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Mixed finite element solution for the 

navier-stokes equations* 
Jaime Figueroa Nieto•• 

SUMMARY: A mixedfinite element methodfor the solution 
of the Navier-Stokes equations is presented. The scheme 
uses discontinuousfinite elements that allow the utilization 
of upwind derivatives. This makes the scheme more stable 
and accelerates the convergence. Moreover the boundary 
/ayer is better consideredfor high Reyno/ds numbers. The 
existence of a solution and the convergence of the se heme 
are established. Results inside a square cavity far 
Re~ JOOOO far the recirculating jlow, the stream function 
and their second derivatives, viscous stress tensor and 
velocity vector are obtained. Between Re= 1000 and 
Re=2000 a third secondary vortex appears nea, the upper 
right comer. 

1. INTRODUCCION 

The main difficulty of the numerical solution of the Navier­
Stokes equations for an incompressible viscous fluid is to 
simulate the behaviour when viscosity becomes small , or 
equivalently, when the Reynolds numbers becomes large. 
In this case near the walls zones will appear where the 
gradient of the velocity is large and the viscous effects are 
importan!. 

One of the models proposed to describe separated flow 
corresponding to small viscosity is that dueto G. K. Batche­
lor (1956). The model postulates at high Reynolds numbers 
the existence of a central core of constant vorticity sorroun­
ded by a thin viscous !ayer. In studies done by Burgraff 
(1966) and receotly by Nallasamy & Krishna ( 1978) provi­
de comparisons of the uniforrn vorticity model with nume­
rical solutions of the Navier-Stokes equations. 

The square cavity with a steady sliding top wall is a 
geometrically simple case and for which the recirculating 
flow has no analytical solution, is a prototype of separated 
flow for which Batchelor's model would be applicable. 
From a computational point of view the cavity flow is an 
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easy model problem which allows comparisons among 
numerical methods. 

The method that will be presented was introduced by 
Hermann (1) in 1967 to solve the bending plate problem. 
Other forrnulations of the method were given by Hellan (2) 
in 1967 and Yisser (3) in 1969. 

In 1973 , Johnson (4) justified the method proving the 
existence of a solution and obtaining an estímate of the 
error. 

In 1976, Brezzi and Raviart (5) proved that the method 
is the best in the sense that the order of convergence is 
O(hk+ 1) with k the degree of polynomials emrloycct. 

The stationary Navier-Stokes cquatitln , in a boundcd 
domain í1 C IR" are: 

{ 
-v1 ¡j + ¡j . 'v ¡j + 'vp = 1 in n 

( l. 1) div u = O in í1 
u = o on an 

where v is the kinematic viscosity; p the pressure; u = 
(u;)1c ;c n the velocity vector; 1 = (f;)1c ;c n the body externa( 
forces. 

A classical variational forrnulation of the problem is 
(Cf.(6)): 

(1.2) 
{ 

Find fl a pair (u, p) in Y X L2(í1)/ IR satisfying: 
n + ++ . + 

v~ = I fooiu;oiv;dx +(u · v' u, v)- (p,d1v v) 

= (1, t); 't/ t E (Hó (Ü))" 

where Y = { t E (Hó (í1))": div t = O}. 
There is a solution (u, p) in y X L2(0)/IR of (1.2) 

(equiventely of ( 1 . 1)) if n is a bounded domain of IR", n ,s; 

4, with a Lipschitz _continous boundary (Cf.(7)). 
The solution is unique if the viscosity is relatively large 

with respect the norrn of the body externa( forces. 
In two dimensions the Navier-Stokes equations can be 

stated in terrns of the stream function as follows: 

25 



Toe problems ( l. 2) and ( l. 1) are equivalen! . That is: 

- if (u, p) is the solution of ( 1.2) , the only function 
'l'EHij(Ü) such that u= c-¡;l'I' = (il2'1' , - il 1'l') is the 
solution of (1 .3); 

- if 'I' is the solution of (1 .3) there exists pin L2(.0.)/IR 
such that the pair ( ti, p) = (c-¡;l'I' , p) is the solution 
of (1.2) . 

To interpret the problem (1 .3), the function q, satisfies 

{ 

v.:\ 2'l' - a 1(.::\ '1'a2 'l') + ai(.::\ q, a 1 'l') = curl f in f1 
aw 

(1.4) 'I' = - = Oon a.o. 
éln 

2. FORMULA TION OF THE METHOD 
FOR THE STOKES PROBLEM 

The Stokes problem has the following fonnulation: 

(2. 1) { 
Find A in Hij(Ü) satisfying 

V .::\
2A = curl 1 in n 

Let A in Ha(fl) be a solution of (2. 1 ). lf we set <T;j = 
ilfj A, J ,,,;; i, j ,,,;;2 then <T = (<T;j)1,,. ;, j,,.2 and A satisfy the 
equations 

2 

;,~ 1 J
O 

(<Tij - afjA) T;j dx = O 

2 

i.~1 J
O 

<T;j afjµ dx - J
O 

curlf dx = O Vµ E Ha(fl) 

We assume that !1 is a convex polygon . Let th be a 
triangulation of .O. by triangles K with sides of length less 
than h . 

Let T = (Tjj) 1,,. ;.j,,.2 in (L 2(0.))4. T12 = T21 so that T;/ K E 
H 1(K ), V K E th, then 

2 

i.j a ) T jj ªDA dx = - ¡ ¡ I 2 

0 K~h i.j =1 J K aj T;j él;X dx + 

26 

.. .. 
where n = (n1, n2) is the unit normal vector and t = (n2, 
- n1) is the unit tangen! along the boundary aK. 

If we impose the condition denoted (MN): 
2 

. ¡ .. K1 K, _ ,.¡=1 T,/ K 1 n; nj -

then a = (<T,j)1,,.;, j .. 2 and A satisfy the system 

{ 

a(a, T) + b(T, A)= O ; VTEY._ 

(2.2) v b(<T, µ.) + f 
O 

µ. curlf dx = O 

Vµ.dl~O.) with 1 < s < 3/2 

where the space 

2 = { T = (T;j) t,,.i. j"'2 E (L2(!l))4, 

T1 2 = T21 , T;/K E H1(K) , VKEth,} 
, T satisfy the condition (MN) 

a(a, T) = . _l J <T;j T;j dx 
l.) ª 1 o 

b(a, µ ) = t. _'l <f aj Tj T;i il;µ dx 
Kt , ,.¡ • I K 

-f ªaµ. T¡j n; lj dS) 
aK t 

Brezzi and Raviart (5) proved that the method (2 .2) is 
optima!. 

3. FORMULA TION OF THE METHOD FOR 
THE NA YIER-STOKES EQUATIONS 

We shall consider the fonnulation (1.2) . lt is easy obtain 
"centered" fonnulation of the method by introducing the 
tenn 

in the second equation of (2.2). 
But the problem is to simulate efficiently the behaviour 

of the fluid when the viscosity becomes small . For that 
Fortín (8) proposed to consider fonnulations called " de­
centered''. Toe method is a generalization of that introdu­
ced by Lesaint (9) for the approximation of hyperbolic 
equations of first degree by means of discontinuous finite 
elements. 

Toe difficulty is the discretization of the non linear tenn 

fo (u · 'vu)~ dx where U = CltiÜ, ~ = cut! µ. Since the 



functions A, µ. e HM'I'), 1 <s<3/2 are not sufficiently 
smooth. 

For that we introduce the space Mh defined as 

Mh = Hi(O) n {µ.eCº(O): µ./K e Pk , v'Ke,h}, with kelN . 
+ -+ + + éJ). 

lf A, µ. e Mh and u = curl A then u · n = - "ar, that 

is u· ñ is continuous across the boundary aK, i.e. u· ñK = 
+ + ' 

- u · nK, on K 1nK2 -f 0. This allows us to define a 
partition of the boundary ilK = ilK+ n ilK_ with ilK + the 
zone where the fluid exits, that is u· ñ> O and aK_ = aK -
ilK+. By definition 

{ 
~K on ilK+ 
Uc = ~K· on aK_ n OK1 

' K 1 next to K 

We consider the next discretization of the nonlinear 
convective tenn by using upwind derivatives: 

2 

;JI J u;uj(iljv;) dx 

K 

+ l I · + ...... K•{h (u · v) ( u · n) ds 

'" 
denoted d(A, A, µ.) and introduced in the second equations 
of (2.2). 

We obtain the mixed fonnulation 

{ 

Find a pair (<7, >,.) in Vh x Mh such that 

a(<Y, T) + b(T, A) = O ; v'TeVh 

v b(<7, µ.) + d(A, A, µ.) 

(3.1) 

+ f n µ. curl f dx = O ; Vµ.eMh 

where 

Conceming the existence of a solution for the system (3 . 1) 
we have the next result (Cf. ( 10), ( 11)). 

Denoting Fh:Mh -+ Vh ; µ.h -+ ah where <Yh is the 
solution ofthe problem a(ah, Th) = - b(Th, µ.h) , VTh e Vh 
we have 

Theorem 3.1 

lf 
i) d(µ.h , µ.h, µ.h) ~ O ; Vµ.h e Mh (3 .2) 
ii) 11 Ah 11 o.n ~ C II Fh(Ah) 11 o.n ; v'Ah E Mh (3.3) 

there exists at least one solution (CTh, Ah) in Vh x Mh for the 
system (3.1). 

Conceming the convergence ofthe scheme we have the 
following result (Cf. (10), (11)): 

Theorem 3.2 

Suppose that (3.2) and (3.3) hold for ali h> O. Then there 
exista pair (CT, A) in (L2(0))3 x H'(íl) anda subsequence of 
the sequence (<Th, Ah) denoted (ah , Ah) where (ah, >..h) is a 
solution of (3. 1) so that 

ah-+ <7 weakly in (L2(0))3 

Ah-+ A strongly in H1(0) . 

Theorem 3.3 

The function A belongs to Hij (O) and is the solution ofthe 
Navier-Stokes equations in tenns of the stream function. 

Remark 

The error estímate for this type of scheme is an open 
problem. 

4. THE METHOD OF SOLUTION 

If the boundary an is moving with a relative velocity g in 
H 112 

( ilil) then the conditions on the boundary are u · ñ = O 
and u· i = g. That is~ = O ~ = g . Let >. 0 1n a, ' an 
H2 (O) be such that >.0 = O and : ~, = g over ilil. 

Toen we write the problem 

Find >. e H2(0), >. - >.o in Hij(il) such that 

- v J 6 X61P dx + f 6A(il 1Ail21P - il2Xil 11P) dx + 
n n 

J 1P curl 7 dx = O; VIP e H2(0) 

11 

The boundary condition ~ = g is introduced in the first 
equation of (3.1): iln 

1,J - 1 
a(CT, T) + b(T, A) = Í J T;in;ni g ds 

"'' We shall use the iterative method 

1) (ot >.~ is the initial value in Vh x Mh 

2) (8h , lj,h) in Vh x Mh is the solution of 

a(9h, Th) + b(Th, lj,h) 

= Í J (Th);in;ni g ds; V Th E Vh 
1,1• 1 

ñU 

(4. 1) vb( eh' µ.h) + d( xg' lj,h' µ.h) 

+ f µ.h curl f dx = O; Vµ.h E Mh 

11 

3) (CTg + 1, >,g+ 1) = (CTg, Ag) + "{ (9h - <Tg, lj,h - >,.g) 

with O < -y < 2. 

Remarks conceming the iterative method 

The existence theorem in the paragraph 3 may be adapted if 
we consider d(~ . >-., µ. ) with ~ fixed and the hypothese 
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STREAM LINES 
RE = 2000 

1 d, 

FIG. 1 OEFINITION SKETCH 

TP PRIMARY VORTE X 
LL LOWER LEFT VORTEX 
LR LOWER R IGHT VORTEX 
UR UPPER RIGHTVORTEX 
h GRID SIZE 

Fig. l. Definition sketch. 

d(X.h, '1ih , '1ih) :S O, V IJih in Mh . Then there exista so lution 
for the linealized system (4.1) . The unicity is easy to see . 

Fortin and Thomasset (12) used d(>..~. >..~. µ.h ). The 
matrix is the same each iteration. 

The system (4.1 ) is solved by using the frontal method 
(Cf. (13)). Toe difficulty of the linearization (4 . 1) is the 
increase in the band with and that the matrix is different 
with each iteration. However the convergence is rapid. 

5. PRACTICAL IMPLEMENTATION 
OF THE METHOD 

lt was demonstrated (5) that the degrees of freedom by 
e lement and for the space V h are 

Jk(~+ I) . Therefore , the total degrees of freedom by 

element is 

DL(k) = 3k(k + 1) 
2 

+ (k + 1) (k+ 2) 
2 Toe result on 

the degrees of freedom of a tensor-valued function 7 E Yh: 
"Let K be in 7h and let 7 = (7;j)1:s i. j:s 2 be a 

tensor-valued function such that k 7;i E PK - I and 712 = 721. 

Then 7 is uniquely determined by the values of 
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K: 

J 7;i q dx ; q E Pk - 2, 1 :S i, j :S 2 

where K; , i = 1, 2, 3 denotes the sides of K · · was also 
established in (5). 

We refer to ( 11 ) for technical details . 

6. NUMERICAL RESUL TS FOR THE 
RECIRCULATING FLOW INSIDE 
A SQUARE CA VITY 

Let n the unit square JO, 11 x JO , 11 . We assume that the wall 
y = 1 is moving with a relative velocity g = - 1 . 

We shall apply the method for k= 2. We use regular 
meshes that allow easy comparison with finite-difference 
methods . 

We approximate >,.h by continuous functions which are 
pieced together from second degree polynomials defined 
over the triangles and approximate CTlj by linear functions 
over triangles . 



01 º' 

STOKES RE = 100 

Fig. 2. Streamlines in the square cavity. 

STOKES RE= 100 

_, 

RE = 5000 R = 10000 

Fig. 3. Lines of constant vorticity in the square cavity. 

29 



We have fifteen degrees of freedom. six corresponding 
to Ah and nine to <Th. 

We calculate an approximation (>. , <1) of (Ah, <Th). We 
recall that Ah is an approximate value of A the stream 
function; <Tn approximatly equal to dfj A, 1 ~ i, j ~ 2. 
With those we may approximate 6 Ah the vorticity; ti = curi 
A = (d2A, - d1A) the ve locity vector; D;¡ , 1 s i , j ~ 2 the 
viscous s tre ss tensor whe r e D 1 1 

2 CT~2. D 22 = - 2 CT~2. D12 = D 21 = CT~2 - CT~¡ . 

Referent the numerical performance of the method, for 
a grid of 200 elements, h = 1 /1 O and 1681 unknowns, the 
region needed was 650 K, the time 31 seconds, 7 iterations 
and 1050 output-input . The computations were carricd out 
on a IBM 370/158 . 

RE = 5000 

Remarks about the results 

Let A denote the stream function and CT·· = a2 ' 1 < 1• J. IJ tJ /\, - • 

s 2. Thc velocity vector u= (u 1, u2) is equal to curi A. 
Then u, = d2A and u2 = - d1A. For that CT22 (respecti vely -
<T11) may be interpreted as the fluid acceleration in the 
horizontal direction (vertical), that is CT22 ( - CT 11 ) is the 
variation of the horizontal componen! (vertical) of the 
velocity vector. Yelocities on the centerlines for Reynolds 
numbers up 10000 are known (Cf. ( 14). ( 12)). For instan­
ce, for Re=O the acceleration is positive on x = .5 for Os y 
s. s. negative at ali other points. The graph of <Tn for 
Re= O confirme this result (Fig . 5). Similarly the accelera­

tion is zero on y = .5 at x = .2 1 and x= .79, positive over 

RE = 10000 

Fig. 4. lso- C111 lines in the square cavity. 
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(0,.21), (.79,1) negative on the remaining interval and 
symmetric. The graph of <1 11 (Fig. 4) for Re=O confirms 

this results. 

On the otherhand , cJ 1J\ is zeroon x= .5 then cJ 21 ( .5.y)=O 
forall y in (0, l ), that is <1 12 is zero on x= .5 a fact confirmed 
by the graph (Fig. 6). But the graph is not too exact at the 
centre of primary wortex for Re=O (where the velocity is 
zero) because it is hard to approximate; for Re= 400 the non 
intersection of lines may be interpreted by the viscous 
nature of the primary vortex. 

The viscous stress tensor 

The tensor can be stated in terms of the stream function as 

Figure 6 shows the iso- <1 12 lines in the square cavity 
and Figure 7 shows the iso- (<122- <111 ) lines again in the 
square cavity. 

The upper right vortex 

Between Re = 1000 and Re= 2000 (exactly Re = 1500 ac­
cording to ( 15)) there appears a third secondary vortex near 
the upper upstream comer. It size increases with the Rey­
nolds numbers. The dimensions are given in Table 1. 

Table I 

TP CENTRE ANO DIMENSIONS OF SECONDARY VORTICES 

Reynolds Vortex LL 
h TP Centre 

Numbers b1 d1 

1/ 10 o .50 .75 
1110 100 .40 .75 . 14 .18 
1/ 10 400 .41 .65 .30 .35 
1/10 1000 .43 .57 .27 .29 
1/10 2000 .45 .55 . 15 . 17 
1/ 10 5000 .46 .53 
1/ 12 10000 .47 .51 

(REYNOLDS) 
10000 ~ 

5000 X X 

1000 •X • 
400 " X X 

100 •X 4( 

o L----M-~-------4------it'---- X 
o 

RE 
o 

100 
400 

1000 
5000 

10000 

.5 

•NALLASAMY- KRISHNA h = 1/50 
X THISSTUDY h = 1/10 

NALLASAMY THISSTUOY 

. 21 .79 .21 .79 

. 17 .75 .19 . 76 
.19 . 73 

.09 . 76 . 11 . 78 
. 10 .89 

.os .88 .10 .89 

TABLE 2 POINTS OF VANISHING 
VERTICAL ACCELERATION 

Vortex LR Vortex UR 

b2 d2 b3 d3 

.10 .10 

.14 .10 

.23 .13 

.33 .24 .04 .07 

.28 .27 .04 . 10 

. 10 . 11 .06 .13 

·Y 
1 

.5 

X 

o~------------+-'"" 
O 100 400 1000 5000 10000 

• NALLASAMY - KRISHNA h = 1/50 
X TH IS STUOY h = 1/10 

RE NALLASAMV THISSTUOV 
o 53 .SJ 

100 •• o 
•oo -- 35 

1000 25 26 
SOJO -- 11 

10000 os 10 

TABLE 3 POINTS OF VANISHING 
HORIZONTAL ACCELERATION 

(REYNOLDS) 
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-2 

o. 

o o. 

.5 

STOKES RE= 100 

- 2. 

o. 

o. 

RE= 400 RE= 1000 
- 35. 

- 2 - 2. - 20. 

o 

RE= 5000 RE= 10000 

Fig. S. lso- a 22 lines in the square cavity. 

32 



STOKES RE= 100 

RE= 400 RE= 1000 

RE = 5000 RE 10000 

Fig. 6. lso-a12 lines in the square cavity. 
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+ + + NALLASAMY et al. 119771 h • 1/50 
000 HUGHES et 11. 11978) 

FORTIN et al 119791 h • 1/ 12 
THIS STUOY h • 1/ 10 

- 1 RE= 1000 

STOKES 

RE= 1000 RE = 10000 

Fig. 7. lso- D12 lines in the square cavity. 

NALL ASAMY et al. (19711 h • 1/50 
000 HUGHES et al (19781 

FORTIN e t al (19791 h 1/ 12 
THIS STUOY h • 1/1 2 + 

o - 1 RE = 10000 

Fig. 8. Velocity profiles on the centreline of the cavity. Fig. 9. Velocity profiles on the centreline of the cavity. 
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7. CONCLUDING REMARKS 

The results for the stream function and the vonicity agree 
with others obtained by different methods. lt should be 
noted that the vorticity is not an unknown. 

The utilization of upwind derivatives is effecti ve and the 
frontal method for the linear system solution is very good. 

The results fo r the v iscous streess tensor seems reali stic. 
The method is convenient in time. prccis ion, s ize of cent ral 
memory. Four unknowns are calculated dircctl y. Threc 

additional oncs may be approximatcd. 
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