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Abstract

We discuss the critical bubbles of the electroweak phase transition using an e�ective high-

temperature 3-dimensional action for the Higgs �eld '. The separate integration of gauge

and Goldstone boson degrees of freedom is conveniently described in the 't Hooft-Feynman

covariant background gauge. The e�ective dimensionless gauge coupling g3(T )
2 in the

broken phase is well behaved throughout the phase transition. However, the behavior of

the one-loop Z(') factors of the Higgs and gauge kinetic terms signalizes the breakdown

of the derivative expansion and of the perturbative expansion for a range of small ' values

increasing with the Higgs mass mH . Taking a functional Sz['] with constant Z(') = z

instead of the full non-local e�ective action in some neighborhood of the saddlepoint we

are calculating the critical bubbles for several temperatures. The uctuation determinant
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is calculated to high accuracy using a variant of the heat kernel method. It gives a strong

suppression of the transition rate compared to previous estimates.
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1 Introduction

There are strong indications [1] { [6] that the electroweak standard theory predicts a

�rst-order phase transition at high temperatures corresponding to the electroweak scale.

The critical bubbles of the transition are solutions of the static electroweak semiclassical

equations of motion. The transition probability can be calculated using Langer's theory

[7]. The exact production rate is important for the timing of the transition and the

determination of the corresponding temperature. The baryon asymmetry of the universe

may be generated through bubble expansion because the three Sakharov criteria { C/CP

violation, baryon number violation and nonequilibrium { are ful�lled.

In a proper treatment of the electroweak phase transition the coarse-grained action

constructed consistently for the particular problem and the size scale involved should be

used. If there are di�erent mass scales one can integrate out �rst the more massive �elds

and keep the light �elds in an e�ective action relevant for the phase transition. At high

temperature non-static Matsubara modes may be considered as heavy �elds. Integrating

out these modes leads to a 3-dimensional e�ective theory with symmetry restoration at

high temperature. The related phase transition is predicted to be second-order instead

of �rst-order, however. It becomes �rst-order due to contributions from static modes. So

some of the light modes have to be integrated out as well in calculating the e�ective action.

It is well known that integrating out the non-static modes using the high temperature

expansions and then integrating out the static gauge boson �elds one has already an

e�ective potential leading to a �rst-order phase transition. In this spirit it is very natural

to integrate out the static Goldstone modes as well. This is most conveniently done in the

't Hooft-Feynman covariant background gauge. With the pure real scalar background of

the bubble con�gurations one ends up with a 3-dimensional e�ective Higgs action whose

uctuations still have to be considered.

If a small coupling parameter - maybe after some rede�nitions - can be identi�ed, the

one-loop perturbative expansion for the e�ective action will be a good approximation. A

carefully introduced gauge coupling g3(T )
2 in the broken phase is well behaved throughout

the phase transition, and indeed it is not very large for mH � mW .

The ZH(') factor of the Higgs kinetic term will be calculated explicitly in the 't Hooft-

Feynman covariant background gauge in one-loop order. It di�ers considerably from that

in the Landau gauge. Due to the fact that ZH(') is negative in some ' range, it is not

sensible to include it in this form in the e�ective action. We will argue that the derivative

expansion breaks down in this range.

We also inspect the one-loop Zgauge(') prefactor of the kinetic gauge term. It plays no

direct role in the bubble action. However, g3(T )
2=Zgauge(') is the e�ective gauge coupling

at the constant scale '. It blows up for Zgauge ! 0 and this happens already at rather

large values of ' (> 0:4) for mH > 1

2
mW . Thus except for very small mH the '-range

relevant for the bubble con�guration may be largely nonperturbative in the e�ective gauge

coupling. Integration of the (enlarged) gauge degrees of freedom to some (one) loop order

can in this range at best be suggestive for the form of the e�ective Higgs action.

We will then consider a Higgs e�ective action with the known one-loop e�ective po-

tential and a kinetic term with arbitrary constant Z factor. This allows us to come to

our main subject, the discussion of radiative corrections in the heat kernel method. Since

there is no background gauge �eld for the bubble con�guration, the heat kernel expansion

already exists to very high order (and can easily be extended using new methods [8, 9]).

Thus we can arrive at a very precise treatment of the uctuations.
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It turns out that the static prefactor which is essentially the uctuation determinant

gives a strong suppression of the nucleation rate. Its logarithm may be interpreted as the

one-loop correction to the e�ective action of the critical bubble. The comparison between

the two values decides on the applicability of the nucleation theory.

Section 2 contains a discussion of the 3-dimensional e�ective high temperature Higgs

action obtained from one-loop integration of all the other �elds in the 't Hooft-Feynman

background gauge and a critical inspection of derivative expansion and of perturbation

theory. In section 3 we �rst shortly review the nucleation rate based on Langer's theory.

We discuss the critical bubbles obtained with the modi�cation mentioned above. In the

following we consider the heat kernel method for calculating the uctuation determinant

and develop a particular method to treat zero/instable modes. We present our high ac-

curacy results for the uctuation prefactor in the transition rate. Section 4 gives our

conclusion. Appendix A contains the calculation of Z factors, Appendix B some general-

ization of the thin-wall bubble solution. Appendix C gives the �rst six operators in the

heat kernel expansion.

2 The E�ective Action

The critical bubble solutions describing the �rst-order phase transition of the electroweak

theory are pure Higgs �eld con�gurations. They are not solutions of the original fun-

damental �eld equations of the electroweak theory, but correspond to an e�ective action

where (part of) the other �eld degrees of freedom have already been integrated out. It

is the aim of the `exact renormalization group approach' to derive such an action well

adapted to the size of the bubbles. In the case of a gauge theory this demanding pro-

gram is just being developed [10, 11]. Still a simpler way to discuss critical bubbles is to

generate new terms of the Higgs e�ective action by using low-order perturbation theory,

starting from the fundamental Lagrangian. However in a rigorous treatment this requires

the identi�cation of appropriate expansion parameters (which may not be possible).

2.1 The high-temperature e�ective action

In the case of the electroweak phase transition it is appropriate to perform a high tem-

perature expansion. The expansion parameter is m(T )=T . The guiding principle is to

integrate out the heavy �eld degrees of freedom to get an e�ective theory of the light

�elds.

In a �rst step it is possible to integrate out the non-static Matsubara-frequencies which

gainmasses proportional to the temperature T (2n�T with n 6= 0 for bosons and (2n+1)�T

for fermions). The remaining e�ective theory is purely bosonic and 3-dimensional. As

argued in ref. [12] the high-temperature dimensional reduction has shortcomings in higher

orders of perturbation theory.

In a second step the longitudinal component A0 of the gauge �eld is integrated out. It

develops a Debye-mass proportional to gT .

In a third step we rescale the coordinates and �elds

~x! ~x

gv
; �! v�; A! vA (2.1)

where the scale v is left open for the moment. The remaining high-temperature e�ective

3



action can be written, in the limit of vanishing electroweak mixing angle, as

Sht =
1

g3(T )2

Z
d3x

�
1

4
F a

ij
F a

ij
+ (Di�)

y(Di�)+ Vht(�
y�)

�
(2.2)

with other contributions vanishing powerlike at high temperature, e.g. a (�y�)3=T 2 term.

They have been discussed to be unimportant [4].

The e�ective 3-dimensional gauge coupling is de�ned as

g3(T )
2 =

gT

v
: (2.3)

The gauge coupling g has been scaled out of the covariant derivative and the �eld strength

tensor. The high-temperature e�ective potential is

Vht(�
y�) =

�T

g2

 
(�y�)2 �

�
v0(T )

v

�2
�y�

!
: (2.4)

v0(T )
2

v2
is the asymmetric minimum

v0(T )
2 =

2

�T

�
T 2
0 � T 2

�
D : (2.5)

It is negative for T > T0. At these temperatures the global minimum of Vht(�
y�) is the

symmetric one at �y� = 0. At T0 it moves continuously to �nite values. Therefore this

potential predicts a second-order phase transition.

The constants are determined by the parameters of the standard model. They can

be calculated from the zero temperature masses ~m and the zero temperature vacuum

expectation value of the scalar �eld ~v = 246 GeV

~m2
W

=
1

4
g2~v2; ~m2

H
= 2�~v2

T 2
0 =

~m2
H
� 8~v2B

4D

D =
1

8~v2
(3 ~m2

W
+ 2 ~m2

t
)

B =
3

64�2~v4
(3 ~m4

W
� 4 ~m4

t
) : (2.6)

The temperature dependent quartic coupling is

�T = �� 3

16�2~v4

�
3 ~m4

W
log

~m2
W

aBT 2
� 4 ~m4

t
log

~m2
t

aFT 2

�
ln(aB) = 3:91; ln(aF ) = 1:14 : (2.7)

The theory described by eq. (2.2) is nothing but the 3-dimensional SU(2) Higgs model; it

has 13 �eld degrees of freedom; 9 from the gauge �eld and 4 from the scalar �eld.

2.2 Background �eld and uctuations

The high-temperature potential in eq. (2.2) corresponds to a second-order phase transition.

From lattice calculation [5, 6], however, and from the full one-loop e�ective potential [1]
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{ [4] one expects the electroweak phase transition to be �rst-order. This will be manifest

by integrating out further degrees of freedom.

In most cases, a �rst-order phase transition is initiated by the formation of critical

bubbles. The electroweak critical bubbles are pure real Higgs �eld con�gurations. We

therefore divide the 13 remaining �elds into the real background �eld ' and into uctua-

tions in the following way

Aa

i
! Aa

i
+ g3 a

a

i
Aa

i
= 0

� ! �+ g3�

� =

r
1

2

 
0

'

!
� =

r
1

2

 
�1 + i�2

� + i�3

!
: (2.8)

The uctuations have to be gauge-�xed in some way. A class of covariant background

gauges is given by

F a = Di(A) a
a

i
+ i�

�
�y

�a

2
�� �y

�a

2
�

�
= 0 : (2.9)

We use the 't Hooft-Feynman gauge where the gauge parameter is � = 1. This is contrary

to most publications on the electroweak phase transitions which work in the Landau gauge.

Using eq. (2.8) and eq. (2.9) the high temperature action (eq. (2.2)) changes into

Sht +
1

2�

Z
d3xF aF a ! S

bg

ht
+ �Slin + �Squad + : : : (2.10)

with the background �eld part

S
bg

ht
=

1

g3(T )2

Z
d3x

�
1

2
@i'@i'+ Vht('

2)

�
: (2.11)

The part which is linear in the uctuations is proportional to �, the uctuation which

corresponds to the Higgs �eld ' (cf. eq. (2.8))

�Slin /
1

g3(T )
� : (2.12)

There are no linear terms in the other uctuations. This is due to the fact that the

background �eld takes the minimum of this part of the fundamental action. Note that

we already made use of the absence of linear terms in integrating out the non-static

Matsubara-frequencies. Neglecting tadpoles here was only possible due to the fact that

the remaining degrees of freedom are purely 3-dimensional.

The part quadratic in the uctuations is most simply written in matrix notation

�Squad =
1

2

Z
d3x QT �

"
� @21 +

0
BBB@

U 0 0 0

0 U 0 0

0 0 U 0

0 0 0 m2
H

1
CCCA
#
�Q

QT =
�
a11; a

1
2; a

1
3; �

1; a21; a
2
2; a

2
3; �

2; a31; a
3
2; a

3
3; �

3; �
�

: (2.13)

U is a 4� 4-matrix

U = U0 + �U (2.14)

U0 =

0
BBB@

m2
W

0 0 0

0 m2
W

0 0

0 0 m2
W

0

0 0 0 m2
�

1
CCCA �U =

0
BBB@

0 0 0 @1'

0 0 0 @2'

0 0 0 @3'

@1' @2' @3' 0

1
CCCA : (2.15)
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The diagonal elements are the �nite temperature squared masses

m2
H

=
�T

g2

 
3'2 �

�
v0

v

�2!
(2.16)

m2
�

=
1

4
'2 +

�T

g2

 
'2 �

�
v0

v

�2!
(2.17)

m2
W

=
1

4
'2 (2.18)

m2
gh

=
1

4
'2 : (2.19)

They are positive in the range of phase transition, because
�
v0

v

�2
is negative. In the broken

phase they are of the same order of magnitude while gauge boson and ghost masses vanish

in the symmetric phase. Hence there is no mass hierarchy which holds over the whole

interesting '-range.

Note that the �-uctuation does not mix with the other uctuations (eq. (2.13)). In

addition there are no linear terms proportional to aa
i
or �a. In one-loop order it is therefore

possible to perform the remaining integrations in two steps. In a �rst step we integrate

out gauge �elds, ghosts, and Goldstone bosons to get an e�ective action for the ' �eld.

We might not �nd a local e�ective action through this procedure, however, because it

is not supported by an appropriate mass hierarchy. Nevertheless we shall discuss a local

expansion, because the relevant scale is set by the bubble solutions which will be calculated

in section 3.2. Anticipating the results (�gure 5) one sees that the corresponding mass

which is given by the inverse wall thickness is quite small (� 1

30
gv(T )).

In a second step, the uctuations of the ' �eld contributing to the static prefactor of

the nucleation rate will be calculated.

2.3 The e�ective action of the Higgs �eld '

The e�ective action of the Higgs �eld ' is in one-loop order calculated from

Seff ['] = Sbg

ht
['] + �S['] (2.20)

with

�S =
1

2
log det(�@2 +M12)� log det(�@2 +Mgh) : (2.21)

The 12� 12 a-�-matrix M12 is a part of �Squad (eq. (2.13)), while the 3� 3 ghost-matrix

Mgh is easily calculated from the gauge-�xing condition (eq. (2.9)).

Mgh =

0
B@ m2

gh
0 0

0 m2
gh

0

0 0 m2
gh

1
CA (2.22)

The derivative expansion can be carried out by calculating Feynman diagrams, by summing

up the relevant contributions of the heat-kernel expansion, or by using a method proposed

in ref. [13]. The latter is explained in more detail in appendix A. The three methods of

course yield identical results.

One gets the e�ective action

Seff ['] =
1

g3(T )2

Z
d3x

�
Veff(') +

1

2
ZH(')@i'@i'+O(@'4)

�
(2.23)
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with the e�ective potential

Veff(') = Vht �
g3(T )

2

12�

�
9m3

W
� 6m3

gh
+ 3m3

�

�
(2.24)

=
�T

g2

 
1

4
'4 � 1

2

�
v0

v

�2
'2

!

�g3(T )
2

12�

0
@3

8
'3 + 3

"
1

4
'2 +

�T

g2

 
'2 �

�
v0

v

�2!#3=21A (2.25)

and the Z-function

ZH(') = 1 +
g3(T )

2

4�

�
� 3

mW +m�

+
3

64

1

m3
W

'2

� 2

64

1

m3
gh

'2 +
1

64

1

m3
�

�
1 + 4

�T

g2

�2
'2

#
: (2.26)

The e�ective potential predicts a �rst-order phase transition. (We are restricting our-

selves to zero-temperature Higgs masses ~mH � ~mW .) In the transition range it has two

minima, the symmetric one at 'S = 0 and the asymmetric one at 'A = v(T ). During the

phase transition ' takes on values between 'S and 'A. The most natural way of rescaling

the �eld in eq. (2.1) is therefore to choose v = v(T ). Hence the asymmetric minimum is

always at 'A = 1.

The parameter v0(T )
2

v(T )2
introduces the temperature dependence into the potential. The

e�ective coupling g3(T ) is related to this parameter by the requirement that the minimum

of the potential corresponding to the broken symmetry phase is located at 'A = 1, ac-

cording to the �eld rescaling. The critical temperature Tc corresponds to the two minima

having equal height. At the roll-over temperature Tro the symmetric phase becomes un-

stable. In �gure 1 we show v0(T )
2

v(T )2
as function of �T

g2
, for T = Tc and T = Tro, respectively.

g3(T )
2 at T = Tc and T = Tro is shown in �gure 2 .

2.4 The gauge-�xing dependence of the e�ective action

The e�ective potential (eq. (2.25)) is not a polynomial in ', due to the non-vanishing
�T

g2
-term of the Goldstone mass (eq. (2.25)). Nevertheless, the corrections induced by this

term are (at least for ~mH � ~mW ) numerically small. They manifest themselves in three

(small) e�ects:

i) The critical temperature Tc and the roll-over temperature Tro are shifted towards higher

temperatures.

ii) Veff(' = 0) is shifted. This is corrected by adding a constant to the potential. We

always work with Veff(0) = 0.

iii) The e�ective Higgs mass de�ned by
q
V 00

eff
(') has di�erent values in the symmetric

and in the asymmetric phase. (cf. our note on the Higgs masses in section 3.3)

Note that the contribution from the �T

g2
-term of the Goldstone mass is the only gauge-

dependent part of Veff('). Integrating out gauge bosons, Goldstones and ghosts in the

limit of vanishing �T

g2
the e�ective potential is independent of the gauge parameter �. The

gauge-�xing dependent contributions due to the non-vanishing �T

g2
are numerically small.

The situation is totally di�erent looking at the Z-function (eq. (2.26)). Comparing

our results with those obtained in Landau gauge (see e.g. [3]) the contribution from the
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mixed W -� loops get a factor 2

3
while the sum of the W and the ghost loops which has to

be taken as one part gets a factor 10. The �-loop contribution is the same.

In �gure 3 we have plotted the ZH-function at the critical temperature in 't Hooft-

Feynman as well as in Landau gauge. The results are totally di�erent. Note that this

strong gauge-�xing dependence can not be cured by introducing a magnetic mass of any

reasonable size. In the spirit of ref. [14] one might argue that the gauge-�xing dependence

of ZH in one-loop order cancels against the gauge-�xing dependence of Veff in two-loop

order. Indeed in the thin-wall limit, for �T

g2
! 0, one can see explicitly that higher

derivative terms compete with lower derivative higher loop terms evaluated in the critical

bubble background. Away from this limits, however, we expect that also a cancellation

against higher derivative terms of the same loop order plays an important role.

2.5 Limits on derivative expansion and perturbation theory

In calculating Seff we have integrated out the gauge and Goldstone degrees of freedom

well separated from the Higgs �eld ' in one-loop order. In the range of small ' these are

massless or light modes and one has to be aware of the breakdown of derivative expansion:

the true e�ective action is a non-local functional of '. Indeed if one calculates higher

derivative terms (beyond (@')2) the singularities of the higher order Z-factors get worse.

If one inserts the critical bubble solutions obtained with the usual kinetic term (and to be

discussed in section 3.2) into the e�ective action functional stated in derivative expansion

these terms diverge contrary to the
R
d3xZ(')(@')2 term. The latter term, however, has

defects as well. As mentioned above it is highly gauge-dependent and Z(') also turns out

to become negative in some '-range in t' Hooft-Feynman gauge. This makes it impossible

to use the e�ective action resulting from the derivative expansion for a further treatment

of the � uctuations.

As an alternative to the derivative expansion, one may perform a heat kernel expansion.

This is also a local expansion, but instead of summing contributions of a given number

of derivatives to all orders, terms with di�erent number of derivatives are systematically

combined order by order. In this way, more and more non-locality is covered. There

is no obvious scale and therefore the dynamics of the symmetric phase is plagued by

infrared problems. However, what we really want to know is a di�erence of the bubble

e�ective action to the e�ective action of the symmetric phase. The bubble solution provides

additional scales which may serve as infrared cut-o�. As mentioned above (section 2.2)

this scale is set by the inverse bubble wall thickness and turns out to be rather small.

Therefore, the heat kernel expansion may converge reasonably well also in the presence of

massless modes. This will not be attempted in this paper.

In order to take non-local e�ects into account in some approximate way, we shall

introduce some ' independent wave-function renormalization for the kinetic term of the

Higgs �eld

Sz['(~x)] =
1

g3(T )2

Z
d3x

�
1

2
z(@i')

2 + Veff('(~x))

�
: (2.27)

z would have to be determined from the true non-local e�ective action in such a way that

Sz['] approximates that action locally in some neighborhood of the critical bubble (but

not globally in �eld space, which is not possible). Therefore, z is not directly related to the

wave-function renormalization ZH(') (eq. (2.26)) but also summarizes the e�ect of all the

higher derivative operators. Unfortunately, a �t of z is technically involved and presently

not feasible. One should insert trial functions extremizing eq. (2.27) into the higher order
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heat kernel expansion containing the 12� 12 matrix potential. In the resulting terms the

z-dependence factorizes out, and the total expression should be extremized with respect

to z.

One could also try to �nd some average zav arguing that the small '-range is not

important in the integrated action at least for small ~mH . In view of the negative Z(')-

range we are sceptical about this procedure. Nevertheless we will present a plot of such a

zav in section 3.2.

Note that the breakdown of the derivative expansion does not automatically imply the

breakdown of perturbation theory. To inspect the latter question we calculated (Appendix

A) the Zgauge(') prefactor of the gauge-kinetic term in one-loop order. This term does

not appear directly in the Higgs Lagrangian but g3(T )
2=Zgauge(') is the e�ective gauge

coupling at the scale '. Figure 4 demonstrates that it becomes big (Z small or negative,

respectively) already halfway in ' between the broken and unbroken minimum even for

small ~mH ( ~mH = 1

2
~mW ). This means that the perturbative expansion breaks down in

a rather big range of ' starting from ' = 0, and that we cannot trust the perturbative

potential and action for these Higgs �eld values '. This was already emphasized in ref. [15].

It is not clear, however, at what e�ective scale the gauge coupling will appear in higher

loop order. Nevertheless, one has to expect a rather strong dependence of the bubble

solutions on this part of the action (di�erent from sphaleron con�gurations based on the

broken phase [16]), Also the potential in the ansatz eq. (2.27) might get nonperturbative

contributions. They are not considered in this paper.

3 The Phase Transition

3.1 Nucleation rate

According to the e�ective action calculated above the electroweak phase transition is of

�rst-order. It is triggered by bubble nucleation. Just before the transition starts the

system is in thermal equilibrium in the metastable symmetric phase.

The onset of a �rst-order phase transition was investigated by Langer [7] and successive

work [17, 18] in some detail. The bubble nucleation at the electroweak phase transition has

been investigated e.g. in the references [19] and [20]. It is assumed that the total system

is dividable into interval and system of interest [21]. The inuence of the heat bath on

the rest is �rst to induce thermal uctuations and second to change the free energy of the

system of interest. Both inuences are only taken into account on average. We divide the

total system, which consists of all �elds of the standard model, into the !0-frequency of the

real scalar �eld ' =
p
2�y� and the rest. The free energy is given by �F ['(~x)] = S['(~x)]

where S['(~x)] is the e�ective action.

Langer solved the equations of motion in a neighborhood of the saddlepoint, which

corresponds to the critical bubble, and got a quasi-stationary solution describing a density

ow from the metastable to the stable region. The transition rate � is the integral of

density ow and evaluates to

� =
�

2�
V

 
�S

2�

!3=2

1p
j��j

"
det00K

detK0

#�1=2
expf� �Sg (3.1)

where

� � is the dynamical prefactor. It takes into account the dynamical characteristics of

the heat bath. We will not calculate it in this paper but refer to the literature [22].
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� V is the spatial volume.

�
K = g3(T )

2�
2S

�'2

���
�'(~x)

K0 = g3(T )
2�

2S

�'2

���
's

(3.2)

�'(~x) is the critical bubble and 's represents the symmetric phase. det
00
K denotes

the determinant of K, without the negative and the three zero eigenvalues. The

negative eigenvalue corresponds to the growing and shrinking of the critical bubble.

The zero-modes are due to translational invariance. The factors g3(T )
2 result from

a rescaling which makes formulas more convenient.

� �� is the negative eigenvalue of K.

� �S = S[ �'(~x)]� S['s] is the e�ective action of the critical bubble.

�S; �� and the static prefactor

A =

"
det00K

detK0

#�1=2
(3.3)

are functionals of the critical bubble �'(~x). The latter depends only on the temperature.

The determinants now refer to the Higgs �eld uctuations only.

One aim of our work is to calculate the rate

R =
�

V �
=

1

2�

 
�S

2�

!3=2
1p
j��j

A expf� �Sg (3.4)

as a function of the temperature.

We will describe our calculation for the zero-temperature Higgs mass ~mH = 1

2
~mW in

some detail and report the results for other values of ~mH at the end.

3.2 The critical bubble

The critical bubble '(~x) is a saddlepoint of the e�ective action S['] and therefore a solution

of
�S

�'

���
�'(~x)

= 0 (3.5)

with the boundary conditions

lim
~x!1

�'(~x) = 'S �'(0) > 'S : (3.6)

Taking the e�ective action Sz['] the saddlepoint equation reads

z@2 �'z(~x)� V 0

eff
( �'z(~x)) = 0 : (3.7)

By rescaling ~x ! ~x=
p
z this equation reduces to the one with z = 1. The solution for

arbitrary but constant z > 0 is therefore

�'z(~x) = �'

�
~xp
z

�
with �' = �'z=1 : (3.8)
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To cover the whole temperature range from the new roll-over temperature Tro to the

critical temperature Tc we introduce a temperature-like variable y instead of
v0(T )

2

v(T )2
via

�
v0(T )

2

v(T )2

�
y

=
v0(Tc)

2

v(Tc)2
+ y

�
v0(Tro)

2

v(Tro)2
� v0(Tc)

2

v(Tc)2

�

y = 0:1; 0:2; : : : ; 0:9 : (3.9)

This way of dividing the interesting temperature interval turned out to be much more

appropriate than dividing it into equal �T intervals. For a given value of y the temperature

T and the e�ective action (eq. (2.27)) are determined; the temperatures are given in table

1. We have calculated the critical bubbles from eq. (3.7) with z = 1 for these nine y's;

they are spherical symmetric and plotted in �gure 5.

The e�ective action of the critical bubble with arbitrary z > 0 is, using eq. (3.8)

Sz[ �'z] =
1

g3(T )2

Z
d3x

�
1

2
z (@i �'z(~x))

2 + Veff ( �'z(~x))

�

= z3=2 S1[ �'(~x)] (3.10)

with

S1[ �'(~x)] =
1

g3(T )2

Z
d3x

�
1

2
(@i �'(~x))

2 + Veff( �'(~x))

�
: (3.11)

This simple scaling behavior clari�es the roll of the corrections to the surface term and

allows to proceed without knowing the value of z precisely.

Assuming that Veff is renormalized by Veff(0) = 0 we identify �S with S1[ �']. It is given

in table 1 and plotted in �gure 9 where single points are connected by a spline (full line).

With a known critical bubble con�guration one can evaluate

zav =

R
d3xZ( �'z)(@ �'z)

2R
d3x(@ �'z)2

=

R
d3xZ( �')(@ �')2R
d3x(@ �')2

(3.12)

in order to get an average zav. In �gure 6 we have plotted it for ~mH = 1

2
~mW versus y.

However, in our opinion the range near ' = 0 is not taken into account properly in this

way, because Z(') is unphysical, as argued in section 2.5.

3.3 Eigenvalues of K and K0

Using the e�ective action Sz['] (eq. (2.27)) the operators K and K0 de�ned in eq. (3.2)

are

K = �z@2 + U U = V 00

eff
( �'z(r)) (3.13)

K0 = �z@2 + U0 U0 = V 00

eff
('S) =mH(T )

2 : (3.14)

U0 is the squared e�ective mass of the Higgs �eld in the symmetric phase and the natural

mass-scale of the remaining e�ective action.

Note that there is a change in notation. U and U0 are in this chapter no matrices

as in eq. (2.15) but real-valued functions of '. The Higgs mass in eq. (2.16) corresponds

to the high-temperature action (eq. (2.2)). It is ' and, via v0

v
, temperature-dependent.

mH(T ) de�ned in eq. (3.14) corresponds the e�ective action of eq. (2.27). It is the e�ective

Higgs mass in the symmetric phase (i.e. at 'S) and hence only temperature dependent.

11



In principle it is possible to de�ne a '-dependent e�ective Higgs mass via mH(T; ')
2 =

V 00

eff
('), but this squared mass is negative for some '-values. We do not need it.

The negative eigenvalue of K is determined by the eigenvalue equation

K n(~x) = (�z@2 + V 00( �'z(~x))n(~x) = �� n(~x) : (3.15)

By rescaling ~x!
p
z~x and using eq. (3.8) one sees that �� is independent of z. Similarly

all other eigenvalues of K and K0 are z-independent. We calculated �� numerically by

solving the Schr�odinger equation (3.15) with the boundary condition

lim
r!1

n(r) = 0 : (3.16)

The static prefactor A (eq. (3.3)) is a product of eigenvalues of K and K0 and therefore

independent of z. We evaluate it for z = 1.

3.4 Heat-kernel method and calculation of the static prefactor

Starting from

ln

�
detK

detK0

�
= �Tr

Z
1

0

dt

t
e�at

�
e�t(K�a) � e�t(K0�a)

�
(3.17)

it is possible to expand the logarithm in power of t [23]. A very elegant method to do this

is provided by a new calculation scheme [9]. One gets

ln

�
detK

detK0

�
= �

1X
n=1

1

n!

Z
1

0

dt

t
(4�t)�3=2e�attn(On(a)�O(0)

n
(a))

= �
1X
n=1

�(n� 3=2)

n!
(4�)�3=2a3=2�n(On(a)�O(0)

n
(a)) : (3.18)

The On(a)'s and O(0)
n
(a)'s are rather complicated functionals of �'(~x) which are given in

Appendix C. They depend on the mass scale a pulled out in eq. (3.17). In doing the

t-integration for n = 1 we have dimensionally regularized the UV-divergence which may

be traced back to the reduction in dimension [24]. Note that pulling out the squared mass

a in eq. (3.17) regularizes the IR-divergencies and makes the t-integral �nite at the upper

bound. This is an advantage over the method proposed in ref. [25].

However eq. (3.17) is only valid for positive de�nite K and K0. In our case, K has one

negative and three zero-eigenvalues. Exactly these eigenvalues are left out of the static

prefactor (eq. (3.3)) of the nucleation rate anyway. On the other hand, we have to drop

four eigenvalues of K0 as well, if we want to use eq. (3.17), because this equation makes

use of the fact that the numbers of eigenvalues of K and K0 are equal.

Taking out four times the eigenvalue U0 from detK0 one gets

ln

�
U4
0

det 00K

detK0

�
= ln

�
det 00K

det 00K0

�

=

Z
1

0

dt

t

�
�
�
Tr
�
e�tK

	
� e�t�� � 3

�
+
�
Tr
�
e�tK0

	
� 4e�tU0

��

=

Z
1

0

dt

t
e�at

h
�Tr

n
e�t(K�a) � e�t(K0�a)

o
+

+
�
e�t(���a) � e�t(U0�a)

�
+ 3

�
eat � e�t(U0�a)

�i
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=

Z
1

0

dt

t
e�at

"
�

1X
n=1

1

n!
(4�)�3=2tn�3=2

�
On(a)�O(0)

n
(a)
�
+ (3.19)

+
1X
n=1

1

n!
tn ((a� ��)

n � (a� U0)
n) + 3

1X
n=1

1

n!
tn (an � (a� U0)

n)

#
:

From the sum over the O's only the �rst few terms are calculable. Therefore we have to

truncate the other two sums as well. From similar calculations with other models we found

that the truncation is best done at the `same' powers of t rather than at the same number

N of terms (see also [26, 27]). This cannot be done straightforwardly however, because the

O-sum runs over half-integer power of t while the other sums run over full-integer powers.

We solved the problem by de�ning the two functions

X(N; a) =

Z
1

0

dt

t
e�at

"
�

NX
n=1

1

n!
(4�)�3=2tn�3=2

�
On(a)�O(0)

n
(a)
�#

= �
NX
n=1

�(n � 3=2)

n!
(4�)�3=2a3=2�n

�
On(a)�O(0)

n
(a)
�

(3.20)

and

Y (N 0; a) =

Z
1

0

dt

t
e�at

N
0X

n=1

1

n!
tn ((a� ��)

n + 3an � 4(a� U0)
n)

=
N
0X

n=1

1

n

��
a� ��

a

�n
+ 3� 4

�
a� U0

a

�n�
: (3.21)

While we have been able to evaluate X(N; a) for N 2 f1; 2; 3; 4; 5; 6g 3, Y (N 0; a) could

be calculated for every integer N 0. We interpolated Y (N 0; a) by a spline and de�ned the

functions

WN(a) = X(N; a) + Y (N � 3

2
; a) : (3.22)

From the equations (3.3, 3.19 { 3.22)

lim
N!1

WN (a) = ln

 
U4
0

det00K

detK0

!
= �2 ln

�
A

mH(T )4

�
(3.23)

follows. While the WN (a)'s are functions of a, the limit is not. This will give us a good

criterion for the quality of convergence [21].

For every critical bubble calculated above we have evaluated the functions W1(a), : : : ,

W6(a). Figure 7 shows the typical behavior. If a { the squared mass pulled out { is too

small, there is no convergence at all. If a is too big, the convergence is bad. But if a is

similar to the natural mass scale U0, the functions converge quite well towards a constant,

which is plotted as dashed line.

There are several sources of error in the outlined procedure: numerical errors, ambi-

guities in interpolating Y (N 0; a) and uncertainties in �xing the limit of the WN(a)'s. We

have estimated them to be less than 2% . The values of ln(A=T 4) are listed in table 1 and

plotted in �gure 9 (dashed line).

3One could evaluate X(7; a) as well [9], but this does not appear necessary in view of the excellent

convergence.
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3.5 The static prefactor and the e�ective action of the critical bubble

Up to now the static prefactor has usually been estimated from dimensional reasons as T 4

[18], or as mH(T )
4 [20]. There are some other calculations of the prefactor, which take

only into account the lowest eigenvalues of K [28, 29]. The results of these calculations

are somewhere between the two dimensional estimates. To compare our results with these

values we have expressed A in units of GeV. In �gure 8 they are plotted together with

these two estimates. One sees that the static prefactor calculated by us varies substantially

from y = 0:1 to y = 0:9. On the side of the critical temperature (y = 0) it is much smaller

than previous values. This results in a much smaller nucleation rate.

In a recent paper [30] the uctuation corrections to critical bubbles calculated from

the usual model e�ective potential are discussed. The method is based on the solution of

Schr�odinger type eigenvalue equations and totally di�erent from our procedure. Unfortu-

nately the present results are hard to compare because in ref. [30] the high-temperature

limit is not taken and because the potential di�ers in detail. A comparison of the two

methods in a common case would be very interesting.

The logarithm of the rate R=T 3 de�ned in eq. (3.4) is

ln

�
R

T 3

�
= ln

0
@ 1

2�

 
�S

2�

!3=2

Tp
j��j

1
A+ ln

�
A

T 4

�
� �S : (3.24)

The di�erent contributions are plotted in comparison in �gure 9. One sees that the

�rst one is small and nearly constant. The nucleation rate is determined by � �S and

ln(A=T 4). The comparison of these two values decides on the reliability of our results.

� ln(A=T 4) is nothing but the one-loop correction to �S coming from scalar loops. Therefore

j ln(A=T 4)j � �S is required for consistency.

Very close to the critical and the roll-over temperature it matters that the radiative

corrections shift the values of Tc and Tro. This e�ect should perhaps better be incorporated

in the quasiclassical e�ective action. In our approach it causes an increase of the static

prefactor near these temperatures. However, investigating the electroweak phase transition

the interesting temperatures are well separated from Tc and Tro, as we will see below.

In Langer's theory the static prefactor A takes the possibility into account that the

phase transition may be started by a bubble which di�ers from the critical one. On

the other hand the whole theory is based on a solution of the equations of motion in

the neighborhood of the saddlepoint that corresponds to the critical bubble. From this

reasoning one again gets that j ln(A=T 4)j � �S should be valid. This comparison is not

unambiguous because �S is dimensionless while A is not. Expressing A in T seems to be

appropriate because the temperature is the typical scale of the phase transition.

Therefore the nucleation rate calculated by us is not reliable at temperatures near the

roll-over temperature y = 1. Taking estimates based on cosmological reasons however,

the electroweak phase transition starts when ln(R=T 3) � 140. 4 The relative starting

temperature is therefore ys = 0:42. At this temperature j ln(A=T 4)j � 0:3 �S. This is an

acceptable correction.

However, with z smaller than 1 we �nd according to eq. (3.10) an additional suppres-

sion of the leading term ( �S), i.e. the the one-loop contribution becomes relatively more

important, indicating a less convergent loop expansion.

4Here we have assumed that � = O(1).
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3.6 Results for other Higgs masses

The numerical calculations presented have been done for the zero temperature Higgs

masses ~mH = 1

2
~mW ;

3

4
~mW and ~mW . The results are listed in the tables 1, 2 and 3.

The critical temperature Tc and the roll-over temperature Tro depend on the Higgs

mass. One should compare values corresponding to di�erent masses at the same relative

temperature y de�ned in eq. (3.9). The actions �S of the critical bubbles depend strongly

on the Higgs mass, while the Higgs mass dependence of the static prefactor is only small.

Although the rates are quite di�erent for the three masses the relative onset temperatures

di�er only moderately. This is due to the fact that the rates decrease rapidly when the

temperature is lowered.

We have listed the relative onset temperatures in table 4 together with the correspond-

ing values of �S, ln(A=T 4) and the quotient of both. This quotient decides, as argued above,

on the reliability of the nucleation rate formula (eq. (3.1)). One sees that the corrections

get worse if the Higgs mass increases.

3.7 Comparison with the thin-wall approximation

If the temperature is just below the critical temperature Tc the radius R of the critical

bubble is much larger than the size of the bubble wall �R. In the limit T ! Tc and

�R� R the e�ective action of the critical bubble can be written as (for z = 1)

�STW =
1

g23

16��3

3�2
(3.25)

with the volume energy

� = �Veff (T; 'A) (3.26)

and the surface tension

� =

Z 'A

'S

d'
q
2Veff(Tc; '(r)) (3.27)

(cf. appendix B). The values of � are given in table 5. The values of �STW are listed in

comparison with the full numerical values of the critical bubbles e�ective actions. (See

�gure 10 as well.) The shape of the critical bubbles is far from thin-wall except in the case

y = 0:1 (cf. �gure 5, for other Higgs masses the bubbles are similar). Nevertheless the

thin-wall estimates of the corresponding e�ective actions are quite good even for smaller

temperatures. On the other hand one has to calculate the critical bubble con�gurations

themselves if one wants to evaluate the static prefactor.

4 Discussion and Conclusions

Our main result is a very accurate determination of the Higgs uctuation determinant for

critical bubble solutions for an action (eq. (2.27)). It leads to a rather drastic change in

the prefactor A of the transition rate compared to previous rough estimates as indicated in

�gure 8. The transition is suppressed stronger. It is interesting to note that the radiative

corrections do not depend on the normalization factor z while the quasiclassical bubble

action scales with z3=2. In our procedure to evaluate the heat kernel expansion it was

essential that we go to a rather high order, that we take out a variable scale and that we

treat the subtraction of the unstable and zero modes carefully. The separate interpolation
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for integer and half integer On before the subtraction is essential for the quality of the

approximation.

We have also discussed the critical bubble con�gurations and their action for various

temperatures between Tc and Tro, and Higgs masses. For ~mH � 3

4
~mW and temperatures

not too close to Tro the radiative corrections are small compared to the z = 1 quasiclassical

action term (see table 2). Surprisingly the thin-wall approximation for the action is quite

good at temperatures where the critical bubble pro�le is not `thin-wall' any more. The

dependence of the action on the constant Z-factor can be taken out explicitly. It is an

interesting side remark that the usual thin-wall machinery goes through even for arbitrary

positive factors Z(') (Appendix B).

In the �rst part of the paper we discussed the status of a perturbative e�ective Higgs

action. The 't Hooft-Feynman covariant background gauge is particularly well suited for

a discussion of the separate integration of gauge, Goldstone, and ghost �elds, and also

avoids IR problems near the broken phase vacuum. The size of the rescaled 3-dimensional

gauge coupling g3(T )
2 in the broken phase changes smoothly in the phase transition and

is not very big and not very small; thus both the perturbative expansion in g23 and the

high temperature expansion seem to work. The inspection of the one-loop Z prefactors

of the Higgs and gauge-kinetic terms tells us however, that this is only true in the broken

phase.

Even at small ~mH � 1

2
~mW the Higgs ZH(') (�gure 3) becomes negative already at

rather big values of ' of the Higgs �elds in our gauge. Di�erent from the one-loop potential,

ZH(') is very gauge-dependent and di�ers from the Landau gauge. The negativity of ZH

cannot be changed by the introduction of a reasonable magnetic mass. The latter can only

change the singular behavior of ZH(') for ' very close to zero. As we argued in chapter

3, this signals the breakdown of the derivative expansion.

Even worse, the gauge �eld Zgauge(') becomes negative at still larger values of '. Since

it gives the static '-dependent e�ective gauge coupling5 g3(T )
2=Zgauge('), this signals the

breakdown of perturbation theory for a big range of ' already at small ~mH � 1

2
~mW (�gure

4), though the optimal choice of a scale of a gauge coupling in multi-loop calculations in the

background of a critical bubble is not known. Thus, the use of a Higgs action (eq. (2.27))

inspired by perturbation theory in the discussion of the critical bubbles does not have

a �rm ground. The `small' ' region contributes directly to the critical bubble action

through the Higgs kinetic term and not so much through the potential, but of course there

is an indirect e�ect of the potential changing (perhaps drastically) the critical bubble

con�guration itself.
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T
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Appendix A: Calculation of the Wave Function Renormaliza-

tion Z Factors

In this Appendix we calculate the Z factors in front of the kinetic terms. We work in

't Hooft-Feynman background gauge (eq. (2.9)).

We �rst assume that there is only a real scalar background �eld (eq. (2.8)). The task

is to expand �S (eq. (2.21)) in powers of @'. It reduces to the calculation of

W = log det(�@2 + U) =
1

3
log det(�@2 +M12) (A.1)

where U is given in eq. (2.14). Following [13] we expand

W =

Z
d3k

(2�)3

�Z
d3xtr log(��1) +

k2

3

Z
d3xtr(@i�)2 + : : :

�
(A.2)

where

� = (k2 + U('(~x))�1 : (A.3)

tr denotes the trace over the 4� 4-matrices. The logarithm is expanded as

tr log(��1) = tr log(k2 + U0 + �U)

= tr log
�
��1

0 (1 + �0�U)
�

= tr

"
log(��1

0 ) +
1X
n=1

(�1)n
n

(�0�U)
n

#
(A.4)

where U0 and �U are given in eq. (2.15) and

�0 = (k2 + U0)
�1 =

0
BBB@

(k2 +m2
W
)�1 0 0 0

0 (k2 +m2
W
)�1 0 0

0 0 (k2 +m2
W
)�1 0

0 0 0 (k2 +m2
�
)�1

1
CCCA
(A.5)

Calculating the Z-function only the terms proportional to (@')2 are of interest. Hence

only the n = 2 term contributes, and the relevant part of the �rst term on the r.h.s. of

eq. (A.2) is

Z
d3k

(2�)3

Z
d3x

1

2
tr(�0�U�0�U)

=

Z
d3k

(2�)3

Z
d3x

1

k2 +m2
W

1

k2 +m2
�

(@i')
2

=

Z
d3x

1

4�

1

mW +m�

(@i')
2 : (A.6)

To evaluate the second term on the r.h.s. of eq. (A.2) we make use of the fact that

� = �0 +O(@') : (A.7)

Since we are only interested in terms proportional to (@')2 we may replace � by �0. The

latter is diagonal and the trace tr reduces to a sum over the �eld degrees of freedom. For
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one degree one gets Z
d3k

(2�)3
k2

3

Z
d3x(@i(k

2 +m2)�1)2

=

Z
d3x

1

3

Z
dk

(2�)3

� �k2
(k2 +m2)2

�
@m2

@'

�
@i'

�2

=

Z
d3x

1

192�

1

m3

�
@m2

@'

�2
(@i')

2 : (A.8)

The ghost calculation is exactly the same (cf. eq. (2.21) and eq. (2.22) ).

Finally one has to put the parts together and get the factors right. Eq. (A.8) has to

be summed over 9 gauge �elds components, 3 Goldstones and 3 ghosts. Eq. (A.6) has to

be multiplied by 3 from eq. (A.1). From eq. (2.21) one gets a factor 1

2
respectively �1.

The result is Z
d3x

1

2

"
� 3

4�

1

mW +m�

+
3

64�

1

m3
W

�
@m2

W

@'

�2

� 2

64�

1

m3
gh

 
@m2

gh

@'

!2

+
1

64�

1

m3
�

 
@m2

�

@'

!2
3
5 (@i')2 : (A.9)

Taking into account the factor 1

2g2
3

of eq. (2.23) one gets ZH(') (eq. (2.26)).

Integrating out the Higgs �eld as well, the e�ective potential (eq. (2.24)) gets an

additional �g3(T )2 1

12�
m3

H
term while the ZH-factor (eq. (2.26)) is modi�ed by

+
1

192�
g3(T )

2 1

m3
H

�
@m2

H

@'

�2
: (A.10)

With the complex scalar doublet and the gauge �eld as background �elds the same

method gives a Z-function in front of the kinetic Goldstone term

Z� = 1� g3(T )
2 1

24�

�
�

g2
� 1

8

�2
'2m�3

�
� g3(T )

2 1

4�

�
2

mW +m�

+
1

mW +mH

�
(A.11)

and in front of 1

4
F a

ij
F a

ij

Zgauge = 1� g3(T )
2 1

8�

�
7

mW

� 1

8m�

� 1

24mH

+
1

3mgh

�
: (A.12)

The logarithmic derivative of Zgauge is the �-function of the theory. Zgauge is plotted in

�gure 4 for ~mH = 1

2
~mW , 3

4
~mW and ~mW versus '.

Appendix B: The Thin-Wall Approximation

If the extension �R of the bubble wall is small compared to the radius R of the critical

bubble its e�ective action S1[ �'(r)] (eq. (3.11)) may be written as

STW [ �'(r)] =
1

g3(T )2
4�

2
64
R��R=2Z

0

drr2V ( �'(r)) +

R+�R=2Z
R��R=2

drr2
�
1

2
(@r �'(r))

2 + V ( �'(r))

�375
� 1

g3(T )2

�
4�R2� � 4�

3
R3�

�
(B.1)
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with

� = �V ('A) (B.2)

� =

Z
R+�R=2

R��R=2

dr

�
1

2
(@r �'(r))

2+ V ( �'(r))

�
: (B.3)

In this appendix V (') designates the e�ective potential. We assume that it is normalized

by V (0) = 0.

Using �R� R again the saddlepoint equation (3.7) reads (z=1)

d2 �'(r)

dr2
= V 0( �'(r)) : (B.4)

Solutions of this equation have the `constant of motion'

1

2

�
d �'(r)

dr

�2
� V ( �'(r)) (B.5)

which is equal to V (r!1) = V ('S) = 0 due to boundary conditions. Hence the surface

tension may be written as

� =

Z
'A

'S

d'
q
2V ('(r)) : (B.6)

This integral is only real in the limit T ! Tc where the derivation is exact.

Maximizing the thin-wall e�ective action with respect to the radius one gets the critical

radius

Rc =
2�

�
(B.7)

and the e�ective action of the critical bubble as function of the surface tension � and the

volume energy �

�STW =
1

g23

16��3

3�2
(B.8)

which has been evaluated in section 3.7 .

Using that V (') scales with �T

g2
in leading order one gets

� / �T

g2
� /

�
�T

g2

�1=2
�STW /

�
�T

g2

��1=2
: (B.9)

The thin-wall approximation may even be done analytically for the e�ective action

S['(~x)] =
1

g3(T )2

Z
d3x

�
1

2
Z(')(@i')

2 + V ('(~x))

�
(B.10)

with a general '-dependent positive Z('). The saddlepoint equation reads in this case

Z( �')@2 �'+
Z0( �')

2
(@ �')2 = V 0( �') : (B.11)

With the substitution

V (') = ~V (') �Z(') (B.12)

we obtain

Z( �')@2 �' = Z( �') ~V 0( �') + Z0( ~V 0 � 1

2
(@ �')2) (B.13)
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which is in thin-wall approximation solved by

d �'

dr
=

q
2 ~V ( �'(r)) : (B.14)

Repeating the steps from eq. (B.1) to eq. (B.8) but using this solution instead of eq. (B.5)

we one may bring eq. (B.10) into the form eq. (B.8), but with

�Z =

Z
'A

'S

d'
q
2Z(')V ('(r)) (B.15)

instead of � of eq. (B.6). For constant Z(') = z this changes STW by a factor z3=2 as it

should according to eq. (3.10).

Appendix C: Operators of the Heat Kernel Expansion

The �rst six of the functionals On(a) respectively O(0)
n
(a) introduced in eq. (3.18) are

[24, 9]

O1 =

Z
dx

�
U

�

O2 =
1

2!

Z
dx

�
U2

�

O3 =
1

3!

Z
dx

�
U3 +

1

2
@�U@�U

�

O4 =
1

4!

Z
dx

�
U4 + 2U@�U@�U +

1

5
@��U@��U

�

O5 =
1

5!

Z
dx

�
U5 + 3U2@�U@�U + 2U@�UU@�U + U@��U@��U +

5

3
@�U@�U@��U

+
1

14
@���U@���U

�

O6 =
1

6!

Z
dx

�
U6 + 4U3@�U@�U + 6U2@�UU@�U +

12

7
U2@��U@��U

+
9

7
U@��UU@��U +

26

7
U@��U@�U@�U +

26

7
U@�U@�U@��U

+
17

14
@�U@�U@�U@�U +

18

7
U@�U@��U@�U +

9

7
@�U@�U@�U@�U

+
3

7
U@���U@���U + @�U@��U@���U + @�U@���U@��U

+
11

21
@��U@��U@��U +

1

42
@����U@����U

�
(C.1)

where U is to replace by U � a respectively U0 � a. U and U0 are given in eq. (3.13) and

eq. (3.14).
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Tables

y T ��

(gv(T ))2
�S ln

�
A

T4

�
ln
�
R

T3

�
0.1 72.58 -0.09 10�3 2216.4 -154. -2358.

0.2 72.56 -0.37 10�3 558.1 -83.9 -632.6

0.3 72.53 -0.84 10�3 244.3 -50.0 -286.4

0.4 72.49 -1.55 10�3 131.5 -35.6 -160.5

0.5 72.44 -2.53 10�3 77.3 -28.4 -100.2

0.6 72.38 -3.68 10�3 46.4 -24.3 -66.2

0.7 72.30 -4.63 10�3 26.8 -21.9 -45.2

0.8 72.21 -4.71 10�3 13.6 -20.7 -31.8

0.9 72.11 -3.23 10�3 4.8 -20.7 -24.5

Table 1: Numerical results for ~mH = 1

2
~mW

y T ��

(gv(T ))2
�S ln

�
A

T4

�
ln
�
R

T3

�
0.1 97.27 -0.14 10�3 1086.9 -115. -1191.

0.2 97.25 -0.58 10�3 273.8 -82.0 -347.0

0.3 97.23 -1.33 10�3 120.0 -50.6 -163.5

0.4 97.19 -2.45 10�3 64.8 -36.7 -95.6

0.5 97.15 -4.00 10�3 38.2 -29.5 -63.0

0.6 97.10 -5.86 10�3 23.1 -25.4 -44.8

0.7 97.04 -7.44 10�3 13.5 -23.0 -33.8

0.8 96.97 -7.65 10�3 7.0 -21.8 -27.1

0.9 96.87 -5.21 10�3 2.6 -22.0 -24.2

Table 2: Numerical results for ~mH = 3

4
~mW

y T
��

(gv(T ))2
�S ln

�
A

T4

�
ln
�
R

T3

�
0.1 123.85 -0.2 10�3 593.7 -89. -672.

0.2 123.84 -0.8 10�3 149.5 -81.4 -222.7

0.3 123.82 -1.9 10�3 65.5 -52.0 -111.1

0.4 123.79 -3.6 10�3 35.4 -38.3 -68.5

0.5 123.76 -5.8 10�3 21.0 -31.0 -47.9

0.6 123.72 -8.6 10�3 12.8 -26.8 -36.5

0.7 123.67 -11.2 10�3 7.6 -24.4 -29.8

0.8 123.60 -11.6 10�3 4.0 -23.1 -26.0

0.9 123.52 -7.9 10�3 1.5 -23.3 -25.0

Table 3: Numerical results for ~mH = ~mW
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~mH
~mW

ys �S ln
�
A

T4

�
ln
�
A

T4

�
= �S

1/2 0.42 112.9 -33.4 0.295

3/4 0.33 101.2 -45.5 0.450

1 0.26 85.5 -61.6 0.720

Table 4: Relative onset-temperatures and corresponding values for di�erent Higgs masses

~mH = 1

2
~mW ~mH = 3

4
~mW ~mH = ~mW

�

gv(T )3
0.0219 0.0276 0.0338

y �S �STW �S �STW �S �STW

0.1 2216.4 2210.9 1086.9 1079.8 593.7 587.7

0.2 558.1 566.7 273.8 275.6 149.5 149.0

0.3 244.3 258.5 112.0 125.2 65.5 67.2

0.4 131.5 149.5 64.8 72.0 35.4 38.5

0.5 77.3 98.4 38.2 47.3 21.0 25.1

0.6 46.4 70.4 23.1 33.7 12.8 17.7

0.7 26.8 53.4 13.5 25.5 7.6 13.3

0.8 13.6 42.2 7.0 20.1 4.0 10.4

0.9 4.82 34.6 2.6 16.4 1.5 8.7

Table 5: The e�ective action of the critical bubbles in comparison with the thin-wall

approximation values
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Figures
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Figure 1: The parameter v0(T )
2

v(T )2
introduces the temperature dependence into the masses

and the potential. It is plotted versus �T

g2
at the critical and at the roll-over temperature.

The plot range 0 � �T

g2
� 1:5 covers the zero temperature Higgs mass range 0 � ~mH � ~mW .

Tro
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Figure 2: The e�ective 3-dimensional gauge coupling g3(T )
2 versus �T

g2
at the critical and

at the roll-over temperature.

25



0 0.2 0.4 0.6 0.8 1

0

0.25

0.5

0.75

1

1.25

1.5

'=v(T )

ZH(')

b

a

Figure 3: The Z-factor for the Higgs kinetic term ZH versus ' in a) Landau and in b)

't Hooft-Feynman gauge. (T = Tc and ~mH = 1

2
~mW )
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Figure 4: Zgauge at the roll-over temperature for ~mH = a) 1

2
~mW , b) 3

4
~mW and c) ~mW .
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Figure 5: The critical bubbles are spherical symmetric. The pro�le functions are plotted

for nine temperatures which are de�ned via the parameter y of eq. (3.9). ( ~mH = 1

2
~mW )
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Figure 6: The average z de�ned in eq. (3.12) versus y. ( ~mH = 1

2
~mW )
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Figure 7: The functions WN(a) de�ned in equation (3.22) should converge towards a

constant which is essentially the logarithm of the static prefactor. Here we give a typical

plot of these functions. The dashed line is assumed to be the limit. ( ~mH = 1

2
~mW and

y = 0:6).
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Figure 10: The e�ective action of the critical bubbles plotted in �gure 5 in comparison

with thin-wall estimates versus y.
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