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Abstract

Evolutionary theories of aging posit that greater reproductive effort causes somatic decline given a 

fundamental trade-off between investing energy in reproduction and repair. Few studies in high 

fertility human populations support this hypothesis, and problems of phenotypic correlation can 

obscure the expected trade-off between reproduction and somatic condition. This cross-sectional 

study investigates whether greater reproductive effort is associated with reduced calcaneal bone 

mineral density (BMD) among female Tsimane forager-farmers of lowland Bolivia. We also 

investigate whether female Tsimane BMD values are lower than sex- and age-matched US 

reference values, despite the fact that Tsimane engage in higher physical activity levels that can 

increase mechanical loading. To measure calcaneal BMD, quantitative ultrasonography was 

performed on 130 women (mean ± SD age = 36.6 ± 15.7, range = 15 – 75) that were recruited 

regardless of past or current reproductive status. Anthropometric and demographic data were 

collected during routine medical exams. As predicted, higher parity, short inter-birth interval, and 

earlier age at first birth are associated with reduced BMD among Tsimane women after adjusting 

for potential confounders. Population-level differences are apparent prior to the onset of 

reproduction, and age-related decline in BMD is greater among Tsimane compared to American 

women. Greater cumulative reproductive burden may lower calcaneal BMD individually and 

jointly with other lifestyle and heritable factors. Fitness impacts of kin transfers in adulthood may 

determine the value of investments in bone remodeling, and thus affect selection on age-profiles of 

bone mineral loss.
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All adult organisms face a fundamental trade-off between investing energy in reproduction 

and somatic repair. The “disposable soma” theory proposes that natural selection optimizes 
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levels of somatic repair below that required for extensive longevity due to prioritized fitness 

gains of earlier investments in reproduction (Kirkwood and Rose 1991). Controlled 

experiments among non-human animal models demonstrate expected trade-offs between 

reproduction and longevity (Kirkwood and Austad 2000). Among humans, some studies 

support the hypothesis that greater reproductive effort is associated with greater mortality 

(Westendorp and Kirkwood 1998) and somatic decline (Miller 2010; Tracer 1991; Tracer 

2002), as indicated by reduced anthropometric status (e.g. weight, BMI, skinfold, micro-

nutrient stores). Other studies find no associations (Hurt et al. 2006; Tracer 2002) or find 

that greater reproductive effort is associated with greater longevity (Lycett et al. 2000) or 

favorable somatic condition (Adair and Popkin 1992). As is common in life history studies 

lacking experimental designs, problems of self-selection or phenotypic correlation can 

obscure the expected trade-off between reproduction and somatic repair.

Unlike other mineralized tissues such as tooth enamel, bone can be repaired and constant 

remodeling is necessary to maintain its strength and rigidity. Aside from facilitating 

locomotion, protecting and supporting vital organs, and producing blood cells in marrow, 

bone stores calcium and other essential minerals. Bone is a mineral source for the competing 

demands of maternal somatic repair (DiGirolamo et al. 2012) and fetal bone accretion or 

lactation (Prentice 2003). Because mineral allocations to somatic repair and reproduction 

draw from the same general bone mineral reservoir, direct metabolic trade-offs should, in 

principle, manifest in bone. In developed nations the combination of low fertility, reduced 

lactation duration, longer birth spacing, energy-rich diets including mineral and vitamin 

supplements, sedentary lifestyle, and reduced pathogen burden may relax energetic 

constraints that might otherwise reduce bone mineral density (BMD). Although in 

developed nations, a large fraction of older adults with bone fractures die in the following 

year, and many more experience significant functional limitations (e.g. Brauer et al. 2009). 

To date, only one study has examined maternal bone reserves in relation to reproduction in 

an energy-limited, natural fertility society (hereafter small-scale society) where reproduction 

is expected to influence somatic condition. Calcaneal BMD among Shuar forager-

horticulturalist women of Amazonian Ecuador is not consistently associated with 

reproductive effort, although small sample size of women who have completed reproduction 

precludes investigation of longer-term trade-offs (Madimenos et al. 2012).

Here we investigate whether greater reproductive effort is associated with reduced BMD 

among 130 women aged 15–75 in a small-scale population, the Tsimane of lowland Bolivia. 

Tsimane women rarely use contraception and invest considerable energy in reproduction 

relative to women in low fertility societies of the developed world. Tsimane total fertility 

rate is 9 births per woman, mean inter-birth interval (IBI) is 30 months, breastfeeding is on-

demand, and mean weaning age is 19 months (Mcallister et al. 2012; Veile et al. 2014). 

Tsimane also experience high pathogen burden and lack public health infrastructure, which 

leads to greater immune activation throughout life (Blackwell et al. 2011; Vasunilashorn et 

al. 2010, 2011). In addition, Tsimane regularly experience risk of food shortfalls associated 

with a mixed foraging and horticultural economy (Gurven et al. 2012; Stieglitz et al. 2014). 

Together, these factors are expected to constrain women’s ability to maintain or improve 

skeletal health following repeated reproductive bouts that are closely spaced (cf. Jelliffe and 

Maddocks 1964). On the other hand Tsimane engage in subsistence activities of moderate 
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intensity throughout life, often without footwear, and are less sedentary than women in 

developed nations (Gurven et al. 2013), which may improve skeletal health due to periosteal 

responses to mechanical loading (e.g. Lieberman et al. 2010; Mayhew et al. 2005).

Bone metabolism and reproduction

Major bone-forming minerals include calcium, phosphorus, magnesium and zinc. To meet 

greater mineral demands for pregnancy and lactation, maternal physiology responds by 

mobilizing mineral from bone, increasing efficiency of intestinal mineral absorption, and/or 

increasing renal mineral conservation (Prentice 2003; Zapata et al. 2004). Indicators of bone 

formation and resorption in serum and urine are elevated during pregnancy and lactation, 

suggesting that skeletal mineral is being mobilized and restored. During pregnancy, fetal 

mineral accretion accelerates in mid-gestation, with calcium accretion averaging roughly 

200 mg/day during the third trimester (Forbes 1976). In principle, during pregnancy 

maternal BMD could either decrease due to greater mineral demands, increase due to higher 

levels of calciotropic hormones and greater bone-loading associated with weight gain 

(particularly in the third trimester), or remain unchanged relative to pre-pregnancy BMD 

(Sowers 1996). Early stages of pregnancy may be characterized by bone resorption followed 

by later stages of bone formation (Black et al. 2000), but there is considerable variability in 

maternal skeletal response to pregnancy across and within populations, and across skeletal 

sites. Most longitudinal studies demonstrate either a decrease in BMD or no significant 

change at one or multiple skeletal sites from before pregnancy to shortly after birth 

(reviewed in Olausson et al. 2008).

Whereas the relationship between BMD loss and pregnancy is inconsistent across and within 

populations, there is stronger evidence that extended lactation leads to lower BMD. Human 

breast milk contains a significant amount of calcium (roughly 200 – 400 mg/day is secreted 

into breast milk), and maternal BMD temporarily declines during lactation (Olausson et al. 

2008; Prentice et al. 1995). Lactation-induced BMD reductions are pronounced at skeletal 

sites rich in trabecular bone, which is more porous, metabolically active and prone to bone 

loss than cortical bone (Prentice 2003). The magnitude of the initial reduction and 

subsequent restorative capacity partly depends on the intensity and duration of lactation. 

Among healthy American women, studies utilizing dual-energy x-ray absorptiometry 

(DXA) indicate that extended lactation (≥6 months) is associated with BMD losses of about 

5% at the lumbar spine, with restoration of BMD to pre-pregnancy values by 12 months 

post-partum (Sowers et al. 1993). In contrast, DXA studies of rural Gambian women, who 

have high fertility, closely spaced births, on-demand breastfeeding for approximately two 

years, and low calcium intake, indicate incomplete restoration of lumbar spine BMD to pre-

pregnancy values by 12 months post-partum (Jarjou et al. 2010). Complete BMD restoration 

among Gambian women may occur later in lactation or after weaning (Sawo et al. 2013).

Studies of parity-specific effects on maternal BMD do not reveal a consistent pattern. 

Several studies report a negative, sometimes non-linear association between parity and 

BMD (Allali et al. 2007; Ghannam et al. 1999; Gur et al. 2003; Saadi et al. 2003), others a 

positive association (Cure-Cure et al. 2002; Streeten et al. 2005), and others no association 

(Kojima et al. 2002). Again, self-selection or phenotypic correlation can obscure expected 
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trade-offs, for example, if nulliparous women are used as a baseline against which parous 

women are compared. Parity is strongly correlated with age, especially in high fertility 

populations, and the relative importance of parity and age in affecting BMD remains 

unclear. Recent cross-sectional studies of changes to bone tissue over the lifespan have 

utilized quantitative computed tomography (qCT) to estimate volumetric BMD (vBMD, 

expressed in grams per centimeter3) and examine bone micro-architecture (e.g. trabecular 

thickness, cortical porosity) in three dimensions, but only in developed nations with low 

fertility (e.g. Khosla 2013). For American women aged 20+, trabecular vBMD peaks in 

early adulthood and undergoes accelerated loss around menopause, as calciotropic hormone 

concentrations decline. Key micro-structural changes include loss of trabecular number and 

greater trabecular separation, which compromises structural integrity and increases skeletal 

fragility and fracture risk. Overall, American women experience decreases in trabecular 

vBMD of 55% at central skeletal sites (e.g. lumbar spine, femoral neck), and 24% at 

peripheral sites (e.g. distal radius, tibia) from ages 20 – 90. Few studies have examined age- 

and parity-specific effects on maternal BMD in energy-limited high fertility societies (using 

qCT or other technology), and so population-level comparisons of bone mineral accrual and 

loss throughout adulthood across diverse environments are scarce.

While qCT or DXA are preferred methods for BMD assessment, they are costly, non-

portable, and may be invasive for field populations. As a viable and validated alternative, 

quantitative ultrasonography (qUS) provides a portable, field-friendly, non-invasive means 

of evaluating peripheral bone properties (Baroncelli 2008; Madimenos et al. 2012; Njeh et 

al. 1997). In this study, evaluation of bone is based on calcaneal (heel) qUS measurement, 

and we report estimated calcaneal BMD (see Methods). BMD explains roughly 75% of the 

variance in bone strength (i.e. the ability to withstand an applied load); the remaining 

variance may be due to state of bone remodeling, micro-architecture and other factors (Njeh 

et al. 1997). The calcaneus is the first of the seven tarsal bones to begin ossification (in the 

4th – 7th intrauterine month) (Platzer 2009), and when fully ossified by the early 20s is the 

most massive tarsal bone. The calcaneus is six-sided, irregularly shaped, and it articulates 

superiorly with the talus, which is the primary contact between the bones of the foot and leg. 

The calcaneus helps transmit weight and thrust from the tibia, and serves as a lever for the 

attachment of the calf muscles via the tendo calcaneus, the strongest tendon in the human 

body. This lever action is present in other hominoids, and while the principal trabecular 

orientation of the calcaneus appears to be conserved, trabecular structure of the calcaneus of 

the genus Homo is more anistropic and less dense compared to that of Pan, Gorilla and 

Pongo (Maga et al. 2006). The human calcaneus is over 90% trabecular bone by volume. 

Correlations between mineral content of the calcaneus and other skeletal sites rich in 

trabecular bone such as the lumbar spine, femoral neck, and Ward’s triangle range from 

0.71–0.77 among Western women aged 20–86 (Vogel et al. 1988). Given its trabecular 

structure and accessibility for densitometry, the calcaneus is a useful skeletal site for 

assessing maternal bone reserves in relation to reproduction in small-scale societies.

Study goals

In this cross-sectional study we document age-related change in Tsimane female calcaneal 

BMD in adulthood, including age of peak BMD, age at which BMD loss accelerates, and the 

Stieglitz et al. Page 4

Am J Phys Anthropol. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



magnitude of BMD loss with age. We test whether higher parity (P1), short IBI (P2), and 

early age at first birth (P3) are associated with reduced calcaneal BMD after adjusting for 

potential confounders including age, anthropometric status and current reproductive status 

(e.g. pregnant, lactating). To examine whether self-selection into maternity affects results, 

we conduct separate analyses including and omitting nulliparous women as a reference 

group. We examine whether parity-specific effects on BMD are stronger among post-

menopausal women relative to pre-menopausal women, which is expected if fitness returns 

from investments in bone remodeling diminish as reproduction ceases and offspring 

dependency load declines. Lastly, we test whether Tsimane women show reduced calcaneal 

BMD relative to age-matched American women (P4), despite the fact that Tsimane engage 

in higher physical activity levels that can increase mechanical loading. Aside from greater 

cumulative reproductive burden, other factors (e.g. reduced calcium intake, greater immune 

activation) may directly or indirectly contribute to lower BMD. If so, then population-level 

differences should be apparent prior to the onset of reproduction. We explore whether the 

magnitude of age-related decline in BMD is greater for Tsimane relative to US women, 

which could result from cumulative effects of reproduction and other factors. As a 

preliminary attempt to document prevalence of osteopenia (low bone mass) and osteoporosis 

among Tsimane women, we compare Tsimane BMD to young adult reference values 

(Tsimane and US) based on World Health Organization (WHO) criteria.

METHODS

Study population

Tsimane forager-horticulturalists of lowland Bolivia (pop. ~ 15,000) are semi-sedentary and 

live in 90+ villages, nearly all of which lack running water and electricity. Tsimane diet 

consists of cultigens grown in small swiddens (66% of calories; mostly rice, plantains, sweet 

manioc and corn), lean meat from hunting (17%), freshwater fish (7%), and fruits and nuts 

gathered from the forest (6%) (Martin et al. 2012). Market foods (e.g. pasta, sugar) and 

domesticated animals (e.g. chicken, pig) each provide 2% of the daily calories, and eggs 

account for <0.5% of calories. Relative to Western dietary standards calcium intake is low 

(estimated ~320 mg/day, unpublished data). Few Tsimane raise cattle (<5% of families), 

most cattle owners maintain small herds (<3 head) and do not process milk for consumption. 

Despite a lean diet and high fertility with on-demand breastfeeding, Tsimane breast-milk 

concentration of long-chain polyunsaturated fatty acids is high relative to Western women, 

and in cross-sectional analyses does not decline with parity or age (Martin et al. 2012).

Women’s physical activity level (PAL) is in the “moderate to active” range (PAL = 1.73–

1.85) and remains constant throughout adulthood (Gurven et al. 2013). Older women (aged 

50+) report muscular-skeletal pain in 45% of annual medical exams conducted by Tsimane 

Health and Life History Project (THLHP) physicians (n = 999 exams). Women are more 

likely than age-matched men to report pain at several appendicular and axial sites, and 

women demonstrate worse balance, coordination and walking endurance (Stieglitz et al. In 

press). Older women also report being in worse overall health than age-matched men. In the 

present sample 15% of older women (4/26) reported fracturing a bone (chosh, or toc) in the 

past five years; in all but one case a physician was not visited for confirmation or treatment. 
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The four incidents included: 1) a fractured clavicle from a tree fall while harvesting cacao, 

2) a fractured rib from falling while carrying a heavy load of leaves for roof construction, 3) 

a fractured rib from physical abuse by a husband, and 4) a fractured wrist from falling while 

running away from inebriated men during a community party.

Participants—One hundred and thirty women participated in this study. Mean age ± SD is 

36.6 ± 15.7 (range = 15 – 75). No participant reported ever using hormonal contraception or 

vitamin or mineral supplements. Women were recruited regardless of past or current 

reproductive status to obtain a representative sample, examine whether self-selection into 

maternity affects BMD, and explore cross-sectional variability in BMD associated with 

phases of the reproductive cycle. The sample consists of 20 nulliparous and 110 parous 

women (86 pre-menopausal, 44 post-menopausal). Women were categorized as post-

menopausal if they reported during THLHP medical exams not having experienced a 

menstrual cycle in the past year, and were neither pregnant nor lactating at the time of the 

study. Among pre-menopausal women 57 were cycling, 19 lactating, and 10 pregnant at the 

time of the study.

For all protocols institutional (UNM and UCSB) IRB approval was granted, as was 

informed consent at three levels: 1) Tsimane government that oversees research projects, 2) 

village leadership, and 3) study participants.

Calcaneal ultrasound

qUS is commonly used for research and diagnostic purposes (Baroncelli 2008). Diagnostic 

sensitivity of calcaneal BMD from qUS in the prediction of hip fracture has been shown in 

large prospective studies to be similar to that of hip BMD measured with DXA (Njeh et al. 

1997). Correlations of BMD measured with qUS and DXA range from 0.28 – 0.86; this 

variance may be attributed to differences in skeletal sites measured, ultrasound machines 

used, or to the fact that ultrasound velocity may be dependent on aspects of bone other than 

mineral density (see next paragraph). While DXA tests are preferred before administering 

clinical treatment for osteoporosis, qUS is often used in remote settings without DXA 

access. BMD measurements of the right heel were obtained using a gel-based Sahara 

Clinical Bone Sonometer (Hologic, Waltham, MA). Ultrasound transducers are mounted on 

a motorized caliper that enables direct contact with the heel through elastomer pads and a 

coupling gel. One transducer serves as a transmitter and the other as a receiver. Foot, ankle 

and leg positions are fixed by a device extending from the foot to the shin.

BMD (expressed in g/cm2) is an estimate of bone mineral content per surface area. Micro-

architectural properties of bone alter the shape, intensity and speed of ultrasound waves 

passing through bone. Attenuation of ultrasound waves through bone occurs by a reduction 

in wave amplitude and results in loss of energy. In trabecular bone the major attenuation 

mechanism is scattering (i.e. redistribution of energy in one or more directions), whereas in 

cortical bone the major mechanism is absorption (i.e. dissipation of energy by conversion to 

heat). The Sahara sonometer generates multiple measures including speed of sound (SoS, 

expressed in meters per second), which reflects ultrasound wave velocity through the 

calcaneus for a given heel width. Another measurement is broadband ultrasound attenuation 
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(BUA, expressed in decibels per megahertz). Bone attenuates high frequency sound waves 

more than low frequency waves, and BUA reflects ultrasound wave attenuation through the 

calcaneus in a frequency range (0.2–0.6 MHz) where wave attenuation is linearly associated 

with frequency. BUA is the slope of the linear regression of wave attenuation versus 

frequency within this range; the slope is less steep for osteoporotic bone (Njeh et al. 1997). 

For both SoS and BUA, lower values indicate reduced bone mineral status. BMD is 

estimated from a linear combination of SoS and BUA: calcaneal BMD = 0.002592*(SoS + 

BUA) – 3.687 (Frost et al. 2000).

Instrumental quality control scans of a phantom provided by the manufacturer with known 

SoS and BUA values were performed daily. Short-term reproducibility of BMD 

measurements was assessed by duplicate scans (morning, afternoon) of 15 healthy 

volunteers (THLHP employees including men and non-pregnant, non-lactating women). The 

mean coefficient of variation was 2.6%. One sonometer was used throughout the study and 

measurements were taken by two operators. No systematic differences in BMD 

measurements were found across operators or over time.

Anthropometrics and demography

Height and weight were measured during THLHP medical exams using a Seca stadiometer 

(Road Rod 214) and Tanita scale (BF680). The scale uses a method of bioelectrical 

impedance analysis to estimate percent body fat. Using weight and percent body fat we 

calculated fat mass (weight*percent body fat) and fat-free mass (weight – fat mass).

Reproductive histories were elicited in the Tsimane language among adults aged 15+ by 

Gurven, Stieglitz and Tsimane research assistants. Birth years were assigned based on a 

combination of methods including using known ages from written records, relative age lists, 

dated events, photo comparisons of people with known ages, and cross-validation of 

information from independent interviews of kin (Gurven et al. 2007). Each method provides 

an independent estimate of age, and when estimates yielded a date of birth within a three-

year range, the average was generally used. Individuals for whom reliable ages could not be 

ascertained are not included in analyses. The outcome of each pregnancy reported during 

reproductive histories was recorded as either ending in a live birth or terminating pre-term. 

Whether miscarriages (including stillbirths) are included or omitted from parity counts does 

not affect results, and results reported here reflect only live births. IBI refers to the number 

of months between live births for women with ≥2 live births.

Data analysis

Unpaired t tests, Mann-Whitney U tests, chi-square tests and one-way ANOVA were used to 

compare demographics, anthropometrics and BMD by reproductive status (i.e. pre- vs. post-

menopausal, nulliparous vs. parous, or cycling vs. lactating vs. pregnant). Ordinary least 

squares (OLS) regression was used to model associations between demographics, 

anthropometrics and BMD. BMD age trends were assessed using a combination of linear, 

loess and piecewise linear regressions. A second-order age term was included in OLS 

regressions because BMD is not expected to decrease linearly with age. Piecewise 

regression was used to establish the break-point at which rate of decline in BMD accelerates 
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(Muggeo 2003). Linear and loess regressions were used to cross-check results of piecewise 

regression. BMD is reported as a raw value or as a percentage of the adult maximum. 

Unstandardized and standardized regression coefficients are reported. Continuous and 

categorical measures of reproductive parameters (i.e. parity, mean IBI, age at first birth) 

were used to explore linear and non-linear associations with BMD. For comparisons 

between Tsimane and American women we calculated two T-scores for each Tsimane 

woman, using either a Tsimane or American young adult reference group (WHO 1994). T-

scores represent the difference in one’s result from the mean in a young adult (aged 20–29) 

population, expressed in SD units. T-scores were calculated as follows: T = (P-YA)/SDYA, 

where P is one’s estimated calcaneal BMD, YA is the young adult reference group mean 

BMD, and SDYA is the standard deviation of the young adult mean. The WHO defines 

osteopenia as a T-score between −1.0 and −2.5, and osteoporosis as a T-score below −2.5.

RESULTS

Sample characteristics for pre- and post-menopausal Tsimane women are shown in Table 1. 

All nulliparous women were < age 25 at the time of study (71% were < age 20). Most 

nulliparous women were unmarried and continued residing in their natal homes.

Tsimane calcaneal BMD by age

BMD changes non-linearly with age (Unstd. BAge = 0.005, p = 0.024, BAge
2 = −0.0001, p = 

0.001, adj. R2 = 0.25, n = 130) (Fig. 1A). In this fitted model, 97% of the maximum adult 

female BMD is attained by age 15, and maximum BMD is attained by age 27. BMD remains 

at 94% of the adult maximum by age 45, and pronounced decline with age is evident by age 

53 (i.e. the break-point from piecewise linear regression). Among post-menopausal women 

age-related decline in BMD is linear (Unstd. BAge = −0.006 g/cm2, Std. β = −0.629, p < 

0.001, n = 44) (Fig. 1B), amounting to an annual loss of 1.5% of the post-menopausal mean. 

By age 75 BMD is at 58% of the adult maximum.

BMD, anthropometrics, and reproductive status

BMD is more strongly associated with weight (Std. βWeight = 0.11, 95% CI: −0.05 – 0.27, p 

= 0.172, controlling for age and age2, n = 130) than with height (Std. βHeight = 0.002, 95% 

CI: −0.15 – 0.16, p = 0.978). BMD is not associated with percent body fat (Std. β% body fat = 

0.11, 95% CI: −0.05 – 0.28, p = 0.182), but is associated with fat mass (Std. βFat mass = 0.15, 

95% CI: −0.02 – 0.31, p = 0.077) and fat-free mass (Std. βFat-free mass = 0.16, 95% CI: −0.01 

– 0.33, p = 0.071). In subsequent analyses of BMD we control for age and weight.

Nulliparous vs. parous women—On average nulliparous women are younger than 

parous women (18.2 vs. 39.9 years, t = −13.94, p < 0.001, n = 130), and lighter (50.0 vs. 

55.4 kg, t = −2.46, p = 0.015), although not after controlling for age. Mean BMD is not 

significantly different between nulliparous and parous women using either the full sample 

(0.47 vs. 0.44 g/cm2, t = 1.427, p = 0.156) or only women aged 15–24 (0.47 vs. 0.46 g/cm2, 

t = 0.206, p = 0.838, n = 38).
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Cycling vs. lactating vs. pregnant women—Mean age is not different among cycling 

(27.0 years, n = 57), lactating (26.6, n = 19), and pregnant women (30.3, n = 10) (F = 0.712, 

p = 0.494). Differences in mean weight across the three groups are modest (F = 1.453, p = 

0.240), perhaps because 6/10 pregnant women were in their first trimester (mean = 3.2 

months, range = 2 – 5). Post-hoc tests indicate greater mean weight for pregnant women 

(58.7 kg, 95% CI: 52.3 – 65.1) compared to lactating (52.6 kg, 95% CI: 49.3 – 56.9, p = 

0.098) but not cycling women (55.4 kg, 95% CI: 52.8 – 58.1, p = 0.306), and no difference 

between lactating and cycling women (p = 0.260). Only one lactating woman had an infant 

<6 months of age at the time of study (mean age of youngest child = 12.5 months, range = 3 

– 24), and so mothers engaging in more intensive breastfeeding are under-represented. No 

significant differences were found across the three groups in percent body fat, fat mass, or 

fat-free mass.

Despite modest differences in age and body composition, mean BMD is different across the 

three groups (F = 3.784, p = 0.027) (Fig. S1). Mean BMD is higher among pregnant women 

(0.52 g/cm2, 95% CI: 0.45 – 0.59) compared to lactating (0.44 g/cm2, 95% CI: 0.41 – 0.47, p 

= 0.008) and cycling women (0.46 g/cm2, 95% CI: 0.44 – 0.48, p = 0.021); there is no 

difference between lactating and cycling women (p = 0.342). In subsequent analyses of 

BMD we include lactating and pregnant dummy variables to control for potential 

confounding effects of current reproductive status among pre-menopausal women.

BMD by parity

Pre-menopausal women—BMD is inversely associated with number of births in the 

pooled sample of nulliparous and parous women (Unstd. B# births = −0.010 g/cm2, 95% CI: 

−0.019 – 0.0002, p = 0.057, controlling for age, weight, and lactating and pregnant 

dummies, n = 86) (Table 2). This association strengthens in the parous-only sample (Unstd. 

B# births = −0.012 g/cm2, 95% CI: −0.022 – −0.001, p = 0.031, n = 66), amounting to a BMD 

loss of 2.6% (95% CI: −4.8% to −0.44%) of the pre-menopausal parous mean per additional 

birth. In this model age is not a significant predictor (Unstd. BAge = 0.002 g/cm2, p = 0.32). 

Figure 2 shows predicted BMD by number of births and reproductive status for pooled (2A) 

and parous-only (2B) samples. Substituting a categorical parity measure among the parous-

only sample indicates substantial BMD decline after the 5th birth (Fig. S2).

Post-menopausal women—If we model the association between parity and BMD using 

a categorical parity measure, BMD of women with 1–2 births is 1.05 SD’s higher than BMD 

of women with 10+ births (p = 0.034; Table 2, Fig. S2). In this model each SD increase in 

age is associated with a 0.55 SD decrease in BMD (Unstd. BAge = −0.005 g/cm2, p<0.001). 

BMD is inversely associated with number of births although the association is not 

significant (Unstd. B# births = −0.004 g/cm2, 95% CI: −0.009 – 0.002, p = 0.239; Table 2, 

Fig. S3).

BMD by mean IBI and age at first birth

We limit analyses to post-menopausal women to test whether BMD is positively associated 

with mean IBI1. BMD is positively associated with IBI after controlling for age and weight 

(Table 3: Model A) (Fig. S4). This association remains (Std. βMean IBI = 0.27, 95% CI: 
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−0.042 – 0.587, p = 0.087) after also controlling for parity, which is a significant predictor 

(Table 3: Model B). BMD among women with longer IBI’s (>24 mos.) is about 20% higher 

than among women with short IBI’s (Table 3: Models C-D) (Fig. 3).

BMD among women who initiated reproduction later (≥ age 16) is 15% higher than among 

women who initiated reproduction earlier after controlling for age, weight, parity, and mean 

IBI (Table 3: Model E). We find no significant interaction effects of early age at first birth 

and parity, of early age at first birth and mean IBI, or of mean IBI and parity on BMD. Age 

at first birth (continuous or categorical) is not associated with BMD among pre-menopausal 

women in uni- or multivariate analyses (not shown).

Comparison of Tsimane BMD to American reference values

Figure 4 shows BMD by age among Tsimane and American women. On average Tsimane 

BMD is 16% lower in the 20s, 20–24% lower from the 30s to the 60s, and 37% lower by the 

70s. Whereas by the 70s Tsimane BMD falls below 60% of the adult maximum, American 

BMD remains at 75%. Because anthropometric data on the American reference sample are 

not available, it is difficult to determine the extent to which population-level differences in 

BMD are due to differences in body weight or other body compositional characteristics. 

However, the magnitude of the population-level differences remains very similar throughout 

adulthood after adjusting Tsimane BMD for weight (not shown).

Using the Tsimane female young adult reference mean ± SD (0.487 ± 0.072 g/cm2), mean 

T-scores are osteopenic by the 60s, although a substantial percentage of women (39%) are 

osteopenic in the 30s (Table 4). Using the American female young adult reference mean ± 

SD (0.581 ± 0.112 g/cm2), mean T-scores are osteopenic in the 30s, and 58% of all Tsimane 

are osteopenic (compared to 31% using the Tsimane young adult reference mean). Each 

reference group yields an identical prevalence of osteoporosis for women aged 20+ (6.5%, n 

= 107) and women aged 60+ (53.8%, n = 13).

DISCUSSION

As predicted by the disposable soma theory, greater reproductive effort among Tsimane 

women is associated with reduced calcaneal BMD, an indicator of somatic decline. We find 

a decline in BMD of 1 SD for both pre- and post-menopausal women with 10+ births 

compared to women with 1–2 births after controlling for potential confounders (Table 2; 

Fig. S2). Short IBI is also associated with reduced BMD among women who have 

completed fertility (Table 3), perhaps indicating incomplete cycles of bone resorption and 

formation during reproductive years, and long-term effects on bone mineral status. In 

addition, early age at first birth is associated with reduced BMD, suggesting a trade-off 

1Pre-menopausal women are omitted from analyses as their mean IBI is censored. In addition, the sub-sample of pre-menopausal 
women with short IBI’s (≤24 months) may not be representative. On average pre-menopausal women with short IBI’s are 2% shorter 
and 8% lighter than women with longer IBI’s, whereas among post-menopausal women this difference is not apparent. Moreover, of 
97 multiparous study participants, the only women to have lost at least one young child (< age 4) since the THLHP’s inception were 
two pre-menopausal women with short IBI’s. While, as expected, post-menopausal women with short IBI’s have higher completed 
fertility than women with longer IBI’s (12.2 vs. 9.4 births, t = 2.465, p = 0.018), for pre-menopausal women there is no significant 
difference (short IBI = 6.3 births vs. longer IBI = 5.1 births, t = 1.236, p = 0.158). Together these sample characteristics might indicate 
unmeasured factors affecting variation in BMD, and to minimize potential confounders we omit pre-menopausal women from 
analyses.
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between early fertility and subsequent somatic condition (cf. Madimenos et al. 2012). Our 

results do not support the possibility that greater reproductive effort is protective against 

subsequent bone loss, as has been suggested in developed nations with low fertility (e.g. 

Chantry et al. 2004). Instead, our results support a negative trade-off between fertility and 

somatic condition that is predicted by multiple evolutionary theories of aging (Hamilton 

1966; Kirkwood and Austad 2000; Medawar 1952; Williams 1957). In response to high 

daily variance in availability of the nutrient-dense resources upon which humans have relied 

over evolutionary history (Gurven et al. 2012; Hill and Kintigh 2009; Kaplan et al. 2007), 

mobilization of maternal skeletal mineral stores during lactation may have guaranteed 

sufficient milk production to support infant growth. While maternal regulatory mechanisms 

may largely compensate for acute BMD losses during reproductive years (e.g. by retaining 

excess mineral in circulation to facilitate storage), accelerated bone mineral loss after 

menopause that is mediated by declining calciotropic hormone levels appears to be a robust 

feature of human aging in diverse socio-ecologies (e.g. Aspray et al. 1996). Age-related 

bone loss is also apparent among free-ranging female chimpanzees (Morbeck et al. 2002), 

who lack menopause and have longer birth spacing than human foragers.

Among pre-menopausal women self-selection into maternity does not strongly affect our 

results. No nulliparous post-menopausal women were sampled in this study, and so we are 

unable to determine whether such self-selection affects results at older ages. In high fertility 

societies nulliparity may be associated with other factors contributing to reduced BMD (e.g. 

sex steroid deficiency), and nulliparous women may be inappropriate controls for studies 

examining trade-offs between reproduction and somatic condition (Cure-Cure et al. 2002). 

Nulliparous women and those with 4+ births in cohort studies show higher mortality risks 

than women with low fertility (Hurt et al. 2006).

We find attainment of near-maximal BMD by age 15, roughly when regular ovarian cycling 

begins, and continued increases in BMD into the late 20s, as fertility and offspring 

dependency load increases. Tsimane BMD remains >90% of the maximum into the late 40s, 

suggesting tightly linked processes of bone resorption and formation during the reproductive 

years. Accelerated BMD decline begins in the early to mid-50s, as the number of highly 

dependent offspring approaches zero (Gurven and Walker 2006). By the early 70s, when 

few highly dependent grand-offspring remain, female BMD is 60–70% of the 15 year-old 

value and rate of BMD decline is marked. Some of these age-related changes are consistent 

with those found among women in developed nations, where at least 90% of peak bone mass 

(i.e. the highest level of bone mass achieved from growth) is acquired by late adolescence, 

and mineral acquisition continues into the late 20s (Bachrach 2001; Bailey et al. 1996; 

Matkovic et al. 1994). Recent cross-sectional and longitudinal qCT studies of trabecular 

vBMD at multiple sites (e.g. distal radius, tibia, lumbar spine) among American women 

aged 20+ suggest that while bone losses can begin as early as the third decade, losses 

accelerate around the age of menopause with changes in mineral regulating hormones (e.g. 

estrogen, progesterone) (Devlin 2011; Khosla 2013).

Despite the general similarities across populations, Tsimane women lose more BMD with 

age overall than American women at a peripheral skeletal site rich in trabecular bone (Fig. 

4). Once peak calcaneal BMD is achieved in the late 20s Tsimane women lose 42% by age 
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75, compared to 25% among age-matched American women. These differences are apparent 

despite the fact that Tsimane engage in physically intensive subsistence work throughout 

life, and are less sedentary than American women (Gurven et al. 2013). Maintenance of 

structural integrity can result from periosteal response to mechanical loading (Lieberman et 

al. 2010; Mayhew et al. 2005). For example, bone can respond to greater force by increasing 

mass and thus reducing the strain generated by a force. Physically intensive subsistence 

work throughout adult life can increase mechanical strain on weight-bearing bones, and may 

prevent even greater age-related decline in BMD among Tsimane (cf. Sayers et al. 2011).

Aside from greater cumulative reproductive burden, other factors likely contribute to low 

BMD among Tsimane, as population-level differences are apparent prior to the onset of 

reproduction (Fig. 4; Table 4). Tsimane women in their 20s, both nulliparous and parous, 

show lower calcaneal BMD than age-matched American women, and this difference persists 

even after adjusting Tsimane BMD for weight, height and parity (not shown). Similarly, 

rural Gambian women aged 18 – 30 have lower radial bone mineral content than age-

matched British women as assessed by single-photon absorptiometry (Prentice et al. 1991). 

Using X-rays, Himes et al. (1975) found reduced metacarpal cortex among rural Guatemalan 

pre-school children compared to American pre-schoolers, even after adjusting for body size 

(also see Walker et al. 1970). Together these findings suggest important contributions of 

genetic and environmental factors in affecting peak bone mass and subsequent bone loss. 

Twin and family studies indicate that 50 – 85% of the variance in peak BMD is genetically 

determined, and have identified multiple potential heritable determinants of bone strength 

(e.g. skeletal geometry, bone turnover rate, age at menarche) (Ralston and Uitterlinden 

2010; Towne et al. 2005). Bone accrual and strength are likely determined by effects of 

polymorphisms in multiple genes, and their interactions with multi-level factors affecting 

bone metabolism (e.g. nutrient intake, excretion and absorption efficiency, physical activity 

level, mechanical loading, hormonal status) (e.g. Bachrach 2001; Ellison 1982).

One possibility is that greater immune activation in populations with greater pathogen 

exposure may lead to reduced BMD. Despite widespread recognition that morbidity inhibits 

somatic growth, effects of pathogen burden and immune activation on human bone 

metabolism, especially during periods of rapid mineral accretion, have not been well-

characterized in free-living populations (but see May et al. 1993; Munday et al. 2006). 

Among Tsimane, high pathogen load (due to viruses, bacteria, parasites) increases immune 

activation throughout life (Blackwell et al. 2011; Gurven et al. 2008; Vasunilashorn et al. 

2010), increasing biomarkers of inflammation (e.g. C-reactive protein, interleukin-6) that 

have been shown to stimulate osteoclastic bone resorption and inhibit osteoblast function in 

humans and other species (Ginaldi et al. 2005; Manolagas and Jilka 1995; Schett et al. 

2006). Gastro-intestinal parasites are also common among Tsimane (Blackwell et al. 2013), 

and may directly impact mineral absorption efficiency (cf. Lunn 2000), with potential 

downstream consequences for bone mineralization. Perhaps there are also gene variants 

among Tsimane that in combination with their lifestyle favor reduced peak bone mass, in 

spite of high physical activity levels. For example, high IL-6 gene transcription contributes 

to lean body mass (Wernstedt et al. 2004) and potentially reduced bone mass. A promoter 

SNP (position −174) underlying IL-6 production is monomorphic among Tsimane 

(Vasunilashorn et al. 2011), suggesting a potential mechanism linking genetic history, high 

Stieglitz et al. Page 12

Am J Phys Anthropol. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



infectious burden, reduced body mass, and reduced BMD. Future studies will examine these 

possibilities to understand why, throughout life, Tsimane female BMD is noticeably lower 

than that of Ecuadorian Shuar females, who similarly engage in a foraging-horticultural 

lifestyle but also experience greater market access, reduced pathogen burden, and have 

lower fertility and higher BMI (Madimenos et al. 2012).

Dietary factors also likely contribute to variation in bone mineral status across and within 

populations, although we do not directly consider such factors in the present study. 

Controlled calcium supplementation trials, conducted mostly among healthy youth in 

developed nations, consistently demonstrate gains in bone mineral accrual rates, although 

responses to supplementation can vary by baseline energetic status, age, and skeletal site 

(Bachrach 2001). Indian pre-schoolers aged 3 – 5 accustomed to low calcium intake (~ 200 

mg/day) but with adequate protein and calorie intake maintain positive calcium balance 

(Begum and Pereira 1969; also see Prentice and Bates 1993). Further suggesting a link 

between macro-nutrient intake and bone mineral status, among Senegalese children 9 – 24 

months old, severe protein-energy malnutrition is associated with reduced serum 

osteocalcin, a marker of bone formation (Ndiaye et al. 1995). Tsimane rarely experience 

such severe malnutrition as occurs in kwashiorkor or marasmus, but low energetic surplus 

may interact with high immune activation to reduce BMD, despite high physical activity 

levels and compensatory mechanisms that regulate mineral balance.

This study has several limitations. The design is cross-sectional, which limits our ability to 

document age-related change in BMD, or establish that greater reproductive effort causes 

lower BMD. Another limitation is that we use qUS to assess BMD rather than DXA, which 

is preferred for diagnostic purposes, or qCT which provides three-dimensional estimates of 

trabecular and cortical vBMD. We therefore cannot examine micro-architectural bone 

properties (e.g. trabecular separation, cortical porosity) which can affect fracture risk even 

after adjusting for BMD. In addition, we only measure one peripheral skeletal site rich in 

trabecular bone, and we lack data on central sites (e.g. lumbar spine, hip) and sites rich in 

cortical bone.

To conclude, this study examines calcaneal BMD in a representative sample of 130 Tsimane 

women aged 15–75. We find that greater reproductive effort is associated with somatic 

decline, particularly after menopause as bone resorption outpaces formation. Fitness impacts 

of kin transfers in adulthood may also influence the value of investments in bone 

remodeling, and affect selection on age-profiles of bone mineral loss. Human food sharing 

and pooled energy budgets due to intergenerational transfers inflate personal energy budgets 

and permit somatic investment that otherwise would not be possible by relying on one’s own 

efforts (Gurven et al. 2012). Processes of bone resorption and formation are strongly 

connected during the reproductive years, but weaken in older adulthood as reproduction 

ceases and downward inter-generational transfers subside. Future studies that standardize 

methods (e.g. techniques to measure bone, skeletal sites and bone properties measured, age 

ranges, adjustment for confounders) are needed for valid species- and population-level 

comparisons of trabecular and cortical bone losses across the lifespan. Studies of skeletal 

tissue in vivo in small-scale societies may reveal novel insights into bone metabolism and 

micro-architecture.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Estimated calcaneal BMD by age and menopausal status (n = 130). Shown is a quadratic fit 

with 95% CI (1A), and a LOESS fit (1B).
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Fig. 2. 
Estimated calcaneal BMD by number of births and reproductive status among pre-

menopausal Tsimane women. Predicted values are obtained from OLS regression including 

age, weight, and lactating and pregnant dummies as controls. Figure 2A includes the pooled 

sample of nulliparous and parous women; Figure 2B includes parous women only.
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Fig. 3. 
Estimated calcaneal BMD by parity and mean IBI among post-menopausal Tsimane women. 

Predicted values are obtained from OLS regression (using parameters in Table 3: Model D). 

Other parity categories are omitted because women with short mean IBI’s are not 

represented.

Stieglitz et al. Page 21

Am J Phys Anthropol. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Estimated calcaneal BMD and proportion of the adult maximum (upper left) by age among 

Tsimane and American women, as measured by the Sahara Clinical Bone Sonometer. US 

reference values are provided by the manufacturer based on measurements of 2,208 

participants across nine geographical regions. Mean BMD per decade is provided by the 

manufacturer at decade midpoints. Women below age 20 and above 80 are omitted since 

comparative data are not available.
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Table 2

Unstandardized (standardized) coefficients from OLS regressions of paritya on estimated calcaneal BMD 

(g/cm2) for pre- and post-menopausal Tsimane women.

Pre-menopausalb Post-menopausalc

Parity measure
Nulliparous +
Parous

Parous
only

Continuous

  # births −0.010t (−0.42) −0.012* (−0.45) −0.004 (−0.14)

Categorical

  10+ births −0.074 (−0.87) −0.086 (−1.00) −0.097* (−1.05)

  6–9 births −0.069 (−0.80) −0.071t (−0.83) −0.094t (−1.01)

  3–5 births −0.021 (−0.24) −0.016 (−0.19) −0.123* (−1.32)

  1–2 births −0.004 (−0.05) (ref.) (ref.)

  0 births (ref.)

N=86 N=66 N=44

t
p ≤ 0.10

*
p ≤ 0.05

a
Continuous and categorical measures of parity were added in separate models to examine linear and non-linear associations.

b
Controlling for age, weight, and dummy variables indicating whether lactating and pregnant at BMD measurement

c
Controlling for age and weight (no nulliparous post-menopausal women were sampled)
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