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Abstract

Background: Small RNAs are important regulators of genome function, yet their prediction in genomes is still a
major computational challenge. Statistical analyses of pre-miRNA sequences indicated that their 2D structure tends
to have a minimal free energy (MFE) significantly lower than MFE values of equivalently randomized sequences with
the same nucleotide composition, in contrast to other classes of non-coding RNA. The computation of many MFEs
is, however, too intensive to allow for genome-wide screenings.

Results: Using a local grid infrastructure, MFE distributions of random sequences were pre-calculated on a large
scale. These distributions follow a normal distribution and can be used to determine the MFE distribution for any
given sequence composition by interpolation. It allows on-the-fly calculation of the normal distribution for any
candidate sequence composition.

Conclusion: The speedup achieved makes genome-wide screening with this characteristic of a pre-miRNA
sequence practical. Although this particular property alone will not be able to distinguish miRNAs from other
sequences sufficiently discriminative, the MFE-based P-value should be added to the parameters of choice to be
included in the selection of potential miRNA candidates for experimental verification.
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Background
Small RNAs are important molecules in the regulation
of gene expression. Several classes of distinct small RNA
molecules play vital roles in development, health and
disease, as well as in many other biological pathways
[1-4]. A particular class of regulatory small RNAs are
the microRNA (miRNA) molecules. A miRNA is a ~20-23
nucleotide (nt) short, non-protein coding RNA. Together
with several protein components, miRNAs reduce the
amount of a target mRNA by physical interaction to not-
ably the 3′-untranslated region (3′-UTR) of the mRNA,
resulting in either degradation of that mRNA, or arrest of
translation [4-6]. In rare cases, miRNAs can also upregu-
late expression [4,7]. Well over 25 thousand miRNAs
(miRBase Release 19; August 2012 [8]) have now been
identified in many different species [9,10].
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The overall biogenesis of miRNAs is well established
[4,11], although details are still being discovered. In all
cases except for intronic miRNAs [12], the miRNA is
synthesized as a longer primary transcript known as
primary miRNA (pri-miRNA), that is processed in the
nucleus by the RNAse Drosha in animals and Dicer-like 1
in plants, to generate a precursor miRNA (pre-miRNA)
of about 80–100 nt in animals, 60–300 nt in plants or
60–120 nt in (animal) viruses. The pre-miRNA sequence
has degenerated palindromic sequence with the character-
istic secondary structure of a stem-loop hairpin. The final
verdict on the total number of miRNAs in a given genome
is not out yet. The total count in Release 19 of miRBase is
25,141 for all organisms and many more miRNAs are de-
scribed in the primary literature. Whereas the search for
miRNAs in model genomes such as human or Arabidopsis
will approach saturation, identification of the full miRNA
complement in other genomes is still a challenge.
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As mature miRNAs are only ~22 nt in length,
straight-forward alignment-based heuristic methods such
as BLAST are less suitable for identifying miRNAs and
their targets in a given genome or transcriptome [5,13].
The identification of miRNAs and their targets is therefore
a challenge for computational pattern recognition [11,14].
Computational methods for miRNA identification focus
on the typical extended stem-loop hairpin structure of the
pre-miRNA, which is characterized by helical base pairing
with a few internal bulges in the stem. To identify the
stem-loop miRNA precursor structure from a given se-
quence, RNA folding programs are used, such as mfold
[15], its update UNAfold [16], or RNAfold (also known
as the Vienna package [17,18], to establish the minimal
free energy (MFE) of the stem-loop structure.
Increasingly sophisticated computational approaches

have been proposed for the identification of pre-miRNAs,
the mature miRNA sequence and its presumed target(s)
[19-21], many of which are available online [22]. Many ap-
proaches are based on supposed or derived characteristics
of miRNA sequences or combinations thereof [23-26].
Although all miRNAs are thought to have such properties
in common, not a single property individually seems able
to distinguish miRNAs sufficiently accurately from other
RNA molecules with sufficient accuracy [27]. Several
approaches therefore include evolutionary conservation
of miRNA sequences between different species [1,28].
In these evolution-based strategies, species-specific and
non -or less- conserved pre-miRNA molecules are likely
to escape identification. Overall, methods available tend
to show relatively high rates of false positives [22] and
are possibly hampered by the use of inappropriate controls
[29]. They generally result in lists too long to be feasible
for experimental validation.
We here revisit a selective criterion proposed earlier,

but largely unexplored because of computational costs.
Statistical analyses of pre-miRNA hairpins indicated that
such hairpins tend to have MFE values which are signifi-
cantly lower than the MFE values based on randomized
sequences with the same length and nucleotide compos-
ition, in contrast to other classes of RNA, such as transfer
RNA, ribosomal RNA and messenger RNA [30-32]. In
MFE analysis, the sequence composition of each candidate
sequence is randomized and the MFE value based on the
candidate is compared to the MFE distribution based
on the randomized sequences. These data are used to
calculate the probability that the MFE of the candidate
is sufficiently small compared to randomized sequences
[30]. This probability is here coined the empirical P-value
(PE). This PE establishes a useful discriminating criterion
for pre-miRNA identification. It is implemented in the
MiPred prediction tool [33], that helps to decide for a sin-
gle sequence whether it is a pre-miRNA hairpin. However,
the computation of large numbers of MFE values per
candidate sequence to be able to calculate PE is compu-
tationally demanding, which precludes application to
genome-wide analyses. Solutions proposed in the litera-
ture are a probabilistic implementation of the MFE
computation [34] or asymptotic Z-scores of the MFE
distribution based on precomputed tables [35]. We here
present a novel approach that requires the computation
of only the MFE based on the candidate sequence. This
approach enables the routine evaluation of potential
miRNA structures on a genome-wide scale that could
be integrated as part of an existing approach for pro-
cessing potential miRNA sequences [20,36].

Methods
Data
The miRNA data set was downloaded from the miRbase
repository [8-10] (releases 9.2 and 15), consisting of
4,584 and 15,172 pre-miRNA sequences respectively. The
genomic sequence of the Epstein Barr virus type 1 [37]
was downloaded from Genbank NCBI [gi|82503188|ref|
NC_007605.1]. The test set with 250,000 random se-
quences was generated with a small C program.

Hardware
Computations were performed on a 200 + −node Debian
Linux-based network. A dedicated server is running
Network File System (NFS)-based software for file man-
agement and Condor software ([38]; version 7.6.1) for grid
management [39].

RNA folding software
The minimal free energy of a sequence was computed with
a local implementation of the Hybrid software (version 2.5)
of the UNAFold software package [16,40]. UNAFold
extends and replaces the earlier mfold application [15].
The software was adjusted to enhance the performance
about three-fold by optimizing computation-intensive
computational steps without changing the underlying
algorithm. All RNA molecules were folded as single
strands at 30°C, a sodium concentration of 1.0 M and
the option –E (energy only, no plots). In case of se-
quences that are not able to fold properly, the Hybrid
software assigns an MFE of +∞.

Randomization and visualization
Distribution fitting, P-values and other statistics were
computed with the software suite R (version 2.7.1.) [41].
To randomize sequences while maintaining the nucleotide
composition, the Fisher-Yates shuffling procedure for se-
lection without replacement was implemented in C, with
appropriate unbiased randomization [42]. For any candi-
date sequence, the empirical P-value PE was computed as
PE = X/(N + 1) [30], where X is the number of sequences
with an MFE lower than or equal to the MFE based on
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the candidate sequence and N is the number of random-
ized sequences considered. In this study, N is taken as
1,000, in correspondence with an earlier study [30]. As a
consequence, the lower bound of PE is zero (for X = 0) and
the next lowest value is 0.000999 (for X = 1). There are no
additional assumptions necessary with respect to the
shape of the distribution of the MFE values [30]. The com-
puted MFE values based on the randomized sequences
were transformed into a normal (Gaussian) distribution
defined by the mean and standard deviation of the MFE
values. The normal distribution-derived PN of the MFE
based on the given candidate sequence is being com-
puted using the mean and standard deviation of that
distribution. Results were visualized with R and MatLab
(release 13).

Multidimensional interpolation
A database of entry RNA sequences, with a length of 50 to
300 nt and a step size of 5 nt, was generated by computer.
This range covers the length of most known pre-miRNAs,
except for some plant miRNAs [43]. For each sequence
length, the nucleotide composition of the sequence was
varied in such a way that each of the four nucleotides oc-
curs at least once (for sequences < 100 nt) or at least at 1%
(for sequences > 100 nt). Per sequence length, individual
sequences were generated with a step size for an individ-
ual nucleotide of 2%, except in the range from 20-70% for
an individual nucleotide where a step size of 1% was used.
The procedure in numbers is as follows: for a population
of sequences with a length of 50nt, the first nucleotide
composition consists of 1% A, 1% U, 1% C and 97% G. In
the next step the composition is 2% A, 1% U, 1% C and
96% G and so on. Then the length is increased to 55 nt
and the procedure is repeated for the nucleotide compos-
ition, etc. This procedure generated a set of 1.4 × 106 entry
sequences. For each of the individual entry sequences, a
sequence set of thousand randomized shuffles was gener-
ated by Fisher-Yates randomization [42]. This procedure
represents a selection without replacement, therefore
maintains the nucleotide composition (mononucleotide
shuffling). Sequence sets in which one or more shuffled
sequences had an MFE of +∞ were discarded and only the
sequence sets with 1,000 MFE values were considered to
maintain statistical validity. This way, a total of 1.05 × 106

sequence sets were generated. For each population, the
mean MFE and standard deviation were computed and
stored in a MySQL database together with the sequence
composition in absolute nucleotide counts. To calculate
the mean and standard deviation for any candidate se-
quence, an interpolation algorithm was implemented in
C++ using sparse matrix data management for optimal
memory use [44]. A sparse matrix contains only the
values of interest and all zero or unknown values are
not stored. The resulting data structure contains only
the nucleotide composition analysed and not all possible
compositions, therefore the data can be stored in memory
and searched efficiently. The Hybrid software used for
RNA folding [16] was integrated within this application to
enhance performance.

Sliding window analysis
To analyse whole genomes for the presence of potential
pre-miRNA candidates using the pre-computed MFE
data outlined above, a sliding window approach was im-
plemented in C++. The smallest window length was set at
50 nt, incremented with a step size of 10 nt to a maximum
of 300 nt. For each window length, the step size for sliding
was set at 10% of the window length. For each window,
the MFE was computed and the nucleotide composition
of the sequence was determined. Based on the sequence
composition, the appropriate mean and standard deviation
were estimated by interpolation (see Results) using the
data search space generated. The normal distribution
function was used to calculate PN of the MFE of the
window.

Results and discussion
In the identification of potential pre-miRNA candidates
in genomic sequences, the MFE based on the sequence
relative to the distribution of random sequences with
the same nucleotide composition is a potentially valuable
criterion. However, the estimation of the empirical PE
as parameter for the distance between the MFE based
on a candidate sequence and the MFEs of randomized
sequences is computationally intensive. It requires the
computation of the MFE for all randomized sequences.
To use the MFE distribution as criterion more comfort-
ably, computations should be considerably faster. We here
show the feasibility of the use of the normal distribution
for the computation of PN as approximation of PE and for
the interpolation of the distribution for any given se-
quence with the help of pre-computed MFE distributions
of random sequences.

Pre-computed MFE distributions of random sequences
A total of 1.4 × 106 entry sequences covering the length
classes representative for most known pre-miRNA
(50 – 300 nt), were generated. Each entry sequence was
shuffled 1,000 times and based on each of the generated
sequences the MFE was calculated giving a total of
1,053,248 populations, each consisting of 1,000 random
sequences. In 346,752 generated populations one or more
random sequence could not fold properly. When the
hybrid software is not able to give a stable structure, the
random sequence is considered not to fold properly and is
therefore not included because it skews the data. For a sin-
gle sequence on a standard desktop PC, the MFE compu-
tation by the Hybrid software requires approximately
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0.2 sec CPU time. The 1.4 × 106 × 1,000 computations
would therefore have taken about 8.8 CPU years on a
standard PC. Using idle CPU cycles on our grid, it took
about 2 months grid time to complete all computa-
tions. All MFE values were computed for an annealing
temperature of 30°C, but as MFE values and distributions
change in a linear way with temperature (results not
shown), the approach presented and data generated are, if
so desired, suitable for, or comparable with, other folding
temperatures.
Randomized sequence sets can reasonably be consid-

ered to reflect a normal distribution. The examples for sets
with 25% nucleotide composition are shown in Figure 1.
Other compositions give similar results (data not shown).
Such a normal distribution was demonstrated earlier for
randomized sequences [45], although the distribution may
not be an exact Gaussian distribution [34]. The MFE data
of random sequences are therefore suitable for deriving
the normal estimate PN of PE, based on mean, standard
deviation and the normal distribution function. This way,
PN is equivalent to the Z-score of the MFE, defined as the
number of standard deviations by which the MFE based
on a candidate sequence deviates from the mean MFE of
the set of shuffled sequences [31,45].
Figure 1 Distribution of PE and PN of sequences of different
lengths. For a candidate sequence with the given length in
nucleotides n (50 to 160) and a composition of 25% of each
nucleotide (AUGC), the MFE of 1000 randomized sequences was
calculated. The distribution was computed and plotted (green) using
the distribution density function in R. The average mean and
standard deviation of the resulting MFE sequence set was used to
define the normal distribution function (red). The good
correspondence between the two distributions shows that the
normal distribution-based probability PN is a good approximation for
the empirical probability PE.
For each sequence set, the mean and standard deviation
was stored in a database together with the sequence com-
position. An example of the distribution of the mean MFE
value of all sequence sets of 100 nt in length with different
sequence compositions is shown in Figure 2. The 3D con-
tour plot shows that the sets of sequences with high per-
centages of C and G nucleotides have low mean MFE
values, which reflects the higher energy in C-G pairing.
RNA molecules with an abundance of for example A and
G are much less likely to form a stable structure and the
set of 1,000 random sequences will therefore have a high
mean MFE. The plot shows that the mean MFE values
decrease in an almost linear fashion from the low values
for sequences with high C and G compositions to the
outer edges.

Multidimensional interpolation for candidate sequences
For the on-the-fly computation of the MFE distribution
based on a given candidate sequence, the pre-computed
data are used for multidimensional interpolation. For
each candidate sequence, the composition of the sequence
is determined by counting nucleotides. Sequence compo-
sitions with a squared Euclidean distance up to 5 in the
surrounding search space are identified: the length of
the sequence is therefore not taken into account. This
value was selected on the basis of the analysis of known
miRNAs. These analyses showed this threshold gives
the smallest difference in P-value (data not shown) when
comparing the PN to the PE of mirbase entries. For se-
quence compositions that have no points within this
distance no prediction can be made and a PN of 1.0 is
given. From the selected near-by sequences, the mean
and standard deviations are retrieved from the database.
For the candidate sequence, both mean and standard
deviation of the MFE distribution are determined by
interpolation using the data from the nearby sequence
compositions, weighted based on their Euclidean distance
to the candidate sequence. The sum of the weighted
values gives the estimated mean and standard deviation of
the MFE distribution based on the randomized sequences
from the candidate sequence. Mathematically, the formu-
lae to derive the estimated average μe are expressed as:

�μe ¼
XN−1

i¼0
ωiμiXN−1

i¼0
ωi

with ωi ¼ dt−di

dt
;

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3
i¼0

xi−yið Þ2
vuut and dt ¼

XN−1

i¼0

di

where wi is the weight per data point based on Euclidean
distance, di is the distance per point, for which xi and yi
are the nucleotide counts of the sequence in the search



Figure 2 Mean MFE distribution of sequences 100 nt in length. (A) The mean MFE of 1000 sequences with the indicated composition is
plotted in a 3D contour plot (Matlab) with the percentage of three nucleotides in the sequence specified on the three axes. The false color scale
indicates a relative measure of the mean MFE: red a relatively low MFE value with a ΔG (Gibbs free energy change) ≤ −80 kcal/mol, yellow an
intermediate MFE value (−80 kcal/mol < ΔG ≤ −40 kcal/mol) and blue a relatively high MFE value (ΔG > −40 kcal/mol). (B,C) The same distribution
as in (A) is shown at two different angles to help interpretation and to prevent optical illusions.
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space and dt is the total distance over N points. N varies
per candidate sequence. Even in the case were the dis-
tance to a point is zero (di = 0), more points are used to
estimate the population average. Testing on sequences
with the same compositions during computations would
slow the software down and this situation is unlikely
therefore it was not included in the software.
The use of PN as normal approximation of PE was

evaluated by comparing both probabilities for different
sequences. In Figure 1, the comparison between many



Figure 3 Relative performance of MFE-based P-value
estimations. The percentage of pre-miRNAs with a P-value smaller
than indicated is plotted for data previously published [30], newly
computed values from release 9.2 of MirBase based on the same
method and computed based on the interpolation method
developed here. The previously published percentages based on PE
were 97%, 91% and 76%, respectively, whereas based on the release
9.2 it is 95%, 87% and 65%, and PN 96%, 93% and 87%, respectively.

Warris et al. BMC Research Notes 2014, 7:34 Page 6 of 10
http://www.biomedcentral.com/1756-0500/7/34
PE (green) and PN (red) is shown for a range of sequences
with different lengths but the same nucleotide composi-
tions. Other compositions give similar results (data not
shown). The excellent goodness-of-fit demonstrates the
suitability of the normal approximation PN as criterion
for the evaluation of pre-miRNA candidate sequences.
The estimation of the standard deviation of the MFE

distribution based on the candidate sequence is based
on the approach for estimating the mean as described in
the previous section. The mean and standard deviation
uniquely define the normal distribution function of the
candidate sequence. With the two values, PN is computed
as the normal probability of MFE values smaller than the
MFE based on the candidate sequence. This way, for each
candidate sequence, only the MFE of the structure based
on this sequence needs to be computed, speeding up com-
putations approximately a thousand-fold when thousand
shuffled sequences are used. As the calculations of the es-
timated mean, standard deviation and the P-value based
on this normal distribution take time as well, the software
is at least several hundred times faster for short sequences
and faster for long candidates: the Hybrid software used is
slower for longer sequences, as there are more secondary
structures. Calculating the structures of 1000 candidates
takes therefore considerably more time than the estima-
tion process. Based on the running time of an example
Table 1 Percentage of sequences with low P-values

Data set Total # sequences
analyzed

% sequences with
an error/not found

% sequenc
P <0.

Random 250000 21.3 3.0

MirBase 15172 1.0 89.9

EBV known miRNAs 25 0.0 96.0

EBV genome 566988 0.1 19.1

This table shows the percentage of sequences below the given P-value in four diffe
with a P-value < = 0.001. A high percentage of known miRNAs sequences is within
run it would take over 260 seconds to calculate 1000 MFE
values. The calculation of PN takes approximate a second,
including the calculation of the MFE.
We evaluated the performance of PN compared to PE

for selection with respect to the entries in the MiRBase
registry. In Figure 3, the distribution of PE over the pre-
miRNA molecules as published previously [30] is com-
pared with the PE computed of the current pre-miRNAs
from miRbase with the same method [30] and the PN as
estimated by interpolation. It shows that the interpolation
approach performs well. The difference between PE and
PN reflects that the PN distribution is continuous, whereas
with 1,000 randomizations, the PE distribution is discrete
with a step size of 1/1001 = 0.000999. Although also PN
is estimated on the basis of 1,000 randomizations, the
continuity of the distribution allows more strict settings
for PN and allows a more sensitive ranking in the lower
P-value ranges. In Table 1, the percentages of pre-miRNAs
that conform to given settings of the P-value are shown.
With a threshold of PN = 1×10-4, about 66.8% of all known
pre-miRNAs are characterized by an MFE value well
outside the distribution of MFE values of randomized
sequences. Only 1% could not be estimated: the sequence
was either too long or had no populations in the data set
within the given distance.
To verify the performance of the applications on random

sequences, a test set of 250,000 sequences was generated;
all of different lengths and composition. The MFE and PN
were calculated for each of these sequences. The calcula-
tions were finished in 20 minutes. In Table 1 the results
are shown. Of these random sequences, 4% had no stable
structure and hence no MFE and 17% had no populations
in the data set within the given distance. Of the remaining
sequences only 3% had a PN < 0.05.

Shuffling inconsistencies
In the analyses above, a mononucleotide randomization
method (Fisher-Yates algorithm) was used [42], whereas
in the literature a dinucleotide randomization method
was recommended and used [30,31,46]. In genome-wide
analyses of candidate sequences based on PN, we observed
that several candidate sequences behaved oddly: whereas
dinucleotide shuffling yielded PN = 0,98, reflecting not a
likely candidate, mononucleotide shuffling as performed
es with
05

% sequences with
P <0.01

% sequences with
P < =0.001

% sequences with
P < =0.0001

1.5 0.8 0.5

84.4 75.9 66.8

92.0 88.0 76.0

10.7 5.7 3.6

rent data sets. A data set of random sequences shows a very low percentage
the same range.



Figure 4 Hairpin with internal repeat structure. Example of an
RNA sequence with a large difference in PN versus PE, depending on
the method of randomization (see text for details).
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here resulted in a PN < < 0.001, indicating a possible candi-
date. An example of such a sequence is given in Figure 4,
which shows a predicted hairpin structure for this
sequence. To prevent such sequences interfering with
the analysis of the distribution, the mononucleotide
randomization method was used.

Added value for miRNA prediction
Having validated the PN interpolation method with known
miRNAs, we now show the added value for whole genome
screening. We have evaluated a small viral genome for
putative pre-miRNAs regions. According to miRBase
(both in release 15 and 19), this viral genome has 25
known pre-miRNA sequences. Of the 25 known Epstein-
Barr virus (EBV) miRNAs, 24 have a PN < 0.05 with 22
having a PN < = 0.001 (Table 1). Both strands of the
dsDNA genome sequence of the human Epstein-Barr
virus type 1 [37] were converted into RNA and investi-
gated for potential pre-miRNA sequence. For each of the
total 566,988 windows of length 50–230 nt, the MFE and
the PN were computed. In contrast to the test set with
random sequences, in EBV only 0.05% of the windows
could not be estimated due to no sequence compositions
within the given distance or because the sequence did not
have a Stable 2D structure. This shows that the application
performs very well for viral genomic DNA. The percent-
age of windows with a PN < =0.001 is higher than in the
test set with random sequences (Table 1). There is also the
effect of overlapping windows: a pre-miRNA of length 150
will be found in several windows of length 200. Many of
these candidate windows are in repeat regions (Figure 5).
These windows can be discarded as not being viable loca-
tions for miRNAs: there are no known miRNAs within
the EBV repeat regions. Although current research shows
that in some organisms miRNAs can be found in repeat
regions [47], we suggest inspection of other regions first to
limit the number of relevant candidate regions.
To visualize regions of interest, the windows with a

PN < = 0.001 are placed in a separate data set and
marked with a value of one. The windows of different
lengths are then combined in the Integrated Genome
Browser [48] (Figure 5). With 19 different window
lengths, the maximum of the resulting graph is 19. This
indicates that all windows covering this location have a
PN < =0.001. The peaks in the graph show regions of
interest which require further research. The graph shows
18 regions-of-interest in the plus strand where 9 or
more windows have PN < = 0.001. Using these selection
criteria, the regions of 12 known miRNAs are found
(Figure 5). Using less than 9 windows will give more
regions-of-interest and will also show more known
miRNA regions, but will introduce more false positives
as well. The analysis of the EBV genome shows that a
(small) whole genome screening using PN-estimation



Figure 5 Identification of potential pre-miRNA candidates in the Epstein-Barr virus genome sequence. The genomic sequence is shown
on the x-axis. The upper track (red A) shows the amount of windows covering the particular region that have a PN < = 0.001. A distinct peak gives
a region of interest for a candidate miRNA. By discarding peaks within a repeat region (here shown in blue) and selecting peaks at or above 9
hits, 18 new regions of interest are found (plus strand). Also, 12 known miRNA are found. The green bars indicated by the red B show the EBV
genome annotation (gi|82503188|ref|NC_007605.1). The lower part of the graph (red C) shows the EBV genome locations with the red bars indi-
cating locations of the known miRNAs.

Warris et al. BMC Research Notes 2014, 7:34 Page 8 of 10
http://www.biomedcentral.com/1756-0500/7/34
results in a limited number of regions-of-interest for
further investigation.
Conclusion
Previous research has indicated that the MFE based on
a miRNA sequence is significantly lower than the MFE
based on shuffled sequences with the same compos-
ition, in contrast to the MFE of other non-coding RNAs
[30,31,49]. As the computation of an MFE is demanding,
this characteristic of miRNAs precludes genome screening
of sequences for their MFE distribution. With thousand
randomizations per candidate sequence, the genome-wide
screening of a million (106) candidates would require a
billion (109) computations. These would take well over six
year to finish on a current standard desktop computer.
We have presented a method to speed up analyses of

the MFE distribution considerably, based on the normal
approximation of pre-calculated MFE distributions based
on random sequences, combined with a fast implementa-
tion of a multidimensional interpolation of distributions in
sequence space. The data cover the search space for all
RNA molecules with a length from 50 to 300 nt, in total
roughly equaling the sum over 4i for i = 50….300 ≈
5.5.10180 sequences. With three data points per sequence
(mean, standard deviation and composition), this would
generate an immense database, whereas the resulting data
space here established is based on 1.1 × 106 sequences and
takes about 30 Mb. The latter is easily handled by stand-
ard amounts of RAM. The results show that although
the newer miRNAs added to miRBase since 2006 seems
to comply somewhat less with this criterion than the
miRNAs analyzed before [50], the new approach developed
here performs well on known pre-miRNAs (Figure 3).
Sequence sets of 1,000 with at least one non-folding

member were discarded. Yet, it could be argued that
higher accuracy would be gained with more sets. The
data is well distributed over the sequence data space
(Figure 2). The interpolation of MFE distributions is
based on a threshold of the Euclidian distance of the
surrounding data points. This implies that for different
candidate sequences different amounts of pre-computed
data are used to estimate the MFE distribution. This pre-
vents interpolation issues at the boundaries of the data
space where less points are available. The data reduction
and interpolation results in considerably faster computa-
tion of the likelihood that the MFE of the sequence is
markedly lower than equivalent randomized sequences.
This obviates the need for on-the-fly computation of the
MFE values based on the randomized sequences.
The particular type and number of randomizations is an

issue. Whereas it was thought to be important to maintain
not only the mononucleotide compositions, but also the
dinucleotide distribution [46], the results shown for the
behavior of miRNAs in either way of shuffling [30,51] in-
dicate no relevant difference, or even a slightly better per-
formance of mononucleotide shuffling. These findings
indicate that for miRNA prediction dinucleotide shuffling
is not more optimal than mononucleotide shuffling. This
is in agreement with the demonstration that all base pair-
ings in an RNA molecule should be taken into account
[52]. There is, in addition, uncertainty over the quality of
the dinucleotide shuffling algorithm [35,51]. As demon-
strated here, particular sequences behave oddly with
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respect to dinucleotide shuffling (Figure 4) and may dis-
tort the distribution derived from the computed MFE
values. Inspection of such sequences indicated that these
sequences contain a particular combination of repeat units
in such a way that the dinucleotide shuffling is not chan-
ging the sequence in terms of MFE distribution. As a re-
sult, the candidate MFE is part of the distribution of
shuffled sequences. As Fisher-Yates shuffling is the most
random, this would seem to be the better method. We
have followed the earlier recommendation of performing
at least 1,000 randomizations [30], whereas other investi-
gations use 500 [31] or 10,000 [51]. As few as 100 ran-
domizations were recommended as sufficient to establish
a reasonable Gaussian distribution [45].
In view of the gain in computing speed accomplished

with PN, it has become feasible to consider genome-wide
screenings for pre-miRNA candidates based on PN. The
analyses here presented for the relatively small Epstein
Barr virus demonstrate that indeed such analysis is now
within reach. For a human genome, however, the approach
will still ask a considerable computational effort. More-
over, the MFE alone is not able to distinguish miRNAs
from other sequences sufficiently discriminative: it has to
be integrated with other parameters. The PN approach
presented here can therefore be better implemented as
part of, or next to, other approaches [20,22]. Such ap-
proach would generate added value for such miRNA
identification algorithms or pipelines. The application
of this criterion will add to enhanced selectivity of
miRNA discovery pipelines and help to limit the number of
candidates for experimental validation and confirmation.
The advent of high throughput DNA sequencing

technologies were shown to be particularly suitable for
the analyses of the small RNA complement of RNA
populations [4]. The identification of true miRNAs in
such data sets is still a challenge to which the PN ana-
lysis may contribute. The possibility of a one-time effort
to pre-compute sequence parameters that will facilitate
future analyses should be considered an approach that
could generate considerable added value for larger grid
environments in future bioinformatics.
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