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This paper presents the instability-analysis of a beam-loaded radio-frequency system with beam phase-loop and
cavity tuning-loop for both accelerating and non-accelerating beams. In addition, the case ofrfvoltage-proportional
feedback around the cavity is presented. The symbolic manipulation program SMP was used to expand and simplify
the Routh determinantal conditions for a fifth order characteristic polynomial. In some cases, the conditions have
easy physical interpretations and it is possible to give an analytic criterion for the threshold beam current. However,
for the most part, the Routh conditions lead to simultaneous quadratic conditions on the beam current and loop
gains. Finally, SMP was used to study the case of dipole-quadrupole mode coupling for an accelerating beam.
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1 INTRODUCTION

The topic of beam loaded radio-frequency systems dates back to Robinson's paper2 of
1964. However, apart from the work of Pedersen3 there has been little substantial advance
in obtaining analytic stability criteria for realistic rf systems with a multitude of feedback
loops. The stumbling block is one of mathematical complexity. The analysis proceeds
as follows: (i) write the matrix equation for the system vector, (ii) expand the matrix
determinant to find the characteristic polynomial, and (iii) apply the Routh1 criteria to the
coefficients of the polynomial. The order n of the characteristic polynomial scales roughly
as the matrix dimension. The size of the polynomial scales roughlya with the square of the
matrix dimension; and by size we mean the number of terms in each of the polynomial
coefficients an. The largest member of the Routh criteria grows as the polynomial size to
the power ofn - 1; and so a small change in the matrix dimension can result in an enormous
increase in complexity. The case of beam and cavity alone, studied by Robinson, results in a
fourth order polynomial and is tractable by hand-working. In general, adding a control loop
with a single time constant will raise the order by one; so introducing two loops yields a
sixth order polynomial, and (by human standards) there results "an astronomical number of

a We have assumed a sparse non-diagonal matrix. If the matrix is diagonal, then the scaling is linear.
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136 S. KOSCIELNIAK

terms" to contemplate and simplify. However, using a computer tool such as the symbolic
manipulation program SMP4 to keep track of all the terms the problem becomes feasible,
though still not facile because the task of simplification requires substantial human skills of
pattern recognition. Indeed, the author estimates that 80% of his time was spent attempting
to reduce and simplify the Routh conditions.

In this paper, we concentrate on 5th order systems; and briefly mention some results
for 4th and 6th order characteristic polynomials. Though not all of the results are new, the
presentation given here is more complete and more detailed than any other source the present
author is aware of.

The initial part of this document, Sections 2, 3 and 4 is concerned with establishing the
dynamical equations for the cavity, the beam and the control loops, respectively. In Section 5
we record the generic Routh criteria up to sixth order. In the remaining Sections 6 through
14, we build up and examine ever more complex systems using the components described
in the preliminary Sections 2 through 4.

2 BEAM LOADING THEORY

The purpose of this section is to develop a model for the cavity response to small amplitude
and phase modulations of the driving current vectors. The disposition of steady state phasors
is as shown in Figure 1. We adopt the notation introduced in Reference 5. The cavity voltage
is V(t)e jcvt and the total current driving the cavity is IT (t)e jcvt , where t indicates time and w
is the drive angular frequency. Bold face type will indicate complex quantities, and ordinary
type face will denote pure scalars. We shall employ dot notation for time derivatives.
The cavity fundamental resonance is modelled as a parallel resonance LCR circuit. Let
nres = 1j-JLC be the cavity resonance frequency and a = nres j(2Q) = 1j(2RC) be
the cavity half-bandwidth. As noted in Reference 5, the dynamical effect of sweeping the
cavity resonance frequency is insignificant provided a »1 Qj n Iwhich is always the case.
Hence the voltage and current obey the equation:

v+ 2(a + jW)V + (n2
- w2 + 2jaw)V = 2aR (iT + jwIT) . (1)

We choose to write the voltage and current as the sum of steady state parts VO = VOej'tflv

and I~ = /~ej'tflT, and small time dependent perturbations. We shall use 1/1 to denote steady
state phases and ¢ perturbation phases.

2.0.1. Steady state The steady state components obey the relation:

(n2 -w2 +2jaw) /0 VO
-L exp j (1/IT - 1/Iv) where /~ = - . (2)

2~w ~ R

Let \11 = 1/Iv - 1/IT be the phase difference of response and drive phasors. We compare real
and imaginary parts and divide to eliminate the current moduli,

and so obtain:
(n2 - ( 2 )

tan \11 = which relation defines the tuning angle \11.
2aw
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FIGURE 1: Steady-state phasor diagram for beam loaded cavity.

To further define the circumstance, we must specify the steady state generator current
I~ = /~ei1frg and beam image current Ig = /ge i1frb which sum to form the total current I~.
The beam current is approximately 90° out of phase with the cavity voltage; the precise
relation depends on the synchronous phase angle J.Lb. We adopt the convention J.Lb = 0 for
a non-accelerating beam. Hence l/fb = ±(Jr/2 + J.Lb), and the negative sign applies below
transition energy and the positive above. With these assignments, the steady state relation
between current vectors is:

(Q2-w2+2jaw)I~eNV =2ajw [I~eNg -jI2e-iJLb] . (3)

We divide throughout by 2jaw x /~ej1frv, and introduce the dimensionless current ratios

Yg = /2/I~ and Yb = Ig / I~. The steady state relation becomes:

1 - j tan \II = Ygei (1frg-1frv) - jYbe-j(J-tb+1frV) .

We set 1/Iv = 0 and then compare real and imaginary parts:

(4)

Re =} 1 = Ygcos 1/Ig - Yb sin J.Lb , (5a)

Im =} tan \II = Yb cos J.Lb - Yg sin l/fg. (5b)

2.0.2. Non steady state We now find the relation between current and voltage vectors for
small perturbations. Let us assume the exp(jwt) time dependence, and introduce the "slow
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approximation" V« wV and iT « WIT. Since the radio-frequency wj2n is usually many
MHz whereas the perturbation frequencies are usually a few kHz, the approximation is a
good one. We allow for a varying cavity resonance frequency Q(t) = Qo + ~Q(t). The
cavity response is modelled by:

[lja-j/w]V + [l-jtanW-jQo~Qj(aw)]V = RIT(t). (6)

We introduce the perturbation vectors e as follows: V = VO(l +ev) and IT = I~ (1 +eT).

We subtract the steady state equation [1 - j tan W]Vo = R I~ and divide throughout by
Vo, to obtain:

[lja-jjw]ev + [l-jtanW]ev - (I~jlneT - jQob.Q(t)j[aw] =0. (7)

We assume V « wV, note that Qo~Qj(aw) ~ ~Qja to first order, and replace a-I with
i c the cavity time constant, and so find:

iceV + [l-jtanW]ev - (I~jI~)e-j'l!eT - jic~Q(t)=O. (8)

To proceed further, explicit expressions for the constituents of IT are required.

(9)

(lOa)

The dimensionless components Zr and ¢r of the perturbation vector er = (Zr + j ¢r ) model
amplitude and phase modulations, respectively. We substitute for er , replace time derivatives
with the Laplace operator s, and compare real and imaginary parts to find, respectively,

zv(l + Sic) + ¢v tan 'II + Yg (¢g sin o/g - Zg cos o/g)

+ Yb (Zb sin JLb - ¢b cos JLb) = 0 ,

¢v(l + Sic) - zv tan 'II - Yg (¢g cos o/g + Zg sin o/g)

+ Yb (Zb cos JLb + ¢b sin JLb) = ic~Q . (lOb)

Note, until we choose a definite value for the steady state generator phase, 0/g, there is no
direct relation between tan 'II and (Yb , J.Lb).

2.1 RF feedback around the cavity

In this section we show how including a voltage propo!tional feedback around the cavity
modifies the cavity equations. This type of feedback (with small, precise loop delay), as
discussed by Boussard,6 requires a high power summing junction since it is the entire rf
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signal which is fed back. The terminology "rf feedback" is preferred over "fast feedback"
which might be confused with "fast phase loop".

2 .1.1. Steady state The steady state generator current I~ = 12ej 1/Jg is the sum of the

demand current I~ = IJe j 1/Jd and the feedback current IJ = IJe j 1/Jf. Together with I~ they

sum to form the total current I~. We consider the case of a delayless voltage proportional
feedback, so IJ = -hej 1/Jh l~ej1/Jv where h is the gain. With this assignment, the steady
state relation between current vectors is:

(Q2 _ui + 2jaw) I~eNv = 2ajw [IJeNd - jI2e- iJLb - heNh I~eNv]. (11)

We divide throughout by 2jaw x l~ej1/Jv, and introduce the dimensionless current ratio

Yd = IJ / 1~. The steady state relation becomes:

1 - j tan \If = Ydej (1/Jd-1/JV) - j Ybe- j (JLb+1/JV) - hej 1/Jh .

We set 1frv = 0 and then compare real and imaginary parts:

(12)

and Im::::} tan \If = Yb cos J-tb - Yd sin Vrd + h sin Vrh . (13b)

2.1.2. Non steady state We now find the relation between current and voltage vectors
for small perturbations. The cavity response is modelled by:

iceV + [l-jtan'lt]ev - (I~/I~)e-j'lJeT - jic~Q(t) =0. (14)

To proceed further, explicit expressions for the constituents of IT are required.

Let I~(l+eT)=I~(l+ed)+I~(I+eb)+IJ(I+ef)' (15a)

then I~eT = IJe j 1/Jd ed - jIge-jJLbeb - hej1/JhI~ef . (15h)

We substitute the perturbation vectors er = (Zr + j<Pr), note that ef = ev, and compare
real and imaginary parts to find, respectively,

zv(1 + Sic) + <Pv tan \If + Yd (<Pd sin 1frd - Zd cos Vrd)

+Yb (Zb sin J-tb - <Pb cos J-tb) + h (zv cos Vrh - <Pv sin 1frh) = 0 , (16a)

+Yb (Zb cos J-tb + <Pb sin J-tb) + h (<Pv cos Vrh + Zv sin Vrh) = 0 . (16b)
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Note, setting h = 0 will recover the situation of no rf feedback around the cavity, and in
this case the demand and generator currents are equal so that subscript d can be replaced
by g. Note, until we choose a definite value for the steady state demand phase 1/Jd there is
no direct relation between tan Wand (Yb , /vtb). If the tuning changes, then rc~Q(t) should
be added to the right hand side of Equation (16b) for imaginary parts.

3 BEAM EQUATIONS

We shall give equations for rigid bunch dipole and quadrupole oscillations in the limit of
small amplitudes.

3.1 Dipole motion

We suppose the ideal cavity drive frequency Wo is synchronous with a particle travelling
with the equilibrium momentum demanded by the guide magnetic field. However, as a result
of modulations, the cavity phase may advance or lag the ideal phase (<1>0 = Jwodt) by
an amount ¢v. Likewise, the beam centroid may differ from the ideal phase (<1>0) by an
amount ¢b. The energy given to the beam is the vector dot product of cavity voltage and
beam current.

3.1.1. Steady state If the beam image current has phase 1/Jb, then the beam current has
phase 1/J~ = 1/Jb + Jr. Suppose there is a single cavity with peak voltage Vo. The energy
gain per tum is:

(17)

3.1.2. Non steady state Suppose the cavity has relative phase and amplitude modu-
lations ¢v and zv. The energy gain of the beam centroid is:

(18)

We subtract the steady state energy gain, Equation (17), to find the energy deviation 8E:

8E = eVo(1 + zv)[sin/vtb COS(¢b - ¢v) - COS/vtb sin(¢b - ¢v)] - eVo sin/vtb. (19)

We expand to first order and take the Laplace transform, to obtain:

s 8E = Kl [zv sin tLb + (¢v -l/Jb) cos tLb] . (20)

Because of the energy deviation, the phase error l/Jb will advance at the rate: s l/Jb = K28E .
The product of constants is

(21)
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where the symbols follow those in Reference 7. Note that we have chosen to define Os, the
synchrotron frequency, sans the usual cos ~b term.

3.2 Quadrupole motion

In this section we derive the envelope equation for a bunch which has elliptical equi-density
contours in the longitudinal phase plane. The equations presented follow from Reference
8. We start from the phase equation for a general particle, with index i.

.. 2
<Pi = Os {(<Pv COS~b + Zv sin~b) - [(1 + zv) cos ~b - <Pv sin ~b] x <Pi}. (22)

Let <Pi = Af3(t) cos ljI(t) with the constraint 8lj118t = II f32. We use the chain rule to
evaluate the derivative and find;Pi = A cos ljI [,8 - II f33]. Hence:

.. 3 2
A [f3 -1/f3 ] = - Qs [(1 + zV)COS~b - ¢v sin ~b] x Af3

+ Q;[¢vcos~b+zvsin~b]/cosljl.

We make the assignments cos ljI = ±1 (as occur at the extrema of the phase oscillations)
and sum the two resulting equations so as to eliminate the terms in Zv and ¢v . Finally, we
note that on the envelope AfJ = 8 is the bunch half-length. Hence the envelope equation
is:

d28 A4

dt2 8 3 = -Q; [cos M(l + zv) - </Jv sin M] x 8 . (23)

Let 8 = 80 + () be the sum of a steady state part 80 and a small perturbation ()(t).

3.2.1. Steady state We set zv and the time derivatives to zero, and recover an
expression for the amplitude A2 = 86 Qs Jcos JLb which is an invariant of motion.

3.2.2. Non steady state The equation for small oscillations is:

This is Taylor expanded to first order in (), and becomes:

.. 2 2() + 4Qs cos JLb x () = 80Qs [¢v sin ~b - Zv cos ~b] . (25)

Let us introduce the variable 8W, then the Laplace transform of the envelope oscillation
can be derived from:

and soW = -4 cos ~b x () - 80 [zv cos ~b - <Pv sin ~b] . (26)
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To complete our description of the beam coupling to the cavity, we must find the relation
between variations of the bunch length and amplitude modulation of the beam current. We
shall use the first order approximation

Zb + Fo x () = 0 , (27)

(28)

which is reported in Reference 9. The form factor Fo depends on the bunch shape and the
equilibrium bunch half-length 80. Let the normalized bunch shape be written A(eo, x)
where x is the rf phase in radians. Under the conditions A is symmetric about x = 0 and
A= 0 at x = 80 we find that

80 80

Fo(80) = -f ~COS(X)dx/fACOS(X)dX.
a80

o 0

For the family of functions A = (86 - x 2)a the integrals reduce to:

Fo(80) = (2a + 1) _ Ja -l/2(80) with a > 0 , (29)
80 I a+l/2(80)

and where In are Bessel functions whose order (integer or fraction) depend on ex. In the
limit of short bunches, 80 < 1, we obtain the example cases: ex = 1/2 then Fo ~ 80/4 ,
ex = 1 then Fo ~ 80/5 .

4 CONTROL LOOPS

We give the Laplace transforms of the feedback equations. The Laplace operator variable S

is equivalent to a first differential in the time domain.

4.1 Beam phase and radial loops

If there is an rf feedback around the cavity, this loop modifies the demand phase <Pd; otherwise
the loop modifies the generator phase <Pg. The loop acts by modifying the instantaneous
cavity drive frequency according to the following equation.

Kp
~w(s) = (w - wo) = s<Pg = x (<Pb - <Pv)

(1 + Sip)

K r--- x8E.
(1 + Sir)

(30)

In the limit i p --* 0 we obtain "fast response" for the phase-loop. The phase open loop gain
is Kp , and the radial open loop gain is K r .

4.2 Beam quadrupole loop

This loop is intended to damp oscillations of the bunch length. If there is an rf feedback
around the cavity, this loop modifies the demand amplitude Zd; otherwise the loop modifies
the generator amplitude Zg.
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sKa
Zg = X () .

(1 + STa )

If K a < 0 this loop will anti-damp the oscillations.
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(31)

(32)

4.3 Tuning loop

This loop endeavours to bring the generator current and gap voltage vectors parallel (that
is in-phase) by modifying the cavity resonance frequency.

Kt
rc~Qres = (s + Wt) x (¢g - ¢v) ·

Often the comer frequency Wt is very small, and we can approximate the system by a pure
integrator (that is Wt = 0). In the absence of any other loops or beam-cavity interaction, the
loop will reduce the phase error to zero (that is c/Jg = c/Jv) provided the gain K t is positive.

5 ROUTH DETERMINANTS

The zeros of the characteristic polynomial are the poles of the system transfer function.
Consequently, if the system response contains only self-damped oscillations, then the zeros
of the characteristic must all lie in the left half of the complex plane. A necessary condition
is for the coefficients of sn to be greater than zero. In addition, the Routh criteria [RH(i) > 0
for i = 1, 2, ... n] for combinations of the coefficients must be satisfied.

Assume the characteristic polynomial is of the form:

then there are the following Routh-Hurwitz stability conditions for orders n = 2, 3, ... 6.
2nd order polynomial,
RH(I): a2

RH(2): al

RH(3): ao

3rd order polynomial,
RH(l): a3

RH(2): a2

RH(3): -aOa3 + ala2

RH(4): ao

4th order polynomial,
RH(l): a4

RH(2): a3

RH(3): -ala4 + a2a3

RH(4): - [aoa~ + al (ala4 - a2a3)]
RH(5): ao
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5th order polynomial,
RH(l): as

RH(2): a4

RH(3): -a2aS + a3a4

RH(4): -[atal + a2(a2as - a3a4) - aoa4as]

RH(5): -[ao(a2as - a3a4)2 - (aoas - ata4)(at al + a2(a2as - a3a4) - aoa4as)]

RH(6): ao

6th order polynomial,
RH(l): a6

RH(2): as

RH(3): -a3a6 + a4aS

RH(4): -[a2a~ + a3(a3a6 - a4as) - atasa6]

RH(5): -[at (a3a6 - a4as)2 - (at a6 - a2as)(a2a~ + a3(a3a6 - a4as) - ataSa6)

+ aoa~(a3a6 - a4as)]

RH(6): (aoa~ + at (a3a6 - a4as))[at (a3a6 - a4as)2 - (at a6 - a2as)(a2a~ + a3(a3a6 ­

a4as) - ataSa6) +aoa~(a3a6 - a4as)] - aoas(a2a~ +a3(a3a6 - a4as) - ataSa6)2
RH(7): ao

6 CAVITY AND BEAM DIPOLE MODE

This is the case originally treated by Robinson.2

6.0.1. Steady state relations The model assumes that the generator (or power tube)
current is maintained by an ideal feed-forward according to:

Yg cos 1/Ig = 1 + Yb sin JLb Yg sin 1/1g = Yb cos JLb - tan \II . (33)

6.0.2. Determinantal matrix

(zv, lPv, lPb, 8£), implies:

zl

-z2

o

Here zl = 1 +S7:c

The vector equation M x x = 0, where x =

z2 -CbYb 0

zl SbYb 0

_02
=0 . (34)

0 s s

-Cb Cb s

z2 = tan \II , Cb = COS(JLb) Sb = sin(JLb) .

6.0.3 Characteristic polynomial

0;[cos JLb(l + tan2 \II) - Yb tan \II] + 20; COS(JLb)7:c S

+ [(1 + tan2 \II) + (Os7:c)2 cos JLb]s2 + 27:c s3 + 7:; s4 . (35)
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6.1 Routh determinants
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RH(I), RH(2) and RH(3) imply i c ~ o.
RH(4): tan \II ~ 0, hence \II ~ o.
If RH(4) < 0, and the cavity is detuned in the wrong sense, then there is an instability

with: Im[s] ~ ±Qs cos JLb.
RH(5): cos JLb (1 + tan2 \II) - Yb tan \II > 0 implies the Robinson limit:

Yb < 2 cos /Lb / sin 2\11 . (36)

If RH(5) < 0, then there is an instability with Im[s] = O. In this case phase-focusing of
the bunch centroid is lost, and the bunch simply wanders.
Note, the Robinson criterion RH(5) is generalbnot because we have substituted a general
expression for the generator current, but rather because no expression at all is needed for
the generator.
Note, substituting the matched generator condition (1/Jg = 0 or tan \II = YbCb) in RH(5)
gives the special case stability limit: Yb < II sin JLb.

7 CAVITY WITH IDEAL RF FEEDBACK, AND BEAM DIPOLE MODE

7.0.1. Steady state relations The generator (or power tube) current Ig is the sum of
the demand Id and the feedback current If = -(hiR)V. The ideal feedback phasing is
1/Jh = O. The generator conditions (Yg and 1/Jg) are set according to Equation (33).

The demand current is set by an ideal feed-forward, according to

(37)

Because there are no feedback loops, neither Ig nor Id explicitly enter the matrix elements.
However, as seen from the demand vector, the cavity shunt resistance and cavity time
constant are reduced by a factor 1/(1 + h) where h is the feedback gain.

7.0.2. Determinantalmatrix
implies:

The vector equationM xx = 0, where x = (zv, lPv, lPb, 8E),

zl

-z2

o

with zl = (1 + h) + Sic

z2 -CbYb 0

zl SbYb 0

_Q2
=0,

0 s s

-Cb Cb s

z2 = tan \II Cb = COS(JLb)

(38)

b General in the sense that we may pick any combination of \II and Yb provided that the generator is correctly
adjusted.
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7.0.3. Characteristic polynomial
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Q; {COS ILb[(1 + h)2 + too2 \11] - Yb tan \11} + 2Q; cos ILb(l + h)rc s +

+ [(l + h)2 + tan2 \11 + (Qs rc)2 cos ILb] s2 + 2(1 + h)rc s3 + r}s4 .

7.1 Routh determinants

RH(I), RH(2) and RH(3) imply i c ~ O.
RH(4): tan '11 ~ 0, hence '11 ~ O.
RH(5): cos J.Lb [(1 + h)2 + tan2 '11] - Yb tan '11 > 0 implies:

(39)

2 cos J.Lb 2
Yb <. [1+h(2+h)cos'l1]

SIn 2'11
= COSJ.Lb [_2_ +h(h +2)] .

sin 2'11 tan '11
(40)

Note, from Equation (40) that the rf feedback becomes less efficient at large tuning
angles. For example, if h » 1 and cos '11 ~ II h then the approximate condition:
Yb < 4 cos J.Lbl sin 2'11 results, which is only a factor 2 better than the Robinson limit.
In general, to obtain a reasonable advantage from rf feedback we need h » 1I cos '11.

Note, substituting the matched generator condition (1/Jg = 0 and tan'l1 = YbCb) in
RH(5) gives the special case: Yb < (1 + h)1 sin J.Lb, which clearly shows the intensity limit
is raised. In this case 1/Jd = 0, so demand current and voltage are in-phase.

Note, that apart from the substitutions i c =* i cI (1 + h), tan '11 =* tan '11I (1 + h),
Yb =* Ybl(1 +h), the characteristic polynomial is identical with the case for no rffeedback
around the cavity, Equation (35). This indicates that the effect of the feedback is to increase
the cavity bandwidth, reduce the relative detuning, and reduce the relative beam-loading
ratio Ig I I~.

8 CAVITY WITH RF FEEDBACK MIS-PHASED, AND BEAM DIPOLE MODE

Mis-phasing of the cavity rf feedback can occur quite naturally, either through error or
because of the loop delay id. It is usual when setting up the feedback to put the drive
frequency w equal to the resonance frequency Q and then to adjust the phase advance
around the loop to be 0° or 180° depending on whether negative or positive feedback is
used. Let us assume negative feedback, then Qresid = 21Tn where n = 0,1,2, ... is an
integer. Suppose now that beam is introduced, and that the cavity is detuned to compensate
the reactive beam-loading. The drive and resonance frequencies are no longer equal, and
so there will a residual phase advance 1/Jh = (Qres - w) id. If the feedback gain h has not
already been pushed to the delay-limited value, then it is possible to adjust the feedback
phasing with beam current present and so reduce (or eliminate) the error 1/Jh. However, this



STABILITY OF BEAM-LOADED RF SYSTEMS 147

is not done in practise because the beam-current magnitude may vary on a pulse-to-pulse
basis.

8.0.1. Steady state relations The generator (or power tube) current Ig is the sum of
the demand Id and the feedback current If = -(1/R)h x V where h = hejVth is complex.
Generator is set according to Equation (33).

The demand is set by an ideal feed-forward, according to

Yd cos lfrd = Yg cos lfrg + h cos lfrh ; Yd sin lfrd = Yg sin lfrg + h sin lfrh .

Note, we shall treat lfrd as the dependent variable; and so the mis-phasing lfrh does not
alter the optimal tuning condition tan \II = Yb cos JLb.

8.0.2. Determinantal matrix The vector equation M x x
(zv, lPv, lPb, 8E), implies:

zi z2 -CbYb 0

-z2 zi SbYb 0

_[22
=0,

0 0 s s

-Sb -Cb Cb s

0, where x =

(41)

with zl = (1+h cos lfrh)+src z2 = tan \II-h sin lfrh Cb = COS(JLb) Sb = sin(JLb) .

8.0.3. Characteristic polynomial

n; {cos JLb[l + h2 + tan2 \II + 2h(cos 'IjIh - sin 'IjIh tan \II)] - Yb(tan \II - h sin 'IjIh)} +

+ 2[2; cos JLb(I + h cos lfrh)rc s + [1 + h2 + tan2\11 + 2h(cos lfrh - sin lfrh tan \11) +

(42)

8.1 Routh determinants

RH(I): r; ~ O.
RH(2): r c (1 + h cos lfrh) > 0 implies two conditions: (i) r c > 0 and (ii) cos lfrh > -1/ h.
When the second condition is exceeded, we have positive rather than negative rf feedback;
hence the mis-phasing must not be too great.
RH(4): tan \11 - h sin lfrh ~ O.
This condition implies that part of the tuning diagram becomes inaccessible, depending on
the sign of lfrh.
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RH(3): (1 + h2 + tan2 \11) + 2h(cos l/Ih - sin l/Ih tan \11) ~ 0 .

This condition is automatically satisfied when RH(4) and RH(2) are satisfied, as is found
by substitution.

RH(5) implies:

[1 + h2 + tan2 \11 + 2h (cos l/Ih - sin l/Ih tan \11)]
Yb < cos JLb . (43)

(tan \11 - h sin l/Ih)

If l/Ih > 0 and RH(2) and RH(4) are satisfied, then the Robinson limit can be exceeded
almost indefinitely; substitute tan \11 = h sin l/Ih + 8, then Yb < (1 + h cos l/Ih)218 to first
order in the small quantity 8. What happens here is that the demand (i.e. set-point at input
to the high power summing junction) is adjusted so as to partially cancel the steady state
beam image current. At the stability limit RH(4)=0, the demand quadrature component is
Yd sin l/Id = Yb cos JLb and so exactly cancels the beam current component. Of course, this
cancellation requires an ideally accurate feed-forward setting of the demand current phase
and is not completely practical, particularly as the beam current must be measured.

Alternatively, we may make the tuning angle \11 the dependent variable, and discover
what is the consequence of setting the demand current phase equal to zero (l/Id = 0). We
find that the detuning is modified: tan \11 = Yb cos JLb + h sin l/Ih. If we substitute for tan \11
into RH(5), then Yb < (1 + h cos l/Ih)1 sin JLb which shows the stability limit is degraded
compared with the case of ideal feedback (l/Ih = 0).

9 CAVITY, BEAM DIPOLE MODE, AND FAST BEAM PHASE-LOOP

The model of Section 6 is supplemented with a beam phase-loop which is intended to damp
bunch dipole oscillations. We shall assume that the phase-loop has the response of a pur~

integrator, that is ¢g = (Kpls) x (¢b - ¢v). We call this loop fast, because it amounts to
proportional (Le. no lag) feedback to the input of a variable frequency source. Note, ¢g is
the deviation of the generator phase from the steady state set-point l/Ig.

9.0.1. Steady state relations The model assumes that the generator (or power tube)
current is maintained according to:

Because we have added a control loop, we are forced to insert these explicit forms for the
generator components into the determinantal matrix.

9.0.2. Determinantal matrix
(zv, ¢v, ¢g, ¢b, 8E), implies:

The vector equation M x x 0, where x
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zl z2 SgYg -CbYb 0

-z2 zl -CgYg SbYb 0

0 Kp s -Kp 0 =0,

0 0 0 S _Q2
s

-Sb -Cb 0 Cb s
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with z1 = 1 + Sic z2 = tan \II

9.0.3. Characteristic polynomial

Q;[cos Ji-b(l + tan2 \II) + Kpic sin Ji-b(Yb cos Ji-b - tan \II) - Yb tan \II] +

+ [Kp(l + tan2 \II) + KpYb (sin Ji-b - cos Ji-b tan \II) + 2Q; COS(Ji-b)ic ] S +

+ [(1 + tan2 \II) + Kp re(l + Yb sin fLb) + (ns re)2 cos fLb ] s2 + 2res3 + r;s4 .

(45)

A necessary condition for stability is that the coefficient of S
1 should be greater than zero,

and this implies

sec2 \11 + 2Q;(ic / K p ) cos ~b
Yb < , (46)

cos ~b(tan \II - tan ~b)

from which we conclude tan \II ::: tan Ji-b and Kp > O. In the limit Ji-b ---* 0 we find an
expression which resembles the Robinson limit:

2 2Q;ic--+--­
sin 2\II Kp tan \II

(47)

However, in most cases this limit is subordinate to RH(5) below.

9.1 Routh determinants

RH(l) and RH(2) imply i c ::: o.
RH(3): 2 + K p i c [cos 2\11 + Yb cos \II sin(\II + ~b)] > O.
For K p > 0 and (\II + ~b) > 0, condition RH(3) is satisfied automatically for all tuning
angles \II :::; rr /4. For tuning angles greater than 45°, the term cos 2\11 becomes negative,
and stability is not guaranteed unless Kpic :::; 2. For example, consider the case ~b = 0;
then RH(3) implies

-2 [ 2 ]Yb > -.-- cos 2\11 + --
SIn 2\11 Kp i c

when \II > 0 . (48)
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Though this condition gives the minimum beam load ratio Yb, the maximum value will be
constrained by RH(5) below.

Condition RH(3) also allows a domain ofstability with \11 +JLb < 0; the damping provided
by the phase-loop can overcome (to a limited extent) the instability caused by detuning in
the wrong sense (Qres < Wdrive below transition energy). In the limit KpTc » 1, we obtain
the approximate stability limit:

cos 2\11
Yb<-------

cos \11 sin 1\11 + JLb I
when \11 + JLb < O.

or Yb < 2/ tan 12\111 when JLb ~ 0 and \11 < 0 . (49)

Note, negative detuning does not conflict with RH(5) below.
RH(5): cos JLb (1 + tan2 \11) + K pTe sin JLb Yg sin 1/1g - Yb tan \11 > O.
When \11 > 0 this implies a slight modification to the Robinson limit:

2 cos JLb [2 ]
Yb < sin2\11 1+ KpTcCOS \I1tanJLb(Yg sin1/lg)

2COSJLb KpTc(Yg sin 1/Ig) SinJLb
·2+ .SIn \11 tan \11

(50)

The additional stability (when JLb x 1/Ig > 0) arises from arranging the steady state generator
current to partially oppose the steady state beam image current; this has the effect of slightly
reducing the vector-geometric cross-coupling between amplitude and phase modulations.
However, this violates the matched generator condition, and implies that the tube must
deliver reactive power.
RH(4):

o S 2Kp sec2 \11[sec2 \11 + Yb(sin JLb - cos JLb tan \11)+

+ (Qs Tc)2 cos JLb x (cos 2\11 + tan JLb sin 2\11)] +

+ 2Kp(QsTc)2 cos JLb Yb (cos JLb tan \11 - sin JLb) +

+ TcK;[(1 + Yb sin JLb)2 - (Yg sin 1/Ig tan \11)2] + 4Q;TcYb tan \11 .
(51)

A sufficient condition for RH(4) > 0 is tan \11 = tan JLb; which agrees with the coefficient
of s 1 being positive. Alternatively, we may substitute tan \11 = Yb cos JLb (or 1/1g = 0) and so
find RH(4) > 0 at all points on the matched generator curve. Finally, we note that JLb = 0,
tan \11 < 1/ tan 1/Ig and RH(5) > 0 are sufficient conditions for RH(4) > O.

To conclude, the domain of stability for positive tuning angles is determined by the beam
load values Yb that satisfy both RH(3) and RH(5). For the case K pTe » 1 and JLb = 0, this
domain is given by:
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-2cos2'IJ < Ybsin2W < 2.

Evidently, as 'II ---* 90°, Yb becomes limited to a very narrow band of stable values.
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(52)

9.2 Slow beam phase-loop

We briefly consider the effect of introducing a time constant Tp into the phase-loop, as is
inevitable in reality. Thus the phase-loop is modelled by:

S¢g = (¢b - ¢v) x K p/(1 + STp)..

The substitution K p :::} K p/ (1 + STp) into the previous characteristic equation gives a
polynomial of order five. Assuming Kp 2:. 0, then the requirement that the coefficient of s1

is positive implies

K p sec2w+ 0; cos J-tb [2Tc + Tp sec2w]
Yb < --------------

Kp(cos J-tb tan 'II - sin J-tb) + O;Tp tan 'II

from which we conclude

(53)

sin J-tb
tan '11 > 2 .

- cos J-tb + Os Tp/ K p

The Routh determinants RH(I) and RH(2) imply Tc 2: 0 and Tp > 0, while RH(3)
constitutes a constraint on the phase-loop gain:

2[(Tp tan '11)2 + (Tp + Tc )2]
K p < 2 . (54)

Tc Tp (1 + Yb sin JLb)

The determinants RH(4) and RH(5) are somewhat intractable, containing decades of
monomial terms. However, in the special case J-tb = 0, K p = Os, Tc = Tp = l/Qs
the conditions reduce to:
RH(4): 2(1 + tan2 'II + tan4 'II) + 15Yb > 0
RH(5): (-27 - 45 tan2 'II + 6tan6 'II) + Yb tan '11(204 + 93 tan2 'II - 6tan4 'II)

- Y;75tan2 w > 0
which suggests that RH(3) is only a necessary condition for stability. The last determinant
RH(6) is identical with RH(5) of the previous case Tp = O.

10 CAVITY, BEAM DIPOLE MODE, AND TUNING LOOP

We assume that a feedforward (or program) accomplishes the bulk of the cavity tuning. We
do not assume that the tuning program is perfect, and hence the matched generator condition
1/1g = 0 is not required. However, we do suppose that the power tube operates in a linear
fashion when required to deliver reactive power; which typically implies Itan 1/1g I :s 1.

The tuning loop response for small oscillations about the program set-point is modelled as
a pure integrator: Tc ~Ores = (Kt Is) x (lPg - ¢v). However, since there are no other loops
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present, cPg = 0 for all time. This model was studied by Pedersen3 for the non-accelerating
beam case, and here it will be generalized to JLb =1= 0 as occurs during acceleration.

10.0.1. Steady state relations The generator (or power tube) current I g is set by an
ideal feed-forward according to Equation (33).

10.0.2. Determinantal matrix
Tc~Qres, cPb, 8E), implies:

zl

-z2

o
o

with zl = 1 + STc

The vector equation M x x = 0, where x = (zv, cPv,

z2 0 -CbYb 0

zl -1 SbYb 0

Kt s 0 0 =0, (55)

0 0 s _Q2
s

-Cb 0 Cb s

z2 = tan \11 Cb = COS(JLb) Sb = sin(JLb) .

10.0.3 . Characteristic polynomial

Q;cos JLbKt(1 - Yb sin JLb) + Q;[cos JLb(1 + tan2 \11 + TcKt ) - Yb tan \I1]s +

+ [Kt + 2Q; COS(JLb)Tc]s2 + [1 + tan2 \11 + TcKt + (Qs Tc)2 cos JLb] s3 +
+ 2Tc S

4 + T; s5 . (56)

A necessary condition for stability is that all coefficients of the characteristic polynomial
be greater than or equal to zero, else there are roots in the right hand side of the complex
plane. Examination of the coefficient of s 1 (when \11 > 0) implies the condition:

2cos JLb ( 2 )Yb <. 1 + K t Tc cos \11
SIn 2\11 [

2 KtTC ]= COSJLb --+--
sin 2\11 tan \11

if \11 > 0 .

(57)
However, this condition is subordinate to RH(5).

10.1 Routh determinants

RH(I) and RH(2) imply Tc ~ o.
RH(3): 2 sec2\11+K t Tc ~ 0 implies a lower (negative) limit on K t but which is subordinate
to RH(6) below. .
RH(4): Kt (2 sec2\11 + Ktic) + Yb Q;ic [4 tan \11 - KtTc sin 2JLb] ~ o.
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For the case ILb = 0 and \11 ~ 0 this condition is satisfied automatically. However, Routh
condition RH(4) turns out to be subordinate to RH(5):

(58)

This expression for Yb (Kt ) can be solved for the beam current Yb, and is found to factor:

(59)

Because the beam current (Yb) is positive, we find a quadratic constraint on the tuning loop
gain:

(60)

The above expression (59) is general and applies to accelerating buckets. We now show how
the expressions simplify for a non-accelerating beam, to demonstrate the correspondence
with Pedersen 3. Let us compare RH(4) and RH(5) in the limit ILb --+ 0, and for the cases
\11 > 0 and \11 < O.

10.1.1. Tuning angle positive
requires

RH(4) is satisfied automatically, but we find RH(5)

(61)

and conclude that the tuning loop gain is limited to K t < 2n;rc when \11 > O. Indeed,
this instability regime where Yb « 1, \11 > 0 and K t > 2n;rc has been experimentally
opserved in the CERN PS Booster.3 Note also"that for K t > 0 and ILb = 0, RH(5) is a more
severe constraint than the condition on the coefficient of s 1.
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10.1.2. Tuning angle negative

S. KOSCIELNIAK

RH(4) implies

whereas RH(5) implies

(2 + K t 7:c cos2 \II)
Yb < Kt ------

2Q~7:c sin 12\111

2 (2 + Kt 7:c cos2 \II)
Yb < (Kt - 2Qs Tc )·· 2Q;T

c
sin 12wl

and so RH(5) constitutes the more severe constraint. Note, when \11 < 0 the tuner gain must
satisfy Kt > 2Q;7:c .

The gain condition, for +ve and -ve tuning angles, can be summarized (Kt - 2Q;7:c)

x \II < O.
RH(6): Examination of the coefficient of sO implies the condition K t > 0 when
Yb sin fJ.,b < 1 as is required by RH(5).

11 CAVITY, BEAM DIPOLE MODE, TUNING LOOP, AND FAST BEAM PHASE­
LOOP

We supplement the previous model with the ideal (or fast) phase-loop; s<Pg = Kp(<Pb -<Pv).
We note that because S7:c~Qres = Kt(<pg -<Pv) there is the possibility for cross-coupling
to the tuning loop through the cavity-voltage phase-perturbation <pg.

11.0.1. Steady state relations
follows:

YgCg = Yg cos 1/Jg = 1+Yb sin fJ.,b

The generator (or power tube) current I g is set as

The presence of the phase-loop implies we must substitute explicit expressions for the
generator into the determinantal matrix.

11.0.2. Determinantal matrix The vector equation M x x = 0, where x
(zv, <Pv, 7:c~Qres, <Pg, <Pb, 8E), implies:

zl z2 0 SgYg -CbYb 0

-z2 zl -1 -CgYg SbYb 0

0 Kt s -Kt 0 0
=0,

0 Kp 0 s -Kp 0

0 0 0 0 s _Q2
s

-Sb -Cb 0 0 Cb s

with zl = 1 + S7:c z2 = tan \11 Cb = COS(fJ.,b) Sb = sin(fJ.,b) .
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11.0.3. Characteristic polynomial
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n; cos JLbKt(l - Yb sin JLb) + {n;[COS JLb(l + tan2 \II + rcKt ) - Yb tan \II] +

+ Kp[Kt + n;rc SinJLb + (Yb cosJLb - tan \II)]} S + {Kt + 2n; COS(JLb)rc +

+ Kp[(l + tan2 \II) + rcKt + Yb(Sin JLb - cos JLb tan \II)]} S2 + [1 + tan2 \II +

+ TcKt + (QsTc)2COS/Lb+TcKp(1+Ybsin/Lb)]s3 + 2Tc S
4 + T;s5'.

(64)

The coefficients of s 1 and s2 in the characteristic polynomial have the possibility to change
sign (when '11 > 0), and a necessary condition for stability is that they be greater than zero.
The coefficient of s1 is automatically positive on and below the matched generator curve
tan '11 = Yb cos /Lb provided that /Lb ::s 45°. Alternatively for the general case 1/1g =I 0, we
find the beam current limit:

2 cos /Lb(l + TcKt cos2 '11) + K p[2Kt cos2 '11 / Q; - Tc sin /Lb sin 2'11]
Yb < -----------~------------

sin 2'11 - K pTe COS2 '11 sin 2/Lb

for '11 > 0 ,or when /Lb -* 0 .
(65)

The coefficient of s2 is automatically positive if tan '11 ::s tan /Lb; alternatively, we find
the limit

when /Lb = 0 .or

K p + cos2 W[2QsTc cos /Lb + K t (l + TcKp)]
Yb < .

Kp cos '11 sinew - /Lb)

2 2Q;Tc + K t (l + TcKp)
Yb < -- +

sin 2'11 K p tan \II
(66)

11.1 Routh determinants

RH(l) and RH(2) imply Tc ~ O.
RH(3) factors and simplifies to:

2 + TcKp cos 2'11 + YbTcKp cos 'lJ sinew + /Lb) + Tc K t (l - KpTc) cos2 'lJ ~ O.

This condition is reminiscent of RH(3) in the case of a beam loaded cavity with phase-loop,
Section 9. Letusfirstconsiderpositivedetuning '11 > O.ForthecaSe/Lb = oand KpTc » 1,
we find the approximate condition:
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2

tan 12'11\ '
(67)

which is easily satisfied for '11 ~ 45°, but which must be approached with care for larger
tuning angles.

Now consider negative detuning, that is '11 + J.lb < O. Solving for Yb we find the beam
current limit:

cos 2'11 + 2j(TcK p) + (1 - TcKp)(Ktj K p) cos2 '11
Yb < ------~--------:;~----.;~--

cos '11 sin I'll + J.lb1

In the limit TcKp » 1, we obtain the approximate condition:

when '11 + J.lb < O. (68)

cos 2'11 - K t Tc cos2 '11
Yb < -------­

cos '11 sin \'11 + J.lb \

2 KtTc
or Yb < - -- when J.lb = o. (69)

tan \2'11\ tan \'11\

By comparison of Equation (69) with Equation (49), it is seen that the tuning loop slightly
reduces the stability domain when '11 < 0 .

We should also like RH(3) to be satisfied in the low current limit (Yb ~ 0); and for the
case KpTe » 1 this implies the approximate condition:

(70)

The fourth Routh determinant simplifies under the substitution[4]
tan '11 :::} Yb cos JLb, as occurs when the generator is matched. One finds the condition
RH(4):

{2(Kp + Kt ) + Tc(K~ + K;) + 20;T;Kp cos J-Lb(l - TcKt ) - TJK~K;} +

+ 2Yb [Kp(l + TcKp + TcKt ) + (OTc)2(Kp - Kt ) cos J-Lb] sin J-Lb +

+ Yl x [2cos2 J-Lb(Kp + Kt ) + Tc(K~ sin2 J-Lb + 40; cos J-Lb) +

+ 2TcKpKt cos2 J-Lb] + Yl Kp cos J-Lb sin 2J-Lb > 0 ·
(71)

We note that a sufficient condition is that the coefficients Y2, Y~, Yl, Yl be greater than
zero. Only the coefficients of Y2 (the constant term) and Y~ have the possibility to change
sign; and so, by inspection, sufficient conditions for RH(4)> 0 are !'cKt ~ 1 and Kp :::: Kt ,
as is found by substitution.

In the special case JLb = 0 we find the quadratic condition:
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2(Kp + Kt) + i c (K; + Kl) - i;K;K'f + 2Q;i;Kp(l - icKt) +

+ Yt [2(Kp + Kt) + i c4Q; + 2icKpKt] > 0 ,
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(72)

and this turns out to be subordinate to RH(5).
The fifth Routh determinant has many decades of monomial terms, and so we are led

to consider the special case tan \11 = Yb cos ~b, as occurs on the matched generator curve.
This results in a fifth order polynomial in Yb. However, for a non-accelerating beam the
condition ~b = 0 reduces the system to a quadratic in Yl.

Kp [Kt(Kt + Kp - KpicKt) + Q;(1- icKt)] [2 + ic(Kp + Kt)

+ 2Q;i;(1 + icKt) + i;KpKt] + Yt [2KpK'f + 2K;Kt + 2icK;K'f

+ Q; (2Kp - 2Kt - icK'f + 5icKpKt + 3i;KpKl)

+ 2Q;ic x (2 + icKt)] - Y: 2Q;Kt > 0 . (73)

The allowed domain of Yb will be maximized when the coefficients of Y~ and Yl are greater
than zero. By inspection, we note that KtTe ~ 1 and K p ~ K t is a sufficient condition for
coefficients Y~ and Yl both to be positive.

Considering the equations in a less restrictive manner, we observe that the coefficient of
Y~ in RH(4) and the coefficients of Y~ and yl in RH(5) are quadratic binomials in Kp and
K t which can be solved for either Kp or K t . For instance, if Qs ~ Kp ~ liTe then there is
no upper limit on the gain K t .

RH(6): 1 - Yb sin J-tb > 0 imposes a further constraint on the beam current, which is the
same as the no-loop case for a matched generator.

12 CAVITY WITH IDEAL RF FEEDBACK, BEAM DIPOLE MODE, AND TUNING
LOOP, AND FAST BEAM PHASE-LOOP

We supplement the previous model with ideal voltage proportional feedback around the
cavity, that is If = -(hiR)V. The phase-loop model is s4Jd = Kp(4Jb - 4Jv), where
4Jd is the demand- phase at inPllt to the' summing junction. The tuning loop model is
sTe~Qres = Kt (4Jg - 4Jv)· We should prefer to write our equations so that control loops
couple to the demand values, that is entirely in terms of Zd and 4Jd; and so Zg and 4Jg must
be eliminated. Now the instantaneous relation between current vector perturbations is:
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where eg = (Zg + il/>g), ed = (Zd + il/>d) and ev = (zv + il/>v). We have the steady state
relation: I~ = I~ + I~, and so I~ can be written in terms of the steady state beam current
and cavity parameters. We substitute the statics relations, and compare real and imaginary
parts:

Re=*

Im =*

YgCgZg - YgSgl/>g = (YgCg + h)Zd - YgSgl/>d - hzv ,

YgSgZg + YgCgl/>g = YgSgZd + (YgCg + h)l/>d - hl/>v .

Eliminating Zg, substituting e = (YbCb - tan \11) and subtracting a multiple of l/>v we find:

To first order in B we have:

In the limit YbSb < 1 and he < 1 we obtain the approximate relation: (l/>g - l/>v) =
(1 + h) (l/>d - l/>v), and this is valid' on and close to the matched generator curve. Since there
is no amplitude loop, Zd = 0 for all time; and so it becomes possible to write the matrix
coefficient completely in terms of l/>d. In a similar fashion we may eliminate l/>g, and obtain
Zg to first order in e:

We shall also choose to write the cavity equations as if the cavity is driven by Id and Ib;
this has the effect of causing the substitution Z1 =* (1 + h) + S 'rc .

12.0.1. Steady state relations The generator (or power tube) current I g = Id + If is
the sum of the demand Id and feedback If currents. The demand current Id is set as follows:

The presence of the phase-loop implies we must substitute explicit expressions for the
demand current into the matrix coefficients. The feedback current is If = -(hiR)V.

12.0.2. Determinantal matrix The vector equation M x x = 0, where x
(zv, l/>v, 'rc8Qres, l/Jd, l/Jb, 8£), implies:
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zl z2 0 SdYd -CbYb 0

-z2 zl -1 -CdYd SbYb 0

0 Kt(1 + h) s -Kt(1 + h) 0 0
=0.

0 Kp 0 s -Kp 0

0 0 0 0 S _02
s

-Sb -Cb 0 0 Cb s

12.1 Routh determinants
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(75)

It is found that the characteristic polynomial is identical with that of the previous Section 11,
except with the substitutions:

~ ~~ ~
r -'. tan ~ -'. -- ~b -'. (76)
c--,' l+h ' --,' l+h ' --,' l+h'

made throughout the expression. This being so, we can take over all the results of the
previous section regarding the positive definite nature of the polynomial and regarding the
Routh-Hurwitz determinants. For example RH(6) becomes

Yb sin~b
1 - (l + h) > 0 (77)

which indicates that the stability limit is enhanced by a factor (1 + h), just as for the case
of rf feedback only and matched generator.

13 CAVIT~ BEAM DIPOLE MODE, AND SLOW TUNING LOOP, AND FASE BEAM
PHASE-LOOP

We choose to model the tuning loop response as a single pole, or lag with time constant rt;
that is

rc~Ores = Kt(t/Jg - t/Jv)j(1 + srt) . (78)

The phase-loop model is unchanged: st/Jg = Kp(t/Jb -t/Jv). Once more, there is the possibility
for cross-coupling between phase and tuning loops through the cavity phase t/Jg.

13.0.1. Steady state relations The generator current Ig is set as follows:

Yg sin 1/Ig = YgSg = Yb cos ~b - tan ~ .

The presence of the phase-loop implies we must substitute explicit expressions for the
generator into the determinantal matrix. The absence of an amplitude loop implies that the
generator amplitude is set by an ideal feed-forward.
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13.0.2. Determinantal matrix The vector equation M x x = 0, where x =
(zv, lPv, ic~Ores, lPg, lPb, 8£), implies:

zl z2 0 SgYg -CiJYb 0

-z2 zl -1 -CgYg SbYb 0

0 K t 1 + Sit -Kt 0 0
=0, (79)

0 Kp 0 S -Kp 0

0 0 0 0 S -02
s

-Sb -Cb 0 0 Cb S

with zl = 1 + Sic z2 = tan 'II Cb = COS(JLb) Sb = sin(JLb) .

13.0.3. Characteristic polynomial The size of the largest Routh determinant scales
as the 4th power of the size of the polynomial. Replacing the tuner integral control with lag
control will increase the length of the polynomial by roughly 60%, and octuple the number
of terms in RH(5). To avoid this, we shall consider the case i c « it and neglect i c as
compared with it whenever both terms ate multiplied by the same factorc . Employing this
strategy, the characteristic polynomial reduces to the approximate form:

Q; [cos f.Lb ( 1 + tan2 \II + K t) - TcK p sin f.Lb tan \II - Yb tan \II

+ 0.5Yb sin2f.Lb(TcKp-Kt)] + {Kp (1 + tan
2 \II + K t - Q;TcTt Sinf.Lb tan \II)

+ Q; cos f.Lb [Tt(l + tan2 \11)+ TcKt ] + Yb [Kp(sin f.Lb - cos f.Lb tan \II)

+ Q;Tt (0.5TcK p sin 2f.Lb - tan \II)]} S + [(l + K pTt)(1 + tan2 \II)

+ Kt(l + TcKp) + YbKpTt(sin f.Lb - cos f.Lb tan \II) + 2Q;TcTt cos f.Lb] s2

+ [Tt(l + tan2 \II) + Tc(Kt + KpTt) + (QsTc)2TtCOSf.Lb + YbTcKpTt Sinf.Lb] s3

2 4 2 5+ icit S + icit S . (80)

The finite gain K t of the tuning loop at dc (s = 0) strongly modifies the form of the
polynomial as compared with the case of a pure integral control which has infinite gain at
dc. It should also be noted that K t is now dimensionless, whereas previously (Section 11)
it had the dimension of frequency.

c In fact, we have also neglected 2ic compared with it.
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The coefficients of sl and s2 in the characteristic polynomial have the possibility to
change sign (when '11 > 0), and a necessary condition for stability is that they be greater
than zero.

The coefficient of s is positive if the beam current satisfies:

2Kp (1 + Kt cos2 '11) + Q; [2COSJLb ('l't + 'l'cKt cos2 '11) - 'l'cKp'l't sin 2'11 SinJLb]
Yb < .

2Kp cos '11 sin('I1 - JLb) + Q;'l't (sin 2'11 - 'l'cKp cos2 '11 sin2JLb)

when \11 > 0 ,

or if JLb = 0 . (81)

However, this condition is subordinate to RH(6), below.
The coefficient of s2 is positive if tan \11 ~ tan JLb, otherwise we find a limit on the beam

current:

1+ Kp'l't + cos2 '11 [Kt + 'l'cKp(l + Kt ) + 2Q; COS(JLb)'l'c'l't]
Yb < ---------------------

K p cos '11 ['l't sin(\I1 - JLb) - 'l'c cos \11 sin JLb]

when \11 > 0 ,

or 2 [ 1] 1 [Kt 'l'c 2Q;'l'c]Yb < -- 1+-- +-- -- + -(1 +Kt ) +--
sin 2\11 K p'l't tan \11 K p'l't 'l't K p

if JLb = 0 .
(82)

13.1 Routh determinants

RH(l) and RH(2) imply 'l'c ~ 0 and 'l't ~ o.
RH(3): 'l'c'l't[2'l'l sec2 \11 + 'l'cKt'l't(l- 'l'cKp) + 'l'cKp'l'l cos 2\11 sec2 '11 +Yb'l'cKp'l'?(sin JLb +
cos JLb tan \11)] > 0 .
For positive detuning '11 > 0 and K p > 0, this condition is fairly easy to satisfy except in
the cases 'l'cKp > 1 and '11 > 45° . There are several inferences that can be made, but first
let us write RH(3) in a more convenient form:

2 2 'l'c 2
--(1 + tan '11) - Kt - + (1 - tan \11) + Yb cos JLb(tan JLb + tan \11) > 0 , (83)
'l'cKp 'l't

where we have assumed 'l'cKp » 1 . Firstly, from a practical standpoint, the system should
be stable in the limit of zero beam current, and this leads to a limit on the tuner gain Kt :

~ 2
Kt - < 1 when Yb =0 , tan '11« 1 and 'l'cKp» 1.

'l't
(84)
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(86)

when \11 + JLb < O. (87)

For the case of large detuning (tan2 \11 » 1) and Yb -+ 0 we find that K t < 0 is required,
but this conflicts with other Routh conditions. RH(3) can also be construed as a limitation
on the beam current:

i e 2 2(1 + tan2 \11)
Yb cos JLb(tan JLb + tan \11) > Kt - + (tan \11 - 1) - . (85)

it ieKp

For the case tan2 \11 » 1 and JLb = 0 we find the approximate condition

[ 2] [i e ] 1 .' 0Yb > tan \11 1 - -- + Kt - - 1 -- ~ tan \11 wIth \11 > 45 .
ieKp it tan \11

In light of this, the matched generator condition tan \II = YbCb is not a sufficient condition
for RH(3» 0 .

The condition RH(3) > 0 also allows a domain of stability with negative detuning,
\11 + JLb < 0, provided the beam current is not too large:

it (2 + ieKp cos 2\11) + ieKt cos2 \11(1 - ieKp )
Yb < ----------------

ieKpit cos \11 sin 1\11 + JLbl

For the case of a non-accelerating beam, JLb = 0, the condition simplifies to:

and ip the limit ieKp » 1 this becomes:
2 i e K t

Yb < ----
tan 12\111 it tan 1\111 (88)

RH(4): after factoring away ieit, this condition contains 46 monomial terms. Substituting
the matched generator condition, tan \11 =} Yb cos JLb, reduces the system to 29 terms; and
making use of the condition i e « it reduces the system still further.
RH(4) becomes:

{2it + ilKp(2 + icKp) + 2Kt (it - i;Kp) + icK; (1- i;K;)

+ 2(Qsi c)2Kpit cos J-tb x (it - icKt )} + Yb {2it[Kp(it + icKt )

+ icK;it + (Qsi c)2 cos J-tb(Kpit - K t )] sin J-tb}

+ Y; it [2 cos2 J-tb(2 + K t + Kpit + icKpKr)

+ icK;it sin2 J-tb + 4Q; cos (J-tb) i cit ]

3 2 . 2 y 4 2 4 0+ Yb Kpit cos JLb SIn JLb + b it cos JLb > . (89)
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For a non-accelerating beam, this becomes a quadratic in Y; :

{2rt + r(Kp(2 + rcKp) + 2Kt (rt - r;Kp) + rcK;(l- r;K;)

+2(Qs rc)2 Kprt(rt - rcKt )} +

+ Ylrt [2 (2 + Kt + Kprt + rcKpKt ) +4(Q;rcrt + 1)] + yt2rt > O.
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(90)

The domain of stability will be maximized when the coefficient of Y~ (the term independent
of Yb) is positive.
RH(5): After substituting the matched generator condition, 1/Jg = 0, the fifth Routh
determinant still consists of 251 monomial terms. However, after substituting f.lb = 0
and factoring, the system collapses to 71 terms, and making extensive use of the condition
re « rt reduces the condition still further. We find the following quadratic condition in Y; :

Kp {2rt (1 + Q;r?) + K; [2rt - r;K p(2 + rcKp)

+ (Qs rc)2rt (1 - Q;r;- 2rcKp)] + rcK;r( + K prt
2 (2 + Q;rcrt )

+ Ktrt [4 + Kprt(2 + rcKp) - Q;rcrt (1 - 2rcKp - Q;r;)]

+ (Qsrt)2 rc (2Q;rcrt -7) + (rcKt )3 [Q;(l - rcKp) - K~]} +

Ylrt x {Kp [4 + Kt (6 + 2Kt ) + Q; (2r( + 3r;K( + 5rcKt rt )]

+ 2K~ (rt + rcK; + Ktrt) + 4Q;rcr( - (Qs Kt )2rc - 2Q;Ktrt (1 - Q;r;)}

(91)

Under the conditions Kt < rtlre and Kp > n;rt RH(5) is positive for all Yb, though
there may be an upper bound on Kp . The conditions on K t and Kp do not conflict with
RH(4) > o.
RH(6): (Kt + sec2 \11) cos Ji-b - (Yb + reKp sin Ji-b) tan \11 + 0.5Yb (reKp - Kt) > O.
Solving for Yb we find the beam current is limited to:

or

2 cos Ji-b(1 + Kt cos2 \11) - reKp sin 2\11 sin Ji-b
Yb < ------~-------:~----

sin 2\11 + cos2 \11 sin 2Ji-b(Kt - reKp )

2 Kt
Yb<-- +--

sin 2\11 tan \11

when \11 > 0

if f.lb = 0 . (92)
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14 CAVITY, BEAM DIPOLE MODE AND BEAM QUADRUPOLE MODE

Robinson type stability for dipole-quadrupole mode coupling has been investigated by
Wang,10 using a Sacherer style fonnalism and for the case ofa non-accelerating beam. In this
section we employ the equivalent circuit model and generalize to the case of an accelerating
beam. However, for ease of exposition we shall consider the Routh detenninants for /vLb = 0
before going on to the case /vLb =1= O.

14.0.1. Steady state relations The generator current I g is set by an ideal feed forward
as per Equation (33).

14.0.2. Determinantal matrix The vector equation M x x = 0, where x =
(zv, ¢v, Zb, ¢b, 8E, (), 8W), implies:

zl z2 SbYb -CbYb 0 0 0

-z2 zl CbYb SbYb 0 0 0

0 0 0 S _Q2 0 0s

-Sb -Cb 0 Cb s 0 0 =0, (93)

0 0 0 0 0 S _Q2
s

CbeO -SbeO 0 0 0 4Cb s

0 0 I 0 0 Fo 0

with zl = I +sre z2 = tan \II Fo = Fo(eo) .

14.0.3. Characteristic polynomial

Q; [cos tLb4(COS tLb sec2 '11 - Yb tan '11) + YbFOElO(Yb - cos tLb tan '11)] +

+ Q; [5 cos tLb sec2 '11 + 4(reQ s cos tLb)2 - Yb tan '11(1 + FoElo)] s2+

+ 8(Q; cos /vLb)2 res + 10reQ; cos /vLb s3+

+ [sec2 '11 + 5(Qs re )2 cos tLb] s4 + 2re s5 + r; s6 .

14.1 Non-accelerating beam

For the case /vLb = 0 the characteristic polynomial reduces to:

(94)
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The coefficient of s2 has the possibility to change sign when \11 > 0, and this implies a
limit on the beam current:

2 [5 2(QS 'l'c)2]
Yb < -.--+ .

(1 + F080) SIn 2\11 tan \11

However, this condition is superseded by RH(5), RH(6) and RH(7).

14.1.1. Routh determinants
RH(I), RH(2) and RH(3) all imply 'l'c ~ o.
RH(4): (2Qs 'l'c)2(1 + F080) tan \11 > 0 implies the tuning angle must be positive (\11 > 0),
because Fo 2: o.
RH(5) factors and can be manipulated to the form:

tan \11(1 + 4Fo8o) + Yb [Fo8 o - sin2 \11(1 + Fo8 o)2] > 0 . (95)

There is no constraint for tuning angles sin \11 :::: ,JF080/(1 + F080);and in this range,
condition RH(6) supersedes. In the cases (i) Fo 80 « 1 and (ii) large tuning angles sin \11 ~ 1
we find the two approximate conditions:

. 2 (1 + 4F080)
(1) Yb < -- x ,

sin 2\11 (1 + F080)2

.. tan \11(1 + 4F080)
(11) Yb < .

1 + F080(1 + F080)
(96)

Case (i) resembles the Robinson limit, and both conditions are close in numerical value to
the Robinson limit for large tuning angles \11 > 1 radian.
RH(6) factors to: (3 tan \11 + Yb)(3 tan \11 - YbF080) > 0 from which we conclude:
Yb < 3 tan \II /(F080) when \11 > 0 and 80 > O. This is a severe constraint for small
tuning angles and long bunches. This instability regime has been observed in computer
simulations reported in Reference 11.
RH(7):

The presence ofthe Y; term in the quadratic will favourably modify the stability as compared
with the Robinson limit. However, for small tuning angles this condition is subordinate to
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(97)

RH(6). For large tuning angles tan '11 » 1, we apply a single Newton-Raphson iteration to
find the approximate condition:

2 (1 + 2FoGo)
Yb < -- x .

sin 2'11 (1 + FoGo/4)2

It should be noted that FoGo is usually less than unity, so the numerator dominates and the
stability limit is enhanced by including the quadrupole mode in the analysis.

To summarize, the effect of dipole-quadrupole mode coupling is to dramatically alter
the small tuning angle stability. However, for large tuning angles the usual Robinson limit
applies with only slight modification.

14.1.2. Matched generator We may substitute the condition VJg = 0 and find the beam
current limit for operation on the matched generator curve Yb = tan'l1.

The only conditions which are not trivial to satisfy are: the coefficient of s2 greater than
zero, and RH(5) and RH(6) greater than zero. RH(6) reduces to 3 - FoGo > 0, and is a
sufficient condition for stability. Since FoGo ~ 1 in most cases, RH(6) is satisfied. Hence
we recover the same result as for the case of dipole motion only: for a non-accelerating
beam and a driven narrow-band cavity with resistive loading of the generator there is no
longitudinal instability.

14.2 Accelerating beam

We consider the condition j1,b > 0, in which case the coefficients of s1 and s3 are positive.
From the characteristic polynomial, Equation (94) we note that the coefficient of s2 may
change sign when '11 > 0; this implies a beam current limit,

cos j1,b [5 sec2 '11 + 4(QSLC)2 cos j1,b]
Yb < ,

(1 + FoGo) tan '11

but the condition is, however, subordinate to the Routh determinants below.

(98)

14.2.1. Routh determinants
RH(l), RH(2) and RH(3) imply LC ~ o.
RH(4) simplifies to: 4 tan·\I1(QsLc)2Yb(1+FoGo) > 0; and we recover the condition '11 > o.
RH(5) simplifies to:

which implies the beam current condition:

cos j1,b tan '11(1 + 4FoGo)
Yb < 2 .

sin '11(1 + FOGO)2 - FoGo

The last expression usually provides: a small modification to the Robinson limit.

(100)
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We suppose Fo ~O, so this leaves the condition Yb < 3 cos JLb tan 'II/ FoGo which poses
a severe constraint to the maximum beam current at small tuning angles unless the bunches
are short.
RH(7) factors to:

4[4 cos
2

JLb . 2]
Q s 2 - Yb tan 'II cos JLb [4 + FoGo] + FoGoYb > 0 ,

cos 'II

which simplifies to

15 CONCLUSION

(102)

(103)

Analytic criteria for the stability of a beam-loaded rf cavity with beam phase-loop and
cavity tuning-loop both modelled as ideal integrators have been derived. Few simple results
comparable to the Robinson criteria are obtainable for these multi-parameter systems. In
fact, due to the size of the 5th Routh determinant (up to two hundred monomial terms for
the accelerating beam case) the abridged criteria reported herein are incomplete in that they
are not both necessary and sufficiente . Thus substitution of numerical system parameters,
or the use of graphical methods may still be required to establish absolute stability bounds.
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