+ 48q2 + 876q1q2 + 9772q2
1
q2 + 46q2

2
+ 3536q1q

2

2
+
16

9
q3
2
+O(q4)

(5:16)
we can read o� the number of lines of degrees (1; 0) and (0; 1) as 180 and 48, respectively.
Other curves of low degree come with multiplicity nr

2;0 = 180, nr
0;2 = 40, nr

1;1 = 876,
nr
1;2 = 3536 and nr

2;1 = 9672.

(iv) As the last two moduli example we choose a model with �ve bilinear constraints

�
IP4

IP4

����
���� 1 1 1 1 1
1 1 1 1 1

�12

�32

Starting from
L1 = �5

1
� (�1 + �2)

5z1; L2 = �5
2
� (�1 + �2)

5z2; (5:17)

we factorize in �ve steps, namely (1) L1+L2 = (�1+ �2)L3, (2) �2L3� 5L2 = (�1+ �2)L4,
(3) 2L3 + L4 = (�1 + �2)L5, (4) 2L3 � �1L5 = (�1 + �2)L6, (5) L5 + 2L6 = (�1 + �2)L7
and choose eg. L5 and L7 as the third and second order di�erential operators L1 and L2,
respectively. The prepotential as derived from (4.19) reads

F =
5

6

X
i

(ti)3 +
10

2

0X
i;j

ti(tj )2 +
20

24

X
i

ti + 32
i�(3)

(2�)3
+
X
i

�
50qi +

25

4
q2i +

25

32
q4i
�

+

0X
i;j

�650
2
qiqj + 1475q2i qi + 650q3i qj +

117725

8
q2i q

2

j

�
+O(q5);

(5:18)

here the summation indicated with 0 is over distinct indices only.
Hence we have in total 100 lines and the non-zero invariants of curves up to degree

four are nr
1;1 = nr

1;3 = 650 nr
1;2 = 1475 and nr

2;2 = 29350.

(v) As a three moduli example we consider

0
@ IP3

IP1

IP1

������
������
3 1
0 2
0 2

1
A

9

�48

:
K0 = 6J2

1
J2 + 6J2

1
J3 + 3J1J2J3;

c2J1 = 36; c2J2 = c2J3 = 24:

for which we have from (3.9)

L1 = �3
1
� 3(3�1 � 2)(3�1 � 1)(�1 + 2�2 + 2�3) z1

L2 = �2
2
� (�1 + 2�2 + 2�3 � 1)(�1 + 2�2 + 2�3) z2

L3 = �2
3
� (�1 + 2�2 + 2�3 � 1)(�1 + 2�2 + 2�3) z3:

(5:19)
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An independent second order di�erential operatorL4 (Li = Li; i = 1; 2; 3) can be factorized
from the system in the following way

L1 + (16�3 � 4�1)L2 + (16�2 � 4�1)L3 = (�1 + 2�2 + 2�3)L4: (5:20)

Due to their symmetry, we have nrd1;d2;d3 = nrd1;d3;d2 and will thus list the non-zero invari-
ants only for d2 � d3 in the range d1 + d2 + d3 � 6.

(0,0,1) 18

(0,1,1) 60

(0,2,2) 48

(0,3,3) 60

(0,1,2) 18

(0,2,3) 18

(0,3,4) 18

(1,0,0) 216

(2,0,0) 216

(3,0,0) 48

(4,0,0) 216

(5,0,0) 216

(6,0,0) 48

(1,0,1) 216

(2,0,2) 216

(3,0,3) 48

(1,1,1) 1512

(2,2,2) 621000

(1,1,2) 1512

(1,1,3) 216

(1,2,2) 7128

(1,2,3) 7128

(2,0,1) 2106

(4,0,2) 414720

(2,1,1) 28232

(2,1,2) 85212

(2,1,3) 28232

(3,0,1) 17856

(3,0,2) 17856

(3,1,1) 656952

(3,1,2) 2984904

(4,0,1) 95094

(4,1,1) 8757828

(5,0,1) 414720

In section (7) we discuss also the invariants associated to the elliptic curves of this three
moduli example.

The closed formulas (4.18) and (4.19) can be easily evaluated for general toric varities
with higher dimensional moduli space provided the generators of the Mori cone l(i) (cf.
[16]) and the intersection numbers in the corresponding basis are known. By (4.22) they
become a very useful tool for enumerative geometry.

We will demonstrate this in the following for a complete intersection with a six di-
mensional K�ahler moduli space.

(vi) For the six moduli complete intersection0
BBBBB@

IP1

IP1

IP1

IP1

IP1

IP1

�����������

�����������

0 1 1
0 1 1
1 1 0
1 1 0
1 0 1
1 0 1

1
CCCCCA

6

�48

straightforward evaluation of (4.19) gives immediatly the prepotential, which reads up to
order four in the qi

F =
1

3

0X
i;j;k

titjtk +
X
i

ti + 48
i�(3)

(2�)3
+
X
i

�
16 qi + 2 q2i +

16

27
q3i +

1

4
q4i

�

+

0X
i;j

1

2

�
8 qiqj + q2i q

2

j

�
+
8

3

0X
i;j;k

qiqjqk +
10

3

0X
i;j;k;l

qiqjqkql +O(q5);

(5:21)
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here again the primed sums are to be taken over distinct indices only. From this expression
we can readily predict the number of lines nr

1;0;0;0;0;0 = 8, curves of multidegree nr
1;1;0;0;0;0 =

8, nr
1;1;1;0;0;0 = 16 and nr

1;1;1;1;0;0 = 80. Other invariants follow by permutation. There are
no curves of degree (2; 0; 0; 0; 0; 0), (3; 0; 0; 0; 0; 0) and (4; 0; 0; 0; 0; 0). The expressions for
the Yukwa couplings and the Weil-Peterson metric in the large radius expansions follow
from (4.11) and (4.12).

We use our next examples to demonstrate that the analysis of the large complex
respectively K�ahler structure limit in the previous section and formulas (4.18),(4.19) have
an application also to embbedings in toric varieties with Gorenstein singularities.

(vii) We consider �rst the hypersurface of degree 18 in the weighted projective space

IP4[6; 6; 3; 2; 1], which reads in the shorthand notation (2.1) as ( IP4[6; 6; 3; 2; 1] jj 18 )
7

�144
.

This model was discussed qualitatively in the context of topology changes by 
ops in [31],
but it was not solved.

Generally, for quasi-smooth hypersurfaces and complete intersections in weighted IPn

the singularities of the ambient space intersect the Calabi-Yau hypersurface X in sets of
codimension two and three, see eg.[32][25].

In our example we have a singular curve C1 in X with a ZZ2-action on its normal
bundle, which lies inside the singular stratum where the third and the �fth homogeneous
coordinate of the weighted projective space are set to zero. The resolution introduces a
IP1 �bration over that curve, which gives rise to one exceptional divisor D1. Similarly,
the singular stratum of the weighted projective space where z4 = z5 = 0 intersects X in
a curve C2 with a ZZ3-action on the normal bundle, whose resolution leads to a �bration
with an IP1 ^ IP1 sphere-tree over that curve, hence two irreducible divisors D2;D3 on the
resolved space. The singular curves meet in three ZZ6�singular points inside the stratum
z3 = z4 = z5 = 0, whose resolutions support one exceptional divisor for each point,
~D4; ~D5; ~D6. Hence we have, including the divisor D0 from the Picard group of the singular
space, a seven moduli case.

The toric describtion of the mirror pair in terms of re
exive polyhedra was given in
[26], and reviewed in [16][31]. Associated to the manifold X and its mirror X� are the
simplicial polyhedra � and ��, which are de�ned as the convex hull of the following points

� = conv

0
BBB@
�1 = ( 2;�1;�1;�1)
�2 = (�1; 2;�1;�1)
�3 = (�1;�1; 5;�1)
�4 = (�1;�1;�1; 8)
�5 = (�1;�1;�1;�1)

1
CCCA ; �� = conv

0
BBB@
��
1

= ( 1; 0; 0; 0)
��
2

= ( 0; 1; 0; 0)
��
3

= ( 0; 0; 1; 0)
��
4

= ( 0; 0; 0; 1)
��
5

= (�6;�6;�3;�2)

1
CCCA (5:22)

Five points in the dual polyhedron ��, namely the point in its interior; ��
0
= (0; 0; 0; 0) and

the points on edges of codimension three: ��
6
= (�3;�3;�1;�1), ��

7
= (�2;�2;�1; 0),

��
8
= (�4;�4;�2;�1) and on the face of codimension two: ��

9
= (�1;�1; 0; 0) can be

identi�ed with the (exceptional) divisors of the Calabi-Yau hypersurface X. Only for
these divisors the toric describtion of the K�ahler cone and its dual, the Mori cone, can be
applied10. We prefere to work with the Mori cone as its generators are directly related

10 This technical complication could have been avoided if we had instead considered the model
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to the expressions for the PF equations and the de�nition of the local coordinates for the
large complex structure limit.

The ZZ6 singularity of type C
3=G with G = diag(�;�2; �3) (� = exp( 2�i

6
) is described

in this construction by the three dimensional cone �, spanned from the origin ��
0
by

f~��
3
; ~��

4
; ~��

5
g. The cone � is not basic, i.e. the three vectors f~��

3
; ~��

4
; ~��

5
g do not generate

the lattice � \M , with M = N = f(n1; n2; n3; n4)jni 2 ZZg. The volume of � \ �� =
conv(��

0
; ��

3
; ��

4
; ��

5
) is six, which is the order of the de�ning group for this singularity. �\��

contains the point ��
6
on the edge f��

3
; ��

5
g, which can be identi�ed with the exceptional

divisor D1 in the resolution over the curve C1, as well as the points �
�

7
; ��

8
on the edge

f��
4
; ��

5
g, which correspond to D2;D3. On the other hand, the point ��

9
inside the triangle

with corners f��
3
; ��

4
; ��

5
g corresponds to only one divisor D4 in the resolution of three ZZ6

singular points. In the formula for the dimension of H1;1(X) [26] the multiplicity three is
taken into account by an additional term, which multiplies the interior points in the three
dimensional cone � with the number of points on the interior of its two dimensional dual,
which in this case is spanned by the origin in � and f~�1; ~�2g. So it contains two points
�1 = (1; 0;�1;�1) and �2 = (0; 1; 1;�1).

There are �ve di�erent canonical resolutions of the C3=ZZ6 singularity, corresponding
to the �ve possible subdivison of the cone � into six basic cones of volume one, which are
spanned from ��

0
by

A : f~��
3
; ~��

6
; ~��

9
g; f~��

6
; ~��

5
; ~��

8
g; f~��

8
; ~��

9
; ~��

6
g; f~��

8
; ~��

7
; ~��

9
g; f~��

7
; ~��

4
; ~��

9
g; f~��

4
; ~��

3
; ~��

9
g

B : f~��
3
; ~��

6
; ~��

8
g; f~��

6
; ~��

5
; ~��

8
g; f~��

8
; ~��

9
; ~��

3
g; f~��

8
; ~��

7
; ~��

9
g; f~��

7
; ~��

4
; ~��

9
g; f~��

4
; ~��

3
; ~��

9
g

C : f~��
3
; ~��

6
; ~��

9
g; f~��

6
; ~��

5
; ~��

9
g; f~��

5
; ~��

8
; ~��

9
g; f~��

8
; ~��

7
; ~��

9
g; f~��

7
; ~��

4
; ~��

9
g; f~��

4
; ~��

3
; ~��

9
g

D : f~��
3
; ~��

6
; ~��

9
g; f~��

6
; ~��

5
; ~��

8
g; f~��

8
; ~��

7
; ~��

6
g; f~��

7
; ~��

9
; ~��

6
g; f~��

7
; ~��

4
; ~��

9
g; f~��

4
; ~��

3
; ~��

9
g

E : f~��
3
; ~��

6
; ~��

9
g; f~��

6
; ~��

5
; ~��

8
g; f~��

8
; ~��

7
; ~��

6
g; f~��

7
; ~��

4
; ~��

6
g; f~��

4
; ~��

9
; ~��

6
g; f~��

4
; ~��

3
; ~��

9
g:

(5:23)
for the di�erent resolutions. The generators of the Mori cone l(i) and the Picard-Fuchs
system in the corresponding large complex structure coordinates zi can be obtained for
each subdivision by the methods described in [16]. They will of course depend on the
subdivision.

The subdivions are connected by 
ops, e.g. subdivision B is obtained from subdivi-
son A by the 
op, which blows down the IP1 represented by the subcone spanned from
��
0
by f~��

6
; ~��

9
g in subdivision A and subsequently blows up the IP1 associated with the

new subcone spanned from ��
0
by f~��

3
; ~��

8
g in subdivision B. We therefore expect simple

relations of the generators of the Mori cones and large complex structure coordinates for
all subdivisions to those of subdivision A. After extending the vectors ��i to ���i = (1; ��i )

( IP4[1; 2; 3; 12; 18] jj 36 )5
�360

, which has same type of singularities, but all divisors can be described

by toric geometry in this case.
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the generators of the Mori cone can be constructed as described in [30],[16] to yield

l
(1)

A = (�3; 1; 1; 0; 0;�1; 1; 0; 1; 0); l
(2)

A = ( 0; 0; 0; 1; 0; 0;�1; 0; 1;�1)

l
(3)

A = ( 0; 0; 0; 0; 0; 1;�1; 0;�1; 1); l
(4)

A = ( 0; 0; 0; 0; 0; 0; 1; 1;�1;�1)

l
(5)

A = ( 0; 0; 0; 0; 1; 0; 0;�2; 1; 0)

: (5:24)

They de�ne the large complex structure variables as z
(A)

1
= �al

(1)

A and z
(A)

i = al
(i)

A for
i = 2; 3; 4; 5. As next step we set up the ���-hypergeometric system (see e.g. [26][16] for

details). Every linear relation among the ���i , not just the the ones encoded in the l
(i)

A

(comp. (3.2)), de�nes a linear di�erential operator of this system, which is satis�ed by all
periods. It should be mentioned again that this system is not equivalent to the Picard-
Fuchs system, the nontrivial task will be to �nd, possibly after factorisation, a minimal
systems of di�erential operators which uniquely determine the 2k + 2-dimensional period
vector in the domain containing the points z(A;:::;E) = 0. These systems are equivalent to
the �rst order Gauss-Manin systems in these domains and all other di�erential operators
are elements of the local left ideal associated to it (comp. section four). As we will see,
the minimal numbers of di�erential operators generating this ideal can vary from domain
to domain. The consideration of the rings R(A;:::;E) will be essential in order �nd these
generators.

From the fact that the free polynomial ring C[�
(A)
z ] has to be truncated at degree two

from �veteen to �ve elements by the principal part of the linear di�erential operators, we
know that there must be ten second order di�erential operators. Indeed we �nd that the
linear relations between the sites of the points in ��� which are expressed by the following

vectors l
(2)

A , l
(3)

A , l
(4)

A , l
(5)

A , l
(2)

A + l
(3)

A , l
(2)

A + l
(4)

A , l
(3)

A + l
(4)

A , l
(4)

A + l
(5)

A , l
(3)

A + l
(4)

A + l
(5)

A

de�ne directly nine second order di�erential operators of the ���-hypergeometric system
(cf.[26][16])

L
(A)

1
= �a3�a8 � al

(2)

A �a6�a9 ; L
(A)

2
= �a5�a9 � al

(3)

A �a6�a8;

L
(A)

3
= �a6�a7 � al

(4)

A �a8�a9 ; L
(A)

4
= �a4�a8 � al

(5)

A (�a7 � 1)�a7 ;

L
(A)

5
= �a3�a5 � al

(2)

A
+l

(3)

A (�a6 � 1)�a6 ; L
(A)

6
= �a3�a7 � al

(2)

A
+l

(4)

A (�a9 � 1)�a9 ;

L
(A)

7
= �a5�a7 � al

(3)

A
+l

(4)

A (�a8 � 1)�a8 ; L
(A)

8
= �a4�a6 � al

(4)

A
+l

(5)

A �a7�a9 ;

L
(A)

9
= �a4�a5 � al

(3)

A
+l

(4)

A
+l

(5)

A �a7�a8 :

(5:25)

The logarithmic derivatives �ai := ai
@
@ai

can be readily translated to logarithmic derivatives

in the zi by the identity �ai =
Ph

k=1 l
(k)

i �k. Via this relation we also see that we can factor

a �1 operator from the di�erential operator for l
(1)

A + l
(3)

A
to yield the tenth second order

di�erential operator L
(A)

10

�1L
(A)

10
= �a1�a2�a9 � al

(1)

A
+l

(3)

A (�a0 � 3)(�a0 � 2)(�a0 � 1)

= �1
�
�1(�2 � �3 + �4) + 3z1z2(3�1 + 2)(3�1 + 1)

�
:

(5:26)
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While C[�z ] is truncated by the ideal Is(�z), s = 1; : : : ; 10 obtained from (5.25),(5.26) to
�ve elements at degree two, one can easily check that we have still two elements at degree
three. So we need one further independent 3rd order di�erential operator. We �nd e.g.

that l
(1)

A leads, after factorization of �1, to the operator

L
(A)

11
= �1(�1 � �2 � �3+�4)(�1 + �2 � �3 � �4 + �5) + 3z1(3�1 + 2)(3�1 + 1)(�1 � �3);

(5:27)
which truncates C[�z] it to one element at degree three and no element at any higher
order. Now we can construct, as in chapter four, via the ring R(A) the period vector and
calculate the prepotential explicitly. The classical intersection part and the corresponding
expression for the deformed prepotential can be found most simply from (4.18) to be, up
to terms of order q4,

F (A) =
18

3!
(t1)3 +

9

2
(t1)2t2 +

3

2
t1(t2)2 +

21

2
(t1)2t3 + 9t1t2t3 +

3

2
(t2)2t3 +

21

2
t1(t3)2

+
9

2
t2(t3)2+

21

3!
(t3)3+

12

2
(t1)2t4+6t1t2t4+12t1t3t4+6t2t3t4+

12

2
(t3)2t4+

6

2
t1(t4)2

+
6

2
t3(t4)2 +

6

2
(t1)2t5 + 3t1t2t5 + 6t1t3t5 + 3t2t3t5 +

6

2
(t3)2t5 + 3t1t4t5 + 3t3t4t5

+
1

24
(72t1 + 36t2 + 78t3 + 48t4 + 24t5) + 144

i�(3)

(2�)3
+ (27 q1 + 3 q2 + 3 q3 + 3 q4)

+
�3 q22

8
�
405 q1

2

8
+ 108 q1 q3 +

3 q3
2

8
� 6 q2 q4 +

3 q4
2

8
+ 3 q4 q5

�
+
�
244q1

3+
q2

3

9
+ 81q1

2q3+ 27q1q2q3+
q3

3

9
+ 27q1q3q4+ 3q2q3q4+

q4
3

9
� 6q2q4q5

�
:

(5:28)
We can next use the mirror hypothesis to interprete the coe�cients of the cubic terms in
ti of (5.28) as triple intersection numbers of H2(X;ZZ). Note that all triple intersection
numbers are positive, as expected in the bases Ji which generates the K�ahler cone. The
linear and the quadratic terms in the ti obtained by (4.20), (4.21) can be compared
with the classical calculation of these topological numbers performed e.g. in [25]. These
formulas relate all topological data and the l(i) and provide an excellent check for our
calculation. As it stands, the classical part of F (A) does not refer to the basis of divisors
Di for which these intersection numbers can be directly obtained by the formulas for
resolved complete intersections in toric varieties summarized e.g. in [16][25]. To make the
comparison we can easily transform to that basis by passing to the variables tDi

11 via ti =

�i;1tD0+
Pk�1

j=1
l
(i)

A;j+5tDj
, i.e. from the z

(A)

i variables to the complex structure deformation

variables which occur explicitly in the Laurent polynomial, namely 1

a30
; a6; a7; a8; a9. This

11 Note that this reparametrisation is quite di�erent from the transformations into di�erent

domains, discussed below, because we still keep zi = 0 as the point around which we expand our

solutions of the PF-equation.
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leads to the prediction

F
(A)

cl
=

18

3!
t3D0

�
6

2
tD0

t2D1
�
3

2
t3D1

�
6

2
tD0

t2D2
�
3

2
t2D1

tD3
+ 3tD0

tD2
tD3

�
6

3
tD0

t2D3
�

3

2
tD1t

2

D3
�

3

3!
t3D3

�
3

2
t2D1

tD4 �
6

2
t2D2

tD4 + 3tD1tD3tD4 + 3tD2tD3tD4 �
3

2
t2D3

tD4�

3

2
tD1t

2

D4
�
3

2
tD3t

2

D4
+
21

3!
t3D4

+
1

24
(72tD0 + 6tD1 + 6tD3 + 6tD4) + 144

i�(3)

(2�)3
;

(5:29)
which is in agreement with the formulas of the classical intersections in the basis of the
Di. Note however that all intersection numbers among the divisors on the triangle with

corners f��
3
; ��

4
; ��

5
g are multiplied by three in F

(A)

cl
. This is due to the fact that the ZZ6-

�xed point has multiplicity three and the toric description of this singularity by � refers to
the symmetric combination D4 = ~D4 + ~D5 + ~D6 of the exeptional divisors over the three

singular points on X, with K0

~Di
~Dj

~Dk

=
n
6 if i = j = k

0 otherwise
.

To investigate the theory in di�erent domains of the moduli space we note the sim-
ple transformation property of the �i operators in the Picard-Fuchs system, i.e. for

z
(B)

i =
Q

j(z
(A)

j )mi;j $ l
(i)

B =
P

jmi;j l
(i)

A the �i transform as �
(A)

i =
P

j mj;i�
(B)

j . We
are interested in transformations which lead outside the Mori cone, i.e. in which not all
entries of the matrix m are positive. A quick look at (5.25) and (5.26) reveals that
the possibilities for such transformations are rather restricted if we insist in a completely
degenerate large complex structure limit in the new domain B, i.e. a ring structure R(B)

with the properties discussed in chapter four. For instance, we cannot just invert z5 (which

would correspond to the replacement l
(5)

A !�l
(5)

A ) without generating inhomogeneous (in
�) terms in I(�z). which is incompatible with the required ring structure of R. It is easy
to see that the only possibilities are to invert z2, z3, z4 and z4z5, accompanigned by trans-
formations of the other variables. These transformations correspond to the 
ops leading
to the coordinate patches described by the Mori cone of subdivisons B, C, D and E. They
form part of the secondary fan as described in [30].

We start with the inversion of z2, which leads to subdivisionB for which the generators

of the Mori cone read l
(1)

B = l
(1)

A , l
(2)

B = �l
(2)

A , l
(3)

B = l
(2)

A + l
(3)

A , l
(4)

B = l
(2)

A + l
(4)

A and

l
(5)

B = l
(5)

A : Note that the matrixm for a single 
op squares to unity and the principal parts
of the transformed system truncates C[�z] at degree two to �ve elements but two elements
remain at degree three. We can remedy the situation by adding the operator associated

to l
(1)

A + l
(2)

A + l
(3)

A to our system (5.25)-(5.27)

�1L
(A)

12
= �a1�a2�a3�a8 � al

(1)

A
+l

(2)

A
+l

(3)

A (�a0 � 3)(�a0 � 2)(�a0 � 1)�a6 ; (5:30)

which factorizes to a third order operator L
(A)

12
. For subdivision C: l

(1)

C
= l

(1)

A + l
(3)

A ,

l
(2)

C = l
(2)

A + l
(3)

A , l
(3)

C = �l
(3)

A , l
(4)

C = l
(3)

A + l
(4)

A and l
(5)

C = l
(5)

A no further operator has

to be added. To complete our system w.r.t. subdivison D: l
(1)

D
= l

(1)

A , l
(2)

D = l
(2)

A + l
(4)

A
,

l
(3)

D
= l

(3)

A
+ l

(4)

A , l
(4)

D = �l
(4)

A l
(5)

D
= l

(4)

A
+ l

(5)

A and E: l
(1)

E
= l

(1)

A
, l

(2)

E = 2l
(1)

4
+ l

(2)

A + l
(5)

A ,
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l
(3)

E = l
(3)

A + l
(4)

A , l
(4)

E = l
(5)

A l
(5)

E = �l
(4)

A � l
(5)

A we have to add three third order operators

L
(A)

13
; L

(A)

14
; L

(A)

15
:

�1L
(A)

13
= �a1�a2�a6�a7 � al

(1)

A
+l

(2)

A
+l

(4)

A (�a0 � 3)(�a0 � 2)(�a0 � 1)�a8

�1L
(A)

14
= �a1�a2�a4�a6 � al

(1)

A
+l

(3)

A
+l

(4)

A
+l

(5)

A (�a0 � 3)(�a0 � 2)(�a0 � 1)�a7

L
(A)

15
= �a3�a4�a5 � al

(2)

A
+l

(3)

A
+2l

(4)

A
+l

(5)

A �a8(�a9 � 1)�a9

(5:31)

The system L
(A)

1
,: : : ,L

(A)

15
contains the information, which is necessary to extract the

prepotential in all large complex structure regions. The basis of solutions given in (4.10) can
now be obtain explicitly in all regions. As they are all solutions to the same system
of Picard-Fuchs equations, expressed in di�erent patches of the moduli space, they are
analytic continuations of each other with trivial monodromy. Especially the prepotentials
F (A;B;C;D;E) encoded in the 2k + 2 component of (4.10) is the same analytic function
whose expansion in the domains corresponding to the di�erent resolutions can be evaluated
with the attached program. Also, for F (B;C;D;E) we obtain, after transformation via

ti = �i;1tD0+
Pk�1

j=1 l
(i)

j+5tDj
to the Di basis, the classical intersection numbers as calculated

e.g. by the formulas of [16], with the enhancement factor three for intersections among
divisors on the triangle.

We also checked, up to order eight, that the expansions of F (A;B;C;D;E) are compatible
with an integer expansion for nr in (4.22). E.g. from F (A) we obtain, up to degree eight,
instanton contributions nri;0;0;0;0 with alternating sign

i 1 2 3 4 5 6 7 8

nr 27 �54 243 �1728 15255 �153576 1696086 �20053440

We can read from the prepotential that

nr
0;1;0;0;0 = nr

0;0;1;0;0 = nr
0;0;0;1;0 = nr

0;0;0;1;1 = 3:

There are no curves of degree (0; i; 0; 0; 0), (0; 0; i; 0; 0), (0; 0; 0; i; 0) and (0; 0; 0; i; i) for i > 1
and no curve (0; 0; 0; 0; i) for all i. By comparingwith the expansions in the di�erent regions
we �nd that the three rational curves with degrees (0; 1; 0; 0; 0); (0; 0; 1; 0; 0); (0; 0; 0; 1; 0)
and (0; 0; 0; 1; 1), respectively, are those which are shrunk to zero volume and whose cor-
responding invariant changes sign under the process of the four possible 
op operations
interrelating them, starting from resolution A (cf. the discussion in [31]).

For certain directions in the K�ahlercone e.g. (i; 0; i; 0; 0) one has a periodicity in the
invariants nr = 108; 108; 144; : : : as in the cases (5 i,ii,iii,v) before. It is remarkable that in
all cases, where we obtain periodicity, always one of the numbers, the third in the scheme
a; a; b : : :, is the negative of the Euler number of the manifold X.

(viii) So far we have considered complete intersections in nonsingular ambient spaces and
in the last example as well as in [16], hypersurfaces in ambient spaces with Gorenstein
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singularities. Let us investigate in the following the more general situation of complete
intersections of codimension n � 3 in an n dimensional singular ambient space and take
the following hypersurface and complete intersection two moduli cases as examples:

A : ( IP4[2; 2; 2; 1; 1] jj 8 )
2

�168

B : ( IP5[2; 2; 2; 2; 1; 1] jj 4; 6 )
2

�132

C : ( IP6[2; 2; 2; 2; 2; 1; 1] jj 4; 4; 4 )
2

�112
:

(5:32)

They all have polynomial constraints of Fermat-type and exhibit the simplest singular
locus, namely a singular curve with an ZZ2-action on the normal bundle induced from the
ambient space, whose resolution gives as exceptional divisor a IP1 bundle over that curve.
For all complete intersections of Fermat type in a weighted space IPn[~w] with wn+1 = 1
we can de�ne, in generalization of (5.22), an n-dimensional pair of simplicial re
exive
polyhedra �;�� as the convex hulls

� = conv

0
BBBB@

�1 = (

P
i
di

w1
� 1;�1; : : : ;�1)

...
...

�n = (�1; : : : ;�1;

P
i
di

wn

� 1)
�n+1= (�1; : : : : : : : : : : : : ;�1)

1
CCCCA ; �� = conv

0
BB@

��
1

= (1; 0 : : : ; 0)
...

...
��n = (0; : : : ; 0; 1)
��n+1= (�w1; : : : ;�wn)

1
CCA ;

(5:33)
in an n dimensional lattice. For all three examples we have, beside the orign ��

0
= (0; : : : ; 0),

exactly one additional point in ��, namely ��n+2 = (�1; : : : ;�1; 0). Extending the lattice
by n� 3 dimensions, as described in section three, we �nd the linear relations among the
extended lattice sites ���i , which are summarized in the l-vectors

A : l(1) = (�4; 1; 1; 1; 0; 0; 1); l(2) = (0; 0; 0; 0; 1; 1;�2)

B : l(1) = (�2;�3; 1; 1; 1; 1; 0; 0; 1); l(2) = (0; 0; 0; 0; 0; 0; 1; 1;�2)

C : l(1) = (�2;�2;�2; 1; 1; 1; 1; 1; 0; 0; 1); l(2) = (0; 0; 0; 0; 0; 0; 0; 0; 1; 1;�2)

(5:34)

(The above choices for the generators lB;C do not uniquely de�ne the nef partition of the
lattice points of ��.) The associated GKZ-system factorize in all cases to a third and
second order Picard-Fuchs equation, where the latter has the form

L2 = �2
2
� z2(2�2 � �1)(2�2 � �1 + 1): (5:35)

Also the principal part of the third order operator is universal. We �nd

A : L1 = �2
1
(2�2 � �1)� 4z1(4�1 + 3)(4�1 + 2)(4�1 + 1)

B : L1 = �2
1
(2�2 � �1)� 6z1(2�1 + 1)(3�1 + 2)(3�1 + 1)

C : L1 = �2
1
(2�2 � �1)� 8z1(2�1 + 1)3;

(5:36)
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while the terms proportional to z1 signal a di�erent structure for the expansions of the
solutions arround the singularity at 1

z1
; 1

z2
! 0, namely six pure power series solutions for

A and B and solutions involving logarithms for C. The Yukawa couplings

K111 =
1

z3
1
�0

; K112 =
1� �z1

z2
1
z2�0

; K122 = �
1� 2�z1
z1z2�0�1

; K222 =
1� �z1 + 4z2 � 12�z1z2

2z2
2
�0�2

1

(5:37)
and the components of the discriminant �0 = (1 � �z1)

2 � 4�2z2
1
z2, �1 = (1 � 4z2) can

be parametrized by � = 256; 108; 64 for the three cases in turn.
Using the model speci�c data (5.34)-(5.36) in our general formulas, we get the fol-

lowing predictions of the topological data and the invariants of the rational curves listed
here up to degree three

Model �
R
c2J1

R
c2J2 K0

111
K0

112
nr
1;0 nr

2;0 nr
2;1 nr

3;0 nr
3;1 n

r
0;1

A : �168 56 24 8 4 640 10032 72224 288384 7539200 4

B : �132 60 24 12 6 360 2682 17064 35472 770280 6

C : �112 64 24 16 8 256 1248 7232 10496 197632 8

In all cases we observe that nr
0;1 is the only nonvanishing invariant for nr

0;i, generally
ni;j = 0 for j > i and similar as in [15] nri;j = nri;i�j 8i > 0; j � [i=2]. Furthermore
we obtain that nri =

P
j n

r
i;j, where n

r
i are the invariants for the rationals curves of the

models ( IP5 jj 4; 2 )
1

�176
, ( IP6 jj 3; 2; 2 )

1

�144
and ( IP7 jj 2; 2; 2; 2 )

1

�120
and nri;j are the ones for

A, B and C respectively. The invariants of the elliptic curves will be evaluated in section
7. As before, we have checked that the topological numbers coincide after the change of
basis with the ones calculated in [25].

In the general case the Picard-Fuchs equation will not follow as easy as above by
factorisation of the GKZ system. Rather the analysis of additional symmetries of the period
will be necessary similar as it is described for hypersurfaces in [16]. On the other hand the
examples indicate that our description of the instanton corrected Yukawa couplings also
apply to the rich class of complete intersections with Gorenstein singularities.

The higher degree invariants for all complete intersection in products of weighted
projective spaces and for all other examples discussed in this section can be evaluated by
the programm INSTANTON.

6. Connection with rational superconformal theories.

In this section we like to comment on di�erent realisations of equivalent manifolds
and their relation to exactly solvable superconformal theories. The sigma model on a
Calabi-Yau manifold can be identi�ed with a (2; 2) superconformal two dimensional �eld
theory, whose partition function and correlation functions are sometimes known exactly,
at least at a special point in moduli space. Although more general identi�cations should
exist, in the known examples the SCFT is a GSO projected tensor product of minimal
(2; 2) superconformal �eld theories [52]. The classi�cation of the latter follows an ADE
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pattern and there is a one-to-one correspondence to the classi�cation of modality zero
ADE singularities. The de�ning equation of the latter can be viewed as Landau-Ginzburg
potentials for two dimensional (2; 2) supersymmetric �eld theory having the SCFT as its
infrared limit. The partition functions [53] of the ADE superconformal models at level k,
as well as their coupings are explicitly known [54]. The identi�cation of their LG potentials
is as follows:

Ak � zk+2; k 2 ZZ;

Dk � z
k+2
2 + zy2; k 2 2ZZ

E6 � y3 + z4; k = 10;

E7 � z3 + zy3; k = 16;

E8 � y3 + z5; k = 28

(6:1)

and for tensor product models the LG potential is simply the sum of the corresponding
LG potential terms. The central charge c =

Pn

i=1
3ki
ki+2

is the sum of the central charges
of the factor theories and has to be nine to cancel the conformal anomaly.

In [55] a large number of identi�cations between GSO projected partition functions
was found, among them G1 � (A2; A2; A2; A6; A6) ' G2 � (A2; A2; A2;D6;D6). We will
argue that this implies an identi�cation of the full string theory at a special point in
the moduli space of the hypersurface X1 = ( IP4[2; 2; 2; 1; 1] jj 8 )

2

�168
and of the complete

intersection X2 =

�
IP4

IP1

����
���� 4 1
0 2

�2

�168

.

To see this one has to perform a geometrical analog of the GSO projection in the
tensor product theory on the LG model. One can either apply an heuristic path integral
argument due to ref. [56][55], or gauge the LG model as proposed in [57]. Both operations
involve, similar to the GSO projection in the tensor product model, an orbifoldisation and
one has to be careful to end up with the same symmetry group as in the SCFT. Before
GSO projection one has in the SCFT a ZZk+2 symmetry in each factor model for the Ak

theories and for the Dk theories if k 2 4ZZ+2. These symmetries are readily identi�ed with
the symmetries generated by z 7! exp 2�i

k+2
z and z 7! exp 4�i

k+2
z; y 7! exp�2�i

k+2
y on the LG

�elds of the Ak and Dk models, respectively. The GSO projection on the tensor product
theory is implemented by orbifoldisation with respect to the diagonal subgroup which in
the above case is a ZZlcmfki+2g. The symmetry group of the GSO projected theory will

therefore be S �
Q

5

i=1 ZZki+2=ZZlcmfki+2g, where S is permutation of identical factors. In
the �rst argument [56] the orbifoldisation is replaced by a map of the variables zi ! �i
with constant Jacobian such that the LG potential becomes linear in one or more of the
�i. They can be viewed as Lagrange multipliers and integrating them out restricts the �eld
con�guration to an a�ne patch of a product of weighted projective spaces. For the SCFT

of type G1 we have z1 = �
1

k1+2

1
; zi = �i�

1
ki+2 , i = 2; : : : ; 5 with j @�

@x
j = const: precisely

because c = 9 implies
P

5

i=1
1

ki+2
= 1. Integrating out �1 and going back to homogenous

variables yields manifolds of type X1, i.e. hypersurfaces in IP4[~w]. The diagonal subgroup
of the phase symmetries on the zi is now trivial in IP4[~w], so that we end up with the same
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symmetry group as in the SCFT. Similarly, for the second type (G2) we have z1 = �
1

k1+2

1
,

zi = �i�
1

ki+2

1
, i = 2; 3; 4; 6, z5 = �

1
2

5
=�

1
2(k1+2)

1
, z7 = �7�

1
2

5
=�

1
2(k1+2) and integrating out �1; �5

yields manifolds12 of type X2. The identi�cation in IP4 and IP1 trivialize a ZZ8, s.t. the
remaining symmetry is again as in the GSO projected SCFT. By the same combinatorics
it is possible to introduce one or two gauge group operations respectively, which leave
the superpotential invariant and lead, by the argument of [57], to the same geometrical
interpretation.

Using the basis of divisors J;D for the singular hypersurface described in [16] and the
explicit formulas given there we can calculate the intersection numbers in this basis. The
evaluation of the second Chern form on J is given in formula (2.6). These data and their
analogs for the complete intersection, calculated by (2.5), are displayed below.

X1

KJJJ 8

KJJD 0

KJDD -8

KDDD -16R
c2hJ 56R
c2hD 8

X2

KJ1J1J1 8

KJ1J1J2 4

KJ1J2J2 0

KJ2J2J2 0R
c2hJ1 56R
c2hJ2 24

The theorem of Wall, applicable for manifolds without torsion, states that X1 and X2 are
homotopy equivalent if these topological numbers coincide, up to a linear transformation of
the basis. Identifying J1 = J and J2 =

1

2
(J�D) we see that this is in fact the case. Model

X1 has been treated in great detail in refs.[16] and [15]. In fact, one can prove that X1

and X2 are di�eomorphically equivalent, by realising both as singular �ber spaces where
the generic �ber is a K3 over IP

1 with pairs of points identi�ed on the latter. Similary we
can �nd for the complete intersections B and C in one singular projective space, which
were discussed in (5 viii), di�eomorphic realisations in products of nonsigular projective
spaces. We have the following equivalences

A : ( IP4[2; 2; 2; 1; 1] jj 8 )
2

�168
'

�
IP4

IP1

����
���� 4 1
0 2

�2
�168

B : ( IP5[2; 2; 2; 2; 1; 1] jj 4; 6 )
2

�132
'

�
IP5

IP1

����
���� 2 3 1
0 0 2

�2

�132

C : ( IP6[2; 2; 2; 2; 2; 1; 1] jj 4; 4; 4 )
2

�112
'

�
IP6

IP1

����
���� 2 2 2 1
0 0 0 2

�2

�112

:

(6:2)

12 We can interprete the LG potential W =
P5

i=1
x4i +x4x

2
6+x5x

2
7 = 0 also as four dimensional

hypersurface in the �ve dimensional ambient space IP5(2; 2; 2; 2; 3; 3) with c1 = 8 and consider as

in [58] a restricted cohomology of this space to de�ne the six periods, which leads to the same

prepotential and hence the same physical theory.
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Let us discuss the solution for the model X2. Here we have the vertices of the
dual polyhedra ��

1;1 = (1; 0; 0; 0; 0); ��
1;2 = (0; 1; 0; 0; 0); ��

1;3 = (0; 0; 1; 0; 0); ��
1;4 =

(0; 0; 0; 1; 0); ��
1;5 = (�1;�1;�1;�1; 0) and ��

2;1 = (0; 0; 0; 0; 1); ��
2;2 = (0; 0; 0; 0;�1). We

group them into two sets: E1 = f��
1;1; �

�

1;2; �
�

1;3; �
�

1;4g andE2 = f��
1;5; �

�

2;1; �
�

2;2g and proceed
as described in section three. This leads to

l(1) = (�4;�1; 1; 1; 1; 1; 1; 0; 0) ; l(2) = (0;�2; 0; 0; 0; 0; 0; 1; 1) (6:3)

We can also write down the Laurent polynomials. They are

P1 = a0 � a1X1 � a2X2 � a3X3 � a4X4

P2 = b0 �
b1

X1X2X3X4

� b2Y1 �
b3

Y1

(6:4)

Note that due to the freedom to rescale all variables and each polynomial, there are only
two relevant parameters in P1 and P2, corresponding to the two complex structure moduli
on X�

2
. The period (3.7) follows straightforwardly by performing the integral (3.5). One

also �nds z1 =
a1a2a2a4b1

a40b0
and z2 =

b2b3
b20

. l(1) and l(2) lead, after trivial factorization, to

di�erential operators of orders four (L1) and two (L2 = L2), respectively. A third order
operator L1 can be obtained via L1 � 4�2

1
L2 = (2�2 + �1)L1. The Yukawa couplings for

the model X2 are found to be

K(3;0) =
1

z3
1
�0

; K(2;1) =
1� 256 z1 � 4 z2
2 z2

1
z2�0�1

;

K(1;2) =
3� 512 z1 + 4 z2z1z2

�0�2

1

; K(0;3) =
1� 256 z1 + 24 z2 � 3072 z1 z2 + 16 z2

2

2 z2
2
�0�3

1

(6:5)
with

�0 = (1� 256 z1)
2 � 4 z2; �1 = (1 � 4z2)

The resulting topological invariants for the rational and elliptic curves for the case A;B
and C in (6.2) are of course the same for both realisations. Model X1 was solved in
[16],[15]. In fact, in [15] the degrees of the curves are given with respect to the basis
appropriate for X2. We can �nd a map analogous to the one in (5.5) and hence a

con�guration

�
IP4

IP1

����
���� 4 1
0 2

�2
�168

, which reproduces, via the integral (5.6), the expression

for w0. However, this con�guration cannot be chosen to be transverse for generic points in
the two dimensional subspace of the moduli space under consideration. It is also interesting
to note that the coordinates used here and the one used in [16],[15] are connected by a
transcendental function.

A similar comparison can be made between the two models ( IP4[6; 2; 2; 1; 1] jj 12 )
2

�252
.

and

�
IP4[3; 1; 1; 1; 1]

IP1

����
���� 6 1
0 2

�2

�252

. At special points in moduli space they correspond to

the Gepner models (A4; A4; A10; A10) and (A4; A4;D10;D10), respectively. One �nds again
the relations J1 = J and J2 = 1

2
(J � D) between the divisors and identical topological

invariants.
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7. Topological one-loop partition function and the number of elliptic curves

Knowledge of the periods and the canonical coordinates allows, up to the di�culty of
�xing an holomorphic ambiguity at each step, to recursively calculate higher loop topo-
logical partition funcions as was shown in [23]. To �x the ambiguity we need as gobal
properties of the moduli space M the singularities discussed in sec. 4.

We will focus on the one loop case and calculate the expression de�ned in the N = 2
SCFT on the torus as

F1 =
1

2

Z
d�

�2
Tr(�1)FFLFRq

L0 �q
�L0 ; (7:1)

where the trace is to be taken over the left- and right moving Ramond sectors. As shown
in [23] and [24] this quantity is, for the heterotic string with canonical embedding of the
spin connection into the gauge group, related to the di�erence of the threshold corrections
to the gauge couplings of the E6 and E8, namely 12F1 = �(E6) � �(E8). Using the
holomorphic anomaly equation it was shown in [22] that it can be written as

F1 = log
�
M(z; �z)jf(z)j2

�
; (7:2)

where the holomorphic-antiholomorphic mixing M(z; �z) is given by

logM =
X
p;q

(�1)p+q
p+ q

2
Trp;qlogdet(g)�

1

12
Tr(�1)F ; (7:3)

here g is the t; �t metric introduced in [59]. It is related to the Weil-Peterson metric Gi�|

by gi�|=g0�0 = gi�|exp(K) = Gi�| with Gi�| = @i@�|K. For �-models on Calabi-Yau spaces
(7.2) can be rewritten as

F1 = log
h
exp

�
(3 + k �

�

12
)K
�
det[Gi�|]

�1jf(z)j2
i
: (7:4)

In our application we will �nally understand F1 as a function of the K�ahler moduli t; �t
which are related to a; �a or z; �z by the mirror map. To �x the holomorphic ambiguity f(z)
one considers the large volume limit t; �t!1 for which one has the asymptotic behaviour

limt;�t!1F1 = �
2�i

12

kX
i=1

(ti + �ti)

Z
c2Ji: (7:5)

It was conjectured in [22] that F top

1
� lim�t!1F1 has the following expansion

F1
top = const:�

2�i

12

kX
i=1

ti

Z
c2Ji�

X
nl

"
2ned1;:::;dk log(�(

kY
i=1

qdii )) +
1

6
nrd1:::dk log(1�

kY
i=1

qi
di)

#

(7:6)
in terms of the Euler numbers nrd1;:::;dh and ned1;:::;dk of the tangentbundle over the appro-

priate compacti�ed moduli space of the mappings from IP1 and T 2, respectively, to the
Calabi-Yau space. In the case of isolated curves they count the number of rational curves
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and elliptic curves respectively. Using (4.15),(4.12) one gets in the general case as the
�t!1 limit of (7.4)

F
top
1

= log

"�
a1 � � � al

!0

�3+k��=12
@(a1 : : : ak)

@(t1 : : : tk)
f(z)

#
+ const: (7:7)

The factor (a1 � � � al)=!0 corresponds to the gauge choice with the fundamental period nor-
malized as in (3.5)13 The holomorphic anomaly is determined by the requirement that F top

1

has to be a regular function everywhere in moduli space except possibly at the components
of the discriminante surface determined by �i = 0, which can be directly determined from
the Laurent polynomial (cf. (5i)). Besides the components �i = 0 there appear also other
singular loci �i = 0 in systems of Picard-Fuchs equations, which can be understood as
identi�cation singularities of the parameters space of the Laurent polynomial as it was
discussed at the end of section three. In the cases we discuss we have �i = ai. While it

is evident from (3.5) that
�
a1:::ak
!0

�
is regular at �i = 0 the Jacobian of the mirror map

(5.5) might have singularities at �i. We therefore make the following general ansatz for
f(z)

f(z) = �r0
0
: : :�rm

m �s1
1
: : : �skk : (7:8)

Of course the �i = zi singularities are included in this ansatz. Inserting this ansatz in
(7.7) and comparing the leading term with (7.5) yields equations for the ri and si. If the
manifold happens to be transverse at a = 0 the powers of the �i, which in this case only
have to compensate possible singularities of the Jacobian, can in principle be determined
by analytic continuation of the periods and hence the mirror map to the point a = 0. In
the general case we use the values the numbers ned1;:::;dh of a few elliptic curves of low
polydegree w.r.t. an integral basis of divisors, typically the fact they have to vanish, to �x
all parameters and predict the other numbers.

Let us �rst discuss as examples various one moduli cases realized as hypersurfaces
Xk1 of degree k1 or complete intersections Xk1;:::;kn of multidegree k1; : : : ; kn in a single
weighted projective space. From [13][18][19]we have one component of the singular locus for

all cases at �0 = (1�a
P

ki). We start with a short review of the one moduli hypersurfaces
in a weighted IP4, denoted by Xk(~w). In this case �0 is the only component of the singular
locus and it was observed in [23] that r0 = �1=6 for all cases yielding the following
invariants for the elliptic curves:

Model �
R
c2J s1 ne

1
ne
2

ne
3

ne
4

X5 �200 50 0 0 0 609250 37214316625

X6 �204 42 0 0 7884 145114704 1773044315001

X8 �296 44 1 0 41312 21464350592 1805292092664544

X10 �288 34 1 280 207680680 161279120326560 103038403740690105440

13 F top
1 depends of course on k parameter ai i = 1; : : : ; k. By the C� symmetries, acting on the

parameters of the Laurent polynomials, we can set l � k of the ai appearing in (3.5) to one, if

the number of polynomial constraints l exceeds k.
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Similarly for the one moduli complete intersections in ordinary projective spaces (cf.
[18]) we found r0 = �1=6 and the s1 value indicated in the following table. This result was
obtained by requiring ne

1
= 0, which holds for intersections in ordinary projective spaces,

and imposing (7.5). Note that these manifolds are not transverse at �2 = a = 0. In order
to compare with the results of section (5 viii) we list the rational curves for these models

Model �
R
c2J s1 j = 1 j = 2 j = 3 j = 4 j = 5

X3;3 �144 54 11 nrj 9 1053 52812 6424326 11394483834

nej 0 0 3402 5520393 482074484

X4;2 �176 56 28

3
nrj 8 1280 92288 15655168 3883902528

nej 0 0 2560 17407072 24834612736

X3;2;2 �144 60 115

6
nrj 12 720 22428 1611504 168199200

nej 0 0 64 265113 198087264

X2;2;2;2 �128 64 85

3
nrj 16 512 9728 416256 25703936

nej 0 0 0 14752 8782848

For the complete intesections in weighted projective spaces (cf. [19]) we found that
r0 = �1=6 likewise and s1 from (7.5) gives the following integral expansion for the ned

Model �
R
c2J s1 ne

1
ne
2

ne
3

ne
4

X4;3 �156 48 67

6
0 27 16124238 38170438

X6;2 �256 52 29

3
0 �504 1228032 79275665304

X4;4 �144 40 11 0 1408 6953728 2684185380

X6;4 �156 32 31

3
8 258336 5966034464 1267294361302800

X6;6 �120 22 9 360 40691736 4956204918240 616199133057629184

All invariants of the X6;2 model are consistent with the indenti�cation of this model with

the one parameter subspace of ( IP4[6; 2; 2; 1; 1] jj 12 )
2

�252
[15], which implies nei =

P
j
nei;j .

Especially ne
2
= �504, which is the only negative invariant for a one parameter family, is in

agreement with ne
2;0 = ne

2;2 = �492, ne
2;1 = 480 for the two parameter hypersurface (comp.

[15]). We also checked that the identi�cation of X6;4 with the one parameter subspace

of ( IP4[4; 3; 2; 2; 1] jj 12 )
2
[16] holds at the one loop level. E.g. the lowest invariants of

elliptic curves for the latter model are ne
1;0 = �2, ne

1;1 = 6 and ne
2;0 = 762, ne

2;1 = �3060,
ne
2;2 = 18918, ne

2;3 = 225096 with the general symmetry ni;j = ni;3i�j and ni;j = 0 for
j > 3i; they reproduce the �rst two entries for the X6;4 model above.

In summary the topological one loop partition function for the one parameter models
is given by by

F
top
1

= log

2
64a
P

i

k
i

12

R
c2J

w
4�

�+4
12

0

�
1

a

@a

@t

�1=2

K
1
6
ttt

3
75 : (7:9)
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Next we treat a hypersurface X14(7; 2; 2; 2; 1) with two moduli. The singular locus is,
in addition to the lines z1 = 0, z2 = 0, given by

�0 = 1 + 27z1 � 63z1z2 + 56z1z
2

2
� 112z1z

3

2
� (7� 4z2)

4z2
1
z3
2

�1 = 4z2 � 7
: (7:10)

Equation (3.6) and the analog of (3.3) from [16] l(1) = (�7; 0; 1; 1; 1;�3;�7) and l(2) =
(0; 1; 0; 0; 0; 1;�2) de�ne14 the relation z1 = a7

2
=a7

1
and z2 = 7=a2

2
by which we transform

the expressions of singular components (7.10) to the ai variables. Beside this components
we have to care about the sets �1 = a1 = 0 and �2 = a2 = 0. For the further calculation it
turns out to be advantegous to get rid of the denominators in the transformed expressions
(7.10) by rescaling �1 ! a14�1 and �2 ! b2�2.

The Euler number is � = �240 the Hodge numbers are h1;1 = 2; h2;1 = 122. We
calculate

R
c2 ^ J1 = 44 and

R
c2 ^ J2 = 126, where J1; J2 are the basis which generates

H2(X;ZZ). It is connected with the (1; 1) forms dual to natural basis of the divisors in the
polyheder construction J;D used in [16], by J1 = J and J2 =

1

2
(7J �D). From (7.5) we

get two equations

r0 = �
s1

14
�

1

42
; r1 = �

s2

2
�
17

6
: (7:11)

The vanishing of the numbers of curves ne
0;1 = s2 and ne

1;0 =
27

28
(2 � s1) enforces s1 = 2

and s2 = 0. Other numbers of elliptic curves nei;j with i < 3 are then given in the following
table, where we list for convenience also the number of rational curves nri;j

ni;j j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

nr
0;j 0 28 0 8j > 1

ne
0;j 0 8j

nr
1;j 3 �56 378 14427 14427 378 �56 3

ne
1;j 0 8j

nr
2;j �6 140 �1512 9828 �69804 500724 29683962 68588248

ne
2;j 0 0 0 0 0 378 6496 27564

Here we have a symmetry ni;j = ni;7i�j and ni;j = 0 for j > 7i. The identi�cation
of the one parameter subspace of this model via ni =

P
j
ni;j with the hypersurface

( IP4[1; 1; 1; 1; 4] jj 8 )
1

�256
observed in [16] can also be checked at one-loop level.

Next we treat a hypersurface in a product of two projective spaces�
IP2

IP2

����
���� 33
�2

�162

:

The number nrd1;d2 of rational curves of bidegree (d1; d2) was obtained in [16]. The evalua-

tion of the second Chern class on J1; J2 can be read o� from (2.5);
R
c2^J1 =

R
c2^J2 = 36.

14 Note the scale factor 7 introduced in [16] in order to simplify (7.10).
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Because of the symmetry we have s1 = s2. In this case we have to consider only one com-
ponent

�0 = 1� (1� z1)
3 + (1� z2)

3 + 3z1z2(z1 + z2 + 7) (7:12)

of the discriminant of the complete intersection, where the connection with the parameters
a1; a2 is encoded in the l(i) given by (3.3), z1 = 33=a3

1
and z2 = 33=a3

2
. Again after

clearing the denominator, the comparison with the large radius limit gives us the relation
r0 = �7

6
� s1

9
, leaving us with one unknown constant s1, which is determined by requiring

ne
0;1 =

9

2
(9 + s1) = 0. The following table contains the numbers of rational and elliptic

curves up to bidegree d1+d2 � 6. Because of the exchange symmetry we list only ni(d1; d2)
with d1 � d2.

(0; 1) nr 189

ne 0

(0; 2) nr 189

ne 0

(0; 3) nr 162

ne 3

(0; 4) nr 189

ne 0

(0; 5) nr 189

ne 0

(0; 6) nr 162

ne 0

(1; 1) nr 8262

ne 0

(1; 2) nr 142884

ne 0

(1; 3) nr 1492290

ne �378

(1; 4) nr 11375073

ne �16524

(1; 5) nr 69962130

ne �285768

(2; 2) nr 1310892

ne 8262

(2; 3) nr 516953097

ne 1519434

(2; 4) nr 12289326723

ne 71809416

(3; 3) nr 55962304650

ne 818388234

Here we observe ne
1;3 = �2nr

0;1, n
e
2;2 = nr

1;1 and n
e
1;d = �2nr

1;d2�3
for d2 � 4.

For the three generation complete intersection case (5 i) the relevant components of
the discriminant surface were obtained by di�erent methods above: �0 = (1�27z1)

3�27z2,
�1 = (1 � 27z2). Proceeding as before we get r0 = �1

6
� s2

9
, r1 = 3 � s1 + s2 and the

vanishing of ne
1;0 = 9

2
s2 requires s2 = 0 and then from ne

1;1 = 3

2
(9s1 � 27) = 0 we get

s1 = 3. The corresponding predictions for ned1;d2 are

(1,0) 0

(2,0) 0

(3,0) 3

(4,0) 0

(5,0) 0

(6,0) 0

(0,1) 0

(0,2) -27

(0,3) 81

(0,4) -324

(0,5) 1728

(0,6) -8955

(1,1) 0

(2,2) -16028

(3,3) -124719

(2,1) 0

(4,2) -924372

(3,1) -126

(4,1) -1944

(5,1) -30618

(1,2) 972

(2,4) -426222

(3,2) 159678

(1,3) -486

(2,3) 27945

(1,4) 22356

(1,5) -72900
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For the Tian-Yau manifold example (5 ii) the discriminant can be read o� from the
Yukawa couplings �0 = 1 � 27 z1 � 27 z2, �1 = (1 � 27 z1), �2 = (1 � 27 z2): Obviously
r1 = r2 and s1 = s2 and (7.5) yields r0 = 1

2
+ s1

3
� r1. The following predictions are

obtained by imposing ne
0;1 =

9

2
(s1 � 2) = 0 and n3

1;1 =
243

2
(3r1 � 4) = 0

(0,1) 0

(0,2) -27

(0,3) 81

(0,4) -324

(0,5) 1728

(0,6) -8955

(1,1) 0

(2,2) -2916

(3,3) 108180

(1,2) 324

(2,4) -31104

(1,3) 1458

(1,4) 4374

(1,5) 15066

(2,3) -13176

Note that invariants ne
0;i of the example (5 i) coincide with n

e
i;0 = ne

0;i of the present one.
The three moduli example in section (5 v) has the general discriminant

�0 =1� 108z1 + 4374z2
1
� 78732z3

1
+ 531441z4

1
� 8z2 + 432z1z2

� 5832z2
1
z2 + 16z2

2
� 8z3 + 432z1z3 � 5832z2

1
z3 � 23z2z3 + 16z2

3

(7:13)

and a second component of the discriminant locus

�1 = 1� 8z2 + 16z2
2
� 8z3 � 32z2z3 + 16z2

3
: (7:14)

As a slight technical simpli�cation we replace
�
a1:::ak
w0

�
by 1

w0
in (7.7) , set �i = zi in

(7.8) and work throughout with the large complex structure parameters zi, which is
possible as the zi are the good coordinates on M (cf. sect. 3).

By (7.5) we can �x in this case s1 = �4, s2 = s3 = �3 and from ne
0;0;1 = �9(1+6r0) =

0 we have again r0 = �1=6. Enforcing also ne
1;0;0 = �4(r0 + r1) = 0 we get the following

predictions for the non zero invariants of the elliptic curves up to bidegree seven

(0,1,1) -12

(0,2,2) 15

(1,1,1) 288

(2,2,2) -13284

(1,1,2) 2888

(1,2,2) 2160

(1,2,3) 2160

(1,3,3) 11664

(2,1,1) -3024

(2,1,2) -4320

(2,1,3) -3024

(2,2,3) -2052

(3,0,0) 4

(3,0,1) -36

(3,0,2) -36

(3,0,3) 85212

(3,1,1) 17580

(3,1,2) 48024

(3,1,3) 48024

(3,2,2) 991536

(4,0,1) -432

(4,0,2) -4212

(4,0,3) -432

(4,1,1) -464296

(4,1,2) -330300

(5,0,1) -4212

(5,0,2) -191484

(5,1,1) -46008

(6,0,1) -35820
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We �nally evaluate the invariants of the elliptic curves for the hypersurface and the
complete intersections in one singular projective space discussed in (5 viii). The topological
data can be found in the Table of section (5 viii) and the discriminant may be read of
from (5.37)

Model ri si nei;j j = 0 j = 1 j = 2

A : r0 = �1

6
s1 = �17

6
nei;j = 0; i < 3

r1 = �5

6
s2 = �3 i = 3 �1280 2560 2560

i = 4 �317864 1047280 15948240

B : r0 = �1

6
s1 = �6 nei;j = 0; i < 2

r1 = �1 s2 = �3 i = 2 �16 48 �16

i = 3 �5364 18972 237897

C : r0 = �1

6
s1 = �19

6
nei;j = 0; i < 4

r1 = �7

6
s2 = �3 i = 4 �280 1120 13072

i = 5 �20992 119808 429608

The invariants for case A are in accordance with [15]. Also for the complete intersections
we obtain for the invariants nei;j = 0 for j > i as well as the symmetry nei;j = nei;j�i.

Comparison with the models ( IP5 jj 4; 2 )
1

�176
, ( IP6 jj 3; 2; 2 )

1

�144
and ( IP7 jj 2; 2; 2; 2 )

1

�120

reveals the expected relation nei =
P

j n
e
i;j , which is an a�rmative consistency check of the

calculations at one loop level.
In all our examples we observed that the holomorphic anomaly is of index r0 = �1=6 at

the general component of the discriminante. This also holds true for examples with higher
dimensional moduli spaces and for models with a somewhat di�erent type of singularity
such as ( IP4[9; 6; 1; 1; 1] jj 18 )

2

�540
or ( IP4[12; 8; 2; 1; 1] jj 24 )

3

�480
. This is related to the fact

that the manifolds approach always a nodal con�guration along this component of the
discriminant. The exponent of the holomorphic ambiguity seems to be universal for this
type of singularity.

8. Discussion

To extend the discussion of mirror symmetry to CICY manifolds with higher dimen-
sional moduli spaces, we have described how to set up the Picard-Fuchs equations and
speci�ed the point of maximal unipotent monodromy. We have developed a convenient
way to construct all its solutions around this point by showing the equilvalence of the
solutions with the elements of special representatitves of the ring R. In fact, the top ele-
ment of R corresponds to the cubic monomials of intersection numbers for the generating
elements of H2(X̂;ZZ). We have found very simple formulas for the instanton corrected
intersection numbers from which the number of rational curves can be obtained, always
assuming that mirror symmetry is correct. In this paper we have focussed on the region
of the moduli space of large K�ahler and complex structure. The extension to the whole
moduli space requires analytical continuation of the periods. This is in principle straight-
forward using an integral representation of the solutions of the Picard-Fuchs equations.
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Technically this is however rather involved and was performed so far only for one moduli
cases [11][13][14] and for two types of two moduli models [15].

The form of the topological partition function is �xed by the holomorphic anomaly
equation up to a holomorphic function. To specify the latter we had to analyse their
asymptotic behaviour at the singular locus of the Picard-Fuchs system. In general we had
to use the vanishing of the elliptic curves of low degree to provide this information.

From a more technical point of view the method described here requires, for the pre-
diction of the instanton expansion in the large K�ahler structure limit, only the generators
of the Mori cone l(i) and the associated intersection numbers. Given these data the ex-
pansion for the corrected Yukawa couplings and the prepotential can be simply obtained
via (4.18) (4.19). As it bypasses the evaluation of the Yukawa couplings on the complex
structure side it is applicable to higher dimensional moduli spaces where the evaluation of
these complicated algebraic expressions is extremely tedious. It should be clear by example
(5 vii) and (5 viii) that the data mentioned above can be provided more generally for the
moduli associated to algebraic deformations in the general class of Calabi-Yau manifolds
representable as hypersurfaces or complete intersections in toric varieties15. It would be
interesting to see if these data can also be obtained for the twisted sectors of the models
in the above class and for those of the 3345 Landau-Ginzburg models with more then
�ve �elds constructed in [62], which can not be reduced to CY-threefolds as the exam-
ples in section 6 and others in [55], but have only an interpretation as higher dimensional
manifolds with c1 > 0.

The calculation of the prepotential was discussed. This problem can also be considered
from the point of view of topological �eld theory. In fact in many cases the prepotential
can be obtained from the axioms of topological �eld theory contained in the Witten-
Dijkgraaf-Verlinde-Verlinde equations [63]. However for this approach the Calabi-Yau
manifolds are a critical case because here the operator algebra of topological �eld theory
is nilpotent, at least if we restrict ourself to the massless perturbations. For the threefolds
the information from the WDVV equations just de�nes special geometry, but do not give
further information on the prepotential.

From the identi�cation of the two hypersurfaces ( IP4[2; 2; 2; 1; 1] jj 8 )
2

�168
and

( IP4[6; 2; 2; 1; 1] jj 12 )
2

�252
with complete intersections, which was also con�rmed by com-

parison with the Gepner models, we are taught to view the system L1; : : : ; Lk, which
contains (at the point z = 0) the information about the ring R, the object of primary
interest.

Going one step further back one may see as the basic input the data of a Riemann-
Hilbert problem with sympletic integral representations of the monodromy and singular
points, where the solutions are characterised by a graded ring whose homogeneous sub-
spaces are of suitable type. In fact these data seem to encode all topological data required
for the classi�cation of the homotopy type of families of Calabi-Yau manifolds by the the-
orem of Wall and might lead to a re�ned classi�cation of N = 2 vacua of string theory and

15 In fact, the methods can be easily extended to evaluate threepoint functions on higher di-

mensional Calabi-Yau spaces with higher dimensional moduli spaces [60]. Some results for one

parameter families were obtained in [61]
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Calabi-Yau threefolds.
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Louis, S.S. Roan and A. Todorov for discussions.
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Appendix A. The pole structure in the coe�cients of the logarithmic solutions

to the Picard-Fuchs equation

In this appendix we exhibit the pole structures of the logarithmic solutions of the
Picard-Fuchs equations.

The starting point are the generators of the Mori cone ~l(�) which are all of the form
16

~l(�) = (�fl
(�)

0j g; fl
(�)

i g) j = 1; : : : ;number of polynomials

� = 1; : : : ; h1;1

where
�
X
j

l
(�)

0j +
X
i

l
(�)

i = 0

l
(�)

i 2 Z

l
(�)

0j 2 Z�

The fundamental period is

w0(z) =
X
n

c(n)zn

where the sum is over all non-negative integers n� and the expansion coe�cients are

c(n) =

Q
j(
P

� l
(�)

0j n�)!Q
i(
P

� l
(�)

i n�)!

We then de�ne
w0(z; �) =

X
n

c(n; �)zn+�

with

c(n; �) =

Q
j �(

P
� l

(�)

0j (n� + ��) + 1)Q
i �(
P

� l
(�)

i (n� + ��) + 1)

The logarithmic solutions contain the coe�cients

(I) @�c(n) �
@

@�
c(n+ �)

���
�=0

(II) @�@
c(n) and (III) @�@
@�c(n)

The following the de�nitions will become useful:

A(�)(n) =
X
j

l
(�)

0j  (
X
�

l
(�)

0j n� + 1)�
X
i

l
(�)

i  (
X
�

l
(�)

i n� + 1)

B(�
)(n) =
X
j

l
(�)

0j l
(
)

0j  
0(
X
�

l
(�)

0j n� + 1) �
X
i

l
(�)

i l
(
)

i  0(
X
�

l
(�)

i n� + 1)

C(�
�)(n) =
X
j

l
(�)

0j l
(
)

0j l
(�)

0j  
00(
X
�

l
(�)

0j n� + 1)�
X
i

l
(�)

i l
(
)

i l
(
)

i  00(
X
�

l
(�)

i n� + 1)

16 We have changed the sign of the components l
(�)

0j as compared to (3.3) for notational

convenience.
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where  is the logarithmic derivative of the Gamma function. We then get the expressions

@�c(n) = c(n)A(�)(n) (1)

@�@
c(n) = c(n)
n
A(�)(n)A(
)(n) +B(�
)(n)

o
(2)

@�@
@�c(n) = c(n)
n
A(�)(n)A(
)(n)A(�)(n) +A(�)(n)B(
�)(n) +A(
)(n)B(��)(n)

+A(�)(n)B(�
)(n) + C(�
�)(n)
o

(3)

whose pole structures we have to examine. Before doing this we de�ne

A
(�)

k1;:::;kp
(n) =

X
j

l
(�)

0j  (
X
�

l
(�)

0j n� + 1) �
X

i6=k1;:::;kp

l
(�)

i  (
X
�

l
(�)

i n� + 1)

and likewise for B
(�
)

k1;:::;kp
(n) and C

(�
�)

k1;:::;kp
(n). For

P
� l

(�)

k n� < 0 we set

X
�

l
(�)

k n� � �mk

and

~A
(�)

k1;:::;kp
= A

(�)

k1;:::;kp
�

pX
i=1

l
(�)

ki
 (mki)

~B
(�
)

k1;:::;kp
= B

(�
)

k1;:::;kp
�

pX
i=1

l
(�)

ki
l
(
)

ki

�
�2 �  0(mki )

�
The last ingredients we need are the pole structures of � and  for m 2 Z>:

�(1 �m) =
1

�(m)

�

sin(�m)

 (1 �m) =  (m) + � cot(�m)

 0(1�m) = � 0(m) + �2(1 + cot2(�m))

 00(1�m) =  00(m) + 2�3 cot(�m) + 2�3 cot3(�m)

We now consider the cases (I), (II) and (III) in turn:
(I) If we have more than one �mk < 0, then c(n) has a double zero. A(�) however only

has a simple pole, i.e. we have to consider only the case where �mk < 0 for one k
only. Then

c(n) =

Q
j
(
P

�
l
(�)

0j n�)!Q
i6=k

(
P

�
l
(�)

i n�)!
(mk � 1)!

1

�
sin(�mk)

A(�)(n) = �l
(�)

k
 (1 �mk) + �nite

= ��l
(�)

k
cot(�mk) + �nite
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and we get

@�c(n) = �(�)mk l
(�)

k

Q
j(
P

� l
(�)

0j n�)!(mk � 1)!Q
i6=k(

P
� l

(�)

i n�)!
mk 2 Z>

(II) Since A2 and B have double poles, we have to distinguish two possibilities:
(i) �mk < 0 for one k only
(ii) �mk < 0 for k1 and k2
For the two cases we �nd:
(i)

@�@
c(n) = �(�)mk

Q
j(
P

� l
(�)

0j n�)!(mk � 1)!Q
i6=k(

P
� l

(�)

i n�)!
( ~A

(�)

k l
(
)

k + ~A
(
)

k l
(�)

k )

(ii)

@�@
c(n) = (�)mk1+mk2

Q
j(
P

� l
(�)

0j n�)!(mk1 � 1)!(mk2 � 1)!Q
i6=k1;k2

(
P

� l
(�)

i n�)!
(l
(�)

k1
l
(
)

k2
+ l

(
)

k1
l
(�)

k2
)

(III) We now have to distinguish three cases:
(i) �mk < 0 for one k only
(ii) �mk < 0 for k1 and k2
(iii) �mk < 0 for k1; k2 and k3
For the three cases we �nd:
(i)

@�@
@�c(n) = �(�)mk

Q
j(
P

� l
(�)

0j n�)!(mk � 1)!Q
i6=k(

P
� l

(�)

i n�)!

�
n
2�2l

(�)

k l
(
)

k l
(�)

k +
�
~B
(�
)

k l
(�)

k + ~B
(
�)

k l
(
)

k + ~B
(��)

k l
(
)

k

�
+
�
~A
(�)

k
~A
(
)

k l
(�)

k + ~A
(
)

k
~A
(�)

k l
(�)

k + ~A
(�)

k
~A
(�)

k l
(
)

k

�o
(ii)

@�@
@�c(n) = (�)mk1+mk2

Q
j(
P

� l
(�)

0j n�)!(mk1 � 1)!(mk2 � 1)!Q
i6=k1;k2

(
P

� l
(�)

i n�)!

�
n
~A
(�)

k1;k2
(l
(
)

k1
l
(�)

k2
+ l

(�)

k1
l
(
)

k2
) + ~A

(
)

k1;k2
(l
(�)

k1
l
(�)

k2
+ l

(�)

k1
l
(�)

k2
)

+ ~A
(�)

k1;k2
(l
(�)

k1
l
(
)

k2
+ l

(
)

k1
l
(�)

k2
)
o

(iii)

@�@
@�c(n) = �(�)mk1+mk2+mk3

Q
j(
P

� l
(�)

0j n�)!(mk1 � 1)!(mk2 � 1)!(mk3 � 1)!Q
i6=k1;k2;k3

(
P

� l
(�)

i n�)!

�
n
l
(�)

k1
l
(
)

k2
l
(�)

k3
+ l

(
)

k1
l
(�)

k2
l
(�)

k3
+ l

(�)

k1
l
(�)

k2
l
(
)

k3

+ l
(
)

k1
l
(�)

k2
l
(�)

k3
+ l

(�)

k1
l
(�)

k2
l
(
)

k3
+ l

(�)

k1
l
(
)

k2
l
(�)

k3

o
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Appendix B. Predicted numbers of lines for complete intersections in IP3 � IP3

and IP3 � IP2

For complete intersections in IP3 � IP3,

�
IP3

IP3

����
���� s1 s2 s3t1 t2 t3

�
; (B.1)

there are eight possible (non-trivial) con�gurations: (s1; s2; s3j t1; t2; t3) = (3; 0; 1j0; 3; 1) ;
(0; 2; 2j2; 2; 0) ; (2; 1; 1j2; 1; 1) ; (2; 1; 1j1; 2; 1) ; (2; 1; 1j0; 3; 1) ; (2; 1; 1j0; 2; 2) ;

(3; 1; 0j0; 2; 2) ; (2; 2; 0j0; 0; 4). For all of these, the predicted numbers of lines with bi-
degree (n1; n2) with respect to J1 and J2 from IP3 and IP3, respectively, are given generally
by

N(1; 0) = 10t1t2t3s1!s2!s3!

� s1! s2! s3!

�
1

2

�
s2s3t1

3 + 3s1s3t1
2t2 + 3s1s2t1

2t3 + 3s1
2t1t2t3

� s1X
r=1

1

r2

!

+ 4
�
s3t1

2t2 + s2t1
2t3 + 2s1t1t2t3

� s1X
r=1

1

r

!

�
1

2

�
s2s3t1

3 + 3s1s3t1
2t2 + 3s1s2t1

2t3 + 3s1
2t1t2t3

� s1X
r=1

1

r

!2

�
�
2s2s3t1

2t2 + 2s1s3t1t2
2 + s2

2t1
2t3 + 4s1s2t1t2t3 + s1

2t2
2t3
� s1X

r=1

1

r

! 
s2X
r=1

1

r

!

+ (cyclic permutations : ((s1; t1)! (s2; t2)! (s3; t3)) )

�
;

(B.2)
and by N(0; 1) = N(1; 0)

��
( si$ti )

.

The predictions for seven possible non-trivial examples in IP3 � IP2, (s1; s2j t1; t2) =
(2; 2j0; 3) ; (3; 1j0; 3) ; (2; 2j1; 2) ; (4; 0j1; 2) ; (1; 3j2; 1) ; (3; 1j2; 1) ; (0; 4j3; 0), can be
extracted from the above general formulas via the manifold identity,

�
IP3

IP2

����
���� s1 s2t1 t2

�
�=

�
IP3

IP3

����
���� s1 s2 0t1 t2 1

�
; (B.3)

Further reduction simply reproduces the result for the bi-cubic model in IP2� IP2 and
(4j2) in IP3 � IP1 which are treated in sect.7.
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