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Extension de espacios duales de Frechet*

Samuel Navarro H.**

RESUMEN: Se extiende la definicion de Grothendieck de
DF-espacio al caso de cuerpos valuados no arquimedea-
nos y se prueban algunas de las principales propiedades.
Se caracterizan los espacios topolégicos ultrarregulares
para los cuales el espacio de funciones continuas con
valores en un cuerpo resulta un DF-espacio provisto de la
topologia compacto abierta.

Finalmente se dan condiciones necesarias y suficientes
para que el espacio de funciones con valores vectoriales
resulte con DF-espacio.

SUMMARY: Grothendieck’s definition of DF-space is
extended to the case where the field is nonarchimedean
valued and some of the principal properties are proved.

The ultraregular topological spaces for which the space
of continuous functions with scalar values results a
DF-space with the compact-open topology are
characterized.

Finally, necessary and sufficient conditions are given
for the space of continuous functions with vector values to
be a DF-space.

Throughout this paper (F, | |) denotes a nonarchime-
dean (n.a.) valued field and we consider only non trivial
valuations. We recall that (F, | | ) is a spherically com-
plete field if every family of balls pairwise non-disjoint has
a non-empty intersection or equivalenty if every totally
ordered collection of closed balls has non-empty intersec-
tion.

We use Van Tiel's results [5], specially on duality
theory, and recall that it needs the Hahn-Banach theorem,
or equivalently that the field spherically complete (Ingleton
[2]). For other results about Functional Analysis over no-
narchimedean valued fields we refer to Prolla [4].

A filter is F-convex if it has a filterbase of translations of
F-convex sets. A topological vector space is locally F-
convex if the zero-neighborhood filter is F-convex. A loca-
Ily F-convex space is Frechet n.a. if it is metrizable n.a. and

*  Manuscrito revisado y aprobado en forma definitiva en marzo
de 1984.

** Departamento de Matemitica y Ciencia de la Computacién,
Facultad de Ciencia, Universidad de Santiago de Chile
(USACH).

complete; if it is normed n.a. and complete it is a Banach
n.a. space.

We consider only Hausdorff locally F-convex spaces
usually denoted by (E, 7) or E.

1. N.A. DF-SPACES

1.1. Definition:

A family of bounded set {B;}; in E is fundamental if every
bounded subset of E is contained in some B;.

1.2. Definition:

(E, 1) is a n.a. DF-space if:

i) There exists a countable fundamental family of bounded
sets in E.

ii) Every bornivorous set in E which is the intersection of a
countable family of F-convex O-neighborhoods is a
O-neighborhood.

If (F, | |)isa spherically complete field then we can
use ii)’ instead of condition ii);

ii)" Every strongly bounded set of E' which is the union of a
countable family of equicontinuous sets s
equicontinuous.

1.3. Observation:

An absorbent set that is the intersection of a countable
family of F-convex zero-neighborhoods is called ad - F -
barrel. A locally F-convex space where every bornivorous
d - F - barrel is a zero-neighborhood is called a d - F
evaluable space. Now we can say that E is a n.a. DF-space
if is a d - F - evaluable space and it verifies condition i).
Consequently every Banach n.a. space and more generally,
every normed n.a. space is a n.a. DF-space.

1.4. Notation:

In a space of functions, we denote by M(A; S), the subset of
all functions f which verify: f(A) C S.

1.5. Proposition:

Let(F, | | )beaspherically complete field. If (E, 7g) isa
metrizable locally F-convex space then Ej is a DF-space.
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Proof:
Let {U.bnew be a countable fundamental system of
zero-neighborhoods in (E, 7g). We consider {Uj},n the
family of the polar sets of U, in E'. As each U}, is equi-
continuous, {U}.w is a countable family of strongly
bounded subsets of E'. Now let L be a strongly bounded set
in E’; then L° is a zero neighborhood in E, hence there isn e
IN such that U, C L, and therefore L° C Uy; that is
{US}er is a fundamental family of bounded sets in Ej.
Now, let V = i V, be a bornivorous set, where each
V. is a F-convex zero-neighborhood in Eg; then V is a F-
convex closed set. By the nonarchimedean bipolar theorem
[5], V is contained in AV forevery A e Fwith | X | > 1.
As U is a bounded set in E' if U is a zero neighborhood in
E, there exists o € F such that U° is contained in aV then,
VO C aU% C ayU where ye Fand |y | > ;50 VOis
bounded in (E, 7). Finally V*°1is a zero neighborhood in E'
and consequently V is a zero-neighborhood in E'.

1.6. Proposition:

Let (E, 7¢) be a DF-space and (F, | |) a spherically
complete field. Then the dual space Eg is a Frechet
space.
Proof:
Let{B,} be a countable fundamental family of bounded sets
in E and let {U,}men be a countable basis of zero neigh-
borhoods in (F, | | ). then the family {M(B,, U}, men
is a countable basis of zero-neighborhoods in Eg.

Now we consider a Cauchy sequence (f) v in Ejy, as
E is a DF-space and (f;) is a strongly bounded set, we have
that (), 18 equicontinuous. On the other hand, we define
f(x) = lim f;(x); then f is contained in the clousure of (f;) in
FE with the topology of simple convergence. Finally we can
see that f is in Eg.

1.7. Proposition:

Let (F, | | ) be a spherically complete ficld and E be a
DF-space. If M is a closed subspace of E then % is a
DF-space.

Proof:
If v is the quotient map from E to %, we define ¢ : M —
(%) by W(f) = fo v~ ', W is a topological vector space
isomorphism of (M", B(E': E)) onto ((¥m)", B((¥m)). It is
clear that s is a linear isomorphism. To prove continuity, as
M is a metrizable space with the induced topology by the
strong dual of the DF-space E., it is sufficient to prove that
maps null sequences into bounded sets in (*/m)": Let (f)ien
be a null sequence in M*; {f;}) being a strongly bounded set
in E', it is equicontinuous en E'.

Thus {W(f,)} = {f; o v '} is equicontinuous in (%)'
hence {Ui(f,)} is bounded in (B4).

To prove ¥ is an open mapping, we consider the
0-neighborhood.

U=M°NA°

where A is a bounded setin E. Itis easy to show that (v(A))°

20

is a 0-neighborhood in (¥)' contained in (U). Thus s a
topological linear isomorphism of M® over (5u)" with the
corresponding strong topology. Let L be a bounded set in
EAv; as L is a 0-neighborhood in (5M)' there is a bounded set
A C E, that we may assume to be I'-closed by ([5]) such
that

(*) WA N M%) CL°

so v (L) C (A°N M®°° and L C v (A® U M™). But A
and M are ['-closed L C v(A). It follows that there exists a
countable fundamental system of bounded sets {v(B,)} in
B4, with {B,} a countable fundamental system of bounded
sets of E.

Now we consider a sequence of O-neighborhoods {V,}
in /M such that the intersection V = M V,, is a bornivorous
set in . It is clear that v~ ' (V) is a bornivorous set which
is the intersection of a countable family of F-convex
O-neighborhoods in the DF-space E; hence V is a
O-neighborhood in #.

1.8. Lemma:

Let E be a topological vector space with a countable
fundamental system of O-neighborhoods. If {H,}, is a
sequence of bounded sets, there exists a bounded scquence

{iat in (F, | | ) such that

3 B Hy
is a bounded set.

Proof:
Let {V,} be a decreasing fundamental sequence of
O-neighborhoods in E. For each pair (V,,, H,), there exists
8, > OsuchthatforallAeF, with | A | =8,,H,CAV,.

We consider 8; = 8, for (V,, H;) and 8, = max
{8:-1, 8}, s = 2; in this way, we obtain an increasing
sequence of real numbers.

If \;e Fand | A\, | > &, then the union Y} ATUH;
is a bounded set; indeed, let V be a O-neighborhood in E
which we can assume, without loss of generality, that is
circled, there is, n, in IN such that V,,, C V form = n,,. It
is clear that A,,' H,, is in V for m > n,. Thus the union
s, H; is contained in V. o

On the other hand, if A = U A, ' H, there exists
8> 1 such that fora e F, | « |P>I- 5. A C a V. Hence if
w = A; ! for the bounded sequence {p,} we verify that
i’* i H; is a bounded set.

1.9.Proposition:

Let E be a DF-space over (F, | | )anspherically complete
field. If {V} . is a sequence of O-neighborhoods of E. there
exists a sequence {\,} in F such that V = nON Ay Vpisa
O-neighborhood in E.

Proof:
Without loss of generality we may suposse that V, is
F-convex for each n in IN. We consider H, the polar of V,;



H, = Vj is equicontinuous, hence strongly bounded in E'.
Since E is a DF-space, Ej is a metrizable space; by
Lemma 1.8 there exists {p,} in F such that

H= \ wu H,

is a bounded set in Eg. But H is a strongly bounded
countable union of equicontinuous sets, hence H is
equicontinuous and H? is a O-neighborhood in E.

On the other hand, ifa,e Fand | o, | > 1 forne N,
using bipolar properties [5] we obtain

H°C Ny o Va

let A\, = p! o then V = £, A Va is a O-neigh-
bourhood in E.

2. SPACES OF CONTINUOUS FUNCTIONS

Here we consider only ultraregular topological spaces, i.e.
the Hausdorff spaces with a fundamental system of clopen
sets at each point.

We call W-compact the topological spaces where every
countable union of compact sets is relatively compact
(those spaces appear in Warner's paper [6]). There are
spaces with a weaker condition, the strongly countable
compact spaces: every countable set is relatively compact.

We also consider the space of continuous functions
C(X:E), where X is ultraregular and E is a locally F-convex
space. We deal only with the compact open topology,
where a fundamental system of zero-neighborhoods is
formed by the sets M(K; U) = {fe C(X; EVf(K) C U} where
K C X are compacts set and U are O-neighborhoods of E. If
E = IF we write C(X) instead of C(X; E).

Let X be an ultraregular space, (E, 7¢) a locally
F-convex Hausdorff space and (F, | |) a nonarchime-
dean nontrivially valued field.

2.1. Proposition:

Let M, ... My be F-convex sets in E, U a F-convex
O-neighborhood in E and K a compact subset of X; then

k k
MK; U + % My C MK U)+ 2 MX;M,)

Proof: 9
If fis in M(K; U + E;I M) we consider the compact
set

S={XeK/Py(f(x) = 1}

where Py is the Minkowski seminorm corresponding to the
F-convex set U.

We consider also the clopen set

V; = {X € X / Py (F(x) — f(x)) < "2}

where x; € S. As S is a compact set, there exists t € IN such
that

ot
SC UV,
=

Without loss of generality we may suppose that this is a
disjoint union.

On the other hand for each x;, j = 1, ..., t, there exists
k X
2 h™e X M, such that

m=| - m=1

fx) + 3 hme U

Finally we can show that
k k 3 1
f=f+ m2=l j%l ij ® hjmﬁ rn%l ;gl XV—‘ ® h-im
belongs to
k
M(K; U) + mE:I M(X; M,)

this is easy to see, since:

k

a) f+ X

n=1

=f— 3 Xy ®f(x) + lé;l Xy, ® fx)

J

j:zl Xv; ® "=

13
+ 35 Xy, ®h

m=1 j=1

b) (f — Ig Xy, ® f(x) (K)C U

t k 1
C) {E er @ f{x_i) + '“};;I |§‘I X\,.',1 ® hti") (K) g U

and U is F-convex
2.2. Proposition:

Let X be a strongly countably compact topological space,
and let {B,}nen be a fundamental sequence of bounded sets
in E, then {M(X, B,)}sem i5 too a fundamental sequence of
bounded sets in C(X, E) with the compact open topology.

Proof:

We suppose that there exists a bounded set L in C(X; E)
such that L N M(X; B,) is non empty for each natural n. Let
f, in L N M(X; B,) and x, € X be such that

fa(%a) £ By

We consider A = {x, / n e IN} , A is compact in X.
We claim that f, (A) is bounded. Indeed, let V be a
O-neighborhood in E. A L is bounded, there exist 8 > 0
such thatif A e Fand | N | > 38,

LCA-MA,V)
hence {fy(a) /neIN ,ae A} is contained in \ - V and
therefore ML{I f, (A) is bounded.
As {B,} is fundamental, there exists j € IN such that

N fa (A) C By

in particular we obtain that fi(x;) € Bj and this contradiction
proves our proposition.

2.3. Theorem:

Let X be a W-compact topological space and let (F, | |)
be a spherically complete field. If E is a DF-space then
C(X ; E) is a DF-space.
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Proof:

Let {V,} be a sequence of F-convex 0O-neighborhoods of
C(X;E). WesetV = V., we must prove that if V is
a bornivorous set then V'1s a O-neighborhood in C(X ; E).

We will build sequences {\;} of scalares in F , {U;} of
O-neighborhoods in E and {K;} of compact sets in X with
the properties:

1) M(X; \B)) C VforalliinIN -

2) M(K;; U) C ViforalliinIN -
3) \jB; C Ui foralli,jinN -

where {B;}w is 2 fundamental sequence of bounded sets in
E, that we may suppose F-convex and closed.

If there exist A;, U; , K; for i= 1, 2,..., n with the
properties 1, 2 and 3 then there exists A, in F such that:

a) Ap+y Bpey C© ﬂ U;

b) M(X ; Aps; Bus)) C V,

also there exists a compact subset K, ., of X and a
O-neighborhood W, 4+, on E such that

¢) M(Kn+1 » Woet) © Vi
Now we construct the set.
Upsr = Wpyy +

n+l

§ AiB; g

this set is a F-convex O-neighborhood that satisfies

AjB; C Upnyy

forallj =1, 2, ..., n+1. By a) we obtain
A+t Baet C U
foralli=1, ..., n.
Furthermore \; B; C U, foreveryi=1, ...,n+landj =
1, ..., n+1. Then we have found A, - Uy+, . K,+ that

verify properties 1) and 3).
We still have to check that M(K,., ,
Vo1 It is true that

U,+1) is contained in

n+l

d) E-I M(X B )\i Bi) c Vnﬂ

since the intersection ﬁ Vi, is in the F-convex set V.,
and 1) is verified for i = 1, 2 ., n+1. Using ¢) and d)

M(Kp+1 5 Wast) + ‘,2' M(X; Ai B) C Vs -

By proposition it is posible to set

n*|
MKns15 Wast + 2N B) C Vauy
Hence M(K, 4, ,

Un+1) € Va1 -

We call U the intersection of the sequence {U,} nen 5 by
3), Uis aO-neighborhood in E. Finally as X is W-compact,
there exists a compact set K that contains the union of the
sequence {K }nen © Then

MEKU)C O MK U)C 0
M(Knlun)c rLV =V
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hence, the second property required to be a DF-space is
verified.

The existence of a fundamental sequence of bounded
sets is guaranteed by proposition 2.2 and the trivial fact that
every W-compact space is a strongly countable compact
space.

2.4. Theorem:

Let(F, | | )beaspherically complete field. Then C(X ; F)
is a DF-space if and only if X is a W-compact space.

Proof:

As (F, | |)is a DF-space Theorem 2.3 implies that

C(X ; F)is a DF- space, whenever X is W-compact.
Conversely, if {K,}nen is 2 sequence of compact subsets

of X, we consider the zero neighborhood M(K, , B))

(where Bs = : {Ne F/ | A | <&} ; by proposition 1.8

there exist a sequence {A}nenv in F such that

0, M MK, . B)

is a zero neighborhood in C(X ; F).
Therefore there exists a compact subset K of X and & ¢ R
such that

M(K; By € (0, A M(K, : B)

We claim that K, is contained in K for every n € IN.

If not, there exists n, € IN such that K, & K ; then there
is x in K, which is outside K and there is f € C(X ; F) such
that

f(x) = 1 and f(K) = {0}

we considerye Fwith | y| > | A, | thenyfe M(K;
Bs) but yf ¢ A, M(K,, , B)) . This contradiction proves our
claim.

In 1.6 we proved that the property of being a DF-space
is preserved under the formation of quotient topologies. In
[3] we showed that C(X; F) and E can be considered as
complementary closed subspaces of C(X ; E). Now we can
formulate of following:

2.5. Corollary:

Let X be a topological space and (F; | | ) be a spherically
complete field. Then C(X ; F) and E are DF-spaces if and
only if C(X ; E) is a DF-space.
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