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Mixed finite element solution for the

navier-stokes equations*®

Jaime Figueroa Nieto**

SUMMARY : A mixed finite element method for the solution
of the Navier-Stokes equations is presented. The scheme
uses discontinuous finite elements that allow the utilization
of upwind derivatives. This makes the scheme more stable
and accelerates the convergence. Moreover the boundary
layer is better considered for high Reynolds numbers. The
existence of a solution and the convergence of the scheme
are established. Results inside a square cavity for
Re=10000 for the recirculating flow, the stream function
and their second derivatives, viscous stress tensor and
velocity vector are obtained. Between Re=1000 and
Re=2000 a third secondary vortex appears near the upper
right corner.

1. INTRODUCCION

The main difficulty of the numerical solution of the Navier-
Stokes equations for an incompressible viscous fluid is to
simulate the behaviour when viscosity becomes small, or
equivalently, when the Reynolds numbers becomes large.
In this case near the walls zones will appear where the
gradient of the velocity is large and the viscous effects are
important.

One of the models proposed to describe separated flow
corresponding to small viscosity is that due to G.K. Batche-
lor (1956). The model postulates at high Reynolds numbers
the existence of a central core of constant vorticity sorroun-
ded by a thin viscous layer. In studies done by Burgraff
(1966) and recently by Nallasamy & Krishna (1978) provi-
de comparisons of the uniform vorticity model with nume-
rical solutions of the Navier-Stokes equations.

The square cavity with a steady sliding top wall is a
geometrically simple case and for which the recirculating
flow has no analytical solution, is a prototype of separated
flow for which Batchelor’'s model would be applicable.
From a computational point of view the cavity flow is an
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easy model problem which allows comparisons among
numerical methods.

The method that will be presented was introduced by
Hermann (1) in 1967 to solve the bending plate problem.
Other formulations of the method were given by Hellan (2)
in 1967 and Visser (3) in 1969.

In 1973, Johnson (4) justified the method proving the
existence of a solution and obtaining an estimate of the
error.

In 1976, Brezzi and Raviart (5) proved that the method
is the best in the sense that the order of convergence is
O(h**") with k the degree of polynomials emploved.

The stationary Navier-Stokes equations in a bounded
domain ()} C IR" are:

—vAu+u Vi+Vp=TinQ
(L.1) divu = 0in Q
U= 0ondQ

where v is the kinematic viscosity; p the pressure; U=
(u;)1<i=n the velocity vector; f= (f)1i=n the body external
forces.

A classical variational formulation of the problem is

(CE.(6)):

Find Q a pair (4, p) in V x LAQ)/IR satisfying:
(12) ) w3, faduavdx+ @ V.9~ (p,divi)
=@, V),V Ve Q)

where V = { Ve @) divv=0 }

There is a solution (1, p) in V X LYHQ)/R of (1.2)
(equiventely of (1.1)) if {1 is a bounded domain of R", n <
4, with a Lipschitz continous boundary (Cf.(7)).

The solution is unique if the viscosity is relatively large
with respect the norm of the body external forces.

In two dimensions the Navier-Stokes equations can be
stated in terms of the stream function as follows:

Find s in HZ (€)) such that:

(1.3) v o Ay Apdx + [ Ab(8208 ¢ — 3,0,¢)dx
= Ja T curl ¢ dx; Vge HE ()
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The problems (1.2) and (1.1) are equivalent. That is:

— if (4, p) is the solution of (1.2), the only function
WeH3({)) such that o= curl¥ = (8,¥, — 8,¥) is the
solution of (1.3);

— if W is the solution of (1.3) there exists p in LAQVR
such that the pair ( ? p) = (curl¥, p) is the solution
of (1.2).

To interpret the problem (1.3), the function WV satisfies
VA — 3,(AW3,¥) + 9,(AW3,¥) = curl f in O
a4 | v="Y _ooan

n

2. FORMULATION OF THE METHOD
FOR THE STOKES PROBLEM

The Stokes problem has the following formulation:
.0 { Find X in H3({2) satisfying
. vAN =culf inQ

Let A in H3(£2) be a solution of (2.1). If we set a;; =
Bﬁ A, I=i, ) =2 then o = (0j)|<i, j<2 and A satisfy the
equations

TR

lf (05 — BN T;dx = 0 ;
9]

V1 = (Tisije2 in (LAY, 112 = 1

2
3
ij=1

curl?dx =0 ; VpeH}O

O‘ij Bﬁl.l. dx — J.
Q

0

We assume that () is a convex polygon. Let {, be a
triangulation of {) by triangles K with sides of length less
than h.

Let T = (7)))<i j=2 in (LAD)*, 712 = 72 so that 7/ K e
H'(K), V K € {;, then

2
2 2 2
ij= T dfA dx = — 5
" Ifn v K&hi.j:l“. d; Ty N dx +
K
+ 3 2
b3
Kelh ij=1 % Tis t n; ds
dK

Tij 0 0y ds

+ X % dA
Kelh i.j=1 an
aK
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where E = (n;, ny) is the unit normal vector and-{ = (ny,
—n,) is the unit tangent along the boundary dK.
If we impose the condition denoted (MN):

Mr

i.j=1 T'.j/K] l'l!(I ﬂJK' =

over K, N K, # @

then o = (0y))<i j<2 and A satisfy the system

a(o, 7) + b(r,A) =0 VTe\z

22 {vbo,w+| » curl Tdx =0

(1
VweHHQ) with 1 < s < 3/2
where the space

g = {T = (Tij)lﬂi.jSI € (Lz(n))4|

T2 = Ty, TyK e H'(K) , VKely,
, 7 satisfy the condition (MN)

Brezzi and Raviart (5) proved that the method (2.2) is
optimal.

3. FORMULATION OF THE METHOD FOR
THE NAVIER-STOKES EQUATIONS

We shall consider the formulation (1.2). It is easy obtain
*“‘centered’’ formulation of the method by introducing the
term

j (011 + 022) (320 81 — 9)A dop) dx
0

in the second equation of (2.2).

But the problem is to simulate efficiently the behaviour
of the fluid when the viscosity becomes small. For that
Fortin (8) proposed to consider formulations called *‘de-
centered’’. The method is a generalization of that introdu-
ced by Lesaint (9) for the approximation of hyperbolic
equations of first degree by means of discontinuous finite
elements.

The difficulty is the discretization of the nonlinear term
fa @ - VUV dx where U = curl\, V = curl . since the



functions A, p € Hy(¥), 1<s<3/2 are not sufficiently
smooth.
For that we introduce the space My, defined as

= HH(D) N {eC(Q): WK e Py, , VKel,}, with kelN,

—
If A, pthandﬁ=curl)cthcn3--’— —m%%—‘ that

is u n |s continuous across the boundary 9K, i.e. u- nK =
-u- nK on K\NK; # &. This allows us to define a
partition of the boundary dK = dK; N dK_ with dK; the
zone where the fluid exits, thatis U - n>0 and 3K _ = 3K —
dK .. By definition

2 {ﬁfx on 9K,

= wK'on dK_ N 3K' , K' next to K

We consider the next discretization of the nonlinear
convective term by using upwind derivatives:

2
= 3
Kelh i.j{'lJ. u;u;(d;v;) dx

K
+ 3 J’
Kelh
K
denoted d(A, A, ) and introduced in the second equations
of (2.2).
We obtain the mixed formulation

@ -V @-nds

Find a pair (o, A) in Vy, x My, such that
3.1 a(o, ) + b(t, A) = 0 ; VreV,
vblo, p) + dA, A, p)

+I peurl fdx =0 ; VpeM,
0

where

Vi = {1 = (Tihi<ije2 € V : 1/K € Poy , VKelp}
Concerning the existence of a solution for the system (3.1)
we have the next result (Cf. (10), (11)).

Denoting Fy:My, — V), ; py — oy where oy, is the
solution of the problem a(oy,, 7,) = — b(Th, pn), V7n € Vi
we have

Theorem 3.1

If
) d(n, Bne ) <0 5 Vi, e My, (3:2)
ll) “ Ah ” 0,0 = C " Fh(Ah) ” 0.0 th € Mh (33)

there exists at least one solution (o, Ay) in Vi, x My, for the
system (3.1).

Concerning the convergence of the scheme we have the
following result (Cf. (10), (11)):

Theorem 3.2

Suppose that (3.2) and (3.3) hold for all h>0. Then there
exist a pair (o, ) in (L%(£2))> x H¥((2) and a subsequence of
the sequence (oy,, Ay) denoted (o, Ap) where (o, Ay) is a
solution of (3.1) so that

oy, — o weakly in (L2({))?
Ap — A strongly in H'(€)).

Theorem 3.3

The function A belongs to H3 () and is the solution of the
Navier-Stokes equations in terms of the stream function.

Remark

The error estimate for this type of scheme is an open
problem.

4. THE METHOD OF SOLUTION

If the boundary a() is moving with a relative velocity g in
H"2 (3)) then the conditions on the boundary are i - n = 0
and U - T = g. That is A a" =0, = ¢ Let kp in

“an
H? () be such that Ao = 0 and -2 = g over 3.
Then we write the problem

Find A € H*({2), A — XA in H3(£2) such that
_vf ANLgpdx + J. AN NI — 92N ) dX +

0 1

J‘ ¢ curl Tdx = 0; Vg € HX(Q)

The boundary condition —2A— = g is introduced in the first

equation of (3.1):
2

a(o,7) + b, \) = X

T N:N:
e ijnin; g ds

L]
We shall use the iterative method

1) (af, A) is the initial value in V, X M,
2) (By, Un) in Vi, X M, is the solution of
a8y, ) + by, Yp)

- 2= J‘ (Th)unn] 4 ds; V ™ € Vh
)

4.1) vb(Bp, ) + d(AR, bh, wn)

+ J‘“'h curl fdx = 0; V},Lh e M,

3 @ N = (0 A Y (Br — of b — AD
with 0 < y < 2.

Remarks concerning the iterative method

The existence theorem in the paragraph 3 may be adapted if
we consider d(A, A, p) with A fixed and the hypothese
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FIG. 1 DEFINITION SKETCH
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Fig. 1. Definition sketch.

d(A\p, Uy, ) =0, V iy, in M, . Then there exist a solution
for the linealized system (4.1). The unicity is easy to see.

Fortin and Thomasset (12) used d(Af}, A, prn). The
matrix is the same each iteration.

The system (4.1) is solved by using the frontal method
(Cf. (13)). The difficulty of the linearization (4.1) is the
increase in the band with and that the matrix is different
with each iteration. However the convergence is rapid.

5. PRACTICAL IMPLEMENTATION
OF THE METHOD

It was demonstrated (5) that the degrees of freedom by
element and for the space V), are

%. Therefore, the total degrees of freedom by
element is

= 3kktl) o (ktl) (k+2)
DLk} 2 2 The result on

the degrees of freedom of a tensor-valued function T € Vy,:

“Let K be in Th and let 7 = (Tij}l‘s i, j=2 be a
tensor-valued function such thatk ;€ Py, and 7> = 73;.
Then 7 is uniquely determined by the values of
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=1

2
J(z Tijninj)qu;quk_|. I=i=3
K
I'r,jqu:quk_z.ISi,jEZ

where K; , i = 1, 2, 3 denotes the sides of K'* was also
established in (5).
We refer to (11) for technical details.

6. NUMERICAL RESULTS FOR THE
RECIRCULATING FLOW INSIDE
A SQUARE CAVITY

Let ) the unit square ]0,1[ x ]0,1[. We assume that the wall
y = | is moving with a relative velocity g = —1.

We shall apply the method for k=2. We use regular
meshes that allow easy comparison with finite-difference
methods.

We approximate A, by continuous functions which are
pieced together from second degree polynomials defined
over the triangles and approximate o7} by linear functions
over triangles.
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Fig. 2. Streamlines in the square cavity.

Fig. 3. Lines of constant vorticity in the square cavity.

R = 10000
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We have fifteen degrees of freedom, six corresponding
to Ay, and nine to oy,

We calculate an approximation (A, @) of (A, o). We
recall that A, is an approximate value of A the stream
function; o} approximatly equal to 3 A, 1 < ihj<2
With those we may approximate AN, the vorticity; u = curl
A = (d;h, —d,\) the velocity vector; Dy, 1 =1, j =< 2 the
viscous stress tensor where D,;; =
20, Dy = = 20fy, Dy = Dy = ok — ol

Referent the numerical performance of the method, for
a grid of 200 elements, h = 1/10 and 1681 unknowns, the
region needed was 650 K, the time 31 seconds, 7 iterations
and 1050 output-input. The computations were carried out
on a IBM 370/158.

STOKES

Remarks about the results

Let A denote the stream function and o;; = 97 A, | =i, j
= 2. The velocity vector & = (u,, u,) is equal to curl A.
Thenu, = d,k and u, = —a,\. For that o», (respectively —
;) may be interpreted as the fluid acceleration in the
horizontal direction (vertical), that is @5, (—o,) is the
variation of the horizontal component (vertical) of the
velocity vector. Velocities on the centerlines for Reynolds
numbers up 10000 are known (Cf. (14), (12)). For instan-
ce, for Re=0 the acceleration is positive on x=.5 for0=y
=.5, negative at all other points. The graph of s, for
Re=0 confirme this result (Fig. 5). Similarly the accelera-
tion is zero on y=.5 at x=.21 and x=.79, positive over

RE = 5000

RE = 10000

Fig. 4. Iso—0, lines in the square cavity.
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(0,.21), (.79,1) negative on the remaining interval and
symmetric. The graph of oy, (Fig. 4) for Re=0 confirms
this results.

On the other hand, 9\ is zeroon x=.5then d,,(.5,y)=0
forall y in (0, 1), that is o} is zero on x=.5 a fact confirmed
by the graph (Fig. 6). But the graph is not too exact at the
centre of primary wortex for Re=0 (where the velocity is
zero) because it is hard to approximate; for Re =400 the non
intersection of lines may be interpreted by the viscous
nature of the primary vortex.

The viscous stress tensor

The tensor can be stated in terms of the stream function as

Dy, = 20k , Dy = —=285A , Diz = 9%k — FA

Figure 6 shows the iso— o, lines in the square cavity
and Figure 7 shows the iso— (o5 —0) lines again in the
square cavity.

The upper right vortex

Between Re=1000 and Re=2000 (exactly Re=1500 ac-
cording to (15)) there appears a third secondary vortex near
the upper upstream corner. It size increases with the Rey-
nolds numbers. The dimensions are given in Table 1.

Table 1

TP CENTRE AND DIMENSIONS OF SECONDARY VORTICES

Vortex UR

Reynolds Vortex LL Vortex LR
h TP Centre
Numbers b, d, b, d, by dy
1/10 0 .50 A5 o — - — — —
1/10 100 .40 o 14 18 10 10 — —
1/10 400 41 .65 .30 .35 14 .10 — —
1/10 1000 43 57 27 .29 .23 A3 — -
1/10 2000 45 S5 15 17 .33 .24 .04 .07
1/10 5000 .46 .53 — — 28 .27 .04 10
1712 10000 47 51 — — 10 11 .06 13
¥
(REYNOLDS) 1
10000 o
5000 4 X X
1000 + oX &
400 & X X
r
100 1 oX « s¥
¥
' %
+ X
0 3¢ + % X
0 5 1 0 ; + — +
*NALLASAMY — KRISHNA h = 1/50 10 100 1000 l‘t,:g\ofl\:gfoni)
X THISSTUDY h = 1/10 ®NALLASAMY — KRISHNA h = 1/50
X THISSTUDY h = 1/10
RE NALLASAMY THIS STUDY
0 2; ;g ';‘; ;2 RE NALLASAMY | THIS STUDY
:g '_‘- e '19 i?S 103 :g -3::
1000 .09 .76 1 .78 400 e 5
5000 - - .10 .89 1000 25 26
10000 .05 .88 10 .89 5000 - n
10000 | 0s 10

TABLE 2 POINTS OF VANISHING
VERTICAL ACCELERATION

TABLE 3 POINTS OF VANISHING
HORIZONTAL ACCELERATION
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Fig. 5. Iso—o,; lines in the square cavity.



RE = 5000 RE = 10000

Fig. 6. Iso—0; lines in the square cavity.
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STOKES

2

RE = 1000

RE = 10000

Fig. 7. Iso—Dy;, lines in the square cavity.
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44+ NALLASAMY etal. (1977) h= 1/50 0% BUCHECee. Bn‘z;‘ié:‘gm nevee o '
000 HUGHES et al, (1978} £/ ——— FORTINetal {1979) h = 1/12
——— FORTINetal (1979) h = 1/12 #: —— THISSTUDY h= 1/12 1
THISSTUDY h= 1/10 / 3% T
F

Fig. 8. Velocity profiles on the centreline of the cavity.

Fig. 9. Velocity profiles on the centreline of the cavity.
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7. CONCLUDING REMARKS

The results for the stream function and the vorticity agree
with others obtained by different methods. It should be
noted that the vorticity is not an unknown.

The utilization of upwind derivatives is effective and the
frontal method for the linear system solution is very good.

The results for the viscous streess tensor seems realistic.
The method is convenient in time, precision, size of central
memory. Four unknowns are calculated directly. Three
additional ones may be approximated.
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