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ABSTRACT

This paper is part of the lecture given at the TH Division of CERN and devoted to the CXXV
anniversary of the birthday of Elie Cartan (1869-1951). It is shown how the methods of dif-

ferential geometry, due to E. Cartan, were applied to the construction of the supersymmetry
transformation law and to the actions for Goldstone fermions and supergravity.
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In the review articles and monographs on supergravity, its discovery is usually dated as

1976. However, a number of papers on supergravity appeared before 1976, beginning from

1972 [1]-[5]. As has now been con�rmed, those papers are directly related to the recognized

version of supergravity [6],[7] and in some sense were the starting points for the later ones. In

this paper, I will try to �ll in the historical gap (1972-1976).

Supergravity is the gauged version of the global supersymmetry. Therefore I will begin by

exposing briey those elements of supersymmetry which will be essential for the following.

Supersymmetry has been independently discovered by three groups of authors: Yu. Gol'fand

and E. Lichtman [8]; D. Volkov and V. Akulov [1]; J. Wess and B. Zumino [9]. The motivations

and starting points used by the three groups of authors were quite di�erent.

In Ref. [8] the motivation was to introduce a parity violation into the quantum �eld theory.
The starting point of the papers [1],[2] was the question whether Goldstone particles with spin

one-half might exist. The authors of Ref. [9] made the generalization of the supergroup which
�rst appeared in the Neveu-Ramond-Schwarz dual model [10],[11] to the four-dimensional world.

The approach of the papers [1],[2] was the most appropriate for gauging the super-Poincar�e

group which was done a little later in the papers of D. Volkov and V. Soroka [3],[4] (1973-1974),
where the super-Higgs e�ect in supergravity was elaborated.

The connection of the papers [1],[2] and [3],[4] is very natural, as in the gauge �eld theories

the transformation law for the gauge �elds is determined by the same group structure which
gives a description of the Goldstone �elds. So I will consider, as an introduction, those features
of the supersymmetry theory that are essential for its gauging.

A detailed exposition of the route along which the generalization of the Poincar�e group to
the super-Poincar�e group was made is contained in Ref. [2]. As this paper is not well known,

I will briey recall its most essential points.

As has been mentioned above, the starting point was the question whether Goldstone parti-
cles with spin one-half might exist. At the end of the Sixties, the method of the phenomenolog-

ical Lagrangians for the description of Goldstone particles, so that it reproduced the results of

PCAC (partially conserved axial-vector currents) and the current algebra, had been invented
by S. Weinberg and J. Schwinger. At the time of the XIVth Conference on high-energy physics

(Vienna, 1968), the problem of the current algebra and of the phenomenological Lagrangians
had been intensively discussed (see Weinberg's rapporteur talk [12]). There were two papers

presented in the current algebra section of the conference in which the generalization of the
method of phenomenological Lagrangians to an arbitrary internal symmetry group had been

elaborated. One paper was presented by B. Zumino [13] (co-authors C. Callan, S. Coleman

and J. Wess), and another one by myself [14]. The main results of the papers were practically

identical. The di�erence was that in Ref. [14] 1 the works of E. Cartan on symmetric spaces

and his method of the exterior di�erential forms was intensively used.

1In [15], which contains [14], the methods of E. Cartan was also used for the construction of phenomenological
Lagrangians for the spontaneously broken symmetry groups, containing the Poincar�e group as a subgroup. The
Lagrangian for the Goldstone fermions (9) is an example of such a construction.
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In both papers, as well as in E. Cartan's works 2, the decomposition of a group G on the

factors

G = KH (1)

was used, with the parameters of the coset K forming a homogeneous space, and H being the

holonomy group of the space.

In the method of the phenomenological Lagrangians, the co-ordinates of the coset K cor-

respond to the Goldstone �elds. Therefore the quantum numbers of Goldstone �elds coincide

with the quantum numbers of the generators of the coset K. This fact gives the answer to the

question about the possibility of the existence of Goldstone particles with spin one-half.

To ensure such a possibility, the Poincar�e group should be generalized in such a way that

the generalization contains the generators with spin one-half and with commutation relations
corresponding to the Fermi statistics. From a technical point of view the problem was what
representation of the Poincar�e group is the most appropriate for such a generalization.

The solution of this technical problem was that the following representation of the Poincar�e
group

GPoincare =
�
L iXL+�1

0 L+�1

�
=
�
1 iX

0 L

� �
L 0
0 L+�1

�
; (2)

where L;L+�1 and X are the 2�2 matrices L = L �
� ;L+�1 = L _�

_�
;X = X� _�, had all required

properties.

In the generalization to the super-Poincar�e group Ktransl: plays the main role.

Let us write it as consisting of four blocks:

K =

 
1 iX

0 1

!
(3)

Separating the blocks as follows

K 0 =

0
B@ 1 { iX

0 1 {

0 0 1

1
CA (4)

one can insert into the newly formed hatched blocks Grassmann spinors �� and �� _� so that K 0

becomes

K 0 =

0
B@ 1 � iX0

0 1 ��

0 0 1

1
CA (5)

The matrix K 0 forms a group, but only under the condition that X 0 is complex. To satisfy
the reality condition for X 0 with the reality condition forX in (2) and simultaneously conserving

2And also in the many papers that followed.
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the group properties of (5), the following representation of X 0, as a sum of real and imaginary

parts, is appropriate

iX 0 = iX +
1

2
��� :

The resulting expression for the super-Poincar�e group is the following

GSUSY =

0
B@ 1 � iX + 1

2
���

0 1 ��

0 0 1

1
CA

0
B@L 0 0

0 1 0

0 0 L+�1

1
CA (6)

From (15) one gets the transformation law for the superspace coordinates

X 0 = X + i���

�0 = � + � ; ��0 = �� + �� (7)

as well as the following expressions for the left-invariant vielbein one-di�erential forms on the
superspace (X; �)

ea = dXa + i��ad0

e� = d� (8)

The latter are received as components of K�1dK corresponding to the generators of K { now

being the supertranslation subgroup of (6).

The action for the Goldstone fermions is an integrated four-form pulled back onto the four-
dimensional Minkowski space (the world space) and

LGF =
1

24
�abcde

aebeced (9)

The expressions (7)-(9) were written in [1] without the detailed deduction which was later
reproduced in [2].

Now, as a �rst step in discussing the problem of supersymmetry gauging, I cite the �nal

sentence of [1]:

\...the gravitational interaction may be included by means of introducing the gauge
�elds for the Poincar�e group. Note that if the gauge �eld for the transformation
(3) [formula (7) of the present text] is also introduced, then as a result of the Higgs

e�ect the massive gauge �eld with spin three-halves appears and the considered

Goldstone particle with spin one-half disappears."

Now let us go to the procedure of gauging the supersymmetry.
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The gauge �elds for the local supersymmetry group can be introduced in the standard way

ASUSY(d) =

0
B@
! �
� (d)  �(d) e� _�(d)

1 � _�(d)

! _�
_�
(d)

1
CA (10)

with the standard transformation law

A0(d) = G�1A(d)G+G�1dG (11)

where A(d) is the gSUSY-algebra valued one-di�erential forms.

Expression (11) may be interpreted in two ways: the �rst one as the transformation law

for A(d), and the second one in which G or some of its coset K is interpreted as the space of
Goldstone �elds.

In the latter case, if the Goldstone �elds transform as G0

L = LG (L is the left multiplication

on the group G) then Eq. (11) is invariant.

Analogously, if the coset K contains the Goldstone �elds, then K 0

L = LKH�1(K;L)

A0(d) = H(K�1AK +K�1dK)H�1 +HdH 0 (12)

so that the projections of K�1AK +K�1dK on the generators of K are the covariants of the
subgroup H.

The second way of interpreting (11) is appropriate for considering the spontaneously broken
supergravity; the �rst one is useful if pure (not broken) supergravity is considered.

In our case, the forms e� _�(d)  �(d) and � _�(d), as well as the curvature tensor R
�
�(d; d

0);

R _�
_�
(d; d0z) for the Lorentz connection !(d), are the covariants of the Lorentz subgroup L.

The covariant forms (10) in the presence of the Goldstone �elds Xa; �� and � _� may be

written as

~e(d) = e(d) +DX + i

�
(2 (d) +D�)���(2 � (d) +D��)

�
(13a)

~ (d) =  (d) +D� (13b)

~!(d) = !(d) (13c)

~R(d; d0) = R(d; d0) = d!(d0)� d0
�
!(d); !(d0)

�
(13d)

Note that in the case of in�nitesimal transformation only terms linear in � are present in (13).

One can now construct the following invariant four-di�erential forms contracting the indices

of the one-di�erential forms [3],[4]

W1 = R(d1; d2)e(d3) e(d4) (14a)

W2 = D � (d1; d2)e(d3) (d4) (14b)
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W3 = e(d1)e(d2)e(d3)e(d4) (14c)

W4 = � (d1)e(d2)e(d3) (d4) (14d)

using either the spinor notation (�; _�- indices) or the more usual vector notation for R(d1; d2)

and e(d), so that W1;W2;W3 and W4 represent correspondingly the Einstein action, the Rarita-

Schwinger kinetic term, the cosmological term and the mass term for the Rarita-Schwinger �eld.

The resulting action is the sum

W = a1W1 + a2W2| {z }
the pure SUGRA

+ a3W3 + a4W4| {z }
the terms due to the

spontabreakdown of

the super � Poincare group

(15)

The fact that the sum a1W1 + a2W2 is the pure unbroken supergravity follows from counting
the degrees of freedom of the Rarita-Schwinger �eld with the action W2 in a gravitational

background. It is easy to show that if the gravitational background satis�es the equations of
motion for the Einstein action W1, then the Rarita-Schwinger �eld has two degrees of freedom.
So the Goldstone �elds do not contribute on the mass shell of the gravitational �eld.

The formulas (14) and (15) and transformation law (13) are the main results of the papers
[3],[4].

Now let us turn to the works on supergravity that appeared in 1976. The �rst of these

works [6] used the second-order formalism for the Einstein action with a rather complicated
transformation law for the supergravity gauge �elds. A more simpli�ed form of the action and
transformation law has been proposed in the paper of Deser and Zumino [7]. These authors

have written in their introduction:

\The key to our results lies in the use of the �rst-order formalism for gravitation,
in which vierbeins and connection coe�cients are treated independently. Minimal

coupling in this sense implies the existence of torsion, or of non-minimal contact

interactions in second-order language. The �rst-order formulation with torsion is
closely related to the description of supergravity in superspace [5] 3."

The transformation laws for the gauge �elds e(d) and  (d) which were used in the paper

of Deser and Zumino [7] coincided with (22a,b) but were di�erent from (22c) for the Lorentz

connection form !(d). The further development of the supergravity theory has shown that the

explicit forms of the �! variation does not matter.

As a result of further investigations, the �rst-order formalism and the gauged supergroup

approach to the supergravity based on the transformations (13) is now accepted to be the

3The reference note is given according to the list of references of the present paper. In the paper referred
to, E. Cartan's methods of di�erential geometry are �rstly generalized to the graded superspaces. It is also
shown that \the at superspace" has torsion, and that the holonomy group for the curvature in the superspace
formulation of supergravity should be the Lorentz group.
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simplest way to supergravity4. The important steps along this line of reasoning were the

rheonomy theory of supergravity as well as the above-mentioned explicit proofs of the invariance

of the supergravity action by using the transformation law (13), and showing that the condition

�!(d) = 0 (13c) considerably simpli�es the proof. The advantages of the �rst-order formalism

were proved to be useful in many aspects of the theory.

The period of intensive development of supergravity since 1976 is well described in the

review article [16] and others which followed. In the text of the review [16] there is no reference

to the papers [1]-[5]. So the present paper may be considered as an addendum to [16] with

reference to the papers which were published before 1976 and were essentially based on the

�rst-order formalism, developed, in its main features, by E. Cartan.

Acknowledgements

I am grateful to the Theoretical Physics Division for kind hospitality during my stay
at CERN. This work was partially supported by the International Science Foundation and
Ukrainian State Committee in Science and Technologies, Grant Nr 2/100.

4See, for example, [16].

6



References

[1] D. Volkov and V. Akulov, JETP Lett. 16 (1972) 438; Phys.Lett. 46B (1973) 109.

[2] V. Akulov and D. Volkov, Theor.Math.Phys. 18 (1974) 28.

[3] D. Volkov and V. Soroka, JETP Lett. 18 (1973) 312.

[4] D. Volkov and V. Soroka, Theor.Math.Phys. 20 (1974) 829.

[5] V. Akulov, D. Volkov and V. Soroka, JETP Lett. 22 (1975) 187.

[6] S. Ferrara, D. Freedman and P. Van Nieuwenhuizen, Phys.Rev. D13 (1976) 3214.

[7] S. Deser and B. Zumino, Phys.Lett. 62B (1976) 335.

[8] Yu. Gol'fand and E. Lichtman, JETP Lett. 13 (1971) 323.

[9] J. Wess and B. Zumino, Nucl.Phys. B70 (1974) 39.

[10] A. Neveu and J. Schwarz, Nucl.Phys. B31 (1971) 86;
R. Ramond, Phys.Rev. D3 (1971) 2415.

[11] J.-L. Gervais and B. Sakita, Nucl.Phys. B34 (1971) 633.

[12] S. Weinberg, Proceedings of the XIV International Conference on High Energy Physics,
Vienna, 1968.

[13] S. Coleman, J. Wess and B. Zumino, Phys.Rev. 177 (1969) 2239;

C. Callan et al., Phys.Rev. 177 (1969) 2247.

[14] D. Volkov, Kiev Preprint ITF-69-75 (1969).

[15] D. Volkov, Soviet J.Part.Nucl. 4 (1973) 1.

[16] P. Van Nieuwenhuizen, Physics Reports 68 (1981) 191.

7


