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Abstract  1 

The presence of <1% of an undeclared species in ground meat is generally thought to be 2 

indicative of cross-contamination as opposed to intentional mislabeling; however, this has not 3 

been experimentally tested. The objective of this study was to quantify the effects of poor 4 

sanitation on the cross-contamination of animal species in ground meat products, with the 5 

example of undeclared pork in ground beef. Cross-contamination was quantified using real-time 6 

polymerase chain reaction (PCR). Three different sanitation treatments were tested with a 7 

commercial grinder (“no cleaning”, “partial cleaning”, or “complete cleaning”) in between 8 

grinding of pork and beef samples (13.6 kg each). A 100-g sample was collected for each 0.91 kg 9 

(2 lb) of beef processed with the grinder and each sanitation treatment was tested twice. For the 10 

“no cleaning” treatment, the first 100-g sample of ground beef run through the grinder contained 11 

24.42 ± 10.41% pork, while subsequent samples (n = 14) contained <0.2% pork. With “partial 12 

cleaning,” the first sample of ground beef contained 4.60 ± 0.3% pork and subsequent samples 13 

contained <0.2% pork. Pork was not detected in ground beef following “complete cleaning.” 14 

These results indicate that incomplete cleaning of grinding equipment leads to species cross-15 

contamination at levels of <1% in most cases. Proper sanitation procedures must be followed 16 

when grinding multiple species in order to prevent cross-contamination and product mislabeling.  17 

 18 

 19 

Keywords: Species identification; cross-contamination; ground meat; pork; beef; real-time PCR 20 

 21 

 22 

 23 
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1. Introduction 24 

Meat sold as whole cuts can often be visually identified to the species level; however, 25 

identification becomes more difficult following processing, such as grinding (Cawthorn, 26 

Steinman, & Hoffman, 2013). It can also be difficult to visually determine whether ground 27 

products contain a single species or multiple species. Because of this, higher-valued meat species 28 

are vulnerable to economically-motivated adulteration (EMA) through partial or complete 29 

substitution with a lower-valued species (Kane & Hellberg, 2016; Naaum et al., 2018) . For 30 

example, the average 2018 supermarket price of ground beef (90% lean or more) in the U.S. was 31 

$11.51/kg (USDA, 2019), compared to $6.51/kg for ground pork (USDA, 2019). When game 32 

meats are considered, the price differential can even be greater (Quinto, Tinoco, & Hellberg, 33 

2016), with one U.S. study reporting a potential two-fold increase in profits as a result of the 34 

substitution of ground yak with ground beef (Kane & Hellberg, 2016). During the 2013 horse 35 

meat scandal in Europe, a variety of products labeled as containing beef had undeclared or 36 

improperly declared horse meat, a lower-valued species (O'Mahony, 2013). One of the beef 37 

burgers tested was found to contain equine DNA at a level of 29.1%, indicating intentional 38 

species substitution rather than cross-contamination from processing (O'Mahony, 2013). 39 

Previous studies on processed meat products have reported the presence of undeclared 40 

species in approximately 14-35% of samples tested (Amaral, Santos, Oliveira, & Mafra, 2017; 41 

Calvo, Osta, & Zaragoza, 2002; Erwanto, Abidin, Muslim, Sugiyono, & Rohman, 2014; Flores-42 

Mungia, Bermudez-Almada, & Vazquez-Moreno, 2000; Hsieh, Woodward, & Ho, 1995; Kane & 43 

Hellberg, 2016; Keyvan, İplikçioğlu Çil, Çınar Kul, Bilgen, & Tansel Şireli, 2017; Naaum et al., 44 

2018; Okuma & Hellberg, 2015; Shehata et al., 2019). The presence of undeclared pork in meat 45 

products can infringe on religious practices, as consumption of pork is prohibited among Jewish 46 
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and Muslim communities (Erwanto et al., 2014). However, several studies have detected pork in 47 

ground meat products, including beef (Amaral et al., 2017; Erwanto et al., 2014; Naaum et al., 48 

2018). In one study, 9 out of 39 beef meatballs purchased from local markets in a predominantly 49 

Muslim region of Indonesia were found to contain undeclared pork (Erwanto et al., 2014). In 50 

Canada, undeclared pork was detected in 6 out of 15 Halal sausages and 16 out of 26 non-Halal 51 

products containing ground meat obtained from retail markets (Amaral et al., 2017). Additionally 52 

in Canada, 14 of 100 samples of sausages tested contained undeclared species, including a “beef” 53 

sausage with detectable levels (> 1%) of sheep and four “beef” sausages with >1% of pork 54 

(Shehata et al., 2019). Shehata et al. (2019) concluded that the presence of 1% or more of an 55 

undeclared species was more likely due to the addition of the secondary species during 56 

production than a result of trace contamination. 57 

In addition to religious concerns, the presence of undeclared pork in ground beef can 58 

pose food safety risks when the meat is not cooked properly (USDA, 2013a). According to FSIS, 59 

only 6% of people check the internal temperature when cooking hamburgers at home and one in 60 

four hamburgers does not reach the recommended temperature of 71.1 °C (USDA, 2013a). 61 

Exposure to an undercooked hamburger containing undeclared pork could potentially lead to 62 

illness from pathogens associated with pork, such as Yersinia enterocolitica or the parasite 63 

Trichinella spiralis (USDA, 2013b). An outbreak investigation involving undeclared pork in 64 

ground beef would likely be complicated because these pathogens are not typically associated 65 

with ground beef.  66 

The presence of undeclared meat species in processed products is also a health concern 67 

for individuals with allergies to certain red meats (Wolver, Sun, Commins, & Schwartz, 2013). 68 

These allergies can be naturally derived or developed as a result of a bite by the lone star tick. 69 
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Patients with this condition are advised to avoid mammalian meats like beef, pork, lamb, and 70 

venison due to the possibility of a life-threatening allergic reaction. However, previous studies 71 

have reported the presence of undeclared red meats in ground poultry products (Calvo et al., 72 

2002; Flores-Mungia et al., 2000; Kane & Hellberg, 2016; Naaum et al., 2018; Okuma & 73 

Hellberg, 2015).  74 

According to the United States Code (USC) 21 U.S.C. § 601(n) (1-4), § 607(d) and § 453(h) 75 

(1-4), meat and poultry products are considered misbranded when the product is mislabeled, 76 

intended to be sold under a different name, an imitation that is not labeled as such on the 77 

packaging, or when the label of the product is misleading. The sales of meat products that are 78 

misbranded and/or misleading in text, container shape, or other forms of misrepresenting the 79 

actual content of meat products are prohibited in 21 U.S.C. § 601(n) (1-4), § 607(d) and § 453(h) 80 

(1-4). As discussed above, the presence of undeclared meat species in processed products is 81 

sometimes a result of EMA, in which the product is intentionally mislabeled for the purpose of 82 

economic gain (FDA, 2009).  However, in cases where a higher-value meat species is detected as 83 

an adulterant in a lower-value meat product, the motive of adulteration is unknown. Previous 84 

studies have suggested that this may be due to the use of by-products from the higher-value 85 

species (Naaum et al., 2018) or cross-contamination of equipment used to process multiple meat 86 

species (Hsieh et al., 1995; Kane & Hellberg, 2016; Okuma & Hellberg, 2015). For example, 87 

Kane and Hellberg (2016) found that ground chicken obtained from a local supermarket in the 88 

U.S. tested positive for higher-value species (i.e., beef, turkey, and lamb), and Naaum et al. 89 

(2018) detected beef in chicken and pork sausages.  90 

In order to differentiate between intentional adulteration and cross-contamination, 91 

Premanandh, Sabbagh, and Maruthamuthu (2013) referred to a proposal by the European 92 
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Commission (FSA, 2010) on the issue of low-level detection of unauthorized genetically 93 

modified organisms in products. The proposal suggested that the detection of unauthorized 94 

genetically modified materials at levels of <0.1% in feed should be considered equivalent to zero 95 

for the purpose of enforcement. Of note, EU laws on labeling requirements for genetically 96 

modified material in food or feed products do not apply if the material is present at levels of 97 

≤0.9%, provided that the material is adventitious or technically unavoidable (Regulation (EC) No 98 

1829/2003 and No 1830/2003). However, some Member States have adopted a stricter threshold 99 

of <0.1% (EC, 2015). Along these lines, Premanandh et al. (2013) suggested that ≥1% of an 100 

undeclared meat species should be considered substantial enough to investigate the possibility of 101 

intentional adulteration or gross negligence, and subsequent studies have used this cut-off value 102 

to distinguish deliberate adulteration from cross-contamination (Kang & Tanaka, 2018; Naaum 103 

et al., 2018). However, the actual percentage of meat species that is carried over as a result of 104 

cross-contamination of equipment has not been experimentally determined. Therefore, the 105 

objective of this study was to quantify the effect of poor sanitation procedures on the cross-106 

contamination of animal species in ground meat products. The example of undeclared pork in 107 

ground beef was utilized to test a range of sanitation procedures. 108 

2. Materials and Methods 109 

2.1 Pure pork DNA standards 110 

Pork lean meat (300 g) was purchased from a local supermarket and transported on ice to 111 

the laboratory for immediate processing. The exterior layer of the meat was removed as 112 

described in Amaral et al. (2017). A 25-mg sample of the pork was collected in 1.5 mL safe lock 113 

tubes and stored at -20 °C. DNA was extracted as described in section 2.5. After DNA 114 

extraction, the pure pork DNA standard samples were serially diluted in molecular-grade water 115 
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to obtain extracts with the following concentrations: 50 ng/µL, 5 ng/µL, 0.5 ng/µL, 0.05 ng/µL, 116 

0.005 ng/µL, 0.0005 ng/µL, and 0.00005 ng/µL (Amaral et al., 2017). The entire process was 117 

repeated three times and each sample underwent real-time PCR as described in section 2.6.  118 

2.2 Reference binary species mixture samples  119 

The ability of the real-time PCR assay to accurately quantify pork in beef was assessed 120 

using reference binary species mixtures prior to performing the meat grinding experiments 121 

described in section 2.3. Samples (100-500 g) of pork butt roast and beef boneless chuck roast 122 

were purchased from a local supermarket and transported on ice to the laboratory. Samples were 123 

processed immediately upon arrival at the laboratory. The exterior layer of the meat samples was 124 

removed as described in Amaral et al. (2017). Reference species mixtures (50 g) were made 125 

using the following proportions of pork/beef: 0%/100% (beef control), 0.0001%/99.9999%, 126 

0.0005%/99.9995%, 0.001%/99.999%, 0.01%/99.99%, 0.1%/99.9%, 1%/99%, 5%/95%, 127 

10%/90%, and 100%/0% (pork control) using the procedure described in Amaral et al. (2017). 128 

The mixtures were homogenized with 50 mL of sterile deionized water using a 12 speed Oster® 129 

blender (Neosho, MO, USA) for 1 min at speed 6, as described in Perestam, Fujisaki, Nava, and 130 

Hellberg (2017). The blender parts were cleaned and autoclaved after each use. This process was 131 

repeated twice, resulting in three separate sets of reference samples. Following homogenization, 132 

each reference sample mixture underwent DNA extraction followed by real-time PCR as 133 

described in sections 2.5-2.6.  134 

2.3 Treatment sample collection and grinding  135 

Beef boneless chuck roast and pork butt roast were purchased from a local supermarket and 136 

transported to the laboratory on ice for immediate processing. A total of 13.6 kg (30 lb) per 137 

species was used for each grinding treatment, based on grinding practices reported for 138 
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independent retail establishments (Gould et al., 2011). Upon arrival at the laboratory, the meat 139 

samples were cut into 1-inch cubes with autoclaved knives to facilitate grinding. Meat from each 140 

species was prepared using separate cutting boards, gloves, and knives to avoid cross-141 

contamination. A subsample (50 g) of each species was collected and homogenized with 50 mL 142 

sterile deionized water using a 12 speed Oster® blender for 1 min at speed 6. A portion (~25 mg) 143 

of each homogenized subsample underwent DNA extraction and real-time PCR (described in 144 

sections 2.5-2.6) to verify the presence or absence of pork DNA in the meat samples prior to 145 

grinding. Meat samples were ground using a Kitchener #8 Commercial Grade Electric Stainless-146 

Steel Meat Grinder .5 HP 370W (Shanghai, China). Each grinding session began with 13.6 kg of 147 

pork, followed by one of the cleaning treatments described in section 2.4, then 13.6 kg of beef. A 148 

100-g sample of ground beef was collected at the beginning of each 0.91 kg (2 lb) of meat 149 

exiting the grinder for a total of 15 samples. Each 100-g subsample was homogenized with 100 150 

mL of sterile deionized water using a 12 speed Oster® blender for 1 min at speed 6. The blender 151 

parts were cleaned and autoclaved after each use. Following homogenization, the samples 152 

underwent DNA extraction and real-time PCR as described in sections 2.5-2.6.   153 

2.4 Cleaning treatments 154 

The cleaning treatments were divided into three categories: “no cleaning”, “partial 155 

cleaning”, and “complete cleaning”. These categories were determined based on personal 156 

communications with and observations of local butcher shops and grocery store delis. For the 157 

“no cleaning” category, beef was ground immediately after pork with no cleaning step in 158 

between. For the “partial cleaning” category, the grinder’s outer blade and hopper tray were 159 

wiped with paper towels in between meat species, with no additional cleaning. In the “complete 160 

cleaning” category, all parts of the grinder were disassembled in between meat species, and the 161 
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grinder’s manufacturer recommended cleaning procedure of washing all parts in warm soapy 162 

water was followed using brushes provided with the grinder. Each cleaning treatment was tested 163 

in a series of two trials.  164 

2.5 DNA extraction  165 

DNA extraction was performed using the DNeasy Blood and Tissue Kit (Qiagen, 166 

Germantown, MD), according to the manufacturer’s instructions. Lysis was carried out using an 167 

Eppendorf ®Thermomixer C set at 56 °C with shaking at 300 rpm for 2 h. DNA was eluted in 168 

100 µL AE buffer pre-heated to 37 °C. Each set of extractions included a reagent blank with no 169 

tissue added as a negative control. The concentration of each DNA extract was measured with an 170 

Eppendorf BioPhotometer (Hauppauge, NY). DNA extracts were stored at -20°C until real-time 171 

PCR.   172 

2.6 Real-time PCR quantification 173 

Reaction mixtures were prepared as described in Amaral et al. (2017), with 2 µL DNA 174 

extract (≤ 50 ng/µL), 10.0 µL of 2X SsoFast EvaGreen Supermix (Bio-Rad, Hercules, CA, 175 

USA), 200 nM of each primer (Prk-F/Prk-R or 18SRG-F/18SRG-R), and 4.0 µL of molecular 176 

grade water for a total reaction volume of 20 µL. The pork-specific Prk-F/Prk-R primers (Prk-F: 177 

CTG CCC TGA GGA CAA ATA TCA TTC and Prk-R: AAG CCC CCT CAG ATT CAT TCT 178 

ACG) targeted a region of the cytochrome b gene (Amaral et al., 2017). The 18SRG-F/18SRG-R 179 

primers (18SRG-F: CTC CCC TAT CAA CTT TCG ATG GTA and 18SRG-R: TTG GAT GTG 180 

GTA GCC GTT TCT CA) targeted a universal region of eukaryotic 18S ribosomal DNA (Costa, 181 

Oliveira, & Mafra, 2013). Parallel reactions with both primer sets were carried out for each 182 

sample (Amaral et al., 2017). Thermal cycling was carried out using a Qiagen Rotor-Gene® Q 183 

Real-time PCR Cycler using the settings described in Kang and Tanaka (2018): 95 °C for 5 min, 184 
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followed by 30 cycles of 95 °C for 15 s and 66 °C for 45 s. For the melting curve, the 185 

temperature was ramped from 65 °C to 95 °C, and raised 0.2 °C every 10 s (Amaral et al., 2017). 186 

Each real-time PCR run included the following controls: pure pork DNA positive controls (0.5 187 

ng/µL, 5 ng/µL, and 50 ng/µL), reagent blank from DNA extraction, and no-template control 188 

(NTC). The threshold was set automatically by the Rotor-Gene Q software (upper limit 0.43; 189 

lower limit 0.07) and melting point values were taken from the highest peak temperature. 190 

2.7 Pork quantification and statistical analysis 191 

The amount of pork in each sample was quantified as described in Amaral et al. (2017). ∆Cq 192 

was calculated using the following formula: ∆Cq = Cq(pork) – Cq (endogenous gene), where 193 

Cq(pork) refers to the Cq value obtained for the pork-specific cytb assay and Cq (endogenous 194 

gene) refers to the Cq value obtained for the universal 18S rRNA assay. A standard curve was 195 

created using the reference pork/beef species mixtures described above. The average ∆Cq for 196 

each reference sample was calculated based on the results of real-time PCR on triplicate DNA 197 

extracts. This value was plotted on the y-axis and logarithm of pork meat percentage on the x-198 

axis. The linear equation obtained from the standard curve was used to determine the average 199 

percent of pork in each treatment sample based on the ∆Cq obtained for that sample. The linear 200 

equation was also used to determine the estimated percentage of pork in each reference sample 201 

and the standard deviation, coefficient of variation (CV), and bias were calculated for each 202 

reference sample. All calculations were performed in Microsoft Excel 2016 (Redmond, WA, 203 

USA). 204 

3. Results and Discussion 205 

3.1 Pure pork DNA standards 206 
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 The real-time PCR assay used in this study was able to detect pure pork DNA with the 207 

pork-specific primer down to levels of 0.001 ng of pork DNA (Fig. 1). In comparison, Amaral et 208 

al. (2017), detected pork DNA at levels as low as 0.01 pg using the same primers and reaction 209 

mixture. The difference in results is most likely due to the number of pPCR cycles run: Amaral 210 

et al. (2017) used 44 cycles compared to 30 cycles in the current study. However, the results of 211 

linearity testing were very similar between the two studies: R2 = 0.995 for the current study 212 

experiment and R2 = 0.996 for Amaral et al. (2017). 213 

3.2 Reference binary species mixtures  214 

Pork was detected down to a level of 0.01% in the pork/beef reference binary species 215 

mixtures (Fig. 2). These results are consistent with those reported in Amaral et al. (2017), who 216 

also found 0.01% pork to be the minimum detectable amount in reference binary species 217 

mixtures. Kang and Tanaka (2018) tested reference binary mixtures of pork and beef with the 218 

same assay and were able to quantify pork in 20/20 samples with 0.01% pork but only 15/20 219 

samples with 0.001% pork. Therefore, the authors determine the limit of quantification for pork 220 

in a binary mixture to be 0.01%.  221 

As shown in Figure 4, a standard curve was constructed using the ∆Cq values obtained 222 

for each sample and a linear equation was obtained. This equation was then used to estimate the 223 

percentage of pork in each reference binary species mixture (Table 1). The estimated values 224 

ranged from 0.01% to 16.1% pork, as compared to the actual values of 0.01% to 10% pork. The 225 

measured trueness or bias, which reflects the agreement between the estimated value and the 226 

actual value, ranged from -45.4% to 97.8% for the reference samples. The closest agreement was 227 

found for the sample with 0.1% pork, which had an estimated value of 0.14% pork (38.8% bias), 228 

while the greatest disagreement occurred for the sample with 1.0% pork, which had an estimated 229 
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value of 1.98% pork (97.8% bias).  While the average estimated values were not an exact match 230 

to the actual values in most cases, they did provide an approximate value for the amount of pork 231 

in each sample. The CV, which is a measure of the variability of the data points around the 232 

mean, ranged from 6.65% to 53.0% for the reference binary species mixtures. The CV was 233 

highest (>27%) for samples containing lower amounts of pork (0.01-0.1%) and decreased to 234 

<20.0% in samples with greater amounts of pork (1.0-10.0%).  235 

The CV and bias values obtained in the current study have a wider range than previous 236 

studies that used the same quantification method. Specifically, Kang and Tanaka (2018) reported 237 

bias values of -19.10% to 2.34% using the same quantification method as in the current study for 238 

replicate testing (n=3) of DNA extracts from binary mixtures of pork and beef containing 0.25-239 

50% pork (CVs were not reported). Amaral et al. (2017) reported CVs ranging from 5.7 to 19.7% 240 

and bias of 5.6-10.1% for replicate testing (n=8) of DNA extracts from raw binary mixtures of 241 

pork and beef. Some of these differences are likely due to variability in the way that replicate 242 

testing was carried out.  In the current study, three separate sets of binary mixtures were prepared 243 

and tested with real-time PCR. However, in previous studies, one set of binary mixtures was 244 

prepared and the DNA extracts were tested multiple times with real-time PCR. The additional 245 

variability introduced through repeated preparation of binary mixtures in the current study likely 246 

contributed to a wider range of CV values and is reflective of the overall method rather than the 247 

real-time PCR assay alone. This indicates a need to optimize the sample homogenization and 248 

DNA extraction steps in order to accurately capture the exact ratios of each species in the 249 

mixture. Additional reasons for differences in the results of the current study include variations 250 

in the number of replicates tested and/or the use of a different real-time instrument. Future 251 

research should be conducted to minimize the CV and bias values for replicates of binary 252 
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reference samples, either by optimizing the current sample preparation method or utilizing 253 

alternate techniques.   254 

3.3 Ground meat treatment samples 255 

The results of real-time quantification of samples that underwent different grinding 256 

treatments are shown in Table 3. For the “no cleaning” treatment category, the first 100 g of beef 257 

(Sample 1) contained the greatest amount of pork, at 24.42 ± 10.41% (range: 17.05-31.78%). 258 

However, the amount of pork in ground beef dropped down to 0.06 ± 0.08% (Sample 2) after the 259 

first 1.01 kg of beef was ground. Pork was detected at trace levels (≤0.01%) in the remaining 260 

samples within this treatment category. For “partial cleaning,” the first 100-g sample of ground 261 

beef contained 4.60 ± 0.30% of pork, which decreased to 0.086 ± 0.02% after 1.01 kg of beef 262 

was ground and then to 0.03 ± 0.03% after 1.92 kg was ground. The amount of pork in the 263 

remaining samples was ≤0.01%. Pork was not detected in any of the samples collected in the 264 

“complete cleaning” treatment category (Table 2). It is important to note that these results are 265 

based on two separate trials and it is possible that additional trials may have reduced the standard 266 

deviations associated with the percentage of pork in the samples.   267 

Based on the results of all three treatment categories, it can be deduced that detection of 268 

pork at levels of ~25% in the first 100-g of ground beef exiting the grinder could be the result of 269 

cross-contamination of the grinding equipment. However, the likelihood of a 25% contamination 270 

event in a commercial sample is very low, considering that the first 100 g of meat exiting the 271 

grinder would likely be mixed with a larger sample of meat being processed with the grinder. For 272 

example, the grinder tray used in this study holds approximately 2.2 kg of meat, which could 273 

dilute the contaminant species in the original 100-g sample to ~1%. It should be noted that for 274 

both the “no cleaning” and “partial cleaning” treatments, the percent of pork decreased to < 1% 275 
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after just 1.01 kg of beef was ground. This is consistent with the assumption made in previous 276 

studies that cross-contamination is generally associated with the presence of <1% of an 277 

undeclared species (Kang & Tanaka, 2018; Naaum et al., 2018; Premanandh et al., 2013).  278 

4. Conclusions 279 

Quantification of undeclared species in ground meat products is important to help 280 

differentiate between intentional adulteration and cross-contamination (Amaral et al., 2017). 281 

Understanding the amount of an undeclared species that arises as a result of improper sanitation 282 

during grinding can help provide the basis for regulations and/or recommended cleaning 283 

practices within the industry. The results of this study indicate that cross-contamination of 284 

species is avoidable if equipment is thoroughly cleaned as instructed by the manufacturer, with 285 

all parts of the grinder being disassembled and washed with warm soapy water. However, when 286 

the equipment is not cleaned properly in between species, contamination of an undeclared 287 

species in the product will likely be observed, with most samples showing levels of <1% of the 288 

undeclared species. In cases where the grinding equipment is not completely cleaned in between 289 

species, the consumer should be informed of any additional species that may be present in the 290 

product, even at trace levels. Proper labeling of products is crucial to promote food safety, 291 

prevent allergen exposure, and avoid infringing on religious practices. Future studies should 292 

consider quantifying cross-contamination of animal species in a wider range of food products, 293 

such as pet foods and animal feed.  294 
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Table 1. Estimated percentages of pork in beef for reference binary species mixtures detected 
with real-time PCR.  
 
Binary species mixture 
(pork/beef) 

 Estimated % pork 
(Ave ± St.Dev.)ab 

 Coefficient of 
Variation 
(%)b 

Biasb   

0.01%/99.99%   0.01 ± 0.00  28.0 -45.4 

0.1%/99.90%   0.14 ± 0.07   53.0 38.8 

1.0%/99.00%   1.98 ± 0.33  16.9 97.8 

10%/90.00%   16.10 ± 1.07  6.65 61.0 

aValues are based on the average of three independent assays. 
bAll values were calculated based on raw data and final answers were rounded. 
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Table 2. Percentage of pork in ground beef detected with real-time PCR for each cleaning 
treatment applied to the grinder. A 100-g sample of meat was collected for every 0.91 kg of beef 
ground; sample number refers to the order in which samples were collected following the 
treatment. 

  
Sample  
number 

Amount 
of beef 
ground 
(kg) 

No cleaning Partial cleaning Complete 
cleaning 

Average  
% porka 

St.  
Dev. 

Average  
% porka 

St. 
Dev. 

Average  
% porka 

St. 
Dev.  

1 0.10 24.42 10.41 4.60 0.30 NDb N/A 
2 1.01 0.06 0.08 0.09 0.02 ND N/A 
3 1.92 0.01 0.00 0.03 0.03 ND N/A 
4 2.83 < 0.01 N/A < 0.01 N/A ND N/A 
5 3.74 < 0.01 N/A 0.01 0.01 ND N/A 
6 4.65 0.01 0.00 < 0.01 N/A ND N/A 
7 5.56 0.01 0.01 < 0.01 N/A ND N/A 
8 6.47 0.01 0.00 < 0.01 N/A ND N/A 
9 7.38 <0.01 N/A < 0.01 0.01 ND N/A 
10 8.29 0.01 0.00 0.01 0.01 ND N/A 
11 9.20 0.01 0.00 < 0.01 N/A ND N/A 
12 10.11 0.01 0.00 0.01 < 0.01 ND N/A 
13 11.02 0.01 0.01 < 0.01 N/A ND N/A 
14 11.93 <0.01 N/A < 0.01 N/A ND N/A 
15 12.84 < 0.01 N/A < 0.01 < 0.01 ND N/A 

aValues are based on the results of two independent trials 
aND = Not detected 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



21 
 

Figure Captions 
 
Figure 1.  Standard curve obtained for serially diluted pure pork DNA using real-time PCR with 
a pork-specific primer. Starting DNA quantity ranged from 0.001 ng to 100 ng. Error bars are 
based on the standard deviation. 
Figure 2. Standard curve for reference binary species mixtures (0.01%, 0.1%, 1.0%, 10%, and 
100% pork in beef) analyzed with real-time PCR. The Cq obtained with the universal eukaryotic 
primers was subtracted from the Cq for the pork-specific primers to obtain ∆Cq. The average 
∆Cq is reported based on three independent assays, and error bars represent standard deviation.  
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