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Abstract

Using proton-proton collision data, collected with the LHCb detector and cor-
responding to 1.0, 2.0 and 1.9 fb−1 of integrated luminosity at the centre-of-mass
energies of 7, 8, and 13 TeV, respectively, the decay Λ0

b → χc1(3872)pK− with
χc1(3872)→ J/ψπ+π− is observed for the first time. The significance of the observed
signal is in excess of seven standard deviations. It is found that (58±15)% of the de-
cays proceed via the two-body intermediate state χc1(3872)Λ(1520). The branching
fraction with respect to that of the Λ0

b→ ψ(2S)pK− decay mode, where the ψ(2S) me-
son is reconstructed in the J/ψπ+π− final state, is measured to be:

B(Λ0
b→ χc1(3872)pK−)

B(Λ0
b→ ψ(2S)pK−)

× B(χc1(3872)→ J/ψπ+π−)

B(ψ(2S)→ J/ψπ+π−)
= (5.4± 1.1± 0.2)× 10−2 ,

where the first uncertainty is statistical and the second is systematic.

Published in JHEP (2019) 028

c© 2019 CERN for the benefit of the LHCb collaboration. CC-BY-4.0 licence.

†Authors are listed at the end of this paper.

ar
X

iv
:1

90
7.

00
95

4v
3 

 [
he

p-
ex

] 
 1

2 
Se

p 
20

19
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/250625609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/JHEP09(2019)028
https://creativecommons.org/licenses/by/4.0/


ii



1 Introduction

The χc1(3872) state, also known as X(3872), was observed in 2003 by the Belle collabora-
tion [1] and subsequently confirmed by several other experiments [2–7]. This discovery
has attracted much interest in exotic charmonium spectroscopy since it was the first obser-
vation of an unexpected charmonium candidate. The mass of the χc1(3872) state has been
precisely measured [5,8] and the dipion mass spectrum in the decay χc1(3872)→ J/ψπ+π−

was also studied [1, 6, 9]. The quantum numbers of the state were determined to be
JPC = 1++ from measurements performed by the LHCb collaboration [10].

Despite a large amount of experimental information, the nature of the χc1(3872) particle
is still unclear [11, 12]. It has been interpreted as a χc1(2P) charmonium state [13, 14],
molecular state [15–17], tetraquark [18,19], ccg hybrid meson [20], vector glueball [21] or
mixed state [22,23]. Studies of radiative χc1(3872) decays [24–26] have reduced the number
of possible interpretations of this state [27–29]. Thus far, the χc1(3872) particle has been
widely studied in prompt hadroproduction [2, 5–7] and in the weak decays of beauty
mesons. Several decays of the Λ0

b baryon to charmonium have been observed [30–37].
Observing Λ0

b decays involving the χc1(3872) state will allow comparison of their decay
rates to the rates for conventional charmonium states, where, for instance, factorisation
and spectator quarks assumptions may lead to different results depending on the nature
of the χc1(3872) state.

In this paper the first observation of the χc1(3872) state in the beauty-baryon decay
Λ0

b→ χc1(3872)pK− is reported. This study is based on data collected with the LHCb de-
tector in proton-proton (pp) collisions corresponding to 1.0, 2.0 and 1.9 fb−1 of integrated
luminosity at centre-of-mass energies of 7, 8 and 13 TeV, respectively. A measurement of
the Λ0

b→ χc1(3872)pK− branching fraction relative to that of the Λ0
b→ ψ(2S)pK− decay,

R =
B(Λ0

b→ χc1(3872)pK−)

B(Λ0
b→ ψ(2S)pK−)

× B(χc1(3872)→ J/ψπ+π−)

B(ψ(2S)→ J/ψπ+π−)
, (1)

is performed, where the χc1(3872) and ψ(2S) mesons are reconstructed in the J/ψπ+π− fi-
nal state. Throughout this paper the inclusion of charge-conjugated processes is implied.

2 Detector and simulation

The LHCb detector [38, 39] is a single-arm forward spectrometer covering the pseudo-
rapidity range 2 < η < 5, designed for the study of particles containing b or c quarks.
The detector includes a high-precision tracking system consisting of a silicon-strip vertex
detector surrounding the pp interaction region [40], a large-area silicon-strip detector lo-
cated upstream of a dipole magnet with a bending power of about 4 Tm, and three stations
of silicon-strip detectors and straw drift tubes [41, 42] placed downstream of the magnet.
The tracking system provides a measurement of the momentum of charged particles with
a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c.
The minimum distance of a track to a primary vertex (PV), the impact parameter (IP),
is measured with a resolution of (15+29/pT)µm, where pT is the component of the momen-
tum transverse to the beam, in GeV/c. Different types of charged hadrons are distinguished
using information from two ring-imaging Cherenkov detectors (RICH) [43]. Photons, elec-
trons and hadrons are identified by a calorimeter system consisting of scintillating-pad
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and preshower detectors, an electromagnetic and a hadronic calorimeter. Muons are iden-
tified by a system composed of alternating layers of iron and multiwire proportional
chambers [44].

The online event selection is performed by a trigger [45], which consists of a hard-
ware stage, based on information from the calorimeter and muon systems, followed by
a software stage, which applies a full event reconstruction. At the hardware trigger stage,
events are required to have a muon with high pT or a pair of opposite-sign muons with
a requirement on the product of muon transverse momenta, or a hadron, photon or
electron with high transverse energy in the calorimeters. The software trigger requires
two muons of opposite charge forming a good-quality secondary vertex with a mass in
excess of 2.7 GeV/c2, or a two-, three- or four-track secondary vertex with at least one
charged particle with a large pT and inconsistent with originating from any PV. For both
cases significant displacement of the secondary vertex from any primary pp interaction
vertex is required.

Simulated events are used to describe the signal mass shapes and compute efficiencies.
In the simulation, pp collisions are generated using Pythia [46] with a specific LHCb
configuration [47]. Decays of unstable particles are described by EvtGen package [48],
in which final-state radiation is generated using Photos [49]. The interaction of the gen-
erated particles with the detector, and its response, are implemented using the Geant4
toolkit [50] as described in Ref. [51].

3 Event selection

The Λ0
b→ J/ψπ+π−pK− candidate decays are reconstructed using J/ψ → µ+µ− decay

mode. To separate signal from background, a loose preselection is applied, as done
in Ref. [32], followed by a multivariate classifier based on a Boosted Decision Tree with
gradient boosting (BDTG) [52].

Muon, proton, pion and kaon candidates are identified using combined information from
the RICH, calorimeter and muon detectors. They are required to have a transverse momen-
tum larger than 550 MeV/c for muon and 200 MeV/c for hadron candidates. To allow for
efficient particle identification, kaons and pions are required to have a momentum between
3.2 and 150 GeV/c, whilst protons must have a momentum between 10 and 150 GeV/c.
To reduce the combinatorial background, only tracks that are inconsistent with originating
from any PV are used.

Pairs of oppositely charged muons consistent with originating from a common vertex
are combined to form J/ψ→ µ+µ− candidates. The mass of the pair is required to be
between 3.0 and 3.2 GeV/c2.

To form Λ0
b candidates, the selected J/ψ candidates are combined with a pair of

oppositely charged pions, a proton and a negatively charged kaon. Each Λ0
b candidate is

associated with the PV that yields the smallest χ2
IP, where χ2

IP is defined as the difference
in the vertex-fit χ2 of a given PV reconstructed with and without the particle under
consideration. The χ2

IP value is required to be less than 9. To improve the Λ0
b mass

resolution a kinematic fit [53] is performed. This fit constrains the mass of the µ+µ− pair
to the known mass of the J/ψ meson [54]. It is also required that the Λ0

b momentum
vector points back to the associated pp interaction vertex. In addition, the measured
decay time of the Λ0

b candidate, calculated with respect to the associated PV, is required
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to be greater than 75µm/c to suppress poorly reconstructed candidates and background
from particles originating from the PV.

To further suppress cross-feed from the B0→ J/ψπ+π−π+K− decay with a positively
charged pion misidentified as a proton, a veto is applied on the Λ0

b mass, recalculated
with a pion mass hypothesis for the proton. A similar veto is applied to suppress
B0

s→ J/ψπ+π−K+K− decays. Any candidate with a recalculated mass consistent with
the known B0 or B0

s mass is rejected.
A BDTG is used to further suppress the combinatorial background. It is trained

on a simulated sample of Λ0
b → χc1(3872)pK−, χc1(3872)→ J/ψπ+π− decays

for the signal, while for background the high-mass data sideband is used, de-
fined as mJ/ψπ+π−pK− > 5640 MeV/c2, where the regions of mJ/ψπ+π− populated by
ψ(2S)→ J/ψπ+π− and χc1(3872)→ J/ψπ+π− decays are excluded. The k-fold cross-
validation technique [55] is used in the BDTG training, in which the candidates are
pseudo-randomly split into k = 23 samples. The BDTG applied to a particular sample
is trained using all the data from the other 22, allowing ∼ 95% of the total sample to be
used for each training with no need to remove the candidates used from the final data set.
The outputs of all multivariate classifiers are consistent. The BDTG is trained on variables
related to reconstruction quality, kinematics, lifetime of Λ0

b candidates, the value of χ2

from the kinematic fit described above, and the mass of the dipion combination.
The simulated samples are corrected to better match the kinematic distributions

observed in data. The transverse momentum and rapidity distributions and the lifetime
of the Λ0

b baryons in simulated samples are adjusted to match those observed in a high-
yield low-background sample of Λ0

b→ J/ψpK− decays. Finally, the simulated events are
weighted to match the particle identification efficiencies determined from data using
calibration samples of low-background decays: D∗+ → D0(→ K−π+)π+, K0

S→ π+π−,
D+

s → φ(→ K+K−)π+, for kaons and pions; and Λ → pπ− and Λ+
c → pK+π− for

protons [43,56]. The simulated decays of Λ0
b baryons are produced according to a phase-

space decay model. The χc1(3872)→ J/ψπ+π− decay proceeds via the J/ψρ0 S-wave
intermediate state [10]. The simulated Λ0

b→ ψ(2S)pK− decays are corrected to reproduce
the pK− mass and cos θpK− distributions observed in data, where the helicity angle of
the pK− system, θpK− , is defined as the angle between the momentum vectors of the kaon
and Λ0

b baryon in the pK− rest frame. To account for imperfections in the simulation
of charged particle reconstruction, efficiency corrections obtained using data are also
applied [57].

The requirement on the BDTG output t is chosen to maximize the Punzi figure of
merit εt/(α/2 +

√
Bt) [58], where εt is the signal efficiency for the Λ0

b→ χc1(3872)pK−

decay obtained from the simulation, α = 5 is the target signal significance in units of
standard deviations, Bt is the expected background yield within narrow mass windows
centred on the known Λ0

b and χc1(3872) masses [54].

4 Signal yields and efficiencies

The yields for signal and normalization channels are determined using a two-dimensional
unbinned extended maximum-likelihood fit to the J/ψπ+π−pK− and J/ψπ+π− masses.
The probability density function used in the fit consists of four components to describe
the mass spectrum:
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- a signal component, describing the true Λ0
b→ ψππpK− decays, where ψππ denotes

either ψ(2S) or χc1(3872) final states;

- a component describing nonresonant (NR) Λ0
b → J/ψπ+π−pK− decays with no

intermediate ψππ state;

- a component describing random combinations of ψππ with pK− pairs that are not
Λ0

b decay products;

- and a combinatorial J/ψπ+π−pK− component.

The templates for the Λ0
b, χc1(3872) and ψ(2S) signals are described by modified Gaussian

functions with power-law tails on both sides [59]. The tail parameters are fixed to values
obtained from simulation, while the peak positions of the Gaussian functions are free to
vary in the fit. The mass resolution of the ψ(2S) meson is allowed to vary in the fit, while
that of the χc1(3872) signal, due to its lower yield, is fixed to the value determined from
simulation and corrected by the data-simulation ratio of the mass resolutions for the ψ(2S)
meson. The Λ0

b→ ψππpK− component is described by the product of the Λ0
b and ψππ signal

templates, SΛ0
b
(mJ/ψπ+π−pK−)× Sψππ(mJ/ψπ+π−). The NR Λ0

b→ J/ψπ+π−pK− component

is described by the product of the Λ0
b signal template, an exponential function and

a first-order polynomial function, SΛ0
b
(mJ/ψπ+π−pK−)× E(mJ/ψπ+π−)× P1(mJ/ψπ+π−), while

the ψππpK− component is parametrized as the product of the ψππ signal template and
an exponential function, Sψππ(mJ/ψπ+π−)×E(mJ/ψπ+π−pK−). The combinatorial background
is modelled by the function

f(mJ/ψπ+π−pK− ,mJ/ψπ+π−) = E(mJ/ψπ+π−pK−)× Φ3,5(mJ/ψπ+π−)

× P3(mJ/ψπ+π−pK− ,mJ/ψπ+π−),
(2)

where Φ3,5(mJ/ψπ+π−) is a three-body (J/ψπ+π−) phase space function of the five-body
Λ0

b decay [60], and P3 is a two-dimensional positive third-order polynomial function in
Bernstein form.

Projections of the two-dimensional fits to the J/ψπ+π−pK− and
J/ψπ+π− mass distributions for the intervals of 3.62 < mJ/ψπ+π− < 3.72 GeV/c2

and 3.80 < mJ/ψπ+π− < 3.95 GeV/c2 are shown in Fig. 1. The signal yields are determined
to be 610± 30 and 55± 11 for the Λ0

b→ ψ(2S)pK− and Λ0
b→ χc1(3872)pK− decay modes,

respectively. The statistical significance of the observed Λ0
b→ χc1(3872)pK− signal is

estimated to be 7.2σ using Wilks’ theorem [61] and confirmed by simulating a large
number of pseudoexperiments according to the background distributions observed in data.

The background-subtracted pK− mass spectrum [62] for the signal channel is shown
in Fig. 2. The distribution exhibits a clear peak associated with the Λ(1520) state.
From this distribution the fraction of two-body Λ0

b → χc1(3872)Λ(1520) decays is de-
termined using an unbinned maximum-likelihood fit, which includes two components.
The first component corresponds to the Λ0

b→ χc1(3872)Λ(1520) decay and is described
with a relativistic P-wave Breit−Wigner function. The second component corresponds to
the nonresonant decay Λ0

b→ χc1(3872)pK− and is modelled by

B(mpK−) = Φ2,3(mpK−)× P1(mpK−), (3)

where Φ2,3(mpK−) is a two-body (pK−) phase space function of the three-body decay of
the Λ0

b baryon and P1(mpK−) a first-order polynomial function. The peak position and
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Figure 1: Projection of the two-dimensional distributions of (left) J/ψπ+π−pK− and
(right) J/ψπ+π− masses for the (top) Λ0

b→ ψ(2S)pK− and (bottom) Λ0
b→ χc1(3872)pK− candi-

dates.

the natural width are constrained to the known values for the Λ(1520) resonance [54].
The fraction of Λ0

b→ χc1(3872)Λ(1520) decays obtained from the fit is (58± 15)%, where
the uncertainty is statistical only.

The ratio R defined in Eq. (1) is obtained as

R =
Nχc1(3872)pK−

Nψ(2S)pK−
×

εψ(2S)pK−

εχc1(3872)pK−
, (4)

where N represents the measured yield and ε denotes the efficiency of the corresponding
decay. The efficiency is defined as the product of the geometric acceptance and the detec-
tion, reconstruction, selection and trigger efficiencies. All efficiencies are determined using
corrected simulated samples.

The efficiencies are determined separately for each data-taking period and are combined
according to the corresponding integrated luminosities [63] for each period and the known
cross-section of b-hadron production in the LHCb acceptance [64–68]. The ratio of
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Figure 2: Background-subtracted mass distribution for the pK− system in Λ0
b→ χc1(3872)pK− de-

cays with fit results in the range 1.43 < mpK− < 1.75 GeV/c2 superimposed. The background
subtraction is performed using the sPlot technique [62].

the efficiency of the normalization channel to that of the signal channel is determined to be

εψ(2S)pK−

εχc1(3872)pK−
= 0.6065± 0.0035 , (5)

where only the uncertainty that arises from the sizes of the simulated samples is
given. Additional sources of uncertainty are discussed in the following section. The ra-
tio of efficiencies differs from unity mainly due to different dipion mass spectra in
the χc1(3872)→ J/ψπ+π− and ψ(2S)→ J/ψπ+π− decays.

5 Systematic uncertainties

Since the signal and normalization decay channels have similar kinematics and topologies,
a large part of systematic uncertainties cancel in the ratio R. The remaining contributions
to the systematic uncertainty are listed in Table 1 and discussed below.

To estimate the systematic uncertainty related to the fit model, pseudoexperiments are
generated according to the mass shapes obtained from the data fit. Each pseudoexperiment
is then fitted with the baseline fit and alternative signal models and the ratio R is
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Table 1: Relative systematic uncertainties for the ratio of branching fractions.

Source Uncertainty [%]

Fit model 2.0
Decay model of the Λ0

b→ χc1(3872)pK− channel 2.0
Track reconstruction and hadron identification 0.4
Trigger 1.7
Selection criteria 1.0
Size of the simulated samples 0.6

Sum in quadrature 3.5

computed. A generalized Student’s t-distribution [69], an Apollonios function [70] and
a modified Novosibirsk function [71] are used as alternative models for the signal component.
The maximum relative bias found for the ratio R is 2%, which is assigned as a relative
systematic uncertainty.

The simulated Λ0
b→ ψ(2S)pK− decays are corrected to reproduce the pK− mass and

cos θpK− distributions observed in data. The uncertainty associated with this correction
procedure and related to the imperfect knowledge of the Λ0

b→ ψ(2S)pK− decay model
is estimated by varying the reference kinematic mpK− and cos θpK− distributions within
their uncertainties. It causes a negligible change of the efficiency εψ(2S)pK− . A similar
procedure applied to the Λ0

b→ χc1(3872)pK− channel leads to a systematic uncertainty of
2% on the efficiency εχc1(3872)pK− .

An additional uncertainty arises from the differences between data and simulation,
in particular those affecting the efficiency for the reconstruction of charged-particle
tracks. The small difference in the track-finding efficiency between data and simulation
is corrected using data [57]. The uncertainties in these correction factors together with
the uncertainties in the hadron-identification efficiencies, related to the finite size of
the calibration samples [43, 56], are propagated to the ratio of total efficiencies using
pseudoexperiments. This results in a systematic uncertainty of 0.4% associated with track
reconstruction and hadron identification.

To probe a possible mismodelling of the trigger efficiency, the ratio of efficiencies is
calculated for various subsamples, matched to different trigger objects, namely dimuon
vertex, high-pT µ

+µ− pair, two-, three- and four-track secondary vertex, etc. The small
difference of 1.7% in the ratio of trigger efficiencies between different subsamples is
taken as systematic uncertainty due the trigger efficiency estimation. Another source of
uncertainty is the potential disagreement between data and simulation in the estimation
of efficiencies, due to effects not considered above. This is studied by varying the selection
criteria in ranges that lead to as much as ±20% change in the measured signal yields.
The stability is tested by comparing the efficiency-corrected yields within these variations.
The resulting variations in the efficiency-corrected yields do not exceed 1%, which is taken
as a corresponding systematic uncertainty [36]. The 0.6% relative uncertainty in the ratio
of efficiencies from Eq. (5) is assigned as a systematic uncertainty due to the finite size of
the simulated samples.

The systematic uncertainty on the fraction of Λ0
b baryons decaying to the Λ(1520) reso-
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nance is calculated by varying the parameters of the resonant and nonresonant components
in the fit and found to be negligible with respect to the statistical uncertainty.

6 Results and summary

The decay Λ0
b→ χc1(3872)pK− with χc1(3872)→ J/ψπ+π− is observed using data collected

with the LHCb detector in proton-proton collisions corresponding to 1.0, 2.0 and 1.9 fb−1

of integrated luminosity at the centre-of-mass energies of 7, 8, and 13 TeV, respectively.
The observed yield of Λ0

b→ χc1(3872)pK− decays is 55± 11 with a statistical significance
in excess of seven standard deviations. It is found that (58± 15)% of the decays proceed
via the two-body χc1(3872)Λ(1520) intermediate state.

Using the Λ0
b → ψ(2S)pK−, ψ(2S)→ J/ψπ+π− decay as a normalization channel,

the ratio of the branching fractions is measured to be

R =
B(Λ0

b→ χc1(3872)pK−)

B(Λ0
b→ ψ(2S)pK−)

× B(χc1(3872)→ J/ψπ+π−)

B(ψ(2S)→ J/ψπ+π−)
= (5.4± 1.1± 0.2)× 10−2 ,

where the first uncertainty is statistical and the second is systematic.
Using the values of B(Λ0

b→ ψ(2S)pK−) and B(ψ(2S)→ J/ψπ+π−) taken from Ref. [54]
the product of branching fractions of interest is calculated to be

B(Λ0
b→ χc1(3872)pK−)× B(χc1(3872)→ J/ψπ+π−) = (1.2± 0.3± 0.2)× 10−6 ,

where the first uncertainty is statistical and the second is systematic, including the uncer-
tainties on the branching fractions B(Λ0

b→ ψ(2S)pK−) and B(ψ(2S)→ J/ψπ+π−).
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fUniversità di Cagliari, Cagliari, Italy
gUniversità di Ferrara, Ferrara, Italy
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iUniversità di Milano Bicocca, Milano, Italy
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