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1 INTRODUCTION

In this letter, I will give some results on tachyon scattering amplitudes in

the background of a two-dimensional black hole [1, 2]. For this purpose, I

will use the techniques developed in [3] based on Ward identities. The Ward

identities will provide powerful constraints on the correlation functions that

are otherwise so hard to calculate. The black hole will be constructed as a

perturbation around the ordinary linear dilaton vacuum. Indeed, in [4] it was

shown that the action of the SL(2; R)=U(1) coset model [2], which describes

a two-dimensional black hole, can be written as

1

2�

Z
(@X �@X + @��@��

p
2R�+MB); (1)

where
B � (3i@X + @�)(3i�@X + �@�)e�2

p
2� (2)

is the `black-hole screener'. For further discussion, see [5]. In the brave
spirit of [6], I will consider tachyon correlation functions in the presence

of an integer number of such black-hole screeners. The hope is that this
will teach us something about the true tachyon correlation functions in the
black-hole background. However, this na��ve perturbative approach has severe
limitations. This will be apparent in the form of the leg factors. I will return
to this important issue in the last section.

The main purpose of this letter is to show that the correlation functions of

the deformed matrix model [7{13] are, in a highly non-trivial way, consistent
with the black-hole Ward identities. More details will be given in a future
publication.

2 WARD IDENTITIES IN TWO-DIMENSIONAL

STRING THEORY

2.1 Without Black-Hole Screeners

In [3] Ward identities were derived, which related tachyon scattering ampli-

tudes with di�erent numbers of tachyons. These Ward identities were shown
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to produce recursion relations that determined all the amplitudes. Com-

pared to more standard calculations, see e.g. [14], this was a remarkable

simpli�cation. Below I will brie
y summarize the results of [3].

The Ward identities are derived by using the charges

Qm;�m =
I

dz

2�i
WJ;m �

I
d�z

2�i
c	m+1;�m �Xm;�m; (3)

where

WJ;m = 	J+1;m(z) �OJ;m(�z); (4)

�rst constructed by Witten in [15]. The �elds 	 correspond to the gravita-
tionally dressed primary �elds

	J;m =  J;m(z)e
p
2(�1+J)�(z): (5)

The O's are elements of the ground ring. The X-�elds have ghost number
�1, but their precise form need not concern us.

In [3] the action of the currents on tachyons was calculated. In terms of
the rescaled tachyons, ~T , where

T�p = ��(1�
p
2p) ~T�p (6)

(�(x) = �(x)=�(1 � x)), it was found that

Wm;�m(z)c�c ~T
�
�p(0) =

1

z
c�c(
p
2p+ 2m) ~T��p�m

p
2
(0) + ::: (7)

� refers to chirality. A positive-momentum rightly dressed tachyon is de�ned
to have positive chirality. I will follow [3] and write this, in an obvious

notation, as

Qm;�mj ~T��pi = (
p
2p+ 2m)j ~T��p�mp2i: (8)

As is clear from above, the �rst term in (3) has ghost numbers (0; 0), while
the second term has (1;�1). Since the tachyon (if �xed) has ghost numbers

(1; 1), and has no (2; 0) part, the second term cannot contribute to the right-

hand side (apart from a BRST-exact state). It is only for rightly dressed

non-tachyonic states that one gets a non-trivial contribution. These are the

new moduli discussed in [16].
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The same current acting on tachyons of the opposite chirality gives a very

di�erent result. In general

Qm;�mj ~T+
p1
; :::; ~T+

p2m+1
i = (2m+ 1)!

 p
2
2m+1X
i=1

pi � 2m

!
j ~T+P

2m+1

i=1
pi�

p
2m
i: (9)

It is hence capable of changing the number of tachyons. This is the reason

why it is possible to construct powerful recursion relations. For instance, an

insertion of the W1=2;�1=2 current leads to the relation

(N � 2)A(N) = (N � 2)(N � 3)A(N � 1) (10)

among the tachyon amplitudes A(N), which have 1 negative and N � 1
positive chirality tachyons. This, then, implies the well-known result

A(N) = (N � 3)!; (11)

given that A(3) = 1. Note that as compared to [3], I have rescaled also the
negative chirality tachyon. This would really give zero since it sits on discrete
momenta (the bulk amplitudes of these renormalized tachyons are zero), but
the zero is compensated by including the volume factor leading to a �nite

result [17]. This is the convention of collective �eld theory.

2.2 With Black-Hole Screeners

Let me now generalize the above construction to correlation functions involv-

ing black-hole screeners. I will denote such correlation functions by A(N;m),
whereN is the total (including the negative chirality one) number of tachyons

and m is the number of black-hole screeners. Momentum conservation im-

plies

pN = �N + 2m� 2p
2

: (12)

I will use the charges Qn=2;�n=2, with n � 2m � 1, to derive the Ward

identities. From momentum conservation it follows that Qn=2;�n=2 transform

n+1�2k positive chirality tachyons and k screeners into one tachyon. I will
assume, as an ansatz, that the precise form is

Qn=2;�n=2 j ~T+
p1
::: ~T+

pn+1�2k
Bki
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= 2�kk!(n+ 1� 2k)!

 p
2an;k

n+1�2kX
i=1

pi + bn;k

!
j ~T+P

n+1�2k

i=1
pi�n=

p
2
i: (13)

The an;k and bn;k are coe�cients depending on n and k only. The prefactor is

for latter convenience. This ansatz is based on the assumption of factorization

into leg factors. If this assumption is true, it is clear that factors of � must

appear, in the same way as before when the black-hole screeners are involved.

Furthermore, the residual dependence on momenta is clearly symmetric in

the di�erent momenta, but must also be at most linear in order for the

resulting recursion relations, for all N , not to depend on individual momenta

when all contributions are summed up. This is a prerequisite for factorization
into leg factors. For each black-hole screener there will appear a regulated
zero � 1= logM (see [14] for a discussion on zeroes and poles of correlation
functions with dicrete states), which, symbolically, I will write as �(1). The
1= logM will be absorbed into B, or rather M . This is no di�erent from
standard c = 1 where �= log�! �.

Equations (8) and (13) are the only possible non-trivial contributions.
This can be seen by using momentum conservation and examining the sin-
gularities of the contractions. All other possibilities give at best discrete
states at non-discrete momenta. For n < 2m� 1, however, discrete states at
discrete momenta would appear, giving more complicated Ward identities.

It is straightforward to write down the generalization of the c = 1 Ward
identities using the above results. It follows that

(N+2m�2)A(N;m) = (N�2):::(N�n�1)(N+2(m�1)(n+1)+n)A(N�n;m)

+
mX
k=1

m(m� 1):::(m� k + 1)(N � 2):::(N � n� 1 + 2k)

� (an;k(n+1� 2k)(N +2m� 2) + bn;k(N � 1))A(N �n+2k;m� k); (14)

when all possible non-vanishing cancelled propagators are taken into account.
The an;k and bn;k could in principle be calculated directly using the methods

of [3]. I will, however, not attempt this in this paper since a careful study of
regularization is �rst needed.

Let me repeat the logic of the present discussion. If the correlation func-

tions factorize as in standard c = 1, then they must satisfy the Ward identities

(14) for some values of an;k and bn;k. I stress that even without explicit val-

ues for the coe�cients an;k and bn;k these are very powerful Ward identities.
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Below I will show that the deformed matrix model results are compatible

with (14), while some other proposals are not. But �rst I need to explain the

prediction of the deformed matrix model. Remember that this model has

been argued [7{13] to be the matrix model realization of the black hole.

3 SOLUTIONS OF THE WARD IDENTI-

TIES

3.1 The Deformed Matrix Model Prediction

The deformed matrix model is obtained by adding a piece M=2x2 to the
matrix model potential. The potential becomes

� 1

2�0
x2 +

M

2x2
; (15)

M will be positive. The position of the Fermi level is, as usual, measured in
terms of its deviation from zero, i.e. �. However, it is now possible to de�ne

a double scaling limit, even when � = 0. One then needs to keep �h=M1=2

�xed, which will be the string coupling constant.
Special cases of tachyon correlation functions have been calculated in

several papers, [7{9,11{13]. In [12] the general formula (in the case with
N � 1 tachyons of the same chirality) was given up to genus one. The genus-

zero piece, at �0 = 2, is

h ~T+
p1
::: ~T+

pN�1
~T+
�pi = (N�3)!!(

p
2p�2)(

p
2p�4):::(

p
2p�(N�4))Mp=

p
2�N=2+1;

(16)
when normalized to collective �eld theory. This result is valid only for even

N : for odd N the matrix model gives zero. Put p = N+2m�2p
2

and take m

derivatives of (16) to get

A(N;m) = 2�m(N � 3)!!(N + 2m� 4)!!: (17)

This, then, is the deformed matrix model suggestion for the correlation func-

tions with black hole screeners.
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3.2 A Check of the Ward Identities

Let us now check whether the matrix model prediction can be made to satisfy

the Ward identity (14). As I will discuss in the last section, the vanishing

of the matrix model odd-point functions is a consequence of a di�erence in

the leg factors coming from a di�erent choice of vacuum. It is natural to

assume that when the perturbative vacuum is used, the odd-point functions

are given by a direct `analytic continuation' of the even-point result. This I

will use below. In the next subsection I will provide some evidence for this

by showing that it is true for the three-point function.
It is straightforward to substitute (17) into the Ward identities and de-

termine the necessary an;k and bn;k one by one in k; m = 1 provides k = 1,
m = 2 provides k = 2 (given the k = 1), etc. The answer is

an;k =
n

k!
(n� 2)(n � 4):::(n� 2k + 2) (18)

and
bn;k = �nan;k: (19)

I stress that it is a highly non-trivial property of the deformed matrix model

correlation functions that coe�cients can be found such that the Ward identi-

ties are obeyed. For instance, it can be checked that other proposals, such as

A(N;m) = (N +2m� 3)! m!
(2m)!

(which would correspond to c = 1 correlation

functions with �2 !M) fail the test at m = 2.

3.3 Some Explicit Examples

Even if a direct calculation of the scattering amplitudes is in general very
di�cult (which is one reason to consider Ward identities), there are some
cases where the calculation can be done and hence used as a check of the

above results. This is so when m = 1. A convenient representation of the

black-hole screener is

1

ia
lim
y!z

@y : e
�iaX(z)+b�(z)+iaX(y)+c�(y) : (20)

where b + c = �2
p
2, and the same for the anti-holomorphic piece. With

a = 6
p
2 and b = 0 eq. (2) is reproduced. I will, for the moment, keep

the polarization tensor, i.e. a and c, arbitrary. This can be taken as a
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useful check on the calculation. As explained in [19], one of the graviton

polarizations is pure gauge, i.e. it can be written as L1 of something. In

general, by using the gauge freedom, any special state can be written in a

form where it contains no @n�. Hence, the �nal answer should not depend

on the polarization. However, the resulting integrals simplify only for certain

peculiar values of the momenta. Let me pick p = Np
2
, p1 = ::: = pN�2 =

p
2c

c�a ,

and consequently pN�1 = Np
2
� (N � 2)

p
2c

c�a . The integral to be performed,

with the black-hole screener at 1, is

� 1

a2

 
(a+ c)

Np
2
�
p
2c

!2 N�2Y
i=1

Z
d2zi j zi j2�j 1�zi j2�

N�2Y
i>j

j zi�zj j2
; (21)

where

� =
�
1 � 2c

c� a

�
N +

2c

c� a
� 2; (22)

� = N � 2� (N � 3)
2c

c � a
(23)

and


 =
4c

c� a
� 2: (24)

The integral can be evaluated by using the results of [20] and the result is,
with the volume factor,

2(N � 2)!�(1�
p
2p)N�2�(1�

p
2pN�1)�(1�N)�(1); (25)

with no dependence left on the polarization tensor as promised. We recognize
the familiar leg factors and see that the remaining non-factorizable piece
agrees with (17) at m = 1 up to the normalization of B.

Let me now consider the three-point in a little more detail. According to

(17) it is given by

2�m
(2m� 1)!!

m!
Mm: (26)

It is now necessary to comment on [21], where the three point is calculated

for general m using continuum methods. It was found that the three-point
is the same as for c = 1 up to a factor

1

�(x+4
8
)

�(m+ x+4
8
)

�(m + 1)
; (27)
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where x is an unknown parameter introduced by the regularization. In [21] x

was �xed so that the factor (27) was one. However, one can argue in favour of

another prescription. Let me demand that m and the Liouville momentum of

the negative chirality tachyon are untouched by the regularization. After all,

it is only for integer m that we can perform the calculation. As is clear from

[21], this means that x = 0. The three-point then becomes precisely (26).

This is the only way to remain consistent with (25), where this regularization

prescription has been used implicitly. One can also check that the deformed

matrix model expression for the two-point, 1
2m
Mm, is in agreement with the

continuum calculation.

4 CONCLUSIONS

In this paper we have seen how the black-hole tachyon correlation functions
compare with those of the deformed matrix model. We have seen that the
latter obey highly non-trivial Ward identities derived for the black-hole back-
ground. I have also provided some examples of explicit calculations, where

the agreement can be veri�ed. There are therefore reasons to believe that
the deformed matrix model really is a black hole. It should be possible to
complete a rigorous proof along the lines of this paper.

A di�erence between the results is the form of the external leg factors or
rather the position of the poles in these factors. After all, it is only the lat-

ter that are universal and can be con�dently predicted by the matrix model

without further physical input. In the continuum calculation we are implic-
itly using the same vacuum as in the linear dilaton theory and we are bound
to obtain the same external leg factors in our perturbative treatment. It

is easy to see, however, that this vacuum is an unfortunate choice. In the

black hole we often demand periodicity in Euclidean time. This is just a

choice, but a sensible one. It means that we have chosen a vacuum corre-

sponding to an equilibrium eternal black hole at the Hawking temperature.
The particular value of the Euclidean compacti�cation radius R, i.e. the

inverse temperature, is obtained if one insists on no conical singularity at
the origin of Euclidean space, i.e. the horizon. In the two-dimensional black

hole, the compacti�cation radius di�ers between the semiclassical case [1, 2]
and the `exact' metric of [18], being 1=

p
2 and 3=

p
2, respectively. Recall

that I use conventions such that �0 = 2. For comparison, the self dual ra-
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dius is RS =
p
2 and the Kosterlitz{Thouless phase transition takes place at

RT = 2
p
2. (Since the above values are below RT , this might be a problem.)

In standard c = 1 the poles occur at p = np
2
for all integers n. If Euclidean

time is compacti�ed the allowed momenta must be of the form n
R
. Clearly

all states are allowed at R = RS. The situation is di�erent when we pick

one of the black-hole radia suggested above. In both cases the odd poles

are not allowed! This is the reason why we get double spacing of correlation

function poles. The matrix model is clever enough to spot this problem. In

[8] it was shown that matrix eigenvalue wave functions that might give rise

to poles other than the ones above were in general non-normalizable. The

perturbative continuum calculation, however, is too crude to take this into
account.

To conclude, there is strong evidence that the deformed matrix model is
describing a two-dimensional black hole. If this is indeed true, we have a
powerful tool at our disposal to explore stringy quantum black-hole phenom-

ena.
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