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Abstract

Using the QCD hybrid (moments{Laplace) sum rule, we show semi{analytically that, in
the limitMb !1, the q2 and Mb behaviours of the heavy{to{light exclusive ( �B ! � (�)
semileptonic as well as the B ! � rare) decay{form factors are universally dominated
by the contribution of the soft light{quark condensate rather than that of the hard per-
turbative diagram. The QCD{analytic q2 behaviour of the form factors is a polynomial

in q2=M2
b
, which mimics quite well the usual pole parametrization, except in the case

of the AB

1 form factor, where there is a signi�cant deviation from this polar form. The

Mb{dependence of the form factors expected from HQET and lattice results is recovered.

We extract with a good accuracy the ratios: V B(0)=AB

1 (0) ' AB

2 (0)=A
B

1 (0) ' 1:18� 0:04,
AB

1 (0)=f
B

+ (0) ' 1:64 � 0:06, and AB

1 (0)=F
B

1 (0) ' 1:19 � 0:03; combined with the \world

average" value of fB+ (0) or/and FB

1 (0), these ratios lead to the decay rates: � �B!�e�� '
(3:6 � 0:6) � jVubj2 � 1012 s�1, � �B!�e��=� �B!�e�� ' 1:4 � 0:2, and to the ratios of the

��polarised rates: �+=�� ' 0:10 � 0:04; � � 2�L=�T � 1 ' �(0:75� 0:15).
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1 Introduction

In previous papers [1, 2], we have introduced the hybrid (moments{Laplace) sum rule

(HSR), which is more appropriate than the popular double exponential Laplace (Borel)

sum rule (DLSR) for studying the form factors of a heavy{to{light quark transition;

indeed, the hybrid sum rule has a well-de�ned behaviour when the heavy quark mass

tends to in�nity. In [2], we studied analytically with the HSR the Mb{dependence of

the B ! K� form factor and found that it is dominated by the light{quark condensate

and behaves like
p
Mb at q2 = 0. We have also noticed in [1] that the light{quark

condensate e�ect is important in the numerical evaluation of the �B ! � (�) semileptonic

form factors, while it has been noticed numerically in [3] using the DLSR that for the
�B ! � semi{leptonic decays, the q2 behaviour of the AB

1 form factor in the time{like

region is very di�erent from the one expected from the standard pole representation. In

this paper, we shall study analytically the Mb{behaviour of the di�erent form factors for

a better understanding of the previous numerical observations. As a consequence, we

shall re{examine with our analytic expression the validity of the q2{dependence obtained

numerically in [3], although we shall mainly concentrate our analysis in the Euclidian

region (q2 � 0). There, the QCD calculations of the three{point function are reliable;
also the lattice results have more data points. For this purpose, we shall analyse the form
factors of the �B ! �(�) semileptonic and B ! � rare processes de�ned in a standard
way as:

h�(p0)j�u�(1� 5)bjB(p)i = (MB +M�)A1�
�

�
� A2

MB +M�

��p0(p + p0)�

+
2V

MB +M�

�����p
�p0�;

h�(p0)j�u�bjB(p)i = f+(p + p0)� + f�(p� p0)�;

< �(p0)j�s���
�
1 + 5

2

�
q�bjB(p) > = i������

��p�p0�FB!�

1

+
n
��
�
(M2

B
�M2

�
)� ��q(p+ p0)�

o FB!�

1

2
: (1)

In the QCD spectral sum rules (QSSR) evaluation of the form factors, we shall consider
the generic three-point function:

V (p; p0; q) = �
Z
d4x

Z
d4y exp(ip0x� ipy)h0jTJL(x)O(0)Jb(y)j0i; (2)

whose Lorentz decompositions are analogous to the previous hadronic amplitudes. Here
JL � �u�d (JL � (mu + md)�ui5d) is the bilinear quark current having the quantum

numbers of the � (�) mesons; Jb � (Mb +md) �di5b is the quark current associated to the

B-meson; O � �b�u is the charged weak current for the semileptonic transition, while
O � �b1

2
���q� is the penguin operator for the rare decay. The vertex function obeys the

double dispersion relation:

V (p2; p02; q2) =
1

4�2

Z
1

M
2

b

ds

s� p2

Z
1

0

ds0

s0 � p02
ImV (s; s0; q2) + ::: (3)

As already emphasized in [2], we shall work with the HSR:

H(n; � ) � 1

n!

 
@

@p2

!
n

p2=0

L
�
V (p2; p02; q2)

�

1



=
1

�2

Z
1

M
2

b

ds

sn+1

Z
1

0
ds0 exp(�� 0s0)ImV (s; s0; q2); (4)

rather than with the DLSR (L is the Laplace transform operator). This sum rule guar-

antees that terms of the type:
M2l

b

(M2
b
� p2)

k
p02k

0

; (5)

which appear in the successive evaluation of the Wilson coe�cients of high-dimension

operators, will not spoil the OPE for Mb ! 1 unlike the case of the double Laplace

transform sum rule, which blows up in this limit for some of its applications in the heavy{

to{light transitions.

In order to come to observables, we insert intermediate states between the charged weak

and hadronic currents in (2), while we smear the higher{states e�ects with the disconti-

nuity of the QCD graphs from a threshold tc (t
0

c
) for the heavy (light) mesons. Therefore,

we have the sum rule:

Hres ' 2CLfB
F (q2)

M2n
B

exp (�M2
L
� )

' 1

4�2

Z
tc

M2

b

ds

sn+1

Z
t0
c

0
ds0 exp(��s0)ImVPT (s; s

0; q2) +NPT : (6)

PT (NPT ) refers to perturbative (non{perturbative) contributions; CL � fPM
2
P
for light

pseudoscalar mesons, while CL � M2
V
=(2V ) for light vector mesons; ML is the light

meson mass. The decay constants are normalized as:

(mq +MQ)h0j�q(i5)QjP i =
p
2M2

P
fP

h0j�q�QjV i = ��
�

p
2
MV

22
V

: (7)

F (q2) is the form factor of interest. For our purpose, we shall consider the expression of
the decay constant fB from moments sum rule at the same order (i.e. to leading order)
[4]:

2f2
B

(M2
B
)
n2�1

' 3

8�2
M2

b

Z
tc

M2

b

ds

sn2+1
(s�M2

b
)2

s
� < �qq >

M2n2�1
b

(
1 � n2(n2 + 1)

4

 
M2

0

M2
b

!)
: (8)

For convenience, we shall work with the non{relativistic energy parameters E and �M(b):

s � (Mb + E)2 and �M(b) �MB �Mb; (9)

where, as we saw in the analysis of the two{point correlator, the continuum energy Ec is

[4]:

ED

c
' (1:08 � 0:26) GeV

EB

c
' (1:30 � 0:10) GeV

E1

c
' (1:5 � 1:7) GeV: (10)
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In terms of these continuum energies, and at large values of Mb, the decay constant reads

[4]:

f2
B

' 1

�2

�
EB

c

�3
Mb

�
MB

Mb

�2n2�1 (
1 � 3

2
(n2 + 1)

 
EB

c

Mb

!

+
3

5

�
(2n2 + 3)(n2 + 1) +

1

4

� 
EB

c

Mb

!2

� �2

2

h�qqi
(EB

c
)
3

 
1� n2(n2 + 1)

4

M2
0

M2
b

!)
;

(11)

2 The �B ! � semileptonic decay

The corresponding form factors de�ned in (1) have been estimated with the HSR [1] and

the DLSR [1], [3]. Instead of taking the average values from the two methods as was done

in [1], we shall only consider the HSR estimates, because of the drawbacks previously

found in the DLSR approach:

AB

1 (0) ' 0:16 � 0:41; AB

2 (0) ' 0:26 � 0:58; V B(0) ' 0:28 � 0:61: (12)

The errors in these numbers are large, as the HSR has no n{stability. In the following, we

derive semi{analytic formulae for the form factors. Using the leading order in �s QCD
results of the three-point function, and including the e�ect of the dimension{6 operators
as given in [5], one deduces the sum rule (q2 � 0):

AB

1 (0) ' �
1

2
h�qqi �1

fB

�
MB

Mb

�2n (
1� q2

M2
b

+ �(5) + �(6) +
I1
M2

b

)
; (13)

with:

�1 �
 
�

M2
�

!
Mb

(MB +M�)
exp(M2

�
� 0)

�(5) � � 0M2
0

6

(
n � 1

� 0M2
b

�
3

2
n2 + 6n +

5

2

�

� q2

M2
b

�
(n+ 1)

�
3

2
n� 1

�
+ 2� 0M2

b
(1 + 2n) � 2(n+ 1)q2� 0

�)

�(6) � � 1

M3
b

�
8�

81

� hO6i
h�qqi

�
4(n+ 1) � � 0M2

b

�
10 � 3n + n2

�
+

15

2
(� 0M2

b
)2 � 1

2
(� 0M2

b
)3
�

(14)

where I1 is the integral from the perturbative expression of the spectral function. It is
constant for Mb ! 1. Its value and behaviour at �nite values of Mb and for q2 = 0

is given in Fig. 1. At Mb = 4:6 GeV, it reads: I1 ' (3:6 � 1:2) GeV2 and behaves
to leading order in 1=Mb as t

02
c
Ec=h�qqi, which is reassuring as it gives a better meaning

of the expansion in (13). The other values of the QCD parameters are [6]: h�qqi =

�(189 MeV)3 (logMb=�)
12=23

, M2
0 = (0:80 � 0:01) GeV2 from the analysis of the B;B�

sum rules and hO6i � ��sh�qqi2 ' (3:8 � 2:0) � 10�4GeV6: The �-meson coupling is

� ' 2:55.
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One can deduce from the previous expression that AB

1 is dominated by the light{quark

condensate in the 1=Mb{expansion counting rule. Moreover, the perturbative contribution

is also numerically small at the b{mass. The absence of the n{stability is explicit from

our formula, due to the meson{quark mass di�erence entering the overall factor. This

e�ect could be however minimized by using the expression of fB in (11) and by imposing

that the e�ects due to the meson{quark mass di�erences from the three{ and two{point

functions compensate each other to leading order. This is realized by choosing:

2n = n2 � 1

2
; (15)

which, �xes n to be about 2, in view of the fact that the two-point function stabilizes for

n2 '4-5. In this way, one would obtain the leading{order result in �s:

AB

1 ' 0:3� 0:6; (16)

where we have used the leading{order value fL:O
B

' 1:24f�. However, although this

result is consistent with previous numerical �ts in (12) and in [3], we only consider it

as an indication of a consistency rather than a safe estimate because of the previous

drawbacks for the n�stability. One should also keep it in mind that the values given in

(12) correspond to the value of fB ' 1:6f�, which includes the radiative corrections of
the two{point correlator and which corresponds to smaller values of n. Improvements of
the result in (16) need (of course) an evaluation of the radiative corrections for the three-
point function. The q2{dependence of AB

1 can be obtained with good accuracy, without
imposing the previous constraint. We obtain the numerical result in Fig. 2, which is well

approximated by the e�ect from the light{quark condensate alone:

RB

1 (q
2) � AB

1 (q
2)

A1(0)
' 1� q2

M2
b

: (17)

Performing an analytic continuation of this result in the time-like region, we reproduce
the numerical result from the DLSR [3](see Fig. 2), which indicates that the result is
independent of the form of the sum rule used, while in the time{like region the perturbative
contribution still remains a small correction of the light{quark condensate one. This result
is clearly in contradiction with the standard pole{dominance parametrization, as, indeed,
the form factor decreases for increasing q2{values. A test of this result needs improved

lattice measurements over the ones available in [7]. From the previous expressions, and
using the fact that fB behaves as 1=

p
Mb, one can also predict the Mb-behaviour of the

form factor at q2
max

'M2
b
+ 2M�Mb:

AB

1 (q
2
max

) � 1p
Mb

; (18)

in accordance with the expectations from HQET [8] and the lattice results [7]. The
analysis of the V B and AB

2 form factors will be done in the same way. Here, one can realize

that the inclusion of the higher dimension{5 and {6 condensates tends to destabilize the
results, although these still remain small corrections to the leading{order results. Then,

neglecting these destabilizing terms, one has:

V B(q2) ' �1

2
h�qqi �V

fB

�
MB

Mb

�2n (
1 +

IV
M2

b

+ :::

)

AB

2 (q
2) ' �1

2
h�qqi �2

fB

�
MB

Mb

�2n (
1 +

I2
M2

b

+ :::

)
(19)
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with:

�V �
 
�

M2
�

!
Mb(MB +M�)

M2
B

exp(M2
�
� 0)

�2 �
 
�

M2
�

!
(MB +M�)

Mb

exp(M2
�
� 0): (20)

IV;2 are integrals from the perturbative spectral functions, which also behave like I1 to

leading order in 1=Mb. They are given in Fig. 1 for q2 = 0 and for di�erent values of

Mb. As expected, they are constant when Mb ! 1, although, as in the previous case,

the asymptotic limit is reached very slowly. Here, the n{stability of the analysis is also

destroyed by the overall (MB=Mb)
2n factor, which hopefully disappears when we work

with the ratios of form factors. We show in Fig. 2 the q2{dependence of the normalized

V B and AB

2 , which is very weak since the dominant light{quark condensate contribution

has no q2{dependence. The small increase with q2 is due to the q2{dependence of the

small and non-leading contribution from the perturbative graph. Lattice points in the

Euclidian q2{region [7] agree with our results. An analytic continuation of our results at

time-like q2 agrees qualitatively with the one in [3]. The numerical di�erence in this region
is due to the relative increase of the perturbative contribution in the time{like region due
to the e�ect of the additional Landau{type singularities. However, this e�ect does not
inuence the Mb behaviour of the form factors at q2

max
, which can be safely obtained from

the leading{order expression given by the light{quark condensate. One can deduce:

V B(q2
max

) �
q
Mb; AB

2 (q
2
max

) �
q
Mb: (21)

This result is in agreement with HQET and lattice data points. Finally, we can also
extract the ratios of form factors. At the � 0{maxima and at the n{maxima or inexion
point, we obtain from Fig. 3:

r2 � AB

2 (0)

AB

1 (0)
' rV � V B(0)

AB

1 (0)
' 1:18 � 0:04; (22)

where the accuracy is obviously due to the cancellation of systematics in the ratios. This

result is again consistent with the lattice results [7], but more accurate.

3 The �B ! � semileptonic decay

The relevant form factor de�ned in (1) has been numerically estimated within the HSR

with the value [1]:
fB+ (0) ' 0:20 � 0:05; (23)

where the contribution of the �0(1.3) meson has been included for improving the sum rule

variable stability of the result. In this paper, we propose to explain the meaning of this

numerical result from an analytic expression of the sum rule. Using the QCD expression

given in [5], we obtain for a pseudoscalar current describing the pion:

fB+ (q
2) ' �(mu +md)h�qqi

4f�m2
�

1

fB

�
MB

Mb

�2n (
1 + �(5)+

I�
M2

b

)
; (24)
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where I� is the spectral integral coming from the perturbative graph. Its value at q2 = 0

for di�erent values of Mb is shown in Fig. 1. It indicates that at Mb = 4:6 GeV, the

perturbative contribution, although large, still remains a correction compared with the

light{quark condensate term; �(5) is the correction due to the dimension{5 condensate

and reads:

�(5) ' �� 0M2
0

(
(n + 1)

3
+

� 0�1

4M2
b

(n2 + 3n + 4)

)
: (25)

One can use the well-known PCAC relation

(mu +md)h�qqi = �m2
�
f2
�
; f� = 93:3 MeV (26)

into the previous sum rule in order to express fB+ in terms of the meson couplings. Unlike

the case of the B ! � form factors where the scale dependence is contained in h�qqi, fB+ is

manifestly renormalization{group{invariant. It should be noted, as in the case of the sum

rule determination of the !�� coupling [6], that the f�{dependence appears indirectly

via (26) in a correlator evaluated in the deep Euclidian region, while the pion is o� shell,

which is quite di�erent from soft{pion techniques with an on{shell Goldstone boson. One

can also deduce from (24) that for large Mb, f
B

+ behaves like
p
Mb. In this limit the

q2{dependence is rather weak, as it comes only from the non-leading 1=Mb contributions;
we therefore have, to a good accuracy:

fB+ (q
2
max

) ' fB+ (0) �
q
Mb: (27)

As in the previous case, the slight di�erence between the q2{behaviour in the time{like
region and the one from that obtained in [3], at a �nite value of Mb(=4.6 GeV), is only

due to a numerical enhancement caused by the Landau singularities of the perturbative
contribution in this region, but does not disturb the Mb-behaviour of the form factor.
Finally, we extract the ratio of the form factor in Fig. 3, from which we deduce:

r� � AB

1 (0)

fB+ (0)
' 1:64 � 0:06: (28)

4 The B ! � rare decay

We can use the previous results into the HQET [8] relation among the di�erent form
factors of the rare B ! � decay (FB

1 � F
B!�

1 ) and the semileptonic ones. This relation

reads around q2
max

:

FB

1 (q
2) =

q2 +M2
B
�M2

�

2MB

V B(q2)

MB +M�

+
MB +M�

2MB

AB

1 (q
2); (29)

from which we deduce:

FB

1 (q
2
max

) �
q
Mb: (30)

However, we can also study, directly from the sum rule, the q2{dependence of FB

1 . Using
the fact that the corresponding sum rule is also dominated by the light{quark condensate

for Mb !1 [2], an evaluation of this contribution, at q2 6= 0, shows that the light{quark
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condensate e�ect has no q2{dependence to leading order. Then, we can deduce, to a good

accuracy:

FB

1 (q
2
max

) ' FB

1 (0) �
q
Mb: (31)

Let us now come back to the parametrization of the form factor at q2 = 0. We have given

in [2] an expanded interpolating formula that involves 1=Mb and 1=M2
b
corrections due to

the meson-quark mass di�erence, to fB and to higher{dimension condensates. Here, we

present a slightly modi�ed expression, which is:

FB

1 (0) ' �
1

2
h�qqi �

fB

�
MB

Mb

�2n (
1 +

I
M2

b

+ :::

)
; (32)

with:

� �
 
�

M2
�

!
exp(M2

�
� 0);

I ' (20 � 4) GeV2 for Mb � 4:6 GeV; (33)

where we have neglected the e�ects of higher{dimension condensates; I is the perturba-
tive spectral integral. One should notice that unlike the other spectral integrals in Fig.

1, I reaches quickly the asymptotic limit when Mb !1. Using the estimated value of
FB

1 (0) in [2], we can have, in units of GeV:

FB

1 =
1:6� 10�2

fB

 
1 +

20� 4

M2
b

!
; (34)

which leads of course to the same formula at large Mb as in [2]. However, due to the large
coe�cient of the perturbative contribution, it indicates that an extrapolation of the result
obtained at low values of Mc is quite dangerous, as it may lead to a wrong Mb{behaviour

of the form factor at large mass. One should notice that (34) and the one in [2] lead to the
same numerical value of FD

1 (0). Proceeding as for the former cases, we can also extract
the ratio:

r � AB

1 (0)

FB

1 (0)
' 1:19� 0:03; (35)

from the analysis of the � 0{ and n{stability shown in Fig. 3.

5 Values of the B-form factors

The safest prediction of the absolute value of the form factors available at present, where
di�erent versions of the sum rules and lattice calculations have a consensus, is the one for
fB+ (0):

fB+ (0) ' 0:26 � 0:12� 0:04 Lattice [7]

0:26 � 0:03 DLSR [3](see also[9])

0:23 � 0:02 HSR+DLSR [1]

0:27 � 0:03 Light-cone [10];

(36)
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from which one can deduce the \world average":

fB+ (0) ' 0:25 � 0:02: (37)

Using this value in the previous ratios of the form factors, we obtain:

AB

1 (0) ' 0:40 � 0:03 AB

2 (0) ' V B(0) ' 0:47� 0:04 FB

1 (0) ' 0:34� 0:03: (38)

Alternatively, one can use the present most reliable estimate of FB

1 [2], [11]:

FB

1 (0) ' 0:27 � 0:03; (39)

where we have used the strength of the SU(3)-breakings obtained in [2] in order to convert

the result for B ! K� of [11] into the B ! � of interest here. Then, we deduce:

AB

1 (0) ' 0:36� 0:03; AB

2 (0) ' V B(0) ' 0:43 � 0:04; fB+ (0) ' 0:22 � 0:02: (40)

We consider as a �nal best estimate the average of the two results:

AB

1 (0) ' 0:38 � 0:04; AB

2 (0) ' V B(0) ' 0:45 � 0:05;

fB+ (0) ' 0:23 � 0:02; FB

1 (0) ' 0:30� 0:04: (41)

6 B-semileptonic-decay rates

We are now in a good position to predict the di�erent decay rates. In so doing, we shall
use the pole parametrization, except for the AB

1 form factor. For the B ! �, we shall use
the experimental value 5.32 GeV of the B� mass. For the B ! �, we shall use the �tted

value (6:6� 0:6) GeV [3] for the pole mass associated to AB

2 and V B. For AB

1 , we use the
linear form suggested by (13), with an e�ective mass of (5:3 � 0:7) GeV, which we have
adjusted from the numerical behaviour given in [3] (we have not tried to reproduce the
change of the behaviours for t ' (0:76� 0:95)M2

b
obtained in [3], which is a minor e�ect).

Using the standard de�nitions and notations, we obtain:

� �B!�e�� ' (3:6� 0:6)� jVubj2 � 1012 s�1 (42)

We also obtain the following ratios:

� �B!�e��

� �B!�e��

' 1:4� 0:2;
�+

��
' 0:10� 0:04; � � 2

�L

�T
� 1 ' �(0:75� 0:15): (43)

Thanks to a better control of the ratios of form factors, the ratio of the �B decays into �

over the � can be predicted, to a good accuracy. It becomes compatible with the prediction
obtained by only retaining the contribution of the vector component of the form factors.
Our predictions are compatible with the ones in [3] except for �+=��, where the one in [3]

is about one order of magnitude smaller. The di�erence of two of these three quantities

with ones in [1] ( the large branching ratio into � over � and the positive value of the
asymmetry � in [1] and in most other pole dominance models for AB

1 ) is mainly due to

the di�erent q2�behaviour of AB

1 used here.

8



7 Conclusions

We have studied, using the QCD hybrid sum rule, the Mb{ and q2{behaviours of the

heavy-to-light transition form factors. We �nd that these quantities are dominated in a

universal way by the light{quark condensate contribution.

The Mb{dependence obtained here is in perfect agreement with the HQET and lattice

expectations.

The q2{dependence of the AB

1 form factor, which is mainly due to the one from the light{

quark condensate contribution, is in clear contradiction with the one expected from a pole

parametrization. The other form factors can mimic numerically this pole parametriza-

tion. Our QCD{analytic q2{behaviours con�rm the previous numerical results given in

[3].

We have also shown that it can be incorrect to derive theMb{behaviour of the form factors

at q2 = 0 by combining the HQET result at q2
max

with the pole parametrization.

We have also shown that the unusual q2�behaviour of the AB

1 form factor a�ects strongly

the branching ratio of B ! � over B ! � and the �{polarisation parameter �. A

measurement of these quantities complemented by the one of the q2�behaviour of the
form factor should provide a good test of the sum rules approach.
We want also to stress that the extrapolation of the results obtained in this paper to the
case of the D-meson would be too audacious: the uses of the HSR in that case cannot be
rigorously justi�ed since the value of the c-quark mass is smaller, although it may lead
to acceptable phenomenological results. We are investigating this point at present.
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Figure captions

Fig. 1 Mb-dependence of the perturbative spectral integrals at q
2 = 0.

Fig. 2 q2{behaviour of the normalized form factors: R1 � AB

1 (q
2)=AB

1 (0), R2 �
AB

2 (q
2)=AB

2 (0), RV � V B(q2)=V B(0) and R� � fB+ (q
2)=fB+ (0). The squared points in the

timelike region are from [3].

Fig. 3 � 0{ and n{dependences of the ratios of form factors at q2 = 0: r2 � AB

2 (0)=A
B

1 (0),

rV � V B(0)=AB

1 (0), r� � AB

1 (0)=f
B

+ (0) and r � AB

1 (0)=F
B

1 (0).
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