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Abstract

We discuss the geometry of the Lagrangian quantization scheme based on (gen-

eralized) Schwinger-Dyson BRST symmetries. When a certain set of ghost �elds are

integrated out of the path integral, we recover the Batalin-Vilkovisky formalism, now

extended to arbitrary functional measures for the classical �elds. Keeping the ghosts

reveals the crucial role played by a natural connection on the space of �elds.
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The Lagrangian quantization scheme of Batalin and Vilkovisky [1] has a direct relation

to what we have called \Schwinger-Dyson BRST symmetry", { the BRST symmetry whose

Ward identities provide the most general Schwinger-Dyson equations of any given quantum

theory [2, 3]. Imposing this Schwinger-Dyson symmetry on the theory leads immediately to

a Lagrangian Master Equation [4], which reduces to the Batalin-VilkoviskyMaster Equation

[1] upon integrating out a certain set of new ghost �elds cA. The \anti�elds" of the Batalin-

Vilkovisky formalism are nothing but the usual antighosts of these new �elds cA [4].

The easiest way to see the need for new ghost �elds cA is to derive the Schwinger-

Dyson BRST symmetry from a particular collective �eld formalism [3]. Since the BRST

symmetry in question is related to arbitrary local shifts of all �eld variables, there is a one-

to-one correspondence between all fundamental �elds �A of a given theory and the required

collective �elds 'A. The appearance of both the new ghosts cA and the collective �elds 'A

is not fortuitous. For example, if one wishes to quantize a theory in such a manner that it

is invariant under BRST and anti-BRST symmetry simultaneously [6], then both of these

new �elds can simply not be removed from the Master Equation [7]. The new ghosts cA also

play an important rôle when one derives the Lagrangian BRST quantization from the BFV

theorem of the Hamiltonian formalism [8].
Gauge �eld theories can be dealt with at the same level as theories without internal gauge

symmetries. The solution to the quantization problem is then entirely given by imposing

the Schwinger-Dyson BRST symmetry, and demanding certain boundary conditions on the
resulting di�erential equation. Information about the internal gauge symmetries enters only
at the stage where boundary conditions are imposed. These boundary conditions can be
chosen to equal those of ref. [1], but more general procedures are also possible [4].

The Schwinger-Dyson BRST symmetry is intimately related to the BRST symmetry of
�eld rede�nitions [5]. This is not surprising, because Schwinger-Dyson equations can be

viewed as the tool with which to describe the quantized theory independently of a speci�c
path integral representation. In fact, the Schwinger-Dyson BRST symmetry is precisely the
gauge-�xed remnant of a hidden local gauge symmetry present in any quantum �eld theory:
The gauge symmetry of local �eld reparametrizations [3]. Ordinarily one chooses from the
outset a basis of �eld variables with which to describe physics, but the �eld rede�nition

theorem ensures { at least under certain mild assumptions about the asymptotic states {

that any other choice of variables should describe the same physics. Technically, this can
be seen from the invariance of S-matrix elements under �eld rede�nitions. Invariance of the
S-matrix under such reparametrizations is precisely a reection of the local gauge symmetry

of �eld rede�nitions [3], in just the same manner as invariance of S-matrix elements under

internal gauge transformations reects the ordinary gauge symmetry of gauge �eld theories.
Since the Schwinger-Dyson BRST symmetry can be viewed as one particular facet of

the general �eld reparametrization BRST symmetry, one would expect that a more general
Lagrangian quantization scheme could be derived from the latter. This should provide a

quantization principle independent of the �eld representation, \covariant" in the space of

�eld variables. Such a generalized quantization procedure should by de�nition be closely
related to the geometric formulation of the Batalin-Vilkovisky formalism, a subject that has
recently received considerable attention [9, 10].

The aim of the present paper is to derive this more general covariant Lagrangian quan-

tization prescription starting from the generalized Schwinger-Dyson BRST symmetry, { the
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BRST symmetry of �eld rede�nitions. In the process we hope to add some physical in-

sight to the more abstract algebraic considerations of refs. [9, 10]. Our manipulations will

throughout be \formal" in the sense that we shall employ standard manipulations in the

path integral, assuming the existence of a suitable symmetry-preserving regulator. Some of

the subtleties involved in this process, especially at the two-loop level, are discussed in ref.

[3].

To set the stage for the generalizations that are to follow, let us �rst briey consider the

simplest case, that of an action free of internal gauge symmetries. Fields of the classical

action S are denoted by �A; they can be of arbitrary Grassmann parity �(�A) � �A.
1 The

index A labels collectively all internal quantum numbers and space-time variables. A quan-

tum action Sext that incorporates the correct Schwinger-Dyson BRST symmetry can in this

case be taken to be simply [2, 3]: Sext[�; �
�; c] = S[�]� ��Ac

A, with a new ghost-antighost

pair cA; ��A of Grassmann parities �(cA) = �(��A) = �A + 1. Their ghost number assignments

are gh(cA) = �gh(��A) = 1. With this set of �elds, the Schwinger-Dyson BRST symmetry

reads

��A = cA ; �cA = 0 ; ���A = � �lS

��A
: (1)

In this simple case, it is obviously possible to substitute Sext for S in the transformation law
for ��A, but in general care is required in such a substitution. By correct Schwinger-Dyson
equations, we shall always refer to those that formally follow for the classical �elds of the
classical action, independently of whether the path integral has been given a precise meaning

through an appropriate gauge �xing, when needed.
The above choice incorporates the Schwinger-Dyson BRST symmetry (1) in the particular

�eld variables �A. To �nd a more covariant formulation, let us perform a �eld rede�nition
of all the classical �elds �A. At this stage we restrict ourselves to rede�nitions that do not
mix in the new ghost �elds cA; ��A. We follow to a large extent the formulation presented in

ref. [5]. Denote the new �eld variables by �A, and the transformation by F . Introduce left
(L) and right (R) vielbeins eA(L;R)B and their inverses, EA

(L;R)B, through the de�nition

eA(L;R)B(�) �
�l;rFA(�)

��B
; eA(L)BE

C
(L)A = eC(R)AE

A
(R)B = �CB : (2)

We next choose to let the ghost-antighost pair transform oppositely under F , i:e:, in total:

�A = FA(�) ; CA = EA
(R)Bc

B ; ��

A = ��Be
B
(R)A ; (3)

where CA and ��

A are the new transformed ghost �elds. This has the advantage that the

ghost-antighost measure formally, or with a suitable symmetry-respecting regulator, remains
invariant under the transformation. Of course, the �A-measure will in general not remain
invariant, but acquire a Jacobian factor

p
g, where g is the superdeterminant of the metric

gAB(�) = �CDe
C
(L)A(�)e

D
(R)B(�) : (4)

Consider now the action Sext. Since it must transform as a scalar under F , we immediately
have, using (3),

Sext = S[F (�)]� ��

AC
A : (5)

1Our conventions are described in detail in the appendix of ref. [4].
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This transformed action is invariant under the transformed Schwinger-Dyson BRST symme-

try

��A = CA ; �CA = 0 ; ���

A = (�1)�M+1�MAKC
K��

M � �lS

��A
: (6)

It is also straightforward to check that the functional measure is formally invariant. The

\connection" �ABC is the (superspace) Christo�el symbol of second kind [11],

�ABC � 1

2
(�1)�A�C

"
(�1)�C�D �

rgBD(�)

��C
+ (�1)�B+�C+�B�C+�B�D �

rgCD(�)

��B
� �rgBC(�)

��D

#
gDA :

(7)

In the new set of coordinates, the Schwinger-Dyson equations are Ward identities 0 =

h�[��

AG(�)]i. In detail, with �MAM = (�1)�M (pg)�1�l(pg)=��A,

0 =
i

�h
(�1)�G+1h�[��

AG(�)]i =
*
(�1)�M�MAM (�)G(�) +

�
i

�h

�
�lS

��A
G(�) +

�lG

��A

+
; (8)

where in the last bracket we have integrated out the ghost-antighost pair in order to com-
pare with the conventional formulation of �eld-covariant Schwinger-Dyson equations. Such
equations are normally derived from the invariance of the measure [d�] under arbitrary local
shifts, i:e:, from

0 = Z�1

Z
[d�]

q
g(�)

"
(
q
g(�))�1

�l

��A

�
e�S[�]

q
g(�)G(�)

�#
: (9)

In contrast, in the present formulation these equations are automatically incorporated into
the action principle.

The Master Equation for the action Sext in transformed coordinates is derived in as trivial

a manner as in the original variables; it is simply the statement that Sext is invariant under
the BRST symmetry (6). Thus 0 = �Sext immediately gives

�rSext

��A
CA =

�rSext

���

A

�lS

��A
=

�rSext

���

A

�lSext

��A
: (10)

The extra term in the transformation law for ��

A in eq. (6), which is proportional to the
connection �ABC , does not contribute to the Master Equation due to the symmetry properties

of �ABC and the ghosts CA. The Master Equation (10) is of precisely the same form as that

of the original Sext [4], except that it is now expressed in the new coordinates.
To extend this construction to �eld theories in all generality, including those of arbitrar-

ily complicated gauge-symmetry structure, one can proceed by demanding that the above
coordinate-covariant Schwinger-Dyson equations for the classical �elds are satis�ed at the

formal level throughout, and even before any gauge �xings. A su�cient, but perhaps not
necessary, condition is that the ghosts CA enter only linearly, and only in the combination
��

AC
A, as in eq. (5). This ensures that the crucial integral over CA and ��

A is diagonal, and

in particular that hCA��

Bi = �i�h�AB, an ingredient needed in eq. (8) to recover the correct

Schwinger-Dyson equations. In general, on should not expect to be able to split the extended
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action Sext into the form Sext[�;�
�; C] = S[�]���

AC
A, as in eq. (5). But the above require-

ment is equivalent to demanding that Sext is of the form Sext[�;�
�; C] = SBV [�;��]���

AC
A,

where SBV is simply everything left over after the term linear in CA has been taken out.

Correct Schwinger-Dyson equations are obtained even if the extended action Sext is not

invariant under the Schwinger-Dyson BRST symmetry, but only transforms in precisely such

a manner as to cancel a perhaps non-trivial Jacobian factor from the functional measure. In

the old coordinates, an arbitrary action Sext[�; �
�; c] = SBV [�; ��]� ��Ac

A which satis�es the

full quantum Master Equation [4]

1

2
(Sext; Sext) = ��rSext

��A
cA + i�h�Sext ; (11)

gives rise to the Batalin-Vilkovisky Master Equation [1] for SBV :

1

2
(SBV ; SBV ) = i�h�SBV : (12)

Here (�; �) is the antibracket, and � � (�1)�A+1 �r

��A
�r

���
A

is the correction term from the mea-

sure [1]. Both can straightforwardly be derived from the Schwinger-Dyson BRST symmetry
[4].

To �nd the generalized Master Equation in the new coordinates, we must be careful when
expressing the BRST transformation laws of all �elds, ghosts and antighosts in terms of the
new variables only. In particular, since �� in general will enter non-trivially apart from

the term ��

AC
A, and since these antighosts arise from a �-dependent transformation, a new

implicit �-dependence enters through ��:

��A = CA

�CA = 0

���

A = (�1)�M+1�MAKC
K��

M + (�1)�A�M+1 �
rSBV

���

K

�MKA�
�

M � �lSBV

��A
: (13)

With these transformation rules it is easy to get the following master equation:

�rSBV

���

A

�lSBV

��A
= i�h(�1)�A 1

p
g

�

��A

 
p
g
�SBV

���

A

!
: (14)

The operator

�� � (�1)�A+1 1
p
g

�r

��A

 
p
g
�r

���

A

!
; (15)

associated with the measure density � =
p
g, is the covariant generalization of the Batalin-

Vilkovisky operator � of eq. (12). Its form can also be inferred from general covariance

arguments [9, 10]. Here, it arises straightforwardly from the non-trivial Jacobian factor

associated with the BRST transformation (13). Since we have so far restricted ourselves to
�eld transformations among the �'s only, the resulting measure density � does not depend
on ��.

In the case of at coordinates, there is an interesting direct relation between the Schwinger-

Dyson BRST operator (1) and the operator � [4]. Namely, if one integrates out the ghosts
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cA but keeps the antighosts ��A in the path integral, the operator � appears as a \quan-

tum deformation" (proportional to �h) of the BRST operator � left over when integrating

out the cA-�elds. The quantum deformation of the BRST operator in the conventional

Batalin-Vilkovisky formalism has been discussed in ref. [12]. It must be emphasized that

the appearance of this quantum deformation in the BRST operator is completely unrelated

to the appearance of possible quantum corrections in the Lagrangian Master Equation (12).

The quantum correction in the Schwinger-Dyson BRST operator in the unusual form in

which the ghosts cA (but not their antighosts ��A) have been integrated out of the functional

integral is always present. The quantum correction to the Master Equation (12) is non-

vanishing only in those particular cases where the functional measure is not invariant under

the Schwinger-Dyson BRST symmetry (independently of whether the ghosts cA have been

integrated out or not).

In the covariant case we have seen that � in the Master Equation is replaced by the

covariant ��. Let us now consider integrating out the new ghosts CA from the path integral,

and trace what happens to the Schwinger-Dyson BRST operator in this process. As in the

at case [4], the simple identity

Z
[dC]F (CB) exp

�
� i

�h
��

AC
A

�
= F

 
i�h

�l

���

B

!Z
[dC] exp

�
� i

�h
��

AC
A

�
(16)

is useful here. Consider, inside the path integral, the BRST variation of an arbitrary func-

tional G[�;��]. Using (16) above, we get

�G[�;��]

=
�rG

��A
CA +

�rG

���

A

(
(�1)�M+1�MAKC

K��

M + (�1)�A�M+1 �
rSBV

���

K

�MKA�
�

M � �lSBV

��A

)

! �rG

��A

�lSBV

���

A

� �rG

���

A

�lSBV

��A
+ (i�h)

 
(�1)�A �r

��A
+ (�1)�A�G+�M�MAM

!
�r

���

A

G ; (17)

where the arrow indicates that partial integrations are required inside the functional integral.
Since

��G = (�1)�A+1 1
p
g

�r

��A

 
p
g
�rG

���

A

!
=

 
(�1)�A+1 �r

��A
+ (�1)�A�G+�M+1�MAM

!
�r

���

A

G ; (18)

the equivalent of the Schwinger-Dyson BRST operator after having integrated out the ghosts

CA is indeed, as expected, given by

� = ( � ; SBV ) � i�h�� (19)

in the covariant formulation.2 This form of the \quantum BRST operator" in the covariant

Batalin-Vilkovisky formulation was �rst considered by Hata and Zwiebach [9]. Here we

see that it can be derived straightforwardly from the Schwinger-Dyson BRST operator by

integrating out the ghosts CA. It is only because one chooses such an asymmetric procedure
as that of integrating out the ghosts, while keeping the antighosts in the path integral, that

2Note that the operator �� is nilpotent for any
p
g that depends only on �A.
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one has to face the unusual situation of having a quantum correction to the BRST operator.

The full Schwinger-Dyson operator (13), with the ghosts CA kept, automatically includes

both classical and quantum parts, as is customary in quantum �eld theory.

So far everything has been derived from the at case using a general coordinate transfor-

mation. In e�ect, all this amounts to is a formulation of the Lagrangian BRST quantization

scheme in arbitrary curvilinear coordinates. It is worthwhile to �rst look at the quantization

problem from the point of view of having been given a \space of �elds" on which the path

integral is to be de�ned. What is the e�ect of curvature in such a space of �elds? To see

a possible consequence, we need to go back and determine the Schwinger-Dyson equations

on such spaces. As we have seen, once we have the correct Schwinger-Dyson BRST algebra,

the quantization prescription follows immediately.

The correct Schwinger-Dyson equations for �eld theories de�ned on �eld spaces with a

non-vanishing Riemann tensor (but with zero torsion, see below) can be derived as soon as

the functional integral on such spaces is decided upon. Taking it to be of the form of a scalar

density function �(�) =
q
g(�), it is obvious that the Schwinger-Dyson equations (and the

Schwinger-Dyson BRST algebra (13) that reproduces them) are of exactly the same kind
as in eq. (8). This means that the whole quantization procedure, the Lagrangian Master

Equation (14) and the form of the BRST operator (13), carry over directly to this case
without modi�cations.3 Whereas the case of curvature in the space of �elds can thus be
treated straightforwardly, a non-trivial aspect enters if we consider �eld spaces with torsion.
We shall return to a discussion of this point elsewhere.

We shall now approach the quantization problem from a di�erent point of view. Suppose
we are given a measure density �(�), and the set of transformations that leave the functional

measure d��(�), but not the action S[�], invariant. We denote these transformations by

�A(x) = gA(�0(x); a(x)) ; (20)

where ai(x) is a local �eld parametrizing the transformations. We choose coordinates such

that gA reduces to the identity at ai(x) = 0. Invariance of the functional measure implies a
set of identities, generalized Schwinger-Dyson equations:

*
�lgA

�ai

�����
a=0

"
�lF

��A
+

i

�h

�lS

��A
F [�]

#+
= 0 ; (21)

These Schwinger-Dyson equations are di�erent in form from those obtained by exploring

invariance of the measure d� under local shifts. But under the conditions stipulated below
they have the same content, and can, in fact, be mapped onto one another. To regain the

usual Schwinger-Dyson equations from the generalized equations, we must require that vAB �
�lgA=�aBja=0 locally has an inverse. When this v�1 exists, the generalized Schwinger-Dyson

equations are in a one-to-one correspondence with those obtained from exploring invariance

of the d�-measure (without the factor of �(�)) under local shifts. We will assume that the
space of �elds forms a manifold. If the dimension of the space is N (i.e., A = 1; : : : ; N),

3The only non-trivial aspect lies in the choice of appropriate boundary conditions for the Master Equa-

tion. In contrast to the simple curvilinear case, we may not simply take the standard Batalin-Vilkovisky

boundary conditions for Cartesian coordinates and then perform the required �eld rede�nition to obtain the

corresponding boundary conditions in new coordinates.
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we need precisely those symmetry transformations that locally correspond to shifts. These

transformations are parametrized by N �elds aA(x).

The condition that the measure d��(�) be invariant under the transformation (20) is

equivalent to
�r�

��C
� (�1)�A+�CGA

CA� = 0 ; (22)

with

GA
CA � �

�
v�1

�B
C

�r

��A

�
vAB

�
: (23)

How do we now �nd the modi�ed Schwinger-Dyson BRST symmetry whose Ward iden-

tities are the equations (21)? As in ref. [4], we can again follow the collective �eld approach.

We do this by promoting aA(x) to a genuine �eld in the path integral, which we integrate

over by using a at measure. The relevant BRST symmetry reads [3]:

��0A = �
�
M�1

�A
B

�rgB

�aC
cC

�aA = cA

�ci = 0
���A = BA

�BA = 0 ; (24)

where MA
B � �rgA=��0B. Nilpotency of the transformations (24) is not immediately evident,

but can be checked to hold: �2 = 0. This is also obvious from its construction in ref.
[3]. Next, we choose to gauge-�x on the trivial surface aA = 0. We do this by adding
��[��AaA] = (�1)�A+1BAa

A � ��Ac
A to the action S. At this point we can integrate out

BA and aA, modifying the BRST transformations accordingly. The result is, for the BRST
algebra:

��A = �(�1)�B(�A+1)vABcB
�cA = 0

���A = (�1)�B(�A+1) �
lS

��B
vBA ; (25)

where we have used the boundary condition gA(�0; a=0) = �0A.

One can readily check that the BRST Ward identities 0 = h�f��AF [�]gi precisely coin-

cide with the Schwinger-Dyson equations (21). Equation (25) thus gives us the required
Schwinger-Dyson BRST algebra. However, nilpotency of the BRST operator is lost in the
process of integrating out BA and aA. In contrast to the usual case of � = 1 [4], nilpotency

does not even hold in general on the space of �elds � only. This makes this form of the

Schwinger-Dyson BRST algebra slightly awkward for the quantization programme. But the
version of the collective �eld formalism we have adhered to until now corresponds to the

\Abelianization" of the constraints. As it turns out, the problem of nilpotency of the opera-
tor � is instantly solved if we instead use the non-Abelian formalism (see appendix A of ref.

[3]). We shall now describe this in some detail.4 The non-Abelian Schwinger-Dyson BRST

transformations can be chosen in the form

��0A = uAB(�
0)cB

4The notation follows Appendix A of ref. [3].
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�aA = ��AB(a)cB

�cA = �1

2
(�1)�BcABCcCcB

���A = BA

�BA = 0 ; (26)

where

uAB(�
0) � �rgA(�0; a)

�aB

�����
a=0

: (27)

The supernumbers cABC are the structure coe�cients of the supergroup of transformations

(20). They satisfy

cABC = �(�1)�B�CcACB : (28)

A boundary condition is �AB(a=0) = �AB, and we also have �AB(a)�
B
C (a) = �AC [13]. We

integrate the collective �eld over the left- or right-invariant measure of the supergroup of

transformations gA. The full functional measure is then formally (i.e. with a symmetry-

preserving regulator) invariant under the BRST transformation (26) if we take, for [dc]

and [d��], the usual (at) measures, and if we assume that the group of transformations is
compact (and in particular (�1)�AcAAB = 0). We now gauge-�x the collective �eld aA to zero
by adding a term ��[��AaA] = (�1)�A+1BAa

A + ��A�
A
B(a)c

B to the action S. Integrating over
BA and aA, we �nd the modi�ed BRST transformations by substituting for BA the equation
of motion for aA (at aA = 0). It is important to take into account the contribution from the

measure as well. If we de�ne

��ABC � �r�AB
�aC

�����
a=0

; (29)

then the BRST transformations can be written

��A = uAB(�)c
B

�cA = �1

2
(�1)�BcABCcCcB

���i = (�1)�A �
lS

��B
uBA(�) + i�h(�1)�A+�B ��BBA + (�1)�A�B��M ��MBAc

B : (30)

A related BRST construction for �eld theories with vanishing equations of motion, �S=��A =
0 has been considered by Okubo [14]. One has ��GKL � (�1)�K�L��GLK = cGKL.

Due to the \quantum correction" to the transformation law for ��A, the action S itself

is not invariant under the transformations (30). However, the measure transforms in just

such a manner as to cancel the remaining term. So the combination of action and measure

is invariant under (30), as it should be. The last two terms in the transformation law for

��A cancel when we consider the Ward identity 0 = h�[��AF (�)]i, leaving us with the correct
Schwinger-Dyson equations.

We now perform the change of variables

CA = uAB(�)c
B ; ��

A = ��B

�
u�1

�B
A
: (31)

The result is:

��A = CA
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�CA = 0

���

A =
�lS

��A
+ (�1)�M+1�MBAC

B��

C + i�h(�1)�A+�C ��CCB
�
u�1

�B
A
; (32)

where �ABC is de�ned to be

�ABC = GA
BC + (�1)�A(�M+�C+1)uMS

��SCB

�
u�1

�B
A

�
u�1

�C
K

; (33)

and where we have introduced the connection5

GD
AC(�) = (�1)�A(�D+1)uDB

�r (u�1)
B

A

��C
: (34)

The action S is again not invariant under the BRST transformation, but the full partition

function is, provided that � is covariantly conserved with respect to GA
BC:

��

��A
� (�1)�A+�B�(�)GB

AB = 0 : (35)

But this is just the condition (22) that the measure d��(�) is invariant under the group of
transformation gA. So we again �nd that the combination of action and measure is invariant
under this (now non-Abelian) Schwinger-Dyson BRST transformation.

The advantage of this non-Abelian formulation is that nilpotency of � when acting on
the space of �elds �A is not lost in the process of integrating out the collective �eld aA

and the Nakanishi-Lautrup �eld BA. This means that the BRST operator � can be used to
gauge-�x internal gauge symmetries as well, and it is therefore meaningful to formulate the
quantization prescription in terms of a Lagrangian Master Equation. This equation follows

again from the simple requirement that the combination of action and measure remain
invariant under the Schwinger-Dyson BRST symmetry. Let us write Sext = SBV [�;��] +
��

AC
A. Since SBV now depends on ��, we �nd again that the transformation law for ��

A has
to be modi�ed slightly. The resulting transformation is

���

A =
�lSBV

��A
+ (�1)�M+1�MAKC

K��

M + (�1)�A�M �
rSBV

���

B

�MBA�
�

M + i�h(�1)�A+�C ��CCB
�
u�1

�B
A
;

(36)

with the transformations for � and C left untouched. Note that only SBV enters in the
transformation law for ��. The condition that the path integral remains Schwinger-Dyson
BRST-invariant leads precisely to the standard Master Equation for SBV :

�rSBV

���

A

�lSBV

��A
= �i�h��S

BV : (37)

We wish to emphasize that in the present formulation this is a highly non-trivial result of

delicate cancellations between action and measure, as well as of the continuity equation (35).
Boundary conditions need to be imposed on SBV . A �rst requirement is that Scl[�] =

SBV [�;��= 0], where Scl is the classical action. This is needed to ensure that Schwinger-

Dyson equations for Sext = SBV [�;��] + ��

AC
A formally agree with those of Scl before any

5This de�nition is consistent with the one given in eq. (23).
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of the possible internal gauge symmetries have been �xed.6 One further boundary condition

is needed to ensure regularity of SBV , i.e., invertibility of the propagator matrix.

We see that knowing the group of transformations that leave the measure d��(�) invari-

ant naturally leads to an object (GA
BC) that transforms as a connection on the space of �elds.

This connection itself has only indirect physical signi�cance, since just the traced-over ob-

ject (�1)�AGA
CA appears in the Schwinger-Dyson equations. Note that the Schwinger-Dyson

BRST transformations (32) are ambiguous as far as the connection is concerned. We can

replace any suitable connection GA
BC with GA

BC + ~GA
BC as long as ~GA

BC has the correct sym-

metry properties under exchange of the lower indices, and as long as (�1)�A ~GA
BA = 0. Such a

replacement is void of physical content. It is conceivable that the redundancy in the choice of

connection is a reection of the large group of symmetries of the covariant Master Equation.

If so, this could permit a geometric interpretation of the group of invariances directly on the

space of �elds.

We end this paper with some general comments. We have throughout restricted ourselves

to either transformations of the �elds �A that do not depend on the ghosts cA or antighosts

(\anti�elds" in the language of Batalin and Vilkovisky)��A, or, in the last part, on symmetries

of functional measures of the �elds �A only. We have done this on the assumption that
eventually only symmetry properties related to the original classical �elds (part of �A) are
of physical importance. This means that we have really only been interested in the subset

of transformations involving �A that refer to the classical �elds, and not to the usual ghosts,
antighosts, auxiliary �elds, ghosts-for-ghosts, etc., which may be required to complete the
quantization programme, and which form another part of �A. Such a point of view may
be too restrictive, and there is indeed nothing preventing a more general setting in which
all �elds �A are mixed with each other and with ghosts cA and antighosts ��A. These more
general transformations must of course obey the quite restrictive condition of preserving

Grassmann parities and ghost numbers. The discussion in refs. [9, 10] goes along such lines
(for the case where the ghosts cA have been integrated out, and where the remaining �elds
�A and antighosts ��A thus are canonical variables under the antibracket). One may in that
case phrase the canonical framework in terms of a supersymplectic formalism that resembles
the usual symplectic formulation of classical Hamiltonian mechanics. The di�erent ghost

number and Grassmann parity assignments between \coordinates" (�A) and \momenta"
(��A) does, however, make the analogy with classical mechanics somewhat limited. It is

di�cult and rather tedious to formulate correct boundary conditions to be imposed on the

Master Equations in any other frame than that of (the analogue of) Darboux coordinates
on the supersymplectic manifold.

As we have shown in this letter, the analogue of Batalin-Vilkovisky quantization on spaces
with non-trivial measure densities can be derived straightforwardly from the underlying

Schwinger-Dyson BRST algebra. It is not coincidental that upon integrating out the ghosts
cA, the Master Equation for theories with non-trivial �(�)-measures formally matches the
one of Schwarz [10], although we have not made use of the fact that a Darboux frame

exists in which � = 1. This is because the existence of such a frame is a su�cient but not
necessary condition for having nilpotency of the operator ��. As we have seen, the existence

6For the special case of no internal gauge symmetries, SBV [�;��] = Scl [�], and it is then straightforward

to see that the Ward identities of the symmetry (32) and (36) yield the correct Schwinger-Dyson equations

for Scl[�].
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of a coordinate frame with, in the language of ref. [10], �(�; ��) = �(�), also ensures that

�2
� = 0. It is only when leaving this density �(�) in the measure (instead of exponentiating it

into a \one-loop correction" of the extended action) that the full geometric picture discussed

in this paper emerges.
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