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Abstract

Objectives—Growth standards and references currently used to assess population and individual 

health are derived primarily from urban populations, including few individuals from indigenous or 

subsistence groups. Given environmental and genetic differences, growth may vary in these 

populations. Thus, there is a need to assess whether international standards are appropriate for all 

populations, and to produce population specific references if growth differs. Here we present and 

assess growth references for the Tsimane, an indigenous population of Bolivian forager-

horticulturalists.

Methods—Mixed cross-sectional/longitudinal anthropometrics (9,614 individuals; 30,118 

observations; ages 0–29 years) were used to generate centile curves and Lambda-Mu-Sigma 

(LMS) tables for height-for-age, weight-for-age, body mass index (BMI)-for-age, and weight-for-

height (WFH) using Generalized Additive Models for Location Shape and Scale (GAMLSS). 
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Velocity curves were generated using SuperImposition by Translation and Rotation (SITAR). 

Tsimane ≤5 years were compared World Health Organization (WHO) standards while those >5 

years were compared to WHO school age references. All ages were compared to published 

references for Shuar forager-horticulturalists of the Ecuadorian Amazon.

Results—Tsimane growth differs from WHO values in height and weight, but is similar for BMI 

and WFH. Tsimane growth is characterized by slow height velocity in childhood and early 

adolescent peak height velocity at 11.3 and 13.2 years for girls and boys. Tsimane growth patterns 

are similar to Shuar, suggesting shared features of growth among indigenous South Americans.

Conclusions—International references for BMI-for-age and WFH are likely appropriate for 

Tsimane, but differences in height-for-age and weight-for-age suggest Tsimane specific references 

may be useful for these measures.

Keywords

Growth; height; weight; BMI; growth velocity; Tsimane; Amazonians; indigenous South 
Americans; GAMLSS

Introduction

When evaluating the growth of children, much of the world currently uses growth standards 

or references from the World Health Organization (WHO) (de Onis et al., 2007b) or the 

United States (US) Centers for Disease Control and Prevention (CDC) (Kuczmarski et al., 

2002). International growth standards, designed to reflect the growth of children under non-

limiting conditions, have been created by the WHO for infants and young children (age 0–5 

years). However, similar standards for the growth of older children and adolescents have not 

been created (de Onis et al., 2007b) and so, in lieu of international standards, WHO and 

CDC growth references derived from US samples are frequently used to assess growth 

patterns in older children and adolescents across a range of populations. However, recent 

analyses suggest that WHO and CDC references for childhood and adolescent growth may 

not be appropriate for assessing growth in many populations, particularly those of non-

Western descent (Hasan et al., 2001; Hakeem et al., 2004; Neyzi et al., 2006; Guedes et al., 

2010; Mushtaq et al., 2012; Urlacher et al., 2016a). Environmental differences in climate, 

energy availability, foraging ecology, and mortality risk have selected for genetic variation 

across human populations in both growth and the reaction norms regulating how growth 

responds to environmental influences (Eveleth and Tanner, 1990; Lunde et al., 2007; 

Migliano et al., 2007; Becker et al., 2011; Hadley and Hruschka, 2014; Perry and Verdu, 

2016; Urlacher et al., 2016a). These differences may be particularly salient for indigenous 

populations, many of whom have remained genetically and culturally isolated from national 

populations, and thus represent a significant portion of human genetic diversity (Karafet et 

al., 2002; Wang et al., 2007; Henn et al., 2011). The scant data available from these groups 

suggest growth patterns can differ across many features, including those relating to juvenile 

growth rates, the timing and magnitude of adolescent growth, degree of sexual dimorphism, 

and relative trade-offs between height growth and weight growth (Eveleth and Tanner, 1990; 

Ulijaszek, 1994; Walker et al., 2006; Urlacher et al., 2016a). While these differences are 
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most apparent at later ages, some differences may emerge as early as infancy (Hadley and 

Hruschka, 2014).

Although published growth data from indigenous populations exist (e.g. Draper and Howell, 

2005; Foster et al., 2005; Walker et al., 2006; Rozzi et al., 2015; Urlacher et al., 2016) 

detailed descriptions from large samples with accurate ages are rare and few growth 

references derived specifically for indigenous populations are available. Given the high 

degree of individual variability in growth, conclusions about growth based on small samples 

are often problematic or inconclusive. Thus, growth references based on large, representative 

samples are needed to thoroughly answer questions about universal and variable features of 

human growth, and to investigate the links between growth, health, and nutritional status. 

Moreover, large samples are needed to thoroughly assess whether international references 

are appropriate for all individuals, or whether population specific references might 

sometimes be beneficial.

To address the need for detailed descriptions of growth, and to assess the appropriateness of 

international references for evaluating Tsimane, we generate and describe growth references 

for Tsimane forager-horticulturalists of the Bolivian Amazon using mixed cross-sectional 

and longitudinal data on 9,614 individuals under age 30 from 88 communities (n= 30,118 

observations). We first generate centile references and Lambda-Mu-Sigma (LMS) curves 

(Cole and Green, 1992) for Tsimane height-for-age, weight-for-age, body mass index 

(BMI)-for-age, and weight-for-height, providing an extensive description of growth patterns 

in a subsistence-level population. We then produce velocity curves both from cross-sectional 

data and from individual longitudinal changes using the SuperImposition by Translation and 

Rotation (SITAR) method (Cole et al., 2010, 2014). Finally, we assess the extent to which 

Tsimane growth is similar to or different from growth as described by WHO standards and 

WHO and CDC references, as well as growth references for Shuar forager-horticulturalists 

of Amazonian Ecuador, one of the only other Amazonian populations to have comparable 

references based on a large sample (Urlacher et al., 2016a). These comparisons aim to 

determine whether Tsimane growth differs sufficiently from international references to 

justify the use of Tsimane specific growth references. Finally, we discuss the features of 

Tsimane growth in reference to human life history evolution.

The Tsimane

Tsimane are a rapidly expanding (3.6% annual growth rate (Gurven et al., 2014)) population 

of ~15,000 individuals, that live in over 90 villages along the Maniqui River and surrounding 

areas in lowland Beni, Bolivia. Although Tsimane growth data have been used frequently in 

research (e.g. Foster et al., 2005; McDade et al., 2008; Reyes-García et al., 2008; Godoy et 

al., 2010; Gurven, 2012; Veile et al., 2012) as both an outcome and predictor, detailed 

patterns of growth describing all ages, individual variation by age, and growth velocities 

have not been fully characterized.

Tsimane subsist by hunting, fishing, and cultivating plantains, rice, corn and manioc. Adult 

diets consists of 74% plant products and 26% animal products, with <10% of calories 

coming from purchased foods (Martin et al., 2012). In general Tsimane children are short 

and lean, but have low rates of wasting and arm muscularity similar to US children, 

Blackwell et al. Page 3

Am J Phys Anthropol. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



suggesting adequate protein (Foster et al., 2005). However, stunting is prevalent (Gurven, 

2012), and low bone mineral density suggests the possibility of micronutrient deficiencies 

(Stieglitz et al., 2015, 2016). Tsimane are a natural fertility population, with a total fertility 

rate of 9.1 births per woman (Gurven et al., 2007; McAllister et al., 2012; Blackwell et al., 

2015); women breastfeed their infants on-demand, weaning at 19 months on average (Veile 

et al., 2014).

Tsimane are exposed to a wide array of pathogens and parasites which likely influence 

growth patterns, including hookworm (50% prevalence), giardia (37%), and roundworm 

(15%) (Blackwell et al., 2013; Martin et al., 2013). Other common afflictions include upper 

and lower respiratory infection, gastrointestinal problems, skin infections, urinary tract 

infections, and traumatic injuries (Gurven et al., 2012; Blackwell et al., 2016). Overall, 

infectious disease accounts for roughly half of all deaths, including pre-adult deaths (Gurven 

et al., 2007).

Methods

Data collection

Data for this study come from the Tsimane Health and Life History Project (THLHP, http://

www.unm.edu/~tsimane), which has worked continuously with the Tsimane since 2002 

(Gurven et al., 2016a). For the present study we utilize data on height and weight collected 

by the THLHP between 2002 and 2015. Data were collected during medical examinations 

by THLHP physicians, who visited Tsimane villages as part of a larger mobile medical team 

approximately once per year. Patients seen by THLHP physicians were given routine 

physical exams including assessment of medical history, symptom investigation and clinical 

diagnosis, collection of vital signs (e.g. blood pressure, temperature), and anthropometrics. 

Following on-site analysis of blood and fecal samples for indicators of infection, physicians 

administered vitamins and medications as warranted. Standing and sitting height were 

measured without shoes to the nearest millimeter with a portable Seca 213 stadiometer. 

Weight was measured with a Tanita BF-572 scale in light clothing without shoes. Growth 

data used for this study is provided in Supplemental File S1 and summarized relative to 

CDC references in Table 1.

Ethics Approval

The study was reviewed and approved by the Gran Consejo Tsimane, the governing body 

overseeing Tsimane affairs and research projects, and by the IRBs of the University of 

California-Santa Barbara (UCSB) and the University of New Mexico. Informed consent was 

obtained at two levels. During a community meeting open to all residents, communities 

decided collectively whether they would participate in the THLHP. To date, all communities 

that have been approached have agreed to participate in the THLHP. Study participants gave 

informed consent before each medical visit. For minors, both parental consent and child 

assent were obtained.
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Centile curve modeling

We constructed centile curves for height-for-age, weight-for-age, BMI-for-age, and weight-

for-height following procedures very similar to those previously used to construct growth 

references for Shuar (Urlacher et al., 2016a), and replicating, to the extent possible, the 

curve fitting procedures of the WHO (Borghi et al., 2006; de Onis et al., 2007b). Centile 

curves were constructed for each sex between the ages of 0–29 years using Generalized 

Additive Models for Location Scale and Shape (GAMLSS)(Rigby and Stasinopoulos, 2005). 

For height weight and BMI, ages up to 29 were included to anchor curves and avoid edge 

effects (Indrayan, 2014). For weight-for-height, ages up to 20 were included, and dummy 

cases with values below the lowest height measurement were added to weight-for-height 

models to reduce edge effects. Models were fit using the R-package gamlss (http://

www.gamlss.org/) in R 3.2.4 (http://cran.us.r-project.org/). Smoothing degrees of freedom 

were determined as follows:

1) Models were first fit with a Box-Cox Power Exponential distribution as 

BCPE(x=ageλ, df(µ)=14, df(σ)=3, ν=1, τ=2) with values of the age-

transformation power λ ranging from 0.05 to 1.0. The λ parameter from the 

model with the smallest global deviance was selected.

2) Using the selected λ model, outliers with predicted z-scores > 3.5 or < −3.5 

were removed, since most of these outliers likely represented errors in data 

entry. This led to the exclusion of 0.3% of height and BMI observations and 

0.3% of weight observations.

3) Generalized Akaike information criterion (GAIC) was used to determine the 

appropriate degrees of freedom for µ, σ, ν, and τ. Degrees of freedom for µ and 

σ were selected by comparing all models with df(µ) ranging from 1 to 22 and 

df(σ) ranging from 1 to 20. Models with ν = 1 or df(ν) ranging from 1 to 14 

were then compared. To allow the production of LMS parameters we fixed τ = 2 

in all models, resulting in the reduction of distribution functions to the simpler 

3-parameter Box-Cox Cole and Green (BCCG) distribution (Cole and Green, 

1992).

4) Goodness of fit for all final models was assessed using grid tests to compare 

observed and expected proportions of observations above and below specific 

centiles (Healy et al., 1988; Borghi et al., 2006).

Final GAMLSS model parameters were used to produce centile tables and LMS curves for 

each sex and anthropometric measure of interest. Final model parameters and sample sizes 

are given in Tables 2 and 3. Complete R code for growth curve modeling is given in 

Supplementary File S2. The L, M, and S parameters from growth models are given in 

Supplementary Files S4–S7. Centile references are given in Supplementary Files S8–S15.

Velocity curve modeling

Velocity curves were generated in two ways. First, we generated pseudo-velocity curves 

from the first derivative of the median (µ) curves obtained from GAMLSS models. We 

utilize median curves since these are available for all reference populations and allow direct 
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comparisons with comparable methods. However, median curves may smooth growth spurts 

and misrepresent the shape of velocity curves. We therefore also used the SuperImposition 

by Translation and Rotation (SITAR) method to generate velocity curves from longitudinal 

data (Cole et al., 2010, 2014). SITAR fits a non-linear mixed model with a cubic spline 

representing the average growth curve and uses three random effects terms to model each 

individual longitudinal growth trajectory, scaling the growth curve in terms of size, tempo, 

and velocity to fit each individual trajectory. Detailed descriptions of this scaling can be 

found elsewhere (Johnson et al., 2011). Since SITAR fits individual growth curves, 

smoothing of spurts is minimized as the random effects account for spurts occurring at 

different ages in different individuals. Prior to fitting SITAR models, we excluded 

individuals with fewer than three longitudinal measurements and used the velout function in 

the SITAR package to eliminate outliers with unusual velocities. Curves were fit separately 

by sex and in two age groups, 0–7 years and 5–25 years. Separate age groups were used to 

simplify model convergence, and since we reasoned that curve translation and rotation in 

infancy might not necessarily be linked to similar transformations in adolescence. Complete 

R code for cleaning and velocity curve modeling is given in Supplemental File S3.

Growth reference data

WHO Multicenter Standards for Children under Age Five—These standards were 

developed to represent the growth of children under “ideal” conditions, who were breastfed, 

relatively affluent, and unburdened by major disease, food insecurity, or smoking (World 

Health Organization, 2006). In replacing older references, the WHO multicenter standards 

increased international representation by including children from Brazil, Ghana, India, 

Norway, Oman, and the United States, and also avoided penalizing breastfed infants by 

treating them as the standard, as opposed to formula-fed infants who grow more slowly in 

the first two months but more rapidly thereafter (de Onis and Onyango, 2003; de Onis et al., 

2007a). Standards were produced by fitting BCPE distributions to data with GAMLSS.

WHO References for School-Age Children and Adolescents—These references 

were developed once it was decided that constructing multicenter standards for children and 

adolescents would be infeasible due to the difficulty of identifying and maintaining ideal 

circumstances for older ages across such a range of countries (de Onis et al., 2007b). Instead 

these references represent a reanalysis of the 1977 NCHS/WHO growth reference data from 

the US, using GAMLSS methods.

WHO Longitudinal Velocity Standards for Infants—These standards provide z-

scores for height and weight velocities for ages up to two years (World Health Organization, 

2009). They were developed with a subsample of 882 infants studied during development of 

the WHO multicenter standards. Data came from all 6 international sites. Standards were 

produced by fitting BCPE distributions to data with GAMLSS.

US CDC Growth Charts—The 2000 CDC references were developed primarily using 

data from five National Center for Health Statistics (NCHS) cross-sectional surveys of the 

US, conducted between 1963 and 1994, and birth weight data from birth certificates 

(Kuczmarski et al., 2002). The nationally representative data included a mix of breast and 
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formula fed infants. In constructing their references for weight-for-age, the CDC excluded 

data from the most recent survey, since they included a higher proportion of overweight 

children.

Shuar Growth References for Ages 0–25—Shuar are an Amazonian population from 

lowland Eastern Ecuador, roughly 1,800 km from Tsimane territory. The language groups to 

which Shuar and Tsimane belong are separate linguistic isolates (Karsten, 1935; Harner, 

1984; Sakel, 2011; Clement et al., 2015), and there is no close genetic relation between the 

two populations (Corella et al., 2007; Bert et al., 2015). Urlacher et al (2016) produced 

Shuar references using 4,878 mixed cross-sectional/longitudinal observations on 2,463 

Shuar. Curve fitting methods were essentially identical to those used here. Median velocity 

curves were produced from the first derivative of the median growth centile curve.

Results

Tsimane stunting, wasting, low weight-for-age, and low BMI-for-age

Table 1 gives the prevalences of stunting (height-for-age z-score ≤ −2), low weight (weight-

for-age z-score ≤ −2), low BMI (BMI-for-age z-score ≤ −2), and wasting (weight-for-height 

z-score ≤ −2) as determined relative to WHO standards for the Tsimane sample up to age 20, 

prior to excluding outliers for curve fitting purposes. In general, Tsimane have high 

prevalences of stunting at all ages, and moderately high prevalences of low weight-for-age. 

Wasting and low BMI-for-age have moderate prevalences under age two, but are very 

uncommon over age five.

Centile and LMS curve fits

Final sample sizes for the mixed cross-sectional and longitudinal samples are given in Tables 

2–3. Given large sample sizes, coverage across all ages was excellent, allowing for the 

production of detailed centile curves (Figures 1–5). Centile curves in Figures 1 and 2 are 

largely for illustration purposes. More detailed centiles and LMS tables are given in 

Supplementary Files S4–S15. Detailed growth charts suitable for tracking growth are given 

in both English and Spanish in Supplementary Files S16 and S17.

Velocity curve modelling

Velocity curves were generated both as pseudo-velocity curves by taking the slope of the 

50th centile line, and by fitting individual growth curves as random effects terms with SITAR 

(Figures 4 and 5). Velocity curves from both methods were similar, except under ~6 months 

of age, where SITAR curves for male height and weight suggested lower velocities than 

median curves, and SITAR curves for BMI suggested little change in BMI under age 6 (olive 

lines, Figure 6). These differences likely reflect the fact that longitudinal measurements were 

taken an average of 1.2 years apart, and may not capture the rapidly changing velocities in 

the first 6 months of age. At older ages curves were very similar, but SITAR velocity curves 

resulted in less blunting of adolescent height and weight growth spurts. Interestingly, SITAR 

curves also suggested negative BMI velocities after age 20 for women, which were not 

reflected in median curves.
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Growth from birth to 24 months

Under age five, we compare Tsimane growth to WHO standards (Figures 3 and 5; Tables 4–

6), and velocities to WHO longitudinal velocity standards. Our data does not include direct 

measures of birth weight, since most Tsimane give birth at home, but does include measures 

taken within the first few weeks of life. At 1 week of age, median Tsimane weight and 

length are 3.41 kg / 49.9 cm for boys and 3.33 kg / 50.1 cm for girls. Median values at 1 

week from WHO standards are 3.49 kg / 51.1 cm for males and 3.34 kg / 50.3 cm for 

females. These suggest that even at 1 week Tsimane boys may be small, though they are still 

heavier than Tsimane girls. In contrast, values for Tsimane girls are quite close to median 

values from the WHO.

Tsimane median growth curves roughly follow WHO growth curves for the first few months, 

though with boys remaining small relative to WHO standards (though still bigger than girls). 

At six months, Tsimane median length, weight, and BMI were equivalent to the WHO 13th, 

23rd, and 39th centiles for boys and 27th, 37th, and 51th centiles for girls. After six months, 

median growth curves for length, and to some extent weight, diverge more dramatically from 

WHO standards. By age two, Tsimane curves are distinguished by low length/height and 

weight, but high BMI: at age 2, Tsimane median length/height, weight, and BMI fall at the 

1st, 14th, and 75th WHO centiles for boys and the 1st, 18th, and 75th centiles for girls. 

Tsimane references have moderately higher σ parameters than WHO standards across all 

ages under two years, indicating moderately wider distributions, while λ parameters suggest 

some positive skew in male infant length for Tsimane, but relatively little skew for both 

Tsimane and WHO on other measures.

Mean velocity curves tell a similar story (Figure 6). In cross-sectional height curves (orange 

lines, Figure 6), a dip in velocity is apparent for both boys and girls between 6 months and 1 

year of age, possibly suggestive of growth faltering during the transition from exclusive 

breast-feeding. However, when examined more closely, velocities are also low at 3 months. 

For boys, median height velocities are at the 17th, 37th, 17th, and 33rd WHO percentiles at 3 

months, 6 months, 1 year, and 2 years, respectively. For girls, velocities are at the 20th, 33th, 

13th, and 32nd percentiles at these same ages. Weight velocities follow WHO standards more 

closely. Percentiles on WHO velocity standards at the median velocity at ages 3 months, 6 

months, 1 year, and 2 years were 22nd, 37th, 36th and 44th for boys, and 32nd, 31st, 37th, and 

43rd for girls, respectively.

BMI velocity curves for both WHO and Tsimane decline toward zero between 6 months and 

1 year of age. Interestingly, WHO BMI velocities fall below zero between 6 months and 2.5 

years of age, while Tsimane curves show only very slight negative BMI velocities during 

this period. This lack of decline in BMI is also evident in velocity curves from SITAR 

models.

Growth from 2 to 10 years

From ages 2 to 5 we compare Tsimane to the WHO standards, and over age five to the WHO 

school age references (Figure 4; Tables 4–6). Median height for both boys and girls tracks 

between the 2rd and 4th percentiles for ages 2–10 years (Table 4). Median weight growth 
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tracks between the 14th and 18th percentiles (Table 5), and median BMI values fall between 

the 52nd and 68th percentiles (Table 6). For ages 2–10 height growth has a range of variation 

similar to WHO values, but somewhat lower variation in weight and BMI (Figure 4; σ 
values). For these ages, Tsimane show little consistent evidence of skew in distributions, 

while WHO standards have slight evidence of positive skew in weight and BMI as indicated 

by negative λ curves.

Between ages 2 and 10, Tsimane pseudo-velocity and mean velocity curves follow the shape 

of WHO pseudo-velocity curves fairly closely, though both height and weight velocities are 

somewhat lower (Figure 7). The differences between WHO and Tsimane velocity curves 

increase around age six, when WHO curves begin to show increases in velocity leading up to 

adolescent growth, while Tsimane height velocity continues to decline until after age ten for 

males, and until age 8 or 9 for girls. Weight velocity remains relatively constant until after 

age ten for both sexes.

Growth from 10 to 25 years

Over age ten and under age 19, we compare Tsimane growth in height and BMI to WHO 

references, and growth in weight to CDC references since WHO references are not available 

past age 10 for weight (Figure 7). Over age ten median Tsimane height for both sexes is at or 

below the 5th centile (Table 4). Weight falls between the 14th and 19th centiles for boys and 

the 26th and 32nd centiles for girls (Table 5). BMI is relatively high, with median values 

between the 52th and 69th centiles (Table 6). Over age 10, Tsimane weight and BMI show 

far less variation than WHO references. Tsimane λ parameters are characterized by negative 

skew (λ > 1) in both males and females during the adolescent growth spurts. This may 

suggest delayed growth spurts for some Tsimane. From SITAR models, we estimate an 

average peak height velocity of 8.8 cm/year at 13.2 years for males and 8.2 cm/year at 11.3 

years for females. Weight velocity is estimated to peak at 6.5 kg/year at 12.0 years for 

females, and 6.9 kg/year at 13.7 years for males.

Weight-for-height references

As with BMI-for-age references, Tsimane WFH distributions show considerable overlap 

with WHO weight-for-height standards (Figure 5). Median Tsimane WFH falls between the 

54th and 89th WHO percentiles (Table 7). At statures under 80 cm, Tsimane distributions 

tend to be more variable than WHO distributions, with higher σ parameters. As a 

consequence, despite high median WFH values, 8–11% of Tsimane would be expected to 

have evidence of wasting (WFH z-scores ≤ −2) according to WHO references (Table 7). 

Empirical values on raw data show similar median WFH z-scores at or well above the WHO 

median, but moderate rates of wasting in younger age groups (Table 1). Above 85 cm or 

above age five, wasting is very uncommon, afflicting 1% or less of children (Tables 1 and 7).

Comparison with other Amazonian populations

In Figures 8–10, we compare Tsimane growth references with previously described 

references for the Shuar (Urlacher et al., 2016a). Shuar and Tsimane have strikingly similar 

growth patterns. When overlaid, Shuar and Tsimane growth in height, weight, and BMI 

resemble each other closely, both in terms of median values and distributions (Figure 8, left 
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column), as well as in pseudo-velocity curves (Figure 8, middle column). Both groups have 

slowed height growth through childhood and delayed weight growth, though Tsimane are 

slightly shorter than Shuar in childhood and slightly taller after early adolescence. In terms 

of centiles, Shuar references perform well when applied to Tsimane values, and Tsimane 

values perform well when applied to Shuar, in that each produces centile estimates roughly 

in line with the other (Figure 8, right column; Figures 9–10; Tables 4–6).

Impact of secular trends on growth references

Since data for this study were collected over 13 years, we investigated whether secular 

trends might affect the validity of growth references. We controlled for age and for repeated 

measures and community with random effects, and fit linear mixed models with time 

predicting Tsimane specific z-scores for all Tsimane ≤ 25 years. Overall, secular trends in 

height-for-age were small and identical for boys and girls, with z-scores increasing by 0.08 

z-scores per decade (p<0.001), equivalent to 0.6 cm per decade in adult height. Secular 

trends in weight-for-age were larger, but only for girls; weight-for-age z-scores increased by 

0.19 z-scores per decade (p<0.01) for girls, equivalent to 1.4 kg in adult weight, and by 0.07 

z-scores per decade (p=0.004) for boys, or 0.5 kg for adults. Z-scores for BMI similarly 

increased by 0.20 z-scores per decade for girls (p<0.001) and 0.09 z-scores per decade for 

boys (p=0.003), equivalent to 0.56 kg/m2 and 0.16 kg/m2 for adults, respectively.

Discussion

We present growth references for the Tsimane of lowland Bolivia, from a sample of 30,118 

observations collected over 13 years. This sample size is considerably larger than those 

previously used to examine growth in small-scale populations (Stinson, 1989; Hill and 

Hurtado, 1996; Orr et al., 2001; Draper and Howell, 2005; Walker et al., 2006). For 

comparison, our sample includes roughly the same number of observations used to construct 

the WHO multicenter growth standards, and (excluding birth records) about half the number 

of observations used to construct the CDC references (Kuczmarski et al., 2002). Given that 

this represents only a single, relatively homogenous population, we have a high degree of 

confidence that our data accurately represent Tsimane growth, and given modest secular 

trends, that these data accurately represent Tsimane growth patterns over longer time spans. 

Moreover, we have chosen modeling procedures that mirror the methods used by the WHO 

to make our results directly comparable (de Onis et al., 2007b).

Our results show that Tsimane growth differs modestly from WHO references in the first 

few months of life, particularly for girls. However, after approximately 6 months growth 

diverges more considerably. Pseudo-velocity curves suggest that between 6 and 24 months 

Tsimane height velocities for both boys and girls dip below WHO values. The timing of this 

divergence may coincide with the introduction of complementary foods, which may be a 

vector for disease and may affect nutritional availability (Veile et al., 2014; Martin, 2015). 

Divergence after 6 months is primarily in height, with Tsimane infants maintaining higher 

median BMIs and mean BMI velocities than infants in WHO references. Median WFH z-

scores similarly suggest that median weight is relatively high, although in younger ages 
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Tsimane also show more variance in WFH, with 12% of Tsimane under age two having 

evidence of wasting.

The pattern of slow height growth persists through early and mid-childhood. Median 

Tsimane height growth remains at or below the fifth WHO centile for both sexes at all ages 

past infancy, with approximately 40% of individuals considered stunted (z-score ≤ −2) 

across all ages (Table 4).

Tsimane weight diverges from references less than height, but median Tsimane weight still 

remains below the WHO 25th centile for most ages (Table 5). About 20% of Tsimane have 

weight z-scores ≤ −2 in younger age groups, declining to about 9% by adulthood (Table 5). 

However, weight is generally appropriate for height, and median Tsimane BMI remains 

approximately between the WHO 50th and 70th centiles for all ages (Table 6). After age two, 

very few Tsimane have low BMI-for age or low WFH (Table 1). The distribution of Tsimane 

growth for weight is generally narrower than that observed in reference populations, and 

shows less evidence of positive skew.

In contrast to differences between Tsimane and WHO standards or references, Tsimane 

growth closely mirrors the growth of Shuar forager-horticulturalists of Ecuador. Some of 

these similarities reflect trends that others have noted. Amazonians, in general, are 

characterized by high rates of child stunting but low rates of underweight and wasting when 

compared to international standards or references (Stinson, 1990; Victora, 1992; Orr et al., 

2001; Piperata et al., 2011). The similarities between Shuar and Tsimane growth 

distributions suggest that Amazonian growth patterns, overall, follow similar trajectories and 

likely respond similarly to shared environmental factors. These similarities also suggest that 

Tsimane and Shuar references might be useful for other populations, and that in the future a 

common growth reference might be constructed that would be applicable to many South 

American populations.

At 11.3 and 13.2 years for girls and boys, the ages of peak height velocity we report for 

Tsimane are slightly earlier than those reported for other populations. For example 12.1 and 

14.1 for British adolescents (Tanner et al., 1966), 11.8 and 13.4 for Canadian Caucasians 

(Iuliano-Burns et al., 2001), 13.3 and 16.1 in Gambian adolescents (Prentice et al., 2012), 

and 12.1 and 14.3 for black South African adolescents (Cameron et al., 1994). Interestingly 

one population reporting early peak height velocity is the Shuar, with estimates of 10.2 and 

13.6 years based on pseudo-velocity curves from median LMS values (Urlacher et al., 

2016a). Pseudo-velocity curves likely result in earlier estimates than SITAR models. This 

may be particularly true for girls, where less dramatic growth spurts are more easily 

smoothed by averaging. For the Tsimane pseudo-velocity curves estimate peak height 

velocities at 10.7 and 13.1. These early height velocities again suggest that Shuar and 

Tsimane may show similarities in growth patterns.

Application and need for population specific growth references

From a clinical standpoint, international growth standards are useful for assessing possible 

differences in health and nutritional status between populations (Eveleth and Tanner, 1990). 

However, for individual assessment a more interpretable comparison is sometimes how a 
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child’s growth compares to that of others in local communities. The danger of using such 

local references is that they may socially normalize growth that could be indicative of or 

associated with poor health or social outcomes (Messer, 1986). Thus, a primary goal of this 

paper has been to compare Tsimane specific references to WHO references, to help 

determine under which contexts each reference should be used. Our results suggest that 

Tsimane references are similar to WHO standards in terms of BMI-for-age and weight-for-

height (Figure 10). The primary difference is that Tsimane show more variation in these two 

measures of weight relative to height at younger ages. Since the Tsimane sample is not 

restricted to only children known to be healthy, as is the WHO sample, it would be 

reasonable to assume that this variation might represent early growth disturbances; i.e. by 

WHO standards, 12% of Tsimane under age 2 can be considered to have evidence of 

wasting, despite overall high population medians for WFH. This suggests that for the 

assessment of BMI and WFH as clinical indicators, at least at younger ages, WHO standards 

might be more appropriate.

Where Tsimane differ most from WHO references is in height, and as a consequence of 

height differences, in weight. These differences are consistent across all ages, and represent 

the entire population, as the entire distribution is shifted and there is little evidence of 

excessive skew. There is little doubt that Tsimane suffer from high burdens of infection and 

disease (Gurven, 2012; Blackwell et al., 2016). It is likely that this high pathogen burden 

contributes to the growth patterns we observe. Length/height growth, in particular, appears 

to be sensitive to infectious disease; inflammation is associated with poorer growth in infant 

length (Kosek et al., 2013; Prendergast et al., 2014), and in studies previously completed 

with the Shuar and Tsimane, higher levels of immune biomarkers are associated with poorer 

growth in children (McDade et al., 2008), and shorter height in adults (Blackwell et al., 

2010). It remains an open question exactly how genetics and environment interact to produce 

these outcomes. Genetic pleiotropies may affect both growth and immunity, leading to 

variation across individuals. Individual growth outcomes are also likely the result of reaction 

norms governing how growth and other life-history demands trade-off, by regulating relative 

investment into growth in response to environmental exposures (Mangel and Stamps, 2001; 

McDade et al., 2008; Blackwell et al., 2010). Similarities between Shuar and Tsimane 

suggest either similar reaction norms expressed in similar environments, or possibly less 

plastic shared genetic potentials.

With regard to growth references, then, one relevant question may be how much of Tsimane 

growth is determined by reaction norms, and might be expected to change if pathogen loads 

were lower or nutritional status improved. One way to approach this question is by 

examining the stability of Tsimane growth patterns over the study period of 13 years, during 

which time access to markets and health care has increased. Overall, secular trends during 

this period have been small, relative to the differences between WHO references and 

Tsimane values. We observe increases in height for both sexes approximately equivalent to 

an increase of 0.6 cm in adult height per decade. At this rate it would take ~200 years of 

constant increase for Tsimane median height to reach WHO median height. In contrast, 

women have gained ~1.4 kg per decade and men ~0.5 kg per decade, meaning weight has 

increased more rapidly. Similar changes have been reported for the Shuar (Blackwell et al., 
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2009; Urlacher et al., 2016b) and previously reported for the Tsimane with a retrospective 

sample born between 1920 and 1980 (Godoy et al., 2006).

These trends suggest that changes in pathogen load and nutrition are likely to have effects on 

Tsimane growth, but also that these changes may not be sufficient to make Tsimane growth 

look exactly like the growth patterns described by WHO references. Indeed, changes in 

weight largely represent increases in overweight and obesity, meaning that the current 

references which have been developed on the Tsimane during a period when overweight is 

rare may prove particularly useful for defining healthy weight in the future as overweight 

becomes more common. A similar outcome resulted in the CDC excluding more recent 

measures in the development of US growth references. In terms of height, references might 

be updated at some future date, but with current rates of secular change Tsimane are unlikely 

to reach heights equivalent to international references. For this reason, Tsimane specific 

height references might be useful in many contexts, in particular for comparisons between 

Tsimane children, such as in identifying the Tsimane children most at need and in assessing 

the causes of growth outcomes.

Growth as an adaptation

The idea that smaller stature might in some cases be “adaptive” remains controversial, 

despite decades of research and debate (Schell and Magnus, 2007). On the one hand, a 

clinical model might argue that any growth deficit relative to standards is evidence of 

suffering, and a failure of a child to “adapt” to disease. On the other, an adaptationist 

perspective might suggest that small stature can be adaptive due to reduced energy demands, 

improved thermoregulation, or faster maturation (Stinson, 1990; Walker et al., 2006; 

Migliano et al., 2007), or that overall smaller stature in Amazonians may represent an 

adaptation to high pathogen load, and the need to prioritize energy for immune defenses 

(Blackwell et al., 2016; Gurven et al., 2016b; Stieglitz et al., 2016; Urlacher et al., 2016a)

The failure of these two perspectives to reconcile may stem in part from different uses of the 

word “adaptive”. From a clinical perspective, the word “adapt” is used to suggest 

overcoming of hardship or deprivation, i.e. growing at full potential even in the face of 

hardship. This perspective rightly acknowledges that this is impossible or at least difficult. 

From this perspective, adaptiveness is assessed as a comparison between growing to full 

potential and not growing to full potential, and the conclusion is reached that growing to full 

potential is better.

However, in an evolutionary sense a trait can be adaptive even if it does not result in the 

ideal outcome. What is required is that a trait result in higher fitness relative to whatever the 

actual alternative is. In the case of resource deprivation, the alternative to growing to a 

shorter stature is to put as many resources as possible into growth, at the detriment of other 

processes such as immune function or reproduction. When such trade-offs must be made, the 

result is always going to be “making the best of a bad deal”, since the outcome will never be 

as ideal as having unlimited resources. Moreover, there is no guarantee that the adaptive 

response will not result in suffering or unhappiness, only that it will result in higher fitness 

compared to the alternative.
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At a fundamental level, growth can be viewed as the outcome of processes by which 

nutrients and energy are converted into cell divisions. Natural selection can act on at least 

two elements of these processes: 1) the rate at which cell divisions occur when energy is 

sufficient for all needs, and 2) the priority given to cell divisions in tissues such as bone and 

muscle relative to divisions or processes in other cells, when energy and other resources are 

limited. Note that this priority need not be static, but can be regulated dynamically in 

response to need, i.e. in the case of infection the division of short lived neutrophils might be 

critical for survival and so be given a higher priority than other cell divisions.

The first process can be thought of as what is frequently called the “genetic potential” for 

growth, though the concept of genetic potential is itself problematic, as it implies a ceiling to 

growth, and that reaching this ceiling means achieving full potential. This may not be the 

best way to think about growth, as growing larger than is optimal may also be possible, 

particularly in evolutionarily novel contexts of resource over-abundance. This is clear for 

weight growth, but might also be possible for height. The second set of processes are the 

physical processes underlying plasticity in growth and other traits, i.e. reaction norms.

In considering adaptation, researchers may be inexact in specifying the level at which a trait 

was selected for or is adaptive (Schell and Magnus, 2007). The factors which select for 

lower growth potential in a population may be different from those that select for changes in 

reaction norms determining individual plasticity. Thus, the tradition of treating height as the 

trait under selection, rather than the actual traits regulating growth, leads to confusion about 

what the selective forces are and exactly what they are acting upon.

Is small stature in Amazonians adaptive? We can ask this question in two ways. First, have 

there been sufficient costs associated with large size in Amazonians to select for lower 

potential height growth, even when resources are abundant? Small body size among African 

rainforest populations is influenced by multiple genes with evidence of selection, and has 

evolved multiple times (Perry and Verdu, 2016). The Americas have been inhabited for 

much less time and migrations into and out of rainforest environments may have been more 

frequent. Thus, there are reasons to both hypothesis that Amazonians will differ in genetic 

potentials for height, and to suspect that such differences might be less than is observed in 

some African populations. The good news is that even if we cannot answer this question 

with direct genetic evidence, a natural experiment is currently underway which will answer 

this question within a few decades; Tsimane and other Amazonian populations are rapidly 

market integrating and gaining access to market goods and health care (Blackwell et al., 

2009; Gurven et al., 2015; Urlacher et al., 2016b). While it may take a few generations to 

have a definitive answer, if Tsimane do differ genetically from other populations we should 

see relatively modest secular changes in height, regardless of economic development. 

Advances in genetic research may further tell us whether these differences are due to 

selection or more neutral processes like drift.

Second, are reductions in growth in response to resource shortages representative of adaptive 

reaction norms, or does reduced growth represent the failure of adaptations? First of all, both 

can be true. In the face of resource shortages organisms no doubt have mechanisms for first 

trying to make up shortages by becoming more efficient at energy usage or improving 
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resource acquisition. Moreover, individuals will vary in these capacities, making some 

individuals more resilient in the face of adversity than others. In a sense, it is when these 

mechanisms fail that reaction norms regulating trade-offs in the face of shortages must come 

into play. Showing that these mechanisms make ideal allocations or would have made ideal 

allocation under some past environmental conditions is difficult. However, showing that 

mechanisms exist which prioritize resources is trivial. If they did not exist then deprivation 

would affect all physiological systems equally, including the growth of the brain and other 

organs, and the maintenance of the immune system. This does not appear to be the case, as 

growth must be severely compromised before deficiencies in other systems, such as 

cognition, become apparent (Mendez and Adair, 1999).

All of this aside, questions about adaptation are secondary to the more pressing question of 

whether short stature in Amazonians is indicative of suffering and a need for public health 

intervention. Whether a trait is adaptive says nothing about whether it is desirable or good, 

to assume so is to commit the naturalistic fallacy. Are short Tsimane statures indicative of 

poor growth? Likely they are, however since they also likely indicate population differences, 

interpreting them as only indicative of poor growth is problematic. Further, analyses have 

suggested that shorter stature in Tsimane is not necessarily associated with reduced health or 

well-being (Godoy et al., 2010a), and that even with more subtle social outcomes, such as 

status, other traits such as strength are just as important as height (von Rueden et al., 2008, 

2014).

Tsimane specific growth curves are not informative with regard to how Tsimane health 

compares to the health of other populations. However, WHO standards and references are 

also likely imperfect for assessing the Tsimane, and likely to overestimate the prevalence of 

problematic poor growth, especially with regard to height. Thus, we would suggest that both 

measures should be used in combination, and interpreted carefully. An individual who is 

stunted on both measures is likely at much higher risk than one stunted by WHO references, 

but in the 50th percentile relative to other Tsimane. Moreover, height may not be the best 

indicator of nutritional status for Amazonians, as their relatively shorter stature may be 

partially due to genetic differences. Other indicators, like the prevalence of wasting in 

Tsimane children under age two are likely better measures. Even better, numerous other 

studies document the specific health and disease burdens Tsimane face.

Conclusion

The detailed growth references given here illustrate key differences between the Tsimane 

and the growth patterns outlined by international standards. Very few small-scale indigenous 

populations have been described at this level of detail, as most reports are limited to small, 

often cross-sectional samples. The growth references given here are provided in a variety of 

formats, including LMS files (S4-S7), centile tables (supplemental files S8–S15), and 

growth charts in English and Spanish (S16-S17). Our hope is that these references may be 

useful for both research and in the individual assessment of growth amongst the Tsimane 

and other South American populations.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank the Tsimane for their continued support and participation, and THLHP project personnel for their many 
years of hard work.

Funding: This work was supported by grants from the National Institutes of Health/National Institute on Aging 
[R01AG024119, R56AG024119, P01AG022500] and the National Science Foundation [BCS-0136274, 
BCS-0422690]. JS acknowledges support from the Agence Nationale de la Recherche (ANR) - Labex IAST.

References

Becker NSA, Verdu P, Froment A, Le Bomin S, Pagezy H, Bahuchet S, Heyer E. Indirect evidence for 
the genetic determination of short stature in African Pygmies. Am J Phys Anthropol. 2011; 
145:390–401. [PubMed: 21541921] 

Bert F, Corella A, Gene M, Perez-Perez A, Turbon D2015. Major Mitochondrial DNA Haplotype 
Heterogeneity in Highland and Lowland Amerindian Populations from Boliviav. 77:45–60.

Blackwell AD, Martin M, Kaplan H, Gurven M. Antagonism between two intestinal parasites in 
humans: the importance of co-infection for infection risk and recovery dynamics. Proc R Soc B. 
2013; 280:20131671.

Blackwell AD, Pryor G III, Pozo J, Tiwia W, Sugiyama LS, Pryor G. Growth and market integration in 
Amazonia: A comparison of growth indicators between Shuar, Shiwiar, and nonindigenous school 
children. Am J Hum Biol. 2009; 21:161–171. [PubMed: 18949770] 

Blackwell AD, Snodgrass JJ, Madimenos FC, Sugiyama LS. Life history, immune function, and 
intestinal helminths: Trade-offs among immunoglobulin E, C-reactive protein, and growth in an 
Amazonian population. Am J Hum Biol. 2010; 22:836–848. [PubMed: 20865759] 

Blackwell AD, Tamayo MA, Beheim B, Trumble BC, Stieglitz J, Hooper PL, Martin M, Kaplan H, 
Gurven M. Helminth infection, fecundity, and age of first pregnancy in women. Science. 2015; 
350:970–972. [PubMed: 26586763] 

Blackwell AD, Trumble BC, Maldonado Suarez I, Stieglitz J, Beheim B, Snodgrass JJ, Kaplan H, 
Gurven M. Immune function in Amazonian horticulturalists. Ann Hum Biol. 2016; 43:382–396. 
[PubMed: 27174705] 

Borghi E, de Onis M, Garza C, Van den Broeck J, Frongillo Ea, Grummer-Strawn L, Van Buuren S, 
Pan H, Molinari L, Martorell R, Onyango a W, Martines JC. Construction of the World Health 
Organization child growth standards: selection of methods for attained growth curves. Stat Med. 
2006; 25:247–265. [PubMed: 16143968] 

Cameron N, Gordonlarsen P, Wrchota EM. Longitudinal Analysis of Adolescent Growth in Height, 
Fatness, and Fat Patterning in Rural South-African Black-Children. Am J Phys Anthropol. 1994; 
93:307–321. [PubMed: 8042694] 

Clement CR, Denevan WM, Heckenberger MJ, Junqueira AB, Neves EG, Teixeira WG, Woods WI. 
The domestication of Amazonia before European conquest. Proc Biol Sci. 2015; 282:20150813. 
[PubMed: 26202998] 

Cole TJ, Donaldson MDC, Ben-shlomo Y. SITAR-a useful instrument for growth curve analysis. Int J 
Epidemiol. 2010; 39:1558–1566. [PubMed: 20647267] 

Cole TJ, Green PJ. Smoothing reference centile curves: the LMS method and penalized likelihood. Stat 
Med. 1992; 11:1305–1319. [PubMed: 1518992] 

Cole TJ, Pan H, Butler GE. A mixed effects model to estimate timing and intensity of pubertal growth 
from height and secondary sexual characteristics. Ann Hum Biol. 2014; 41:76–83. [PubMed: 
24313626] 

Corella A, Bert F, Pérez-Pérez A, Gené M, Turbón D. Mitochondrial DNA diversity of the Amerindian 
populations living in the Andean Piedmont of Bolivia: Chimane, Moseten, Aymara and Quechua. 
Ann Hum Biol. 2007; 34:34–55. [PubMed: 17536754] 

Blackwell et al. Page 16

Am J Phys Anthropol. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Draper, P., Howell, N. The Growth and Kinship Resources of Ju/’hoansi Children. In: Hewlett, BS., 
Lamb, ME., editors. Hunter-gatherer childhoods: evolutionary, developmental, & cultural 
perspectives. New Brunswick, NJ: Aldine Transaction; 2005. p. 262-282.

Eveleth, PB., Tanner, JM. Worldwide Variation in Human Growth, Second Edition. 2nd. New York, 
NY: Cambridge University Press; 1990. 

Foster Z, Byron E, Reyes-García V, Huanca T, Vadez V, Apaza L, Pérez E, Tanner S, Gutierrez Y, 
Sandstrom B, Yakhedts A, Osborn C, Godoy RA, Leonard WR. Physical growth and nutritional 
status of Tsimane’ Amerindian children of lowland Bolivia. Am J Phys Anthropol. 2005; 126:343–
351. [PubMed: 15386291] 

Godoy RA, Leonard WR, Reyes-García V, Goodman E, McDade T, Huanca T, Tanner S, Vadez V. 
Physical stature of adult Tsimane’ Amerindians, Bolivian Amazon in the 20th century. Econ Hum 
Biol. 2006; 4:184–205. [PubMed: 16359936] 

Godoy R, Nyberg C, Eisenberg DTa, Magvanjav O, Shinnar E, Leonard WR, Gravlee C, Reyes-García 
V, McDade TW, Huanca T, Tanner S. Short but catching up: statural growth among native 
Amazonian Bolivian children. Am J Hum Biol. 2010; 22:336–347. [PubMed: 19844899] 

Guedes DP, De Matos JAB, Lopes VP, Ferreirinha JE, Silva AJ. Physical growth of schoolchildren 
from the Jequitinhonha Valley, Minas Gerais, Brazil: Comparison with the CDC-2000 reference 
using the LMS method. Ann Hum Biol. 2010; 37:574–584. [PubMed: 20113180] 

Gurven M. Infant and fetal mortality among a high fertility and mortality population in the Bolivian 
Amazon. Soc Sci Med. 2012; 75:2493–2502. [PubMed: 23092724] 

Gurven M, Kaplan H, Stieglitz J, Trumble B, Blackwell AD, Beheim B, Hooper P. The Tsimane 
Health and Life History Project: Integrating anthropology and biomedicine. Evol Anthropol is 
submiss. 2016a

Gurven M, Kaplan H, Supa AZ. Mortality experience of Tsimane Amerindians of Bolivia: regional 
variation and temporal trends. Am J Hum Biol. 2007; 19:376–398. [PubMed: 17421012] 

Gurven M, von Rueden C, Stieglitz J, Kaplan H, Rodriguez DE. The evolutionary fitness of personality 
traits in a small-scale subsistence society. Evol Hum Behav. 2014; 35:17–25.

Gurven M, Stieglitz J, Hooper PL, Gomes C, Kaplan H. From the womb to the tomb: the role of 
transfers in shaping the evolved human life history. Exp Gerontol. 2012; 47:807–813. [PubMed: 
22595699] 

Gurven MD, Jaeggi AV, von Rueden C, Hooper PL, Kaplan H. Does Market Integration Buffer Risk, 
Erode Traditional Sharing Practices and Increase Inequality? A Test among Bolivian Forager-
Farmers. Hum Ecol. 2015

Gurven MD, Trumble BC, Stieglitz J, Yetish G, Cummings D, Blackwell AD, Beheim B, Kaplan HS, 
Pontzer H. High resting metabolic rate among Amazonian forager-horticulturalists experiencing 
high pathogen burden. Am J Phys Anthropol. 2016b

Hadley C, Hruschka DJ. Population level differences in adult body mass emerge in infancy and early 
childhood: Evidence from a global sample of low and lower-income countries. Am J Phys 
Anthropol. 2014; 154:232–238. [PubMed: 24549649] 

Hakeem R, Shaikh AH, Asar F. Assessment of linear growth of affluent urban Pakistani adolescents 
according to CDC 2000 references. Ann Hum Biol. 2004; 31:282–291. [PubMed: 15204345] 

Harner, MJ. The Jívaro, people of the sacred waterfalls. Berkeley: University of California Press; 1984. 

Hasan MA, Batieha A, Jadou H, Khawaldeh AK, Ajlouni K. Growth status of Jordanian 
schoolchildren in military-funded schools. Eur J Clin Nutr. 2001; 55:380–386. [PubMed: 
11378812] 

Healy MJR, Rasbash J, Yang M. Distribution-free estimation of age-related centiles. Ann Hum Biol. 
1988; 15:17–22. [PubMed: 3348588] 

Henn BM, Gignoux CR, Jobin M, Granka JM, Macpherson JM, Kidd JM, Rodríguez-Botigué L, 
Ramachandran S, Hon L, Brisbin A, Lin AA, Underhill PA, Comas D, Kidd KK, Norman PJ, 
Parham P, Bustamante CD, Mountain JL, Feldman MW. Hunter-gatherer genomic diversity 
suggests a southern African origin for modern humans. Proc Natl Acad Sci U S A. 2011; 
108:5154–5162. [PubMed: 21383195] 

Hill, K. Hurtado AMBT-F of human behavior. Aché life history: the ecology and demography of a 
foraging people. New York: Aldine de Gruyter; 1996. 

Blackwell et al. Page 17

Am J Phys Anthropol. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Indrayan A. Demystifying LMS and BCPE methods of centile estimation for growth and other health 
parameters. Indian Pediatr. 2014; 51:37–43. [PubMed: 24561465] 

Iuliano-Burns S, Mirwald RL, Bailey DA. Timing and magnitude of peak height velocity and peak 
tissue velocities for early, average, and late maturing boys and girls. Am J Hum Biol. 2001; 13:1–
8. [PubMed: 11466961] 

Johnson L, Llewellyn CH, van Jaarsveld CHM, Cole TJ, Wardle J. Genetic and environmental 
influences on infant growth: Prospective analysis of the gemini twin birth cohort. PLoS One. 2011; 
6:1–6.

Karafet TM, Osipova LP, Gubina MA, Posukh OL, Zegura SL, Hammer MF. High Levels of Y-
Chromosome Differentiation among Native Siberian Populations and the Genetic Signature of a 
Boreal Hunter-Gatherer Way of Life. Hum Biol. 2002; 74:761–789. [PubMed: 12617488] 

Karsten R. The Head-Hunters of Western Amazonas: The Life and Culture of the Jibaro Indians of 
Eastern Ecuador and Peru. Helsingfors: Societas scientiarum fennica. 1935

Kosek M, Haque R, Lima A, Babji S, Shrestha S, Qureshi S, Amidou S, Mduma E, Lee G, Yori PP, 
Guerrant RL, Bhutta Z, Mason C, Kang G, Kabir M, Amour C, Bessong P, Turab A, Seidman J, 
Olortegui MP, Quetz J, Lang D, Gratz J, Miller M, Gottlieb M. Fecal markers of intestinal 
inflammation and permeability associated with the subsequent acquisition of linear growth deficits 
in infants. Am J Trop Med Hyg. 2013; 88:390–396. [PubMed: 23185075] 

Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, Wei R, Curtin LR, 
Roche AF, Johnson CL. 2000 CDC Growth Charts for the United States: methods and 
development. Vital Health Stat. 2002; 11:1–190.

Lunde A, Melve KK, Gjessing HK, Skjaerven R, Irgens LM. Genetic and Environmental Influences on 
Birth Weight, Birth Length, Head Circumference, and Gestational Age by Use of Population-based 
Parent-Offspring Data. Am J Epidemiol. 2007; 165:734–741. [PubMed: 17311798] 

Mangel M, Stamps J. Trade-offs between growth and mortality and the maintenance of individual 
variation in growth. Evol Ecol Res. 2001:583–593.

Martin M. Optimal exclusive breastfeeding duration: Evidence of conflict and congruence in tsimane 
mother-infant pairs. 2015

Martin MA, Lassek WD, Gaulin SJC, Evans RW, Woo JG, Geraghty SR, Davidson BS, Morrow AL, 
Kaplan HS, Gurven MD. Fatty acid composition in the mature milk of Bolivian forager-
horticulturalists: controlled comparisons with a US sample. Matern Child Nutr. 2012; 8:404–418. 
[PubMed: 22624983] 

Martin, M., Blackwell, AD., Gurven, M., Kaplan, H. Make New Friends and Keep the Old? Parasite 
Coinfection and Comorbidity in Homo sapiens. In: Brinkworth, J., Pechenkina, K., editors. 
Primates, Pathogens, and Evolution. New York: Springer; 2013. p. 363-387.

McAllister L, Gurven M, Kaplan H, Stieglitz J. Why do women have more children than they want? 
Understanding differences in women’s ideal and actual family size in a natural fertility population. 
Am J Hum Biol. 2012; 24:786–799. [PubMed: 22987773] 

McDade TW, Reyes-Garcia V, Tanner S, Huanca T, Leonard WR. Maintenance versus growth: 
Investigating the costs of immune activation among children in lowland Bolivia. Am J Phys 
Anthropol. 2008; 136:478–484. [PubMed: 18383156] 

Mendez, Ma, Adair, LS. Severity and timing of stunting in the first two years of life affect performance 
on cognitive tests in late childhood. J Nutr. 1999; 129:1555–1562. [PubMed: 10419990] 

Messer E. The “Small but Healthy” Hypothesis: Historical, Political, and Ecological Influences on 
Nutritional Standards. Hum Ecol. 1986; 14:57–75.

Migliano AB, Vinicius L, Lahr MM. Life history trade-offs explain the evolution of human pygmies. 
Proc Natl Acad Sci. 2007; 104:20216–20219. [PubMed: 18077366] 

Mushtaq MU, Gull S, Mushtaq K, Abdullah HM, Khurshid U, Shahid U, Shad MA, Akram J. Height, 
weight and BMI percentiles and nutritional status relative to the international growth references 
among Pakistani school-aged children. BMC Pediatr. 2012; 12:31. [PubMed: 22429910] 

Neyzi O, Furman A, Bundak R, Gunoz H, Darendeliler F, Bas F. Growth references for Turkish 
children aged 6 to 18 years. Acta Paediatr. 2006; 95:1635–1641. [PubMed: 17129974] 

de Onis M, Garza C, Onyango A, Borghi E. Comparison of the WHO child growth standards and the 
CDC 2000 growth charts. J Nutr. 2007a:144–148. [PubMed: 17182816] 

Blackwell et al. Page 18

Am J Phys Anthropol. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



de Onis M, Onyango a W. The Centers for Disease Control and Prevention 2000 growth charts and the 
growth of breastfed infants. Acta Paediatr. 2003; 92:413–419. [PubMed: 12801105] 

de Onis M, Onyango A, Borghi E, Siyam A, Nishida C, Siekman J. Development of a WHO growth 
reference for school-aged children and adolescents. Bull World Health Organ. 2007b; 85:660–667. 
[PubMed: 18026621] 

Orr CM, Dufour DL, Patton JQ. A comparison of anthropometric indices of nutritional status in 
Tukanoan and Achuar Amerindians. Am J Hum Biol. 2001; 13:301–309. [PubMed: 11460895] 

Perry GH, Verdu P. Genomic perspectives on the history and evolutionary ecology of tropical 
rainforest occupation by humans. Quat Int. 2016

Piperata, Ba, Spence, JE., Da-Gloria, P., Hubbe, M. The nutrition transition in Amazonia: Rapid 
economic change and its impact on growth and development in Ribeirinhos. Am J Phys Anthropol. 
2011:0.

Prendergast AJ, Rukobo S, Chasekwa B, Mutasa K, Ntozini R, Mbuya MNN, Jones A, Moulton LH, 
Stoltzfus RJ, Humphrey JH. Stunting is characterized by chronic inflammation in zimbabwean 
infants. PLoS One. 2014:9.

Prentice A, Dibba B, Sawo Y, Cole TJ. The effect of prepubertal calcium carbonate supplementation 
on the age of peak height velocity in Gambian adolescents. Am J Clin Nutr. 2012; 96:1042–1050. 
[PubMed: 22990031] 

Reyes-García V, McDade TW, Molina JL, Leonard WR, Tanner SN, Huanca T, Godoy R. Social rank 
and adult male nutritional status: Evidence of the social gradient in health from a foraging-farming 
society. Soc Sci Med. 2008; 67:2107–2115. [PubMed: 18945532] 

Rigby RA, Stasinopoulos DM. Generalized additive models for location, scale and shape. J R Stat Soc 
Ser C (Applied Stat. 2005; 54:507–554.

Rozzi FVR, Koudou Y, Froment A, Le Bouc Y, Botton J. Growth pattern from birth to adulthood in 
African pygmies of known age. Nat Commun. 2015; 6:7672. [PubMed: 26218408] 

von Rueden C, Gurven M, Kaplan H. The multiple dimensions of male social status in an Amazonian 
society. Evol Hum Behav. 2008; 29:402–415. [PubMed: 19884954] 

von Rueden C, Gurven M, Kaplan H, Stieglitz J. Leadership in an Egalitarian Society. Hum Nat. 2014; 
25:538–566. [PubMed: 25240393] 

Sakel J. Mosetén and Chimane Argument Coding: A Layered System 1. Int J Am Linguist. 2011; 
77:537–557.

Schell LM, Magnus PD. Is there an elephant in the room? Addressing rival approaches to the 
interpretation of growth perturbations and small size. Am J Hum Biol. 2007; 19:606–614. 
[PubMed: 17636533] 

Stieglitz J, Beheim BA, Trumble BC, Madimenos FC, Kaplan H, Gurven M. Low mineral density of a 
weight-bearing bone among adult women in a high fertility population. Am J Phys Anthropol. 
2015; 156:637–648. [PubMed: 25488367] 

Stieglitz J, Madimenos F, Kaplan H, Gurven M. Calcaneal quantitative ultrasound indicates reduced 
bone status among physically active adult forager-horticulturalists. J Bone Miner Res. 2016; 
31:663–671. [PubMed: 26460548] 

Stinson S. Physical growth of Ecuadorian Chachi Amerindians. Am J Hum Biol. 1989; 1:697–707.

Stinson S. Variation in body size and shape among South American Indians. Am J Hum Biol. 1990; 
2:37–51.

Tanner JM, Whitehouse RH, Takaishi M. Standards from birth to maturity for height, weight, height 
velocity, and weight velocity: British children, 1965. I. Arch Dis Child. 1966; 41:454–471. 
[PubMed: 5957718] 

Ulijaszek SJ. Between-population variation in pre-adolescent growth. Eur J Clin Nutr. 1994; 48(Suppl 
1):S5-13-4. [PubMed: 8005091] 

Urlacher SS, Blackwell AD, Liebert MA, Madimenos FC, Cepon-Robins TJ, Gildner TE, Snodgrass 
JJ, Sugiyama LS. Physical growth of the shuar: Height, Weight, and BMI references for an 
indigenous amazonian population. Am J Hum Biol. 2016a; 28:16–30. [PubMed: 26126793] 

Urlacher SS, Liebert MA, Josh Snodgrass J, Blackwell AD, Cepon-Robins TJ, Gildner TE, 
Madimenos FC, Amir D, Bribiescas RG, Sugiyama LS. Heterogeneous effects of market 

Blackwell et al. Page 19

Am J Phys Anthropol. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



integration on sub-adult body size and nutritional status among the Shuar of Amazonian Ecuador. 
Ann Hum Biol. 2016b; 43:316–329. [PubMed: 27230632] 

Veile A, Martin M, McAllister L, Gurven M. Modernization is associated with intensive breastfeeding 
patterns in the Bolivian Amazon. Soc Sci Med. 2014; 100:148–158. [PubMed: 24444850] 

Veile A, Winking J, Gurven M, Greaves RD, Kramer KL. Infant growth and the thymus: data from two 
South American native societies. Am J Hum Biol. 2012; 24:768–775. [PubMed: 22915311] 

Victora CG. The association between wasting and stunting: an international perspective. J Nutr. 1992; 
122:1105–1110. [PubMed: 1564562] 

Walker R, Gurven M, Hill K, Migliano H, Chagnon N, De Souza R, Djurovic G, Hames R, Hurtado 
AM, Kaplan H, Kramer K, Oliver WJ, Valeggia C, Yamauchi T. Growth rates and life histories in 
twenty-two small-scale societies. Am J Hum Biol. 2006; 18:295–311. [PubMed: 16634027] 

Wang S, Lewis CM, Jakobsson M, Ramachandran S, Ray N, Bedoya G, Rojas W, Parra MV, Molina 
JA, Gallo C, Mazzotti G, Poletti G, Hill K, Hurtado AM, Labuda D, Klitz W, Barrantes R, 
Bortolini MC, Salzano FM, Petzl-Erler ML, Tsuneto LT, Llop E, Rothhammer F, Excoffier L, 
Feldman MW, Rosenberg NA, Ruiz-Linares A. Genetic variation and population structure in 
Native Americans. PLoS Genet. 2007; 3:2049–2067.

World Health Organization. New Child Growth Standards: Length/height-for-age, weight-for-age, 
weight-for-length, weight-for-height and body mass index-for-age: Methods and development. 
Geneva: World Health Organization; 2006. 

World Health Organization. WHO child growth standards: growth velocity based on weight, length and 
head circumference: methods and development. 2009. 

Blackwell et al. Page 20

Am J Phys Anthropol. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Centile curves for Tsimane height, weight, and BMI from age 0 to 25 years. Solid black 

lines = 50th centile; Dashed slate blue lines = 25th and 75th centiles; Dotted brown lines = 

5th and 95th centiles. Complete centile values and accompanying LMS parameters are 

provided in online Supplemental Files S4–S6 and S8–S13.
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Figure 2. 
Centile curves for Tsimane weight-for-height from age 0 to 25 years. Solid black lines = 

50th centile; Dashed slate blue lines = 25th and 75th centiles; Dotted brown lines = 5th and 

95th centiles. Complete centile values and accompanying LMS parameters are provided in 

online Supplemental Files S7 and S14–S15.
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Figure 3. 
Tsimane LMS parameters in the first two years of life, relative to WHO standards. Lines 

indicate parameter values for Tsimane (solid, brown) and WHO (dashed, slate blue). 

Shading on median graphs indicates the range between the 5th and 95th percentiles. µ = 

median parameter, i.e. the 50th percentile. σ = sigma parameter, indicative of variation in the 

distribution. λ = lambda parameter, indicative of skew in the distribution; values >1 indicate 

negative skew and < 1 indicate positive skew.
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Figure 4. 
Tsimane LMS parameters from 2 to 25 years of age, relative to WHO standards (under age 

5) and WHO references (over age 5). CDC references are used for weight-for-age over age 

10, since the WHO does not provide weight-for-height references for these ages. Lines 

indicate parameter values for Tsimane (solid, brown), WHO (dashed, slate blue), and CDC 

(solid, slate blue),. Shading on median graphs indicates the range between the 5th and 95th 

percentiles. µ = median parameter, i.e. the 50th percentile. σ = sigma parameter, indicative of 
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variation in the distribution. λ = lambda parameter, indicative of skew in the distribution; 

values >1 indicate negative skew and < 1 indicate positive skew.
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Figure 5. 
Tsimane LMS parameters for weight-for-height relative to WHO standards. Lines indicate 

parameter values for Tsimane (solid, brown) and WHO (dashed, slate blue). Shading on 

median graphs indicates the range between the 5th and 95th percentiles. µ = median 

parameter, i.e. the 50th percentile. σ = sigma parameter, indicative of variation in the 

distribution. λ = lambda parameter, indicative of skew in the distribution; values >1 indicate 

negative skew and < 1 indicate positive skew.
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Figure 6. 
Tsimane velocity curves for the first 2.5 years of life. Tsimane curves derived from cross-

sectional GAMLSS (brown) and SITAR (scatter points, slate blue line) analyses are shown, 

relative to WHO curves derived from the median of the cross-sectional (dashed black line) 

or longitudinal velocity standards (solid black line). Shading shows the 5th to 95th 

percentiles for the WHO growth velocity standards.
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Figure 7. 
Tsimane velocity curves 2 to 25 years of age. Tsimane curves derived from cross-sectional 

GAMLSS (orange) and SITAR (scatter points, olive line) analyses are shown, relative to 

WHO (solid black line) standards (under age 5) and references (over age 5) and CDC 

references (dashed black line).
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Figure 8. 
Comparison of Tsimane and Shuar (Urlacher et al., 2016) growth references. Left, overlay of 

Shuar (black solid line, grey shading), Tsimane (dotted black line, tan shading), and WHO 

standards/references (dashed blue line, blue shading) or CDC references for weight over age 

10 (solid line, blue shading). Middle, comparison of Shuar (solid black), Tsimane (solid 

tan), and WHO (dashed blue) or CDC (solid blue, weight only) pseudo-velocity curves. 

Right, comparison of Z-scores obtained for Tsimane using WHO standards/references 

(TvW), Tsimane using Shuar references (TvS) and Shuar using Tsimane references (SvT) at 
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the values corresponding to −2 (blue), 0 (orange), or +2 (yellow) Z-scores on the original 

reference. Bars within each grouping represent age groups of 0–2, 2–5, 5–10, 10–15, and 

15–20 years in increasing order. Note TvW for weight over age 10 also uses CDC references 

instead of WHO standards/references.
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Figure 9. 
WHO (slate blue) or Shuar (tan) centile or z-score values for equivalent Tsimane values for 

height or weight. Lines, from thinnest to thickest, represent values at 1, 2, 5, 10, and 20 

years of age, respectively. For weight over age 10, CDC references are used instead of 

WHO.

Blackwell et al. Page 31

Am J Phys Anthropol. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
WHO (slate blue) or Shuar (tan) centile or z-score values for equivalent Tsimane values for 

height or weight. For BMI, lines, from thinnest to thickest, represent values at 1, 2, 5, 10, 

and 20 years of age, respectively. For WFH, lines represent 60, 80, 100, and 120 cm, 

respectively.
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