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RÉSUMÉ

Forts des outils de la théorie des files d’attente, de la géométrie stochastique et des exten-
sions développées en cours de route, nous présentons des modèles descriptifs de systèmes de
services d’urgence organisés en fonction du potentiel de limitation explicite des distances de
dispatching avec une fidélité accrue du modèle et une stratégie de dispatching pour atteindre
des performances maximales avec des ressources limitées. En utilisant le terme «sauvegardes
partielles» pour faire référence à des règles d’expédition avec des limites explicites sur les
distances d’expédition, nous étendons d’abord le modèle classique de mise en file d’attente
hypercube pour inclure des sauvegardes partielles avec des priorités. La procédure éten-
due pourra représenter les systèmes de services d’urgence dans lesquels le sous-ensemble de
serveurs pouvant être envoyés à une demande d’intervention d’urgence dépend de l’origine et
du niveau de service demandé. Cela permet de développer des modèles d’optimisation dans
lesquels le concepteur du système laisse le choix des unités de réponse pouvant être envoyées
dans chaque zone de demande et peut être intégré à l’espace de la solution avec d’autres
variables de décision d’emplacement ou d’allocation. La nouvelle méthode descriptive et les
modèles d’optimisation sur lesquels reposent les plans de répartition et de répartition opti-
maux correspondants devraient indiscutablement améliorer les performances et mieux refléter
le comportement réel des répartiteurs lorsque la configuration instantanée du système con-
stitue un facteur majeur dans la prise de décision. Par la suite, nous étendons notre analyse.
des déploiements statiques couverts par le premier modèle vers des systèmes à relocalisation
dynamique. En faisant des hypothèses d’uniformité sur les origines des demandes de service
et les emplacements des unités d’intervention, nous développons un cadre théorique pour une
évaluation rapide et aléatoire de la performance du système avec une politique de sauvegarde
partielle donnée et des résultats donnés spécifiés en fonction du temps de réponse. Le modèle
général permet de révéler tout potentiel théorique d’amélioration des performances du sys-
tème en utilisant des stratégies de dispatching de secours partielles aux stratégies tactiques
ou opérationnelles, sans connaître les détails de la méthode de relocalisation dynamique
utilisée ni même de la distribution de la demande au-delà du taux total d’arrivée et de la
densité. Nous présentons des résultats auxiliaires et des outils à l’appui de notre traitement
des systèmes de service d’urgence avec sauvegardes partielles, notamment des notes sur les
distributions de distance avec des effets liés et quelques lois de conservation du débit liées
aux situations de file d’attente rencontrées dans le cadre de ce travail.
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ABSTRACT

Armed with tools in queuing theory, stochastic geometry, and extensions developed along
the way, we present descriptive models of emergency service systems organized around and
emphasizing the potential of explicitly limiting dispatch distances in increasing model fidelity
and as a dispatching strategy to achieve maximal performance with limited resources.

Borrowing the term ”partial backups” to refer to dispatch policies with explicit limits on
the dispatch distances, we first extend the classic hypercube queuing model to incorporate
partial backups with priorities. The extended procedure will be able to represent emergency
service systems where the subset of servers that can be dispatched to a request for emergency
intervention depend on the origin and level of service requested. This allows for development
of optimization models where the choice of response units eligible for dispatch to each de-
mand zone is left to the system designer and can be integrated into the solution space along
with other location or allocation decision variables. The new descriptive method and thus
the optimization models built upon and the corresponding optimal location and dispatch
plans, should arguably lead to better performance and better reflect the actual dispatchers’
behavior where the instantaneous system configuration constitutes a major factor in making
assignment decisions.

We next extend our analysis of static deployments covered by the first model to systems
with dynamic relocation. Making uniformity assumptions on the origins of service requests
and locations of the response units, we develop a theoretical framework for quick and dirty
evaluation of the system performance with a given partial backup policy and a given outcome
specified as a function of response time. The general model, makes it possible to reveal any
theoretical potential to improve system performance by employing partial backup dispatching
strategies at tactical or operational, without knowing the details of the dynamic relocation
method used or even the demand distribution beyond the total arrival rate and the density
per area.

Finally, auxiliary results and tools supporting our treatment of emergency service systems
with partial backups are presented, which include notes on distance distributions with bound-
ary effects and a few rate conservation laws related to the queuing situations we encountered
in this work.
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1

CHAPTER 1 INTRODUCTION

The primary goal of an Emergency Service System (ESS), quite obviously, is to provide emer-
gency care to customers in immediate need for it. The ability of the system to provide such
services is thus a natural measure of performance. To achieve adequate performance, the
system needs to be well designed and adequately resourced. The optimal performance, how-
ever, cannot be achieved without reliable tools to assess the suitability of a given tentative
design candidate. Simulation models remain the gold standard to assess complex systems
and allow the designer to evaluate design and operation scenarios with great flexibility in
terms of the desired level of detail and accuracy. The downside to simulation, however,
is the computational expense of scenario analysis which in some applications can be quite
prohibitive. For example, consider a dynamically relocating emergency service system in
which the dispatchers will send the available response units to new waiting stations every
time time the number of free vehicles changes. In many cases, such relocation decisions are
based on a real-time evaluation of different and potentially many candidate relocation plans
of which the best ones are selected. The time needed for evaluation of these candidate plans
can arguably become prohibitively long if a simulation model is used, unless it is carried
out on an unusually capable computing platform. In these cases, mathematical models with
their faster computation times come to our aid allowing a wider system optimization appli-
cations such as real-time dynamic relocation planning and, in general, less computationally
demanding analyses that can be performed on less powerful computing systems or in shorter
times. The popularity and range of various descriptive mathematical models incorporated
into prescriptive optimization models proposed in the literature attests to the effectiveness of
such tools in helping the system analysts in making better management decisions at tactical,
operational, and strategic levels. If desired, detailed simulation models can be employed in
further evaluation of an initial set of decisions obtained using these primary optimization
models. We will briefly compare simulation and analytical approaches and their respective
straights at the end of this chapter.

Regardless of the objectives and constraints of an optimization model, the quality of the
solutions obtained directly depends on the validity of the underlying descriptive model used
in representing the system at hand as closely as possible. Therefore, it will always pay
off to further improve a given descriptive model so that it better reflects the realities of
the system or operation we seek to optimize or analyze. The hypercube queuing model of
Larson (1974) and its approximate form developed by, again, Larson (1975), is the classic
method of modelling a spatially distributed queuing system, and in particular, an ESS. This
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model, and its numerous extensions, have been widely used by researchers and practitioners
alike in development of optimization models of various emergency service operations. The
original version of the method relies on several restricting and unrealistic assumptions that
can limit the range of situations in which the model can reasonably act as a proxy to the
system considered. Over the years, several attempts have been made to relax some of these
assumptions; however, the assumption that the closest free response vehicle will always be
sent to an incoming request for service regardless of the origin of the call, and in particular,
its distance from the dispatched vehicle, remains to this day. This is basically the assumption
of full backups as opposed to a policy of partial backups in which each response vehicle is
responsible only for providing service to an arbitrary subset of demand zones or service region.
The assumption of full backups in most practical applications will be in disagreement with
how the actual system is operated. In some cases, this might be due to the strict zoning
or allocation strategies in place; for example, a fleet of police patrol cars where each patrol
car is responsible for a well-defined sector of the service region. A full backup assumption is
clearly not valid for this case. Physical limitations of the response units may as well impose
a limit on the maximum travel distance, rendering the full backup assumption inaccurate.
For instance, an ESS operation comprised of aerial drones will be best modelled as a partial
backup system since the maximum flight range of virtually all drones available today is limited
by the capacity of the batteries powering them. Finally, the full backup assumption may fail
to reflect dispatchers’ behavior in assigning response vehicles to incoming calls. To see this
clearly, suppose a request for service is received where the closest vehicle is busy and the
second closest response unit is free but is located much farther from the call origin. Now, if
the dispatcher estimates the close-by vehicle to finish its current job in less time than it would
take the second vehicle to arrive at the scene, then he or she will most probably wait for that
busy vehicle to become free and then get immediately dispatched to the new call. Under
the assumption of full backups, however, the farther vehicle will be selected for dispatch
regardless of the unreasonably long travel distance and response time it results in. The
assumption of full backups in this situation will of course be less realistic and valid when the
outcome of the intervention is more strongly impacted by the response time. Responding to
highly urgent requests such as incidents of Out-of-Hospital-Cardiac Arrests (OHCA) presents
a prime example of a highly time-critical operation for which dispatching a vehicle over
distances over a certain limit will result in very low probability of patients surviving. These
observations establish the importance of relaxing the full backup assumption in analysis of
emergency service systems and motivate us to develop new descriptive models or modify the
existing methods in which the more realistic partial backup policy is explicitly incorporated
into the model. The notion of partial backups is thus the main theme of the present work
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and forms the basis of the models we develop in subsequent chapters.

To provide a more comprehensive treatment of emergency service systems, we consider both
static and dynamically relocating deployments and try to develop models for performance ap-
proximation of the system with these respective deployment mechanisms. In a static deploy-
ment, the response units are assigned fixed waiting stations from which they are dispatched
to locations of emergency incidents and travel back to when the service is completed. In an
ideal static deployment, the response units are arranged such that the best possible coverage
is provided to the entire service region. The notion of adequate or good coverage, however,
can be interpreted in many ways and encompass different and often competing objectives.
For instance, with the maximum coverage or outcome as the main objective, deployments
in which response units are placed closer to areas with higher demand concentrations will
typically yield the best results. On the other hand, if a measure of equity in service pro-
vision is instead selected as the performance objective, then the optimal deployments will
normally have the response units more uniformly distributed over the service region to guar-
antee sufficiently reliable access to services independent of location. In a deployment with
periodic relocation, the planning horizon is divided in several time periods each with their
own set of optimal locations for the waiting stations. Each of these static deployments is
optimized for the corresponding demand configuration observed or predicted for that period.
The number of vehicles deployed in each period may also be different. The system then se-
quentially switches through these set of static deployments in an attempt to adapt to varying
operating conditions over the planning horizon. The geographic distribution of demand or
traffic conditions are examples of operating conditions that change with time and can be
effectively addressed through periodic deployments. Periodic deployment plans can be easily
constructed by repetitive applications of the static deployment models and thus, for the most
part, do not need special mathematical devices beyond what is needed to account for the
costs and constraints associated with transitions between the periods.

A deployment with dynamic relocation tries to maintain an adequate coverage of the service
area by relocating the free response units to new positions whenever the number of available
vehicles changes; that is, each time a vehicle finishes its current job and becomes available
thus increasing the number of free units, or when a vehicle gets dispatched to a new incoming
call thus decreasing the number of free units. Unlike the periodic redeployment which reacts
to the changes in the underlying operating conditions, the goal of dynamic relocation is to
continuously maintain adequate coverage of the service area with an ever-changing number
of available server at any given moment. These systems can also be treated with static
deployment models by first obtaining a pre-calculated set or sets of optimal static deployments
for fleets of size n = 1, 2, · · · , N with N the actual number of deployable response units, and



4

then relocating the vehicles in real-time according to the optimal static deployment with n
units whenever the number of free vehicles drops or increases to n. This set of pre-determined
deployments is commonly known as a compliance table which is basically a look-up table of
acceptable arrangements of response units for every number of available vehicles. Whenever
a relocation is required, the dispatcher will re-position the currently available vehicles to
new waiting stations according to a relocation plan he or she deems most appropriate for
the situation among the candidates given in the compliance table. This approach does not
require any real-time computation as the compliance tables are obtained offline.

A dynamic relocation deployment, however, can also be implemented in a more sophisticated
fashion in which relocation decisions are computed in real-time whenever the number of
available units changes. This approach has the clear advantage of taking into account the
exact instantaneous state of the system in calculating new waiting spots for each of the
free vehicles. This is important since other factors besides maintaining adequate coverage
should be taken into consideration while making relocation decisions. Most notably, a good
relocation decision should preferably minimize both the number of vehicles that should be
relocated and also the corresponding travel distances. Compared to compliance tables, real-
time computation of the new waiting spots provides a greater flexibility for incorporating
all these contributing aspects in generating best relocation decisions. Although the real-
time calculation of the optimal locations requires considerably higher computational power
compared to the compliance table method, the actual problems to be solved can still be
considered as instances of static deployments with appropriate constraints and objectives
reflecting what the manager considers acceptable and desired in a good relocation plan.

As we see, the ability to solve static deployment problems is all we need for analysis and design
of static, periodic, compliance table and real-time dynamic deployments. This highlights
the importance and value of developing more accurate mathematical methods such as the
hypercube queuing model for evaluation of static deployment scenarios. As stated earlier, the
quality of the location and relocation plans and compliance tables obtained will be directly
dependent on the quality of the underlying mathematical model used to describe the steady-
state behavior of the system for a given static deployment. In the first main contribution of
the thesis, presented in Chapter 4, we take a step towards this very objective of increasing
the accuracy and applicability of the approximate hypercube queuing model by relaxing the
assumption of full backups and allowing for partial backups with priorities. As we will see, the
original version of the approximate hypercube queuing model will lead to large approximation
errors when used to estimate the steady-state behavior of a system with partial backups.
The proposed extension of the hypercube model, however, performs well in predicting the
equilibrium behavior of the system with priorities and partial backups. This opens a door to
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new optimization models in which we augment instances of system deployments by specifying
the subset of demand zones covered by each response unit in addition to the location in
which each unit is deployed. This more refined view of the system combining the location
and allocation decisions, allows for a more realistic and detailed description of the actual
deployment scenarios encountered in practice. Armed with the extended hypercube model
with partial backups, one can now predict the steady-state behavior of the system for a given
set of tentative location and allocation decisions. Evaluation of many such sets of combined
decisions within an optimization loop with appropriate objectives and constraints will then
give us an optimal location and allocation decisions we need for a static deployment.

While the extended hypercube model developed in Chapter 4 aims at accurate prediction of
the performance of system deployments with partial backups, the mathematical model pre-
sented in Chapter 6 tries to quantify the impact of partial backup policies on the performance
of systems with real-time dynamic relocation. Making simplifying assumptions, including the
uniformity of the distribution of call locations and of the response units, we build an abstract
model that can be used to obtain the expected performance of the system operating under a
given partial backup dispatch policy. The partial backup policy in this case is defined as the
maximum number of neighboring response units considered for dispatch alongside a limit on
the maximum dispatch distance for the rest of the units. Finally, Chapters 5 and 7 contain
some supporting results used in development of the main models described above.

1.1 Basic concepts and definitions

In this section, we briefly go over some basic concepts related to the topics discussed in this
thesis. These introductory sections are mainly aimed at a reader not familiar with the basics
of queuing theory and related topics. We also clarify the terminology used in the text. We
first give a basic overview of queuing theory including an introduction to Kendall’s notation
for queuing systems followed by an introduction of spatially distributed service systems and
the tools we have for studying these systems. We then highlight the value and applications of
analytical and simulation models in studying service systems. Finally, we provide a concise
statement of the purpose and objective of the dissertation together with a plan of the thesis.

1.1.1 Queuing theory

The main contributions of this thesis rely heavily on queuing theory, a discipline within the
mathematical theory of probability, devoted to the study and prediction of waiting lines and
waiting times. Queuing theory results are most often used in operations research to aid in
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making decisions about the resources required to provide a service with a certain level of
quality. Besides operations research and industrial engineering, queuing theory ideas have
been widely applied in telecommunication, traffic engineering, computing, forestry and many
more design and management problems.

A queuing station or node (or simply a queue) can be viewed as a black box representing a
service station where customers arrive, stay for a while to receive service, and depart once
the service is completed. A supermarket checkout line is a cliched example of a queuing node
(or system). Customers arrive, possibly wait in a line for their turn, eventually get processed
by the cashier and then leave.

Usually, we have some information regarding the inside of a queuing model; at the very least,
the number of servers, that is, for example, the number of cashiers in the supermarket line,
should be specified. In a multi-server queue, that is a queue with more than one servers, any
server can process an arriving customer and can start working on a new arriving or waiting
customer after the current service is completed. This is the most usual situation and can be
used, for example, to represent a single waiting line in a bank processed by multiple tellers.
In other multi-server models, however, we might have different customer and server types
with policies specifying the types of customers that can be processed by each server type.
Call centers are a good example of this kind of queuing systems where agents are trained
in one or more specific areas and thus can only accept callers who request a certain type or
types of services. This is generally known as a skill-based routing as customers are assigned
to suitable servers based on their matching skills. In a multilingual call center, for example,
a skill-based routing may be used based on the languages spoken by the agents and the
customers. Queues with skill-based routing are remarkably difficult to analyze with limited
relevant theoretical results published in the literature. We note that the queuing system
with partial service introduced in Chapter 4 and revisited in Chapter 6, can be considered
queuing models with skill-based routing. In this case, the skill-based routing is determined
by the distances between customer and server locations. In fact, as soon as we employ a
partial backup dispatch policy in any emergency service system, and put an upper limit on
the allowable distance between a call for service and the server dispatched to the call, a skill-
based routing is observed since only a certain types of calls, in this case calls close enough to
each server, can be processed by each server. The queuing system with partial service can
then be used to model the actual system.

In addition to the number of servers and the type of routing, we also need to know what
happens to customers who find no free (available) servers upon arrival. In a loss system or a
queuing system with no waiting area, that is with zero queue capacity, customers who find
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no available servers upon arrival will leave without receiving service. We will refer to these
customers as lost customers or calls. The significance of loss systems in practical application
will be discussed later in this chapter. In a system with a queue discipline, sometimes simply
referred to as a queuing system, customers who find no free servers upon arrival will join a
queue of waiting customers who will later enter service one at a time as servers finish their
current jobs and become available again. The order in which these waiting customers are
processed by the servers is also specified in most cases as the scheduling policy or the service
discipline. For instance, with a First-come-first-served (FCFS) service policy, the waiting
customer with the earliest arrival time (hence the longest waiting time) will enter service
first. This is of course the exact opposite of a First-come-last-served (FCLS) policy. Other
common scheduling policies include Service-in-random-order (SIRO) and shortest-job-first
(SJF). In all of these service disciplines, a server can process one job at a time; however,
a service discipline may allow for servers to work on multiple jobs at the same time; for
example, in a processor sharing policy, all arriving customers enter service immediately with
the total service capacity equally shared between them. A computer CPU working on several
computing jobs with equal priorities is an example of a system with processor sharing policy.

A priority queue is a queuing system with multiple customer types (or classes) each with
its own priority level in entering service. The scheduling policy within each priority can be
also specified. Priority queues can be either pre-emptive or non-preemptive. In a pre-emptive
priority queue, a job in service can be interrupted by an arriving customer with a higher
priority. In a non-preemptive priority, on the other hand, higher priority customers cannot
interrupt any ongoing jobs even those with lower priorities. In either case, it is often assumed
that no work is wasted as the service to the lower priority job is presumed from where it
was left once the higher priority job is finished. Pre-emptive priority queues are most often
encountered in computer systems, for example, when lower priority computing tasks are
processed only in time periods when no higher priority jobs exist. The priority emergency
service systems we consider in this thesis, however, are all of the non-preemptive type. It
should be easy to see how dropping a lower priority patient or customer in favor of a more
critical call can be impractical, unreasonable and wasteful of system resources in an actual
emergency service system.

Kendall’s notation proposed by D. G. Kendall in 1953 is a standard method of specifying
details of a single queuing node. The original Kendall’s notation describes the queuing node
using three elements written as A/S/c, where A describes the distribution of times between
successive job arrivals, S describes the distribution of service times (time to complete a
single job), and c is the number of servers. The possible values for A and C pertinent
to our work here are: M, specifying a Markovian or memory-less process which basically
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indicates an exponential distribution for the times between successive arrivals (that is A=M)
or successive job completions of each server (that is S=M); D, specifying a deterministic
time between successive job arrivals (that is A=D) or deterministic service times (that is
S=D); and G, specifying a general distribution for the inter-arrival times (that is A=G) or
service times (that is S=G). This basic notation has been extended since its introduction; in
particular, we will use the extended notation A/S/c/K where K is the capacity of the system
defined as the maximum number of customers in service plus those in the waiting area; in
particular, a loss system where queues are not allowed is represented as A/S/c/c, indicating
a maximum of c customers in system and hence zero waiting line capacity, and a queuing
system with no limit on the number of waiting customers is denoted by A/S/c/∞.

Throughout the text, we will deal with basic M/M/N/N and M/M/N/∞models that indicate
exponential inter-arrival times, exponential service times, N servers, and a maximum system
capacity of either N (implying a zero waiting line capacity; that is, a loss system) or infinity
(indicating a queuing system with unlimited number of waiting customers). We note that an
exponentially distributed time between successive arrivals with a mean value of 1/λ indicates
that the arrival of customers is governed by a Poisson process with intensity parameter λ
that is also equal to the average number of arrivals per unit time. Likewise, an exponentially
distributed service time with a mean value of 1/µ indicates a service rate of µ defined as the
average number of jobs a server can complete per unit time when working non-stop during
a busy period. A busy period, as the name suggests, is defined as a period of time during
which the servers are busy.

For the M/M/N/N system, also known as the Erlang-B model, the probability of n servers
being busy is given as

p(n) = (λ/µ)nn!∑N
i=0(λ/µ)ii!

, n = 0, 1, · · · , N. (1.1)

Since this is a loss system and no waiting queues are allowed, the probability that n =
0, 1, · · · , N customers are in the system (receiving service) is also given by (1.1). The blocking
probability or the loss probability is the probability of an arriving customer finding all servers
simultaneously busy and thus not being able to receive service, and is given by the Erlang-B
formula; that is

PB = (λ/µ)NN !∑N
i=0(λ/µ)ii!

.

The probability of k = 0, 1, · · · customer being in an M/M/N/∞ queue, also known as the
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Erlang-C model, is obtained as

p(k) =


(λ/µ)k
k! p0 0 < k < N ,

(λ/µ)kNN−k

N ! p0 N ≤ k ,
k = 0, 1, · · · ,

with p0 the probability of no customers in service (all servers free) given by

p0 =
[

(λ/µ)N
N !

1
1− λ/Nµ +

N−1∑
i=0

(λ/µ)i
i!

]−1

.

The number of customers in system includes those in service and those waiting in queue;
therefore, k > N customers in system indicates a queue of k −N waiting customers and N
customers in service. The queue probability or the probability of an arriving customer finding
all servers occupied and thus being forced to join the queue is given by the Erlang-C formula;
that is

PQ =
[
1 + (1− λ

Nµ
) N !
(λ/µ)N

N−1∑
i=0

(λ/µ)i
i!

]−1

.

Finally, the average time a customer spends in system is

Tsystem = PB
Nµ− λ

+ 1
µ
,

where the first and second terms are the the average time spent in queue and in service,
respectively.

1.1.2 Spatially distributed service systems

The emergency service systems we consider in this thesis belong to the class of spatially
distributed service systems. Besides emergency service systems (such as Emergency Medical
Services (EMS), fire and police), other examples of specially distributed service systems in
an urban environment include door-to-door pickup and delivery services (for example, mail
delivery, waste collection), community service centers (for example, libraries, outpatient clin-
ics, social work centers), and transportation services (for example, bus and subway services,
taxicab services). Similar to regular queuing systems, congestion is likely to arise in spatially
distributed service systems because of the uncertainties in demand, service requirements and
the finite amount of resources allocated to providing those services. For the spatially dis-
tributed systems, however, uncertainties appear not only in the arrival time and the duration
of requested services, but also in the location of the demand for service as well; therefore, the
geometric structure of the service area, which is the city or part of the city, will have a sig-
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nificant impact on the system performance. While the spatial nature of demand distribution
usually requires tools from geometric probability, the congestion inherent in these systems
calls for a queuing theory type of analysis. These systems are therefore sometimes referred
to as spatially distributed queues.

There are two main types of spatially distributed service systems. In a server-to-customer
system, servers travel to customers’ locations to provide the requested services. Emergency
service systems and mail delivery are examples of this category. In a customer-to-server
system, customers have to travel to server locations such as a public library or a clinic, to re-
ceive service. The emergency service systems we focus on in this thesis are server-to-customer
systems, where servers are the mobile response units or emergency vehicles distributed over
the service area (or service region) each with its own specified waiting location (or station).
Requests (or demand, or calls) for service arrive from within the service area with a given
distribution. These are the customers of the service system. The distribution of the demand
over the service area is usually represented as a set of demand points (or nodes, zones, atoms)
scattered over the service region each with a given arrival rate. This is a discrete approxi-
mation of the actual distribution of demand and can be constructed based on the historical
data of the actual arrivals to the service system over a period of time. The total arrival rate
is then equal to the sum of the arrivals from the demand zones.

In response to a call arrival, the dispatcher selects a response unit (most probably the closest
to the call location) and assigns (dispatches) it to the call. Service time is measured from
the moment the server is assigned to a call until the call is released either at the scene of the
emergency or at the hospital and the server is available again. Depending on the system,
service time may be broken down into several components or steps. In the most general
case, this includes getting ready to start the travel to the call location (becoming en-route),
travelling to the call location, providing the on-scene care, transporting the patient to a
nearby hospital or care center, if needed, and a turnaround stage where the vehicle prepares
to get back in service again. The service time is thus equal to the sum of the times spent in
each of these steps. Information about the distributions of the service time components may
be available from observations of the real system or from empirical models developed for this
purpose. Figure 1.1 shows a typical break-down of service time into its components.

Since the system is spatially distributed, the distribution of service time components may
depend on the locations of the server and the customer (in addition to service-to-service vari-
ations captured by the distribution). The most obviously location-dependent components of
the service time are the travel and transport times. In the regular queuing models, servers
are indistinguishable; that is, they do not possess any characteristics beside being available
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Figure 1.1 Service time components

or free, to identify them from one another. In a spatially distributed queue, however, servers
are indeed distinguishable by their individual characteristics such as different average service
times and workloads. The average service times will be different because of the different
dispatch rates which are the long-run average frequency with which each server responds to
calls from each demand zone. Different dispatch rates lead to different average travel and
transport times, and consequently different average service times. For example, a server
located in a part of service region with higher demand density will have to travel shorter
distances and thus will have a lower average service time than another server located in an
area with lower demand density. The average service time of a given server multiplied by
the average number of dispatches sending that server to respond to calls gives the average
fraction of time the server is busy. This is called the utilization or the average workload of
the server. Therefore, servers may have different workloads in addition to different average
service times. The main goal of the analysis of a spatially distributed system with a given
configuration (set of demand locations with intensities and the set of servers) therefore is to
predict the dispatch rates of each server to different demand locations. The server-specific
parameters (such as the average service time, the average travel time, and the average work-
load) and the system performance measure can be then easily computed once the dispatch
rates are known. The performance of emergency service systems are usually, and not surpris-
ingly, a measure of the random response time, which is defined as the time period from the
moment a call is received until the emergency vehicle arrives at the call location. Typically,
desired performance objectives for emergency systems are specified as a minimum fraction of
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dispatches with response times below a given threshold.

Emergency service systems may operate as loss or queuing systems. The queuing system
is suitable when the system under consideration is the only one capable of providing the
required services and the nature of the emergency allows for delays in service caused by
possible queuing. An example of this scenario would be a fleet of roadside emergency repair
vehicles deployed along a highway where occasional delays in the arrival of the repair vehicles
would not result in critically negative outcomes. The loss system, on the other hand, is
typically used to represent a primary service provider backed up by one or more supporting
systems operating in parallel. This might be the case, for example, for the main ambulance
service operating in a city with the additional support from fire engines and police patrol
cars. In this scenario, any urgent call that the ambulance service is not able to respond to
immediately, will be handed off to the backup service, either the police or fire, which will then
try to respond to the call in the shortest time possible. Therefore, from the perspective of
the main system, the call is in fact lost, although in reality, it has been transferred to another
system to avoid queuing delays and improve the response time. Service systems dealing with
highly critical emergencies, such as EMS dealing with incidents of cardiac arrests, are best
modelled as loss systems.

1.1.3 Discrete event simulation

In a discrete event simulation, we model the operations of a real system as a sequence of events
each happening in a specific instant in time (occurrence time) and potentially triggering a
change of the system state. The state of the system, regardless of its definition, will stay
the same between consecutive events. This allows us to jump from each event to the next
while keeping track of the evolution of the system state over the entire simulation time. More
specifically, starting from an initial system state and a sequence of upcoming events, we keep
moving the simulation time to the next upcoming event while updating the system state and
the sequence of upcoming events accordingly and following the protocols and rules governing
the real system being simulated. For the type of emergency service systems considered in
Chapter 4, the state of the system is comprised of the server locations, busy statuses of each
server, and a list of waiting customers with their locations and priority levels. As mentioned
earlier, the service time is often broken into a sequence of components which typically include
getting ready to travel to the call location, travelling to the call location, delivering on-scene
care, transporting the patient to a hospital if needed, and traveling back to the station.
The events in this case are therefore a new call arriving or a busy server finishing a step
of an ongoing service and moving on to the next stage. A busy server becomes idle when
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it finishes the last step of its current service. Every time the simulation clock (simulated
time) is moved to the occurrence time of the next event, we generate a new event of that
type and place it in the sequence of upcoming events. Random number generators are used
to obtain the occurrence time and other properties of these newly generated events. For
instance, if the current event is a new call arrival, we construct a new call arrival event
by randomly generating values for its location, priority and arrival time and then place this
newly constructed event in the sequence of upcoming events. In addition, if the new arrival is
compatible with a server, then we assign the server to the call and construct a server becomes
en-route event with an occurrence time determined by adding the randomly generated en-
route time (based on the distribution and the average value given for the en-route time)
to the current simulation time, and add this new event to the sequence of upcoming events.
Similarly, if the current event is a server finishing a service step while there are still more steps
to perform, then we assign a randomly generated value to the duration of the next service
step based on the parameters given for that specific component of service time (specified
distribution, average value, etc) and add the corresponding event to the sequence of upcoming
events. For instance, if the current event is a server starting travel to call location, then we
compute the travel time based on a travel time estimation model and the distance between
the current location of the server (usually the waiting station) and the call location. A server
arrives at the call location event with the occurrence time equal to the current time plus
the travel time, is then added to the sequence of upcoming events. With the sequence of
upcoming events updated, we will have the time of the next event. The next step is to
update the system state for the time period between the current and the next event. For
example, for an event of a new call arrival, the closest compatible server will change status
from free to assigned but not yet en route. If the new call arrival is not compatible with
any server, then neither the system state nor the sequence of upcoming events will change in
this period. Beside this basic framework, we may have other data structures to keep track
of the simulation time, the number of iterations or to compute the desired outputs either as
average values or distributions. This simulation approach in which we jump directly to the
time of the next event is called a next-event time progression which is used in the simulation
experiments of Chapter 4. The general framework of a discrete event simulation is depicted
in Figure 1.2.

There is, however, another approach called fixed-increment time progression in which the
simulation time advances in small constant steps with the system state updated based on
the events happening during each time step. This approach does not allow for jumps to the
occurrence time of the next event and hence can be considerably slower than the simulation
with a next-event time progression; however, if the simulation of the system requires detailed
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Figure 1.2 General flowchart of discrete event simulation
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instantaneous information on the processes or activities happening within a given time period,
then a fixed-increment time progression might be needed to simulate these activities in an
accurate fashion. For example, one can use a fixed-increment time simulation to study the
traffic in a network of roads. In this case, the system state will be the set of vehicles in the
network and their locations and travel velocities or accelerations which should be updated in
small enough time increments to provide an accurate representation of the dynamics and flow
of vehicles moving around the network. In Chapter 6, we treat emergency service systems
with dynamic relocation in which the dispatching decisions are based on the instantaneous
locations of the moving response units and their distances from the random arrivals to the
system. Therefore, we use a fixed-increment time progression to keep track of the current
location of any of the moving response units along their respective travel paths. On the
other hand, we still need to make system state updates at times where events such as call
arrivals and service completions happen. This leads to a simulation model with hybrid time
progression in which the simulation time follows a next-event progression when no vehicles
are moving, and a fixed-step time increment is used between consecutive events if at least
one response unit is relocating. This allows us to minimize the computational expense of the
simulation by applying the fixed-increment time progression only when it is needed.

1.1.4 Analytical versus simulation models

Virtually, every real-world system can be studied through an appropriate simulation model
developed to replicate the inner mechanisms of the system with a desired level of detail.
The wide applicability and great flexibility of simulation models are the two attractive fea-
tures of analysis through simulation. The usual downside of simulation studies is the high
computational expense which naturally increases with increasing level of detail.

We can also develop or use existing mathematical models, such as those proposed in this
thesis, that also aim at describing a real system and replicating or approximating its behavior
under different operational conditions and parameters. These analytical models are usually
applicable in a much more limited range of situations and typically offer far less approximation
accuracy with equally limited room for extended realism. As is often the case, the very
existence of an analytical model for describing a real-world system or operation relies on
making simplifying assumptions about the system at hand that can be potentially quite
unrealistic. For example, the assumptions of Poisson arrivals and exponentially distributed
service times are both frequently encountered in queuing theory; while the former can be
a reasonable approximation of the arrival process in most applications, this is not the case
for the latter as exponential distributions can rarely be a realistic approximation of service
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times in real-world systems. On the plus side, the computational effort needed for analysing
a system with analytical models is usually much less than performing the same analysis
using simulation. This trade-off between the accuracy and flexibility of modelling and the
associated computational expense, justifies the importance of these approaches as individual
tools in analysis and also points towards hybrid analytical-simulation approaches in which
we exploit the advantages of each method.

In many application scenarios in which a highly accurate and detailed representation of a
system is desired, a simulation model may be the only viable option. For example, a one-off
evaluation of a fixed design or set of decision variables for a given problem can very well be
performed via an arbitrarily detailed simulation model; in this case, the high level of accuracy
and the potentially long run times will be well justified without posing a significant problem.
On the other hand, analytical models have the unique ability of immediately revealing the
mathematical relationships between the key system parameters and thus will be the obvious
choice if gaining fundamental insight into the problem at hand is desired. It is still possible to
obtain this kind of knowledge about the interplay of system parameters through simulation
as well; however, this makes for a less rigorous and elegant approach and usually involve a
large set of numerical experiments that can become prohibitive depending on the problem
scale, level of detail, and the number of experiments required.

In addition to the exclusive applications of simulation and analytical models, the accuracy of
the first approach and the low computational cost of the second can be taken advantage of
through a standard hybrid method of solving optimization problems. This solution framework
consists of two major steps; in the first step, we solve the optimization (prescriptive) problem
based on an analytical descriptive model of the system at hand. The solutions obtained in the
first step are then used to construct a restricted search space which is considerably smaller
than the original search space and hopefully contains the optimal solution. A simulation-
based optimization or scenario evaluation is then used to further explore this restricted
solution space and improve upon the primary results. This hybrid approach is particularly
useful in situations where the analytical approximation models used in the analysis do not
adequately reflect the realities of the system under study and thus lead to solutions with
questionable reliability. By using the hybrid analytical-simulation approach, we identify the
set of promising solution candidates via the fast analytical approximation model and then
use a detailed simulation study to screen this small set of tentative solutions and select the
best one.
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1.2 Research objectives

With the preliminaries given in the previous section, we are now in position to state the main
purpose and objective of the current study. The models and tools proposed in the literature
for the analysis of spatially distributed service systems rely on the fundamental assumption
that each server can respond to calls from any demand location. We refer to this assumption
as full backups as opposed to what we call partial backups where only a subset of servers are
eligible for dispatch to calls from a given demand location.

We observe that the assumption of full backups can be unrealistic and ineffective in reflecting
the behavior of dispatchers in real emergency systems and thus limit the range of applications
of the analytical models based on this assumption. This motivates us to close this gap and
develop analytical models for effective prediction of the behavior of static emergency system
deployments with partial backup dispatching policies. As discussed before, analytical models
of static deployments will enable us to analyze non-static deployments as well.

The basic reason why the assumption of full backups does not generally agree with real-life
emergency service operations directs us towards our second objective. The key observation
here is that human dispatchers do not tend to send servers over long distances simply be-
cause it may lead to a waste of resources and a degradation of service quality. In other words,
placing upper limits on travel distances as reflected in partial backup policies should be seen
as a naturally and intuitively efficient way of using system resources. We are thus interested
in quantifying the relationship between the system performance and dispatch policies that
follow partial backups and put limits on travel distances. To this end, we develop an ana-
lytical descriptive model of an emergency service system with dynamic real-time relocation
and partial backup dispatching policies. Using this model, we can then take the basic config-
uration of the system along with the expected outcome as a function of response time, and
determine if and how the system performance can be improved by employing a partial backup
dispatch policy. The goal here is to immediately reveal any opportunities for performance
optimization via partial backups rather than an accurate and detailed representation of the
system.

The above models complement each other as first steps towards our general goal of more effi-
cient and realistic study of emergency service systems and consequently better management
strategies for achieving the best possible performance.
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1.3 Plan of the thesis

The thesis is organized as follows. A brief literature review is given in Chapter 4.2 followed
by a synthesis of the work as a whole provided in Chapter 3. In Chapter 4, we give our
first mathematical tool for priority emergency service systems with static deployments and
partial backups. We consider emergency service systems with real-time dynamic relocation
and partial backup dispatch policies in Chapter 6 and present the our second analytical model.
Chapter 5 and Chapter 7 provide supplementary results that we use in our development of
the above mentioned models. Finally, a general discussion of the results is given in Chapter 8
followed by concluding remarks in Chapter 9.

We note that the content of Chapter 4 has been published as Karimi et al. (2018).
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CHAPTER 2 LITERATURE REVIEW

The relevant literature has been cited throughout the text. Therefore, to avoid repetition,
we suffice to briefly summarize the survey papers covering topics discussed in this thesis.We
start by papers dealing with the general topic of this thesis, which is the management of
emergency service system or in particular emergency medical systems. A recent survey of
EMS optimization models is presented by Bélanger et al. (2019) which focuses on the lo-
cation, relocation, and dispatching decisions and the interaction between these important
aspects of EMS management. Aringhieri et al. (2017) provide an extensive and integrated
review of the literature covering not only the location, relocation, and dispatching decisions,
but also other segments of the emergency management and care pathway such as demand
forecasting, routing policies, emergency department management, and work-flow planning.
Earlier reviews of the EMS management can be found in Ingolfsson (2013), Bélanger et al.
(2012), and Brotcorne et al. (2003). These survey papers focus on the planning and manage-
ment challenges surrounding EMS operations or the operations research tools developed to
address those challenges. Simulation models as an important tool, however, are usually not
treated with the same detail as the mathematical models. Fortunately, Aboueljinane et al.
(2013) cover this front and provide an overview of the simulation models applied to EMS
operations.

In Chapter 4 we extend the approximate form of the hypercube queuing model. The hy-
percube model was originally described by Larson (1974) to replace simulation models in
estimation of the steady state behavior of spatially distributed systems. He also proposed
an approximation of this model to overcome the prohibitive computational costs of the full
model (Larson 1975). Excellent reviews of the published work on the development of this
descriptive model and its approximate form is presented in Larson (2013) and Galvao and
Morabito (2008). In Chapter 4 we cover the literature related to the approximate form of
the hypercube model in more detail and put our contribution in perspective.

In Chapter 5 we deal with distances between random points which is an extremely vast
topic with an extensive literature scattered across many different disciplines ranging from
physics to engineering and operations research. As a result, many of the results have been
rediscovered by different authors. Fortunately, Moltchanov (2012) makes an attempt at
providing a unifying overview of the main concepts and the basic results. Tong et al. (2017)
gives a more recent discussion of the state-of-the-art approaches in modelling of distance
distributions, their applications in ad-hoc network problems, and open challenges.



20

In Chapter 6 we consider emergency service systems with dynamic relocation and study
the effects of operation under a partial backup dispatch policy instead of a the usual full-
backup policy. To the best of our knowledge this concept has not been proposed in the
open literature. Finally, extensions of the Little’s law for queuing systems operating under
certain conditions are given in Chapter 7 that connect the number of waiting customers and
the duration of the queuing delay conditional on the system state observed upon arrival or
while waiting. We refer the reader to Little (2011) which covers the major developments of
the law alongside a clear demonstration of the concept and applications. The main result
we derive in Chapter 7 is a form of distributional Little’s law between the queue length and
waiting times conditional on the system states upon arrival or during the wait. The original
distributional Little’s law was proposed by Haji and Newell (1971) while its importance and
applications are discussed in detail by Keilson and Servi (1988) and Bertsimas and Nakazato
(1995).
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CHAPTER 3 SYNTHESIS OF THE WORK AS A WHOLE

As stated in the introduction, the main theme of this thesis is the potential performance
enhancements possible by adopting an operation policy in which a maximum limit is imposed
on the distance between the location of an incoming request for emergency services and
the response units that a dispatcher will consider for dispatch. This is in contrast to the
traditional full backup policy in which all response units will be dispatch candidates regardless
of their distance from the scene of the incident. The chapters in this text are thus organized
around this central idea and supporting ideas which are used as intermediate steps towards
the developments of the main mathematical models presented in Chapter 4 and 6 in which we
look into mathematical models incorporating partial backup dispatch policies in emergency
service systems with static deployments and systems with dynamic relocation, respectively.

The hypercube queuing model of Larson (1974) and its less computationally expensive ap-
proximate form proposed by Larson (1975) himself, remains the standard method of mod-
elling emergency systems with static deployments. A natural approach to incorporate partial
backups into systems with static deployments, will be o extend the hypercube queuing model
to allow for partial backups. Now, the hypercube queuing model uses an M/M/[N] queuing
model as its core element to estimate the distribution of the number of busy response units;
therefore, our extension of the hypercube queuing model naturally leads to an extension of
the M/M/[N] queuing model to incorporate the partial backup dispatch policy. This has
been done in Chapter 4 by introducing the queuing systems with partial service which re-
places the M/M/[N] model of the hypercube model. To analyze the steady state properties
of the queuing model with partial service, we used the theory of skill-based queues which al-
low product-form solutions for the state probabilities. Therefore, Chapter 4 is self-contained
and does not depend on the material presented elsewhere in the thesis. However, in earlier
versions of the model presented in Chapter 4, to derive the state probabilities of the queuing
model with partial service, we used an alternative approach based on the extensions of the
Little’s law presented in Chapter 7. Beside providing an alternative method of obtaining the
state probabilities of the queuing model with partial service, we consider the results given
in Chapter 7 to be of independent theoretical interest. In addition, we conjecture that these
results may be used to derive an approximation of the skill-based queuing systems with gen-
eral configurations, although we do not pursue this possibility in the current version of this
thesis.

In Chapter 6 the central idea of partial backups is extended to emergency systems with
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dynamic relocation. The mathematical framework we develop for analysis of these systems
is significantly more theoretical than the model presented in Chapter 4 and is based on
simplifying assumptions we make; in particular, uniformity of the distribution of the call
locations and the response units. This model requires closed-form expressions for the distri-
bution of distances neighbors. Simple and classic expressions for these distributions obtained
through a Poisson point process assumption already exist in the literature and we do use
these equations in our derivation of the model. However, we still opt to obtain and use more
accurate and theoretically valid distance distributions alongside the expression based on the
Poisson point process. This is due to the fact that the model developed for systems with
dynamic relocation, similar to the previous model in Chapter 4, is based on the queuing
model with partial service and our numerical experiments shows that distance distributions
with boundary effects obtained in Chapter 5 leads to significantly better approximations to
the input parameters to the queue with partial service. We note that, unlike the steps in
which we resort to Poisson-based expressions, the use of the fairly cumbersome edge-corrected
expressions in this fashion constitutes a purely numerical step and thus not complicate the
overall algorithm. Therefore, we can consider the material in Chapter 5 as a pre-requisite to
Chapter 6 within the context of this thesis. However, a quick survey of the literature will
reveal the general interest in and wide applications of results related to inter-node distance
distributions in many different field s of science and engineering. Although the most interest
in the topic has been drawn by applications in wireless communication and ad-hoc random
networks, the work presented in Chapter 6 can be considered an application of such results
within the field of operations research.
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CHAPTER 4 ARTICLE 1: PERFORMANCE APPROXIMATION OF
EMERGENCY SERVICE SYSTEMS WITH PRIORITIES AND PARTIAL

BACKUPS 1

Abstract

An extension of Larson’s approximate hypercube procedure is presented for priority emer-
gency service systems with partial backups where requests for service with a given origin and
priority can be responded to by a certain subset of response units. We introduce and analyze
the family of queuing and loss systems with partial service and use them to approximate
the distribution of the number of busy response units which in turn enables us to estimate
the average server workloads, immediate and delayed dispatch rates, and waiting delays as
system performance measures. We consider systems with zero and infinite queue capacities
and let the dispatching policies and service times depend on call priority and customer and
server locations. The validity of the approximation model and its computational aspects are
studied through numerous tests and a realistic application of locating a fleet of ambulances
in downtown Montreal, Canada.
keywords: emergency service systems, partial backup, hypercube queuing model, spatially
distributed systems, server-to-customer systems, priority queues

4.1 Introduction

Server-to-Customer systems represent an important class of spatially distributed queuing sys-
tems due to their strong presence in modern urban settings ranging from Emergency Service
Systems (ESS) including ambulance, fire, police, and repair, to non-emergency applications
such as non-scheduled home visits, demand-responsive delivery operations, and dial-a-ride
transport systems. The nature of ESSs, which involves risks to human lives, has made them
a focal point of study by the operations research community over the past few decades as
evidenced by the substantial research effort targeted at modelling, designing, and analyzing
such systems in different application settings.

An important aspect of the strategic or operational design of ESSs is the ability to accurately
predict the equilibrium behavior and hence the expected performance of the system with a

1Published as Karimi, Akbar, Michel Gendreau, and Vedat Verter. "Performance Approximation of
Emergency Service Systems with Priorities and Partial Backups." Transportation Science 52.5 (2018): 1235-
1252.
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given configuration. Discrete-event simulation can be used for this purpose and offers great
flexibility in detailed modelling of the system at hand; however, its computational cost can
be prohibitive in many practical applications. Fortunately, there exist analytical alternatives
to simulation, with reduced computational overhead and reasonable accuracy.

Larson (1974) was the first to view ESS in urban settings as spatially distributed queues,
and developed the hypercube queuing model as a descriptive tool for evaluating their perfor-
mance. For an ESS with N servers, the model sets up a system of 2N linear equations the
solution of which gives the equilibrium probabilities of system states and makes it possible to
compute a host of region-wide and server-specific performance measures, such as individual
server workloads and the rates at which servers are dispatched to different demand locations.
However, the exponential growth of the computational expense of the hypercube model with
the fleet size may hinder its application to real life systems with large numbers of response
units. This has motivated researchers to develop more tractable approximate alternatives.
Larson (1975) was also the first to propose such an approximate procedure where an iterative
algorithm is used to solve a system of N nonlinear equations for the individual server work-
loads (instead of the 2N state probabilities of the exact model). The development is based
on approximating the spatially distributed system with an M/M/N queue or an M/M/N/N
loss system (depending on whether queues are allowed or not), and unlike the exact model,
assumes identical mean service rates. Server dependency has also been approximately taken
into account through a set of correction factors.

In this paper, we develop approximation algorithms for both loss and queuing ESSs with
two main features. First, we allow multiple call types and priority processing of the waiting
requests for the case where queues are allowed. Second, we relax the assumption of full
backups, in which any server can travel to any demand location; instead, we allow arbitrary
partial backups where each server can only be dispatched to calls from its own predetermined
and priority-specific subset of demand locations. The service times in our models can depend
on the customer and server locations and also on the priority level of the request for service.
We believe the relaxation of these restricting assumptions represents important steps toward
increased realism and applicability of such approximation algorithms.

The assumption of full or total backups, rarely reflects the complex dispatching protocols of
the real systems and hence can substantially limit the realism of the descriptive modelling,
and as shown by our experiments, may lead to unreliable performance approximations. The
paramount importance of the quickness of service delivery in ESSs naturally imposes an upper
limit on the customer proximity to the responding server beyond which the quality or outcome
of the delivered service can be severely degraded. This is reflected in the notion of coverage
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thresholds in location science literature and also in the behaviour of real systems where the
distance between the customers and servers is often a crucial factor in making dispatching
decisions. To the best of our knowledge, there exists no published general approximation
method to deal with partial backups in server-to-customer systems or priorities in the waiting
lines.

The original hypercube model and its approximation can handle a specific type of priority
through the procedure of layering, in which demand zones are split into separate sub-nodes
each generating a certain type of request and with their own list of preferred servers. However,
this basic scheme only considers immediate dispatches and cannot be used to adequately
represent the real life ESSs where the waiting customers are processed according to their
priority levels. A number of studies mentioned in Section 4.2 present special applications of
the exact hypercube model with partial backups, priorities in the queue, or both; however,
our work is the first to provide the same extension in the approximate model.

The concurrent relaxation of the assumption of full backups and FCFS queue discipline in
the approximate hypercube context, not only provides unique analytical and computational
challenges, but also paves the way for more sophisticated and realistic modelling and analysis
of ESSs for which these simplifying assumptions clearly do not hold. A typical EMS operation
with a heterogeneous fleet, consisting of basic life support (BLS) vehicles and advanced life
support (ALS) ambulances is an example of such a system where the ALS vehicles only cover
higher priority service requests residing within a given distance while the BLS units can
respond to any call within a certain (and possibly different) distance threshold. The ALS
units might be given a priority over BLS units in responding to demand points covered by
both vehicle types; alternatively, unit types and distances from the call location can be used
together to determine optimal dispatching orders for the best service quality.

The paper is organized as follows: Section 4.2 gives a brief review of the relevant literature
followed by the formulation of our approximation model in Section 4.3. The approximation
algorithm is outlined in Section 4.4 and in Section 4.5, we describe our experimental setup
and observations. Concluding remarks are given in Section 4.6 along with possible directions
for future development.

4.2 Literature Review

We first review the notable assumptions underlying Larson’s hypercube queuing model and
its approximate alternative. Both procedures assume that demand for service is distributed
over a given region broken down into a number of geographic atoms from which requests for
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service arrive at known mean rates following a Poisson process and independently of any other
atom. There are N response units that can be dispatched to calls coming from any atom
(full backup assumption). The waiting locations of the servers (when they are idle) as well
as the mean travel times between each waiting location and atom are assumed to be, at least
probabilistically, known. In response to each incoming call for service, exactly one server
is dispatched according to a fixed-preference dispatch procedure, where the first available
server in a given atom-specific ordered list of all response units is dispatched. If there are
no free units, the call is assumed to be added to a waiting line of infinite capacity, which in
case of the exact model is depleted according to a queue discipline that does not depend on
the expected service time or the call origin, for example First-Come, First-Served (FCFS),
Last-Come-First-Served (LCFS), or random. The approximate model is more restricting in
this regard as it only allows for an FCFS queue discipline. Negative exponential service times
with known average values are assumed that include the travel time, the on-scene time, and
the follow-up time. It is also assumed that the service time variation is mostly caused by
on-scene and follow-up times rather than travel times. The exact hypercube model allows for
server-specific mean service rates whereas the approximate procedure assumes identical mean
service rates for all response units, although the contribution of travel times to the service
rates can be accounted for through an iterative process called mean service time calibration.

Both the exact and approximate hypercube models have been employed, modified, and ex-
tended in various ways. Reviews of the relevant developments can be found in Larson (2013)
and Galvao and Morabito (2008). We first briefly mention related applications or extensions
of the exact model and then review the notable extensions upon the original approximate
procedure. Atkinson et al. (2006) used a loss hypercube model to describe deployment of an
Emergency Medical Services (EMS) along a highway where calls can only be serviced by the
two neighboring ambulances. The resulting exact model with 2N states was then approx-
imately solved by heuristic algorithms to compute the probability of a call being lost as a
result of both neighboring units being busy. This model was updated in Atkinson et al. (2008)
to have each demand location covered by two primary and two secondary ambulances with
different service times leading to an exact formulation with 3N states which was again solved
heuristically to approximate the loss probability. Iannoni and Morabito (2007) presents an-
other example of an EMS on highways where only the first and second closest ambulances are
allowed to respond to a call, and a request for service will be lost if both of these ambulances
are busy at the arrival moment. A recent paper by de Souza et al. (2015) extends the exact
hypercube model to account for priorities in the queue of waiting customers. This work
has been recently extended in Rodrigues et al. (2017) to incorporate both partial backups
and queue priorities in the exact hypercube model. These studies reveal that, despite its
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attractive simplicity, the exact hypercube model can be computationally impractical even
for small-sized systems, motivating researchers to develop general approximate alternatives
as we review next.

Larson and Mcknew (1982) developed extensions of the original exact and approximate hy-
percube queuing models in a police patrol context and allowed three server states: patrol,
busy with patrol-initiated activity, and busy with a call for service. They allowed the mean
service times to depend on both servers and customer types in their exact model and only
on customer types in their approximate version. Jarvis (1985) proposed an extended model
for loss systems where the mean service times were allowed to depend on the server and cus-
tomer locations. His formulation also allowed general service time distributions since these
loss systems with distinguishable servers were shown to be relatively insensitive to the shape
of the service time distribution beyond its mean. Birge and Pollock (1989) proposed a de-
composition procedure in which the large linear system of equations corresponding to state
probabilities of service systems is replaced by a set of non-linear equations and then solved
iteratively. Their approach is approximate in that the servers are assumed independent.
Goldberg and Szidarovszky (1991) presented detailed convergence results for two fixed-point
iteration methods assuming independent servers; they considered loss systems with server
and customer dependent service times and showed that the independence assumption can
lead to biased performance measures especially in high system utilization.

As for the dispatch preference ties, which most often happen in case of co-located servers
sharing a waiting station, there are two works to note: the work of Burwell et al. (1993) who
extended the loss models of Jarvis (1985) and Larson (1975) to explicitly incorporate general
dispatch ties through their internal stacking method and its slightly modified alternative;
these algorithms were aimed to alleviate the storage and coding complexity issues involved
in the so-called stacking procedure of accommodating dispatch ties in the hypercube models
through software. Their formulation is based on individual servers and hence employs Larson
correction factors to approximate server dependency. Budge et al. (2009), however, instead
of general dispatch ties, extends the loss model of Jarvis (1985) to allow for multiple servers
in each waiting station using a formulation based of station-specific average workload and
dispatch rates instead of server-specific measures. They derived a modified set of correction
factors to account for server cooperation and also gave a theoretical convergence guarantee
for a special case of their procedure.
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4.3 Formulation

In this section, we present our approximation model and the necessary formulation. The
problem definition and preliminary assumptions are given first followed by the approxima-
tion of the distribution of the number of busy servers and the effects of cooperation and
dependency among them. We then estimate the immediate and delayed dispatch rates of
servers to demand locations.

We assume that the area of interest is partitioned into M distinct demand zones, each
generating calls that can be classified into K priority levels. Requests for service with priority
p from demand zone i arrive as Poisson streams with known average rates λip. There are
N mobile servers which respond to calls according to a fixed dispatch policy. For any given
priority level p and demand zone i, there is a predetermined subset of servers which can be
considered for dispatch. Binary variables bijp specify whether server j can respond to priority
p calls from demand zone i (bijp = 1) or not (bijp = 0). If bijp = 1, we may say server j
p-covers demand zone i, or equivalently, server j covers sub-queue (i, p). Letting I, J , and
P respectively be the set of demand locations, servers, and priority classes, and denoting the
number of servers covering sub-queue (i, p) by cip (≤ N) we have

cip =
∑
j∈J

bijp i ∈ I, p ∈ P ,

and the total covered demand λ given by

λ =
∑

i∈I,p∈P
cip>0

λip .

We assume that in response to an incoming call, the dispatcher considers the covering servers
according to a fixed preference order and assigns the first available unit. The k-th preferred
server to dispatch to a priority p call from demand zone i is denoted by l(i, k, p) with k =
1, ..., cip. Auxiliary variables r(i, j, p) are defined to denote the dispatch preference order
of the j-th server when responding to a priority p call coming from demand zone i. By
convention, we set r(i, j, p) = 0 if server j does not p-cover demand zone i, that is bijp = 0.
Similarly, we set l(i, k, p) = 0 for k > cip. Thus, we will have l(i, k, p) = j ⇔ r(i, j, p) = k for
k ≤ cip. As an example, consider a system with three demand zones (M = 3), three servers
(N = 3), and two priority levels (K = 2). If the dispatch preference lists for the priority
one calls coming from demand zones 1, 2, and 3 are respectively given as {2, 3, 1}, {3, 2} and
{1}, then we will have l(1, 1, 1) = 2, l(1, 2, 1) = 3, l(1, 3, 1) = 1, l(2, 1, 1) = 3, l(2, 2, 1) = 2,
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l(2, 3, 1) = 0, l(3, 1, 1) = 1, l(3, 2, 1) = 0, and l(3, 3, 1) = 0, whereas r(1, 1, 1) = 3, r(1, 2, 1) =
1, r(1, 3, 1) = 2, r(2, 1, 1) = 0, r(2, 2, 1) = 2, r(2, 3, 1) = 1, r(3, 1, 1) = 1, r(3, 2, 1) = 0, and
r(3, 3, 1) = 0.

We consider both loss and queuing systems; in the former case, calls arriving while all the
covering servers are occupied will be lost, and in the latter case, they will join the queue of
waiting customers. Because of partial backups, overtaking can happen in this queue when
considered as one single line; however, the service discipline within each sub-queue will be
strictly FCFS. Upon finishing its current job, a server will be dispatched to the longest
waiting among the highest priority queued customers covered by that server, if one exists.

The rates at which priority p calls from demand location i are immediately assigned to a
server or queued (lost in the loss system) are respectively denoted by λIip and λDip, with aIijp
and aDijp the corresponding immediate and delayed dispatch rates to server j. We then have
λip = λIip + λDip, λIip = ∑

j∈J a
I
ijp, and the total (delayed or immediate) dispatch rate of server

j to priority p customers from location i as aijp = aIijp + aDijp. For the system with queues,
we also have λDip = ∑

j∈J a
D
ijp and λip = ∑

j∈J aijp, whereas for loss systems, we interpret λDip
as the mean rate at which calls are lost (rather than queued) and we set aDijp = 0 since no
customers will be dispatched from the queue.

4.3.1 Distribution of the Number of Busy Servers

The approximation will rely on the distribution of the number of busy servers Pn = Pr{Sn},
n = 0, · · · , N , with Sn the event of exactly n servers being busy. In the literature, a simplified
queuing model with identical servers, that is M/M/N or M/M/N/N is usually employed to
approximate the Pn of the spatially distributed system. Our experiments, however, show
that these models are not adequate enough to approximate a system with partial backups
operating at moderate to high workloads. To overcome this issue, we introduce queuing (or
loss) systems with partial service defined below to act as a more accurate proxy to the EMS
with partial backups.

Definition 1. The queuing (loss) system with partial service, denoted by M/M/[N]/∞
(M/M/[N]/LOSS) has N identical servers with i.i.d exponential service times with rate µ
and N customer classes arriving as Poisson streams with rates λc, c = 1, 2, · · · , N , where
each class c customer can receive service from exactly c servers randomly selected upon ar-
rival, independently of other arrivals or properties of the system.

We give the distribution of the number of busy servers of the queuing and loss systems with
partial service in the following theorems which form the basis of our subsequent analysis.
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Theorem 1. The queuing system with partial service (M/M/[N]/∞) will reach steady state
if Nµ > ∑N

c=1 λc with the distribution of the number of busy servers given by

Pn = P0
N !

(N − n)!n!

n−1∏
j=0

N∑
c=1

λc

min{c−1,j}∑
h=max{0,
c+j−N))}

c!(N − c)!
(N + h− c− j)!(j − h)!(c− h)!h!

×
∏
j∈J

j!(N − j)!
N !jµ− j!∑j

c=1 λc
N−c
j−c

n = 1, · · · , N , (4.1)

where

P0 =

1 +
N∑
n=1

N !
(N − n)!n!

n−1∏
j=0

N∑
c=1

λc

min{c−1,j}∑
h=max{0,
c+j−N))}

c!(N − c)!
(N + h− c− j)!(j − h)!(c− h)!h!

×
∏
j∈J

j!(N − j)!
N !jµ− j!∑j

c=1 λc
N−c
j−c

−1

. (4.2)

Theorem 2. The steady state distribution of the number of busy servers in the loss system
with partial service is given by

Pn = P0

n∏
k=1

∑k
c=1 λc(1−

k!(N−c)!
N !(k−c)!) +∑N

c=k+1 λc

kµ
, n = 1, · · · , N (4.3)

with

P0 =
1 +

N∑
n=1

n∏
k=1

∑k
c=1 λc(1−

k!(N−c)!
N !(k−c)!) +∑N

c=k+1 λc

kµ

−1

. (4.4)

The Proofs of Theorems 1 and 2 will be given in Appendix A.

We approximate the distribution of the number of busy servers in our priority EMS with
partial backups using an M/M/[N] model with input parameters

λc =
∑
i∈I

∑
p∈P
cip=c

λip, c = 1, · · · , N , (4.5)

and
µ =

∑
i∈I

∑
j∈J

∑
p∈P aijp∑

i∈I
∑
j∈J

∑
p∈P aijptijp

, (4.6)

whenever known or estimated values for the total dispatch rates aijp and individual ser-
vice times tijp are available. In constructing λc in (4.5), we sum up all the demand (λip)
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from any priority that is covered by exactly c servers. This ignoring of priorities repre-
sents another approximation because unlike the M/M/N queue, the state probabilities of the
prioritized M/M/[N] can differ from the non-priority version; the difference, however, is neg-
ligible and does not affect the accuracy of our calculations in any practical way. To illustrate
this, in Figure 4.1, we compare the state probabilities of a large set of randomly generated
M/M/[N] queues obtained by simulation with those of the equivalent non-priority M/M/N
and M/M/[N] models. Noting an order of magnitude difference in the vertical axes, it is
clear that the non-priority M/M/[N] model approximates the priority M/M/[N] significantly
better than the non-priority M/M/N model with average errors often around 0.5% and rarely
exceeding 1% which we deem quite negligible. This allows us to confidently use the state
probabilities obtained from the M/M/[N] model as an approximation to the distribution of
the number of busy servers in the ESS. Finally, we point out that λc may be zero for some
c; in particular, in a system where each demand location is assigned to exactly c′ servers
(c′ = N for full backups), we have λc′ = λ and λc = 0 for c 6= c′.

Similar to the original approximate hypercube model, the accuracy of Pn estimation decreases
when the individual server workloads

ρj =
∑
i∈I

∑
p∈P

aijptijp, j ∈ J ,

are not close enough to the average server workload

ρ = 1
N

∑
j∈J

ρj =
∑
i∈I

∑
j∈J

∑
p∈P

aijptijp ;

therefore, we propose an empirical approach detailed in Appendix A.3 to further improve the
accuracy of the estimation by correcting the λc and µc values obtained from (4.5) and (4.6)
based on a measure of discrepancy between server workloads.

4.3.2 Immediate Dispatches

In this section, we consider the calls who find at least one available covering server upon
arrival, and hence do not experience any queuing delays. We are interested in the steady-
state rates at which these immediately serviced calls are assigned to each of their covering
servers.

To approximately account for the effects of server cooperation, we adopt an approach similar
to Larson (1975) where Pn is now obtained from an M/M/[N] model. First, assume we
randomly sample servers without replacement from the system operating at steady state
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Figure 4.1 Comparison of errors in approximating the state probabilities of a priority partial
service queue by the corresponding non-priority version (M/M/[N]) and an M/M/N queue.
Reported are the mean absolute errors for a system with three priority levels and different
numbers of servers.

until we find an idle one. Letting Bj and Fj be the events of the j-th sampled server being
respectively busy and free, we write the probability of the j + 1-th sampled server being the
first available one as

Pr{B1B2 · · ·BjFj+1} =
N∑
n=j

Pr{Sn}Pr{B1B2 · · ·BjFj+1|Sn} ;

moreover,

Pr{B1B2 · · ·BjFj+1|Sn} = Pr{Fj+1|B1B2 · · ·BjSk}Pr{Bj|B1B2 · · ·Bj−1Sk} · · ·Pr{B1|Sn} .

The probabilities on the right-hand side can be expressed as

Pr{Bi|B1B2 · · ·Bi−1Sn} = [n− (i− 1)]/[N − (i− 1)] , i = 1, 2, · · · , n+ 1 ,

and
Pr{Fj+1|B1B2 · · ·BjSn} = (N − n)/(N − j) , j = 0, 1, · · · , n .



33

Combining the results above we have the desired probability

Pr{B1B2 · · ·BjFj+1} =
N−1∑
n=j

n

N

n− 1
N − 1 · · ·

n− (j − 1)
N − (j − 1)

N − n
N − j

Pn , j = 0, 1, · · · , N − 1 ,

or
Pr{B1B2 · · ·BjFj+1} =

N−1∑
n=j

N − n
N − j

Pn

j−1∏
k=0

n− k
N − k

, j = 0, 1, · · · , N − 1 .

Re-writing the above expression as

Pr{B1B2 · · ·BjFj+1} = Z(N,µ, [λc], j)′ρj(1− ρ) ,

we obtain our correction factors as

Z(N,µ, [λc], j) =
N−1∑
n=j

n!(N − j − 1)!(N − n)
(n− j)!N !(1− ρ)ρj Pn , j = 0, 1, · · · , N − 1 .

For the M/M/[N]/∞ system, we have ρ = λ/(Nµ) with λ = ∑N
c=1 λc and thus the Z factors

will be given as

Z(N,µ, [λc], j) =
N−1∑
n=j

n!(N − j − 1)!(N − n)
(n− j)!N !( λ

Nµ
)j(1− λ

Nµ
)
Pn , j = 0, 1, · · · , N − 1 , (4.7)

with Pn given by (4.1). Class c customers arriving to the loss system in state Sn will be lost
at an average rate of

qc(n) =

(
n
c

)
(
N
c

) = n!(N − c)!
N !(n− c)! , (4.8)

resulting in an average server workload of

ρ =
∑N
c=1 λc(1−

∑N
n=0 qc(n)Pn)

Nµ
,

leading to the loss system Z factors of the form

Z(N,µ, [λc], j) =
[

1
Nµ

N∑
c=1

λc

(
1−

N∑
n=0

n!(N − c)!
N !(n− c)!Pn

)]j [
1− 1

Nµ

N∑
c=1

λc

(
1−

N∑
n=0

n!(N − c)!
N !(n− c)!Pn

)]

×
N−1∑
n=j

n!(N − j − 1)!(N − n)
(n− j)!N ! Pn , j = 0, 1, · · · , N − 1 ,

with Pn given by (4.3).
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Similar to the Q factors derived by Larson (1975) for M/M/N queues, our Z factors represent
the extent to which the term ρj(1−ρ), which assumes independent servers, should be corrected
to reflect the probability of sampling exactly j servers before finding an available server in
an M/M/[N] queue operating at steady state.

Values of Pn and Z(·, j) for the queue and loss versions of an M/M/[10] system with different
[λc] but identical total demand are plotted in Figure 4.2, which clearly shows the strong
dependence of both quantities on the distribution of total demand into the customer classes.
We note that scenario A in this example is equivalent to a regular M/M/N queue and therefore
the corresponding Z factors are identical to the Q factors of Larson (1975). It is particularly
interesting to observe how shifting the concentration of the demand intensity towards the
more openly received customer classes (higher c) increases the effects of server cooperation;
this is highlighted by the most aggressive correction factors associated with scenario A which
represents the extreme case with the highest server cooperation. Case B is the other extreme
where each arrival is covered by a single server and hence we have zero cooperation and perfect
independence reflected in correction factors equal to unity. We also need an expression for
λDip the rate at which priority p calls from location i get queued or lost. Denoting the event
of having no free servers to cover a priority p call from demand location i by Bip, we have
Bip ≡

⋂cip
j=1Bl(i,p,j). Conditioning on the system state Sn we have λDip = λip Pr{Bip} with

Pr{Bip} = λip
N∑
n=0

Pn Pr{Bip | Sn} .

We see that Pr{Bip | Sn} = 0 for n < cip and

Pr{Bip | Sn} =

(
N − cip
n− cip

)
(
N

n

) = (N − cip)!n!
(n− cip)!N ! ,

for n ≥ cip. Thus

λDip = λip
N∑

n=cip
Pn

(N − cip)!n!
(n− cip)!N ! . (4.9)

Given a set of steady-state server workloads ρj, j ∈ J , one can obtain a set of tentative
values for the immediate dispatch rates aIijp as

aIijp = bijpλipZ(N,µ, [λc], r(i, j, p)− 1)(1− ρj)
r(i,j,p)−1∏
k=1

ρl(i,k,p) , (4.10)
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which can then be normalized using any of the normalization schemes discussed in Section
4.4 to satisfy the balance equation

∑
j∈J

aIijp = λip − λDip . (4.11)

We can also approximate aIijp and λDip using an alternative two-pass scheme where we make
a better use of the individual server workloads ρj; in the first pass, values for the dispatch
rates assuming full backups denoted by âIijp are calculated as

âIijp = λipZ(N,µ, [λc], r(i, j, p)− 1)(1− ρj)
r(i,j,p)−1∏
k=1

ρl(i,k,p) , (4.12)

and normalized according to the balance equation

∑
j∈J

âIijp = λip (1− PN) , (4.13)

where PN is given by (4.1) or (4.3). In the second pass, the aIijp values are obtained by
recognizing that the normalized full-backup dispatches to non-covering servers would indeed
be queued or lost in the actual partial-backup system; that is

aIijp = bijpâ
I
ijp . (4.14)

Finally, the rate of calls being queued (or lost) is given by

λDip = λipPN +
∑
j∈J

(1− bijp) âIijp , (4.15)

where the first part of the right-hand side represents the customers who arrive when all servers
of the hypothetical full-backup system are busy and the second term adds the contribution
of partial backups by summing up the hypothetical dispatches to the non-covering servers.
Our numerical tests show that, on average, using the two-pass scheme defined by (4.12),
(4.13), (4.14) and (4.15) instead of (4.11), (4.9) and (4.10), indeed leads to around 50%
reduction in server workload and immediate dispatch estimation errors with an even higher
80% improvement in the estimation of delayed dispatch rates and waiting times discussed in
the next section. We hence use this method in our experiments.
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4.3.3 Delayed dispatches

The delayed dispatches in a system with full backups will be uniformly distributed among the
N servers when service times are identical; that is aDijp = λDijp/N if tijp = 1/µ, i ∈ I, j ∈ J ,
p ∈ P . With location or priority dependent service times, some unevenness will be introduced
in this distribution proportional in magnitude to the extent of differences in tijp values. This,
however, will generally be of secondary importance compared to the asymmetry of the case
with partial backups where servers covering a given sub-queue will have to finish work on
different subsets of waiting customers before being able to receive the next delayed customer
from that sub-queue. In this section, we are interested in quantifying this asymmetry and
deriving approximate expressions for the steady-state dispatch rates of waiting customers
and the average delays incurred in the queue.

Let BD
jp be the event of server j being busy with a delayed priority p call and ρDijp the

probability of server j being busy with a delayed call with priority p or higher (that is with
priority p′ ≤ p) given that all servers p-covering the demand location i are also busy (the
event Bip); that is ρDijp = Pr

{
∪pp′=1B

D
jp′ | Bip

}
. Although obtaining exact expressions for ρDijp

for the general case is mathematically intractable, we propose the following approximation

ρDijp =
p∑

p′=1

∑
i′∈I

κipi′p′λipā
D
i′jp′ti′jp′ , (4.16)

with āDi′jp′ = aDi′jp′/λ
D
ip and the coupling factor κipi′p′ defined as the probability of all servers

p′-covering demand location i′ being simultaneously busy given that all servers p-covering
demand location i are busy; or

κipi′p′ = Pr{Bi′p′ | Bip} , i, i′ ∈ I, p, p′ ∈ P .

The coupling factors can be approximated assuming either indistinguishable or independent
servers. With the assumption of indistinguishable dependent servers, we readily observe that

κipi′p′ = Pr{Bi′p′ | Bip} = Pr{Bi′p′ ∩Bip}
Pr{Bip}

,

and also that, conditioning on the system state Sn

Pr{Bi′p′ ∩Bip} =
N∑
n=0

Pn Pr{Bi′p′ ∩Bip | Sn} .

Defining hipi′p′ as the number of servers that either p-cover demand location i or p′-cover
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demand location i′, that is hipi′p′ = ∑
j∈J 1− (1− bijp)(1− bi′jp′), we have

Pr{Bi′p′ ∩Bip | Sn} =
(
N − hipi′p′
n− hipi′p′

)(
N

n

)−1

,

if hipi′p′ ≤ n and Pr{Bi′p′ ∩Bip | Sn} = 0 otherwise. The coupling factors are then obtained as

κipi′p′ =

∑N
n=hip

i′p′
Pn(N − n)!−1

N∏
k=n+1

(k − hipi′p′)

∑N
n=cip Pn(N − n)!−1

N∏
k=n+1

(k − cip)
. (4.17)

Equation (4.17) implies indistinguishable servers assumption as no individual server work-
loads are used. However, server dependency is taken into account through the conditioning
on the system state Sn.

We can also assume independent distinguishable servers and approximate κipi′p′ as

κipi′p′ =
∏
j∈J

bi′jp′=1, bijp=0

ρj . (4.18)

As discussed in Section B.4 of the electronic companion, this approach can be a viable
alternative to (4.17) and depending on the problem size and the implementation, may result
in better or worse performance in terms of accuracy or efficiency.

Finally, we define residual service rates µDijp as the service rate delivered by server j to the end
of the waiting line of priority p customers from demand location i and write the approximating
expression

µDijp = bijpµj
(
1− ρDijp

) (
1− ρDij(p−1)

)
, (4.19)

with µj the average service rate of server j defined as

µj =
∑
p∈P

∑
i∈I aijp∑

p∈P
∑
i∈I aijptijp

.

With µDijp known, we compute the normalized delayed dispatch rates as

āDijp =
µDijp∑N
k=1 µ

D
ikp

(4.20)
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and the average time spent in queue by the delayed customers from sub-queue (i, p) as

wDip =
∑
j∈J

µDijp

−1

. (4.21)

The delayed dispatch rates and the waiting times of all arrivals from sub-queue (i, p) then
follow from

aDijp = λDipā
D
ijp , (4.22)

and
wip =

λDip
λip

wDip . (4.23)

Expression (4.19) has an intuitive interpretation. Imagine a priority p customer from demand
location i enters the queue. A covering server j will finish its current task (possibly with an
immediately dispatched customer) at rate µj; with probability 1−ρDijp no other customer will
be waiting before this newly arrived one in gaining access to server j; and with probability
1 − ρDij(p−1) no higher priority customer covered by server j will push this customer back
while he is waiting. It can be verified that for the special case with full backups (bijp = 1,
i ∈ I, j ∈ J , p ∈ P), all coupling factors κipi′p′ will be equal to unity. If we also have
identical service times (that is tijp = 1/µ for all i ∈ I, j ∈ J , and p ∈ P) which are
also negative exponentially distributed, then relations (4.16), (4.19), (4.22) and (4.21) will
hold exactly and yield the well-known expression for the waiting time of the prioritized
M/M/N/∞ queue. In the general case, however, the period between successive servings of
queued customers from a given sub-queue by a specific server will depend on the detailed
state of the system and will not be independently and exponentially distributed as suggested
by these approximations, which, except for wDip, are shown in Section 4.5 to provide good
results even with non-exponential service times. The approximated wDip from (4.21) seems to
be sensitive to the service time distribution, which can perhaps be attributed to the fact that
unlike the āDijp from (4.20), which only depend on the ratios of the approximated µDijp values
across the fleet, the wDip given by (4.21) depend on the actual µDijp values thus making them
more sensitive to the validity and accuracy of the approximation.

We now have all the ingredients to derive an iterative algorithm to approximate the steady-
state values of the desired performance measures, namely the average server workloads, im-
mediate and delayed dispatch rates, and waiting times.
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4.4 Algorithm

In this section, we provide the layout of our approximation algorithm. All the assignments
are assumed to be carried out for i, i′ ∈ I, j ∈ J , and p, p′ ∈ P . Here are the steps to follow:

1. Initialization

(a) Set the iteration counter: g = 0;

(b) Initialize the problem definition parameters N , M , K, λip, tijp, l(i, j, p), r(i, j, p),
cip, bijp, and hipi′p′ ≤ n;

(c) Starting from an empty system, initialize the dispatch rate and server workload
variables to zero: ρ(g)

j = 0, a(g)
ijp = 0, and ρ(g) = 0;

2. Pre-processing

(a) Compute the state probabilities of the underlying M/M/[N] queue, P0, P1, · · · , PN
from (4.1) and (4.2) for the system with queues and from (4.3) and (4.4) for the
loss system;

(b) Compute Z correction factors from (4.7);

3. Immediate Dispatches

(a) Compute the full-backup immediate dispatch rates âIijp from (4.12);

(b) Normalize âIijp values obtained above so that ∑j∈J â
I
ijp = λip(1− PN) ;

(c) Update the immediate dispatch rates as aIijp = bijpâ
I
ijp ;

(d) Compute the rates of delayed or lost calls from (4.15);

4. Delayed Dispatches

(a) Compute the coupling factors κipi′p′ either from (4.17)
or (4.18);

(b) Compute updated values for ρDijp from (4.16);

(c) Compute updated values for the residual service rates µDijp from (4.19);

(d) Obtain the delayed dispatch rates as in (4.22): aDijp = λDipµ
D
ijp/

∑N
k=1 µ

D
ikp;

(e) Compute the expected waiting times from (4.23): wip = λDip/λip
∑N
j=1 µ

D
ijp;

5. Global Update and Termination
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(a) Define and set auxiliary variables Vj as

Vj =
∑N
i=1

∑
p∈P aijptijp

1− ρ(g)
j

;

(b) Update server workloads as ρ(g+1)
j = Vj/(1 + Vj). This update rule ensures that

server workloads remain between 0 and 1 and helps with the stability of the
algorithm. For details see Larson (1975), Jarvis (1985), Budge et al. (2009) and
Goldberg and Szidarovszky (1991).

(c) Terminate the algorithm if a given convergence condition is satisfied such as

max
j∈J
|ρ(g+1)
j − ρ(g)

j | ≤ ε ,

with ε a predefined convergence threshold; otherwise, set g ← g + 1 and start a
new iteration from Step 2.

The normalization procedure in step 3b can be carried out in different ways. The simplest
method is to scale all âIijp for j ∈ J and a given sub-queue (i, p) by a single factor so that
the balance equation is satisfied. Alternatively, we can retain the element corresponding
to the primary (the most preferred) server (that is âIi1p) and scale all the remaining values.
In our experience this method slightly improves the approximation and is thus employed
in our numerical experiments. We found more complicated approaches, such as the third
normalization method in Larson (1975), to be generally too computationally costly for the
systems and scales we consider here.

Finally, although the algorithm presented above starts from an empty system, based on
our experiments, the method performs equally well with arbitrary initial conditions. An
illustration of the algorithm is given next.

We apply the presented algorithm to a simple example consisting of five demand zones
(M = 5) and three servers (N = 3) located as shown in Figure 4.3.a. We assume two priority
levels (K = 2) with arrival rates and dispatch preference orders given as

[λip] =



1.0 1.0
0.225 0.075
0.075 0.1
0.05 0.2
0.2 0.05


, [bij1] =



1 0 0
1 1 0
1 0 1
0 1 1
1 1 1


, [bij2] =



1 1 0
0 1 1
1 0 1
0 1 0
0 1 1


,
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[rij1] =



1 3 2
2 1 3
2 3 1
3 2 1
1 2 3


, [rij2] =



1 2 3
3 2 1
2 3 1
3 1 2
3 2 1


,

with the matrix [cip] implied from [bijp] as

[cip] =



1 2
2 2
2 2
2 1
3 2


.

We assume exponentially distributed service times with three components: travel time from
the server location to the scene, on-scene time, and follow-up time. We set on-scene and
follow-up times respectively to 20 and 30 minutes regardless of the call priority, and use the
procedure detailed in Section 4.5 to approximate the mean travel times between each server
and customer location and for each priority. Euclidean norms were used to measure travel
distances. The resulting mean service times are

[tserij1 ] =



58.0 61.1 60.8
61.4 60.2 62.2
60.1 60.5 58.2
62.2 59.8 60.4
56.9 56.2 56.4


, [tserij2 ] =



61.6 66.1 65.7
66.6 64.8 67.8
64.7 65.3 61.9
67.8 64.3 65.2
59.9 59.0 59.3


.

The plots in Figure 4.3.b show how server workloads converge to their final values as the
algorithm progresses when applied to the loss and queuing versions of this example problem.
As typically observed, the algorithm takes fewer iterations in the case of a loss system.

The outputs of the model when applied to the example problem as a queuing or loss system
are compared with the corresponding values obtained from the simulation model in Tables
4.1, 4.2, 4.3 and 4.4. We observe accurate approximations to all performance measures in
each priority and for both queuing and loss systems. We note the significant asymmetry in
the distribution of immediate and delayed dispatches. This is caused by differing dispatch
preference orders and partial backups in case of the immediate dispatches, and for the delayed
dispatches, can be attributed mainly to partial backups and, probably to a much less degree,
to varying service times.
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Table 4.1 Comparison of server workloads estimated by the model and simulation.

Loss Queue

Server 1 Server 2 Server 3 Server 1 Server 2 Server 3

Simulation 0.2589 0.4513 0.2486 0.3323 0.5453 0.2922
Model 0.2574 0.4512 0.2482 0.3309 0.5467 0.2927

Table 4.2 Comparison of immediate dispatch rates estimated by the model and simulation
(in parentheses).

Priority 1 Priority 2
Demand Zone Server 1 Server 2 Server 3 Server 1 Server 2 Server 3

1 1 (1) — — .8462 (.8543) .1538 (.1457) —
2 .4187 (.4179) .5813 (.5821) — — .5674 (.5634) .4326 (.4366)
3 .1797 (.1892) — .8203 (.8108) .1797 (.1891) — .8203 (.8109)
4 — .5674 (.5659) .4326 (.4341) — 1 (1) —
5 .1105 (.1097) .5047 (.5018) .3848 (.3885) — .5674 (.5634) .4326 (.4366)

4.5 Numerical Experiments

We have conducted comprehensive numerical experiments to assess the efficiency of the pro-
posed approximation algorithm and also to answer a few questions that may arise while
applying the model to practical cases. A model representing the downtown area of the city
of Montreal, Canada and its main EMS provider, has been developed and employed in our
tests as a realistic example of a typical ESS in an urban setting. Because of the unavailability
of real EMS history data, we used the census data provided by Statistics Canada (2016b,a)
which gives the population densities of arbitrarily shaped subdivisions called dissemination
areas. Based on these data we constructed a model comprising 447 uniformly distributed
square shaped demand zones with intensities at different priority levels determined by the

Table 4.3 Comparison of delayed dispatch rates estimated by the model and simulation (in
parentheses).

Priority 1 Priority 2
Demand Zone Server 1 Server 2 Server 3 Server 1 Server 2 Server 3

1 1 (1) — — .5297 (.5436) .4703 (.4564) —
2 .4800 (.4821) .5200 (.5179) — — .4090 (.4109) .5910 (.5891)
3 .4667 (.4681) — .5333 (.5319) .4331 (.4460) — .5669 (.5540)
4 — 0.4862 (.4877) .5138 (.5123) — 1 (1) —
5 .3032 (.3043) .3317 (.3297) .3652 (.3660) — .4090 (.4116) .5910 (.5884)
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Table 4.4 Comparison of average waiting times (in minutes) and fractions of calls queued
estimated by the model and simulation (in parentheses) for the system with queues.

Waiting Times Fraction of Calls Queued

Demand Zone Priority 1 Priority 2 Priority 1 Priority 2

1 23.5 (22.8) 12.9 (12.4) .3309 (.3323) .2093 (.2192)
2 8.3 (8.0) 9.6 (9.0) .2201 (.2182) .2010 (.1939)
3 4.8 (4.5) 6.3 (5.9) .1378 (.1281) .1378 (.1271)
4 6.7 (6.4) 54.6 (49.6) .2010 (.1951) .5467 (.5446)
5 2.6 (2.4) 9.6 (8.9) .1017 (.0950) .2010 (.1929)

population densities of the overlapping dissemination areas and the yearly per capita number
of EMS requests reported by Urgences-santé the main EMS provider in the region. Irrespec-
tive of location, calls can be urgent (priority 1), less urgent (priority 2) or non-urgent (priority
3) with the respective ratios 0.44, 0.38, and 0.18. The total arrival rate from the region is
9.11 per hour. Conversion to a regular grid were motivated by possible future applications
of the model in equitable EMS deployments where geographical locations should be equally
represented irrespective of call volumes they generate. Figure 4.4 shows the distribution of
the demand intensity and locations of the hospitals serving the area.

We assume the service times to include six components: (1) Dispatch Time: from the moment
the dispatcher receives the call until a decision is made to assign an ambulance to the call
or put it in the waiting queue; (2) Chute Time: from the moment the ambulance crew is
notified of the dispatch until they become en route to the scene; (3) Travel Time: ambulance
traveling time from the current location to the scene; (4) Scene Time: time spent on scene;
(5) Transport Time: traveling time from the scene to the care center; (6) Turnaround Time:
from the arrival of the ambulance to the care center until it is back in service which typically
consists of transferring the patient to the care center and possibly ambulance clean-up or
replenishing any depleted resources. Based on data we had on ambulance operations in
Montreal and other Canadian metropolitan areas we estimated the values of the non-traveling
components of the service time as in Table 4.5. For the travel and transport times, we use the
log-normally distributed stochastic model in Budge et al. (2010) to approximate the random
time t to travel a given distance d, that is

t = m(d)ec(d)z , (4.24)

m(d) =

2
√
d/a if d ≤ 2dc

vc/a+ d/vc if d > 2dc
, (4.25)
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Table 4.5 Components of the service time (in minutes).

Priority 1 Priority 2 Priority 3

Dispatch Time 2 3 3
Chute Time 0.5 0.5 0.5
Scene Time (Patient Transported) 19 19 19
Scene Time (Patient not Transported) 22 22 22
Turnaround Time 40 50 50

c(d) =

√
b0(b2 + 1) + b1(b2 + 1)m(d) + b2m(d)2

m(d) , (4.26)

where m(d) and c(d) are respectively the median and coefficient of variation (CV) of the
travel time distribution with z a random variable with a standard normal distribution. Here,
b0 represents variation at the beginning and end of a trip independent of the travel distance,
such as inaccuracy in distance measurement; b1 represents short-term variation of speed
during a trip; and b2 represents trip to trip variation of travel time caused by factors like
traffic or weather conditions. The values we selected for the parameters of the model are
given in Table 4.6 for each priority level. For the urgent calls, we used the values reported in
Budge et al. (2010) for the Calgary EMS, and for the non-urgent calls, we simply modified
some of the parameters to reflect the lower cruising speeds and accelerations and higher
variability associated with driving in normal mode and abiding by all traffic laws. Values of
d were computed as Manhattan norms tilted at 45 degrees to match the street layout in the
region. Finally, the corresponding mean travel times needed by the approximation model
can be obtained as

t̄ = m(d)ec(d)2/2 . (4.27)

Table 4.6 Values of the travel time model parameters.

Parameter Priority 1 Priority 2 Priority 3

a (acceleration, km/h/min) 41 25 25
vc (cruising speed, km/hr) 100 70 70
b0 0.336 0.336 0.336
b1 0.000058 0.000116 0.000116
b2 0.0388 0.0776 0.0776

We have conducted tests using six different coverage threshold scenarios given in Table 4.7
with C1 representing the full backup scenario. For a given fleet size (N), we generated 100
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Table 4.7 Coverage threshold scenarios considered in the experiments. In each scenario, the
maximum coverage threshold for each priority level is given in kilometers.

Scenario Priority1 Priority 2 Priority 3

C1* ∞ ∞ ∞
C2 6 6 6
C3 4 4 4
C4 6 4 2
C5 2 4 6
C6 2 2 2
*Full backups

random ambulance location sets where no ambulance is located farther than 500 meters from
its closest demand zone (to exclude unrealistic deployment patterns). We considered a given
test location set in both queuing and loss situations (designated by Queue and Loss in the
tables) and in each case compared the outputs of the approximation model with those of a
discrete event simulation which we developed to benchmark the performance of our algorithm.
Both the approximation and simulation models were coded in MATLAB and shared the same
input parameters. Various service time distributions were tested in the simulation model as
discussed in Section B.1. To minimize the variability of the simulation outputs, tests were
run for 5000000 simulation hours with 100000 hours of warm-up. Prior to each simulation
run, the demand not covered by any server, were removed by settig every λip for which cip = 0
to zero.

Denoting simulation outputs by hatted symbols, we use Eρ = ∑N
j=1 |ρj − ρ̂j|/ρ̂j as the

measure of error in the estimation of server workloads for a given test problem. For to-
tal, immediate, and delayed dispatch rates, we take the average errors per dispatch given
by Ea = ∑

i∈I
∑
j∈J

∑
p∈P |aijp − âijp|/λ, EI

a = ∑
i∈I

∑
j∈J

∑
p∈P |aIijp − âIijp|/λ and ED

a =∑
i∈I

∑
j∈J

∑
p∈P |aDijp − âDijp|/λ as error measures, respectively. We capture waiting time es-

timation errors by Ew = ∑
i∈I

∑
p∈P |wip − ŵip|/λ and also report the average waiting times

from the simulation ŵ = ∑
i∈I

∑
p∈P ŵip/λ as a reference for Ew. We emphasize that the total

covered demand λ will be different for each test problem in scenarios with finite coverage
threshold. The measures computed for a specific priority p are denoted by Eap , EI

ap , ED
ap , Ewp

and ŵp and of course normalized with the total priority p covered demand. Finally, we report
in the subsequent tables the error measures averaged over all test problems in percentage
format; that is, for instance Ēρ = (1/T )∑T

m=1E
m
ρ /100% where Em

ρ is Eρ corresponding to
the m-th out of the T number of test cases (here T = 100).

In this section, we test the validity of the full-backup assumption, assess the general effec-
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tiveness of the algorithm and give a summary of the rest of our computational experiments
presented in the electronic companion. We have repeated these tests for N=20, 30, 40, and
50 but only report the results for N = 20 for ease of exposition. For each value of N we
test varying system workloads by scaling the total demand accordingly (See Section B.3).
The error margins and other observations for the cases with larger fleet sizes were closely
matching the results we report for N = 20. Most importantly, however, the computational
expense of the approximation method was observed to grow almost linearly with N . This is
important as it indicates that the procedure may be applied to even larger-scale problems
without getting computationally prohibitive.

4.5.1 Validity of the Full-backup Assumption

This paper is focused on the approximation of ESSs with partial backups. It is then natu-
rally interesting to see whether an approximation based on a full-backup assumption will be
adequate or not in practical settings. In Table 4.8 we compare the performance measures
obtained from the simulation model for different coverage threshold scenarios with the val-
ues predicted by the approximation algorithm assuming full-backups (that is the coverage
scenario C1). It is readily observed that as the coverage thresholds become more stringent,
the approximation model with a full-backup assumption becomes increasingly incapable of
predicting any of the performance measures with reasonable accuracy, with estimation errors
up to 100% and 90% for the server workload and dispatch rates. We note that the full-backup
assumption yields an average waiting time of nearly zero resulting in 100% waiting time esti-
mation errors for all coverage scenarios except C1. We also observed in our experiments that
the discrepancy between the simulation and the full backup model, not surprisingly, grows
with increasing system workloads and decreasing fleet sizes.

As mentioned earlier, in systems with partial backups, the values of performance measures
corresponding to each server can be largely different and the assumption of full backups
will not reveal these imbalances. However, there is another major drawback associated with
assuming full backups in applications where the demand that is not covered by any server
is considered lost. In these cases, each candidate positioning of the response units will lead
to a different total covered demand, λ, and thus a different average server workload. The
full backup assumption will also fail to reveal these effects. Therefore, we can conclude that
assuming full backups may result in highly inaccurate approximations in many practical
applications, especially with fairly moderate to high congestion levels and dispatch protocols
not compatible with this assumption.
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Table 4.8 Estimation errors assuming full-backups*.

Loss Queue

C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

Ēρ 1.68 4.67 17.98 22.64 38.53 111.30 1.69 2.08 9.54 10.60 20.09 78.84
Ēa 5.43 8.95 23.87 26.31 40.10 65.68 5.42 11.97 31.75 31.21 50.15 87.35
Ēw — — — — — — 0.00 0.79 6.70 6.24 13.20 44.97
*Ēρ and Ēa in percentages, Ēw in minutes

4.5.2 Accuracy of the Approximation

Having established the importance of relaxing the full-backup assumption, we now evaluate
the predictive accuracy of the algorithm. The average total and priority-specific estimation
errors in each performance measure for different coverage scenarios and queue disciplines are
given in Tables 4.9, 4.10, and 4.11. The error margins in prediction of server workloads and
dispatch rates are capped at around 1.7% and 5.5% respectively, with considerably lower
averages across the test scenarios. The average error in the estimation of waiting times in
cases with significant average waiting time values is observed to be at most 10%. The server
workload estimation errors are in agreement with the values reported by Larson (1975) and
Budge et al. (2009). Overall, we deem the accuracy of the approximation well within the
acceptable range in most practical applications. Comparing the error margins with those
obtained with a full backup assumption in the previous subsection shows the effectiveness of
the method in handling partial backups in the presence of priorities in the queues.

We mentioned before that because of potential equity related applications, we have used a
regular grid for demand locations. This, however, comes at the cost of impractically long
simulation run times as the convergence rate of simulation outputs corresponding to demand
locations with very low intensities will be extremely slow. This issue is further aggravated
by the relatively large scale of the model considered here (M = 447), and is naturally
more pronounced with larger numbers of non-zero elements of bijp, that is less stringent
coverage threshold scenarios. We consider this a major drawback of using simulation models
in studying problems with hugely varying arrival rates; moreover, we assume the reported
error margins to be, to some extent, overestimated because of this issue, particularly in less
stringent coverage threshold scenarios. The noticeable increase in the error margins with
increasing coverage thresholds can be attributed in part to this issue, and in part to the fact
that in this application, the total demand faced by the system (λ) increases with increasing
coverage thresholds, thus leading to bigger error magnitudes.
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Table 4.9 Estimation errors for the loss system (in %)

C1 C2 C3 C4 C5 C6

Ēρ 1.68 1.51 1.50 1.31 1.09 0.70
Ēa1 5.41 4.28 3.30 3.98 1.36 0.96
Ēa2 5.43 4.31 3.30 3.04 2.85 0.94
Ēa3 5.53 4.40 3.36 1.54 3.78 1.02
Ēa 5.43 4.31 3.32 3.23 2.47 0.96

Table 4.10 Estimation errors for the queuing system (in %)

C1 C2 C3 C4 C5 C6

Ēρ 1.69 1.59 1.26 1.34 1.14 0.46
ĒI
a1 5.38 5.16 4.29 5.24 1.59 1.35

ĒI
a2 5.40 5.16 4.29 3.64 3.83 1.38

ĒI
a3 5.50 5.22 4.38 1.63 5.37 1.43

ĒD
a1 0.09 1.16 2.25 0.91 1.27 1.13

ĒD
a2 0.09 1.15 2.37 1.81 1.82 1.17

ĒD
a3 0.13 1.17 2.47 1.31 0.83 1.29

Ēa 5.42 5.19 4.01 3.97 3.19 1.20

4.5.3 Complementary Computational Results

We now briefly summarize the extra computational experiments presented in the electronic
companion to investigate important aspects of the algorithm.

We examine the sensitivity of the algorithm to the service time distribution in section B.1
and conclude that while the approximations of server workloads and dispatch rates remain
fairly insensitive to the service time distribution, the waiting time estimations remain valid
only if the service time distribution has a CV close to unity.

In Section B.2, we verify the importance of modeling location and priority dependent service

Table 4.11 Waiting time estimation errors with actual values from simulation in parentheses
(in minutes)

C1 C2 C3 C4 C5 C6

Ēw1 0.00 (0.014) 0.13 (0.69) 0.46 (5.07) 0.10 (0.54) 0.67 (27.22) 0.56 (24.84)
Ēw2 0.00 (0.024) 0.17 (0.85) 0.72 (7.16) 0.46 (4.81) 0.45 (6.03) 1.27 (44.59)
Ēw3 0.01 (0.037) 0.21 (1.03) 1.43 (9.58) 2.33 (30.44) 0.15 (0.83) 2.47 (61.10)
Ēw 0.00 (0.021) 0.16 (0.80) 0.69 (6.72) 0.58 (6.26) 0.49 (13.22) 1.18 (40.35)
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times through test cases in which service times are identical or depend only on location
or priority. It is then clearly seen that letting the service times simultaneously depend on
customer and server locations and call priority, significantly improves the approximation
accuracy and hence is worth the extra modeling effort.

Repeating the numerical tests for varying load factors, we show in Section B.3 that regardless
of the system workload, the approximations provided by the algorithm remain accurate in
all performance measures and across all tested scenarios.

Finally, in Section B.4 we consider the computational expense of the algorithm and suggest
optimal intervals to repeat time-consuming calculations so that the computational overhead
is reduced without significantly affecting the accuracy.

4.6 Conclusions

We extended the EMS approximation procedure of Larson (1975) by letting each server be
responsible for an arbitrary subset of the demand locations (partial backups) and allowing
priorities in the queues. We considered queuing and loss systems and let service times depend
on the locations of the customer and server and the call priority. The approximation is based
on the queue or loss systems with partial service which we defined and analyzed in steady-
state.

We conducted numerical experiments to validate the approximation model and demonstrated
that it can accurately predict the performance measures of typical EMS systems with real
scales and different operational scenarios.

The proposed method facilitates the more realistic description of emergency response systems
where the assumptions of full backups and no priorities in the queues are often too simplistic
to represent the dispatching policies of the actual system. In particular, the algorithm paves
the way to efficient and reliable analysis and design of systems with multi-tier customers
and heterogeneous fleet where dispatch decisions are made based on the customer and server
types and only if an accordingly determined minimum response time is not expected to be
exceeded.

An interesting line of research to follow will be to extend the current approximation procedure
to model EMS systems that intentionally queue or reject lower priority requests to maintain
a strategic reserve of available servers for upcoming higher priority calls. A similar extension
to the exact hypercube model has been given by Iannoni et al. (2015).
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4.7 Complementary Computational Experiments

In Appendix B, we present extra computational experiments conducted to assess the perfor-
mance of the approximation method.
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Figure 4.2 Distribution of the number of busy servers and the Z correction factors for
an example queuing system with N = 10, µ = 1.4 and different arrival rate sce-
narios given by: A) [λc] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 10], B) [λc] = [10, 0, 0, 0, 0, 0, 0, 0, 0, 0],
C) [λc] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], D) [λc] = [2, 2, 2, 2, 2, 0, 0, 0, 0, 0], and E) [λc] =
[0, 0, 0, 0, 0, 2, 2, 2, 2, 2].
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CHAPTER 5 DISTANCE DISTRIBUTIONS WITH BOUNDARY EFFECTS

The literature on expected distances and distance distributions is vast and scattered across
multiple disciplines with identical results sometimes rediscovered by different authors as
intermediate steps towards their respective and potentially unrelated research goals. This
makes it very challenging to trace the developments and provide a well rounded review of the
literature which dates back to as early as 1920s. Hence, no attempt is made here to give an
exhaustive review, instead, we refer to Moltchanov (2012), Tong et al. (2017) and Tong et al.
(2017) for excellent surveys of the literature and overview of the fundamental concepts. Here
we are concerned with the distribution of the random Euclidean or Manhattan distance from
a random uniformly distributed point to the n-th nearest neighbor out of N points which
are also uniformly and independently distributed on a 2D region of a finite area. Making
simplifying assumptions on the shape of the boundary of the region, we obtain expressions
for the CDF, PDF and the moments of this distance, which are then used in Chapter 6.

Assuming a Poisson Point Process (PPP) with intensity σ, the PDF of Rn the random
Euclidean distance from an arbitrary origin to its n-th neighbor is

fRn(r) = 2(πσ)n
(n− 1)!r

2n−1e−πσr
2
, r ≥ 0, n = 1, 2, · · · , (5.1)

which, according to Dacey (1964), was first proposed by Hertz in 1909 for n = 1, with
extensions to n > 1 given by Chandrasekhar (See Van Kampen (1992)), Skellam (1951), and
Morisita (1954). These were extended by Thompson (1956) who derived the joint distribution
of the distances to the first, up to the n-th neighbor.

From (5.1), the l-th moment of Rn is easily obtained as

E[Rn
l] =

Γ(n+ l
2)

(πσ) l2 (n− 1)!
. (5.2)

For the Manhattan distance metric, (5.1) and (5.2) hold with every π replaced by 2.

The Poisson point process assumes an infinite number of points dispersed over an unbounded
plane with the intensity σ. The number of points falling into a given subset of the plane is
assumed purely random and independent of the number of points in another subset. These
assumption rarely reflect the reality of many applications where a finite number of entities
is distributed over a finite region and thus the number of points falling into different subsets
of the region are obviously not independent. Moreover, with a bounded region, the choice of
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the reference point from which the distances are measured becomes important as boundary
effects will be stronger when the reference point is closer to the edges of the region. This is in
contrast to the assumption of the PPP where there exist no bounds and hence every point,
including a point of the process, can be taken as the reference with the same distribution
to the neighbors as (5.1). Despite its limitations, the PPP and thus (5.1) are used in the
vast majority of the literature because of it simplicity and mathematical tractability which,
in many cases, allows for new closed form expressions for various performance metrics of
a distributed system, for example the quality of a service received by a typical user of a
wireless network. Whether explicitly mentioned or not, the use of (5.1) implies that the
conditions under which PPP will be a good approximation to the actual distribution of
nodes in the system are met. In particular, as N/A the density of the distribution of the
points increases, the approximation of Rn by (5.1) with σ = N/A improves. For a given N/A,
the approximation is more accurate for a smaller n.

To make the analysis tractable, we make assumptions regarding the shape of the region; for
the Euclidean metric, we assume the region to be a disk and for the Manhattan metric, we
assume a square region and a tilt angle of 45 degrees between the travel directions and the
sides of the region.

In view of the observations made by Larson and Odoni (1981) (Chapter 3, Section 7.1)
regarding the relative insensitivity of the expected distances to the exact geometry of the
region, we will assume that these expressions remain viable approximations to the ”edge-
corrected” nearest neighbor distances, even if the boundary shape assumptions are not strictly
met, perhaps as long as the region under consideration is fairly compact and fairly convex.

5.1 Euclidean Metric

Let p(R, r, x) be the probability of a randomly chosen point in a circular region of radius R
being at Euclidean distance D < r from an arbitrary reference point p0 which is at distance
x from the center of the region. This probability is equal to the ratio of the overlapping
area of the region and a circle of radius r with origin p0 to the area of the entire region. For
r ≤ R− x we have p(R, r, x) = (r/R)2 and

p(R, r, x) = A−1
(
r2 arccos(d

2 + r2 −R2

2rd ) +R2 arccos(d
2 +R2 − r2

2dR )

−1
2
√

((R + r − d)(d+ r −R)(R + d− r)(R + r + d))
)
,
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for r > R−x. We thus obtain the CDF of the distance to the n-th nearest neighbor of point
p0 conditional on x as

FRn|x(r) =1−
n−1∑
i=0

(
N

i

)
(p(R, r, x))i(1− p(R, r, x))N−i (5.3)

=βp(R,r,x)(n,N − n+ 1)
B(n,N − n+ 1) = Ip(R,r,x)(n,N − n+ 1) ,

whereB(a, b) = Γ(a)Γ(b)/Γ(a+b), βz(a, b) =
∫ z

0 t
a−1(1−t)b−1dt, and Iz(a, b) = βz(a, b)/B(a, b)

are the beta, the incomplete beta, and the regularized incomplete beta functions, respectively.

Taking derivative with respect to r, we get the corresponding PDF as

fRn|x(r) = d

dr
FRn|x(r) = dp(R, r, x)

dr

p(R, r, x)N−n(1− p(R, r, x))n−1

β(n,N − n+ 1) ,

with

dp(R, r, x)
dr

=


2r
R2 r ≤ R− x ,
2r
πR2 arcsec( 2dr

d2+r2−R2 ) r > R− x .

We can now integrate (5.3) to obtain F̃Rn(r) the CDF of the distance to the n-th neighbor
from a uniformly randomly chosen reference point inside the region. We write

F̃Rn(r) =
∫ 2R

0
Pr{X = x}FRn|x(r)dx = 2

R2

∫ 2R

0
xFRn|x(r)dx

= 2
R2

∫ |R−r|
0

xImin{1,( r
R

)2}(n,N − n+ 1) dx+ 2
R2

∫ R

|R−r|
xIp(R,r,x)(n,N − n+ 1)dx

= (R− r)2

R2 Imin{1,( r
R

)2)}(n,N − n+ 1) + 2
R2

∫ R

|R−r|
xIp(R,r,x)(n,N − n+ 1) dx . (5.4)

The integral is not analytically solvable and needs to be evaluated numerically. Proceeding
with the Gauss-Chebychev quadrature with K nodes, we write

Φ(r) = 2
R2

∫ R

|R−r|
xIp(R,r,x)(n,N − n+ 1) dx (5.5)

≈ (R− |R− r|)π
KR2

K∑
i=1

xi
√

1− u2
i Ip(R,r,xi)(n,N − n+ 1) + EK ,

with
xi = 1

2((R− |R− r|)ui +R + |R− r|) ,
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ui = cos(2i− 1
2K π) , (5.6)

and the quadrature error EK tending to zero as K → ∞. Assuming a large enough K we
then get

F̃Rn(r) ≈ (R− r)2

R2 Imin{1,( r
R

)2)}(n,N − n+ 1)

+ (R− |R− r|)π
KR2

K∑
i=1

xi
√

1− u2
i Ip(R,r,xi)(n,N − n+ 1) . (5.7)

We obtain the PDF f̃Rn(r) by differentiating (5.4); we write

f̃Rn(r) = d

dr

[∫ R

0

2x
R2FRn|x(r)dx

]
= d

dr

[∫ R

0

2x
R2 Ip(R,r,x)(n,N − n+ 1)dx

]

=
∫ R

0

d

dr

[ 2x
R2 Ip(R,r,x)(n,N − n+ 1)dx

]
=
∫ R

0

2x
R2

dp(R, r, x)
dr

p(R, r, x)n−1(1− p(R, r, x))N−n
B(n,N − n+ 1) dx

=
∫ |R−r|

0

2x
R2

2r
R2

( r
R

)2(n−1)(1− ( r
R

)2)N−n

B(n,N − n+ 1) dx

+
∫ R

|R−r|

2x
R2

2r
πR2 sec−1( 2rx

r2 + x2 −R2 )p(R, r, x)n−1(1− p(R, r, x))N−n
B(n,N − n+ 1) dx

≈ 1(r < R)
2r(R− r)2( r

R
)2(N−n)(1− r

R
)n−1N !

R2(n− 1)!(N − n)!

+ 2r(R− |R− r|)
KR4

K∑
i=1

sin(θi)xi sec−1( 2rxi
r2 + x2

i −R2 )p(R, r, xi)
n−1(1− p(R, r, xi))N−nN !
(n− 1)!(N − n)! ,

(5.8)

where B(a, b) is the beta function.

We are now looking to obtain the moments of the distance to the n-th neighbor. We write

E[R̃l
n] =

∫ 2R

0
rldF̃Rn(r) =

∫ 2R

0
rl
d

dr

[∫ R

0

2x
R2FRn|x(r)dx

]
dr

=
∫ 2R

0
rl
d

dr

[∫ R

0

2x
R2 Ip(R,r,x)(n,N − n+ 1)dx

]
dr

=
∫ R

0
rl
d

dr

[
(R− r)2

R2 I( r
R

)2(n,N − n+ 1) +
∫ R

R−r

2x
R2 Ip(R,r,x)(n,N − n+ 1)dx

]
dr
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+
∫ 2R

R
rl
d

dr

[
(R− r)2

R2 +
∫ R

r−R

2x
R2 Ip(R,r,x)(n,N − n+ 1)dx

]
dr

=
∫ R

0
rl
d

dr

[
(R− r)2

R2 I( r
R

)2(n,N − n+ 1)
]
dr +

∫ 2R

R
rl
d

dr

[
(R− r)2

R2

]
dr

+
∫ R

0
rl
d

dr

∫ R

R−r

2x
R2 Ip(R,r,x)(n,N − n+ 1) dx dr

+
∫ 2R

R
rl
d

dr

∫ R

r−R

2x
R2 Ip(R,r,x)(n,N − n+ 1) dx dr .

We now evaluate each integral denoting them I1, I2, I3 and I4. We have for I1

I1 =
∫ R

0
rl
d

dr

[
(R− r)2

R2 I( r
R

)2(n,N − n+ 1)
]
dr

=
rl(R− r)2I(r/R)2(n,N − n+ 1)

R2

∣∣∣∣∣
R

0
−
∫ R

0

(R− r)2lrl−1

R2 I(r/R)2(n,N − n+ 1) dr

=−
∫ R

0

(R− r)2lrl−1

R2 I(r/R)2(n,N − n+ 1) dr

=−
∫ R

0

(R− r)2lrl−1

R2B(n,N − n+ 1)

[
( r
R

)2n
∞∑
k=0

(n−N)k
k!(n+ k)( r

R
)2k
]
dr

=− l

R2B(n,N − n+ 1)

N−n∑
k=0

(n−N)k
k!(n+ k)

∫ R

0
( r
R

)2(n+k)(R− r)2rl−1 dr

=− l

R2B(n,N − n+ 1)

N−n∑
k=0

(n−N)k
k!(n+ k)

(
2Rl+2

(2k + l + 2n)3

)

=− 2lRl

B(n,N − n+ 1)

N−n∑
k=0

(n−N)k
k!(n+ k)(2k + l + 2n)3

where (x)n = Γ(x+n)/Γ(x) is the Pochhammer symbol and we have used a series expansion
of the incomplete beta function and the fact that (n−N)k = 0 for k > N − n.

For the next integral we have

I2 =
∫ 2R

R
rl
d

dr

(R− r)2

R2 dr = rl(R− r)2

R2

∣∣∣∣∣
2R

R

−
∫ 2R

R

(R− r)2lrl−1

R2 dr

= (2R)l −
[
rl
(
lr

(
r

R2(l + 2) −
2

l(R + 1)

)
+ 1

)]2R

R

= (2R)l −
[

(2R)l(l(l − 1) + 2)
(l + 1)(l + 2) − 2Rl

(l + 1)(l + 2)

]

= 2Rl(2l+1l + 1)
(l + 1)(l + 2)
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Combining I3 and I4 into I34 = I3 + I4, we write

I34 =
∫ 2R

0
rl
d

dr

[∫ R

|r−R|

2x
R2 Ip(R,r,x)(n,N − n+ 1)dx

]
dr

=
[∫ R

|r−R|

2x
R2 Ip(R,r,x)(n,N − n+ 1)dx

]r=2R

r=0
−
∫ 2R

0
lrl−1Φ(r) dr

= 0−R
∫ 1

−1
l(R(1 + u))l−1Φ(R(1 + u)) du

= lRl
∫ 1

−1
(1 + u)l−1Φ(R(1 + u)) du

= πlRl

K

K∑
j=1

√
1− u2

j(1 + uj)l−1Φ(R(1 + uj)) ,

where we have again used a Gauss-Chebychev quadrature with K nodes and with uj defined
as in (5.6). We remember that Φ(r) was obtained in (5.5) as a quadrature itself. We thus
get the l-th moment of the distance as

E[R̃l
n] = I1 + I2 + I34

= 2Rl(2l+1l + 1)
(l + 1)(l + 2) −

2lRlN !
(n− 1)!(N − n)!

N−n∑
k=0

(n−N + k − 1)!(2k + 2n+ l − 1)!
k!(n+ k)(n−N − 1)!(2k + 2n+ l + 2)!

+ πlR

K

K∑
j=1

sin(θj)rl−1
j Φ(rj) ,

with rj = R(1 + cos(θj)) and θj = 2j−1
2K π.

5.2 Manhattan Metric

We now repeat the analysis for the case with the Manhattan distance metric. In deriving
these preliminary results, we will assume that the region is a square and the direction of
travel is tilted at 45 degrees relative to the sides of the square. This allows us to obtain the
integrals exactly without resorting to quadrature methods.

Let us divide the square region with half-diagonal R, that is A = {(x, y)| − R√
2 ≤ x, y ≤ R√

2},
into subregions A1 = {(x, y) | r−R√2 ≤ x, y ≤ R−r√

2 } and A2 = {(x, y) | R−r√2 ≤ x ≤ R√
2 ,

r−R√
2 ≤

y ≤ R−r√
2 }, and A3 = {(x, y) | R−r√2 ≤ x, y ≤ R√

2}. Moreover, let A(r, x, y) be the square region
of half-diagonal r centered at (x, y) ∈ A. Because of the symmetry, we write

F̃Rn(r) =
∫∫

A
FRn|(x,y)(r)

1
2R2 dx dy
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= 1
2R2

{∫∫
A1
FRn|(x,y)(r) dx dy + 4

∫∫
A2
FRn|(x,y)(r) dx dy + 4

∫∫
A3
FRn|(x,y)(r) dx dy

}
,

(5.9)

where FRn|(x,y)(r) dx dy = Ip(R,r,x,y)(n,N − n+ 1) and p(R, r, x, y) = |A ∩ A(r, x, y)|/|A|.

We first consider the case 0 ≤ r ≤ R. For (x, y) ∈ A1 and 0 ≤ r ≤ R, we have p(R, r, x, y) =
( r
R

)2 and thus
∫∫

A1
FRn|(x,y)(r) dx dy = |A1| I( r

R
)2(n,N − n+ 1) = 2(R− r)2 I( r

R
)2(n,N − n+ 1) .

For (x, y) ∈ A2 and 0 ≤ r ≤ R, we have p(R, r, x, y) = (2r2− rx2
√

2)/2R2 with x′ = x− R−r√
2 ,

and thus
∫∫

A2
FRn|(x,y)(r) dx dy =

∫ √2(R−r)

0

∫ r√
2

0
I( 2r2−rx′

√
2

2R2 )(n,N − n+ 1) dx′ dy′

=
∫ √2(R−r)

0

1
B(n,N − n+ 1)

[√
2R2

r
β r2

2R2
(n+ 1, N − n+ 1)− r√

2
β r2

2R2
(n,N − n+ 1)

−
√

2R2

r
β( r

R
)2(n+ 1, N − n+ 1) +

√
2rβ( r

R
)2(n,N − n+ 1)

]
dy′

=
√

2(R− r)
B(n,N − n+ 1)

[√
2R2

r
β r2

2R2
(n+ 1, N − n+ 1)− r√

2
β r2

2R2
(n,N − n+ 1)

−
√

2R2

r
β( r

R
)2(n+ 1, N − n+ 1) +

√
2rβ( r

R
)2(n,N − n+ 1)

]

= (R− r)
B(n,N − n+ 1)

[
2R2

r
β r2

2R2
(n+ 1, N − n+ 1)− rβ r2

2R2
(n,N − n+ 1)

−2R2

r
β( r

R
)2(n+ 1, N − n+ 1) + 2rβ( r

R
)2(n,N − n+ 1)

]
.

For (x, y) ∈ A3 and 0 ≤ r ≤ R, we have p(R, r, x, y) = (2r2 −
√

2 r(x′ + y′) + x′y′)/2R2, and
write

∫∫
A3
FRn|(x,y)(r) dx dy =

∫ r√
2

0

∫ r√
2

0
I( 2r2−

√
2 r(x′+y′)+x′y′

2R2

)(n,N − n+ 1) dx′ dy′

=
∫ r√

2

0

∫ r√
2

0

1
B(n,N − n+ 1)

N−n∑
k=0

(n−N)k
k!(n+ k)

(
2r2 −

√
2r(x′ + y′) + x′y′

2R2

)n+k

dx′ dy′

=
N−n∑
k=0

(n−N)k
k!(n+ k)B(n,N − n+ 1)

∫ r√
2

0

∫ r√
2

0

(
2r2 −

√
2r(x′ + y′) + x′y′

2R2

)n+k

dx′ dy′
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=
N−n∑
k=0

N !(n−N)k
k!(n− 1)!(N − n)!(n+ k)

∫ r√
2

0

 r(2n+k+1 − 1)√
2(n+ k + 1)

(
2r2 −

√
2ry′

4R2

)n+k dy′

=
N−n∑
k=0

N !(n−N)k
k!(n− 1)!(N − n)!(n+ k)

{
(2n+k+1 − 1)2r2n+2k+2

2(n+ k + 1)2(2R)2n+2k

}

=
N−n∑
k=0

(−1)kN !
2k!(n− 1)!(N − n− k)!(n+ k)

(2n+k+1 − 1)2r2n+2k+2

(n+ k + 1)2(2R)2n+2k .

Plugging these results into (5.9) yields

F̃Rn(r; 0 ≤ r ≤ R) = (R− r)2

R2 I( r
R

)2(n,N−n+1)+ 2(R− r)N !
R2(n− 1)!(N − n)!

[
2R2

r
β r2

2R2
(n+ 1, N − n+ 1)

− rβ r2
2R2

(n,N − n+ 1) −2R2

r
β( r

R
)2(n+ 1, N − n+ 1) + 2rβ( r

R
)2(n,N − n+ 1)

]

+ N !
R2(n− 1)!

N−n∑
k=0

(−1)k
k!(N − n− k)!(n+ k)(n+ k + 1)2

(2n+k+1 − 1)2r2n+2k+2

(2R)2n+2k . (5.10)

For R < r ≤ 2R, we follow a similar approach. For (x, y) ∈ A1 and R < r ≤ 2R, we have
p(R, r, x, y) = 1 and

∫∫
A1
FRn|(x,y)(r) dx dy = |A1| I1(n,N − n+ 1) = 2(R− r)2 .

For (x, y) ∈ A2 and R < r ≤ 2R, we have p(R, r, x, y) = (2R2−Rx′
√

2)/2R2 with x′ = x− r−R√
2

and

∫∫
A2
FRn|(x,y)(r) dx dy =

∫ √2(r−R)

0

∫ 2R−r√
2

0
I( 2R2−Rx′

√
2

2R2 )(n,N − n+ 1) dx′ dy′

=
∫ √2(r−R)

0

1
B(n,N − n+ 1)

{√
2R [(B(n,N − n+ 1)−B(n+ 1, N − n+ 1)]

+
√

2Rβ r
2R

(n+ 1, N − n+ 1)− r√
2
β r

2R
(n,N − n+ 1)

}
dy′

=
√

2(r −R)
(√

2R(1− n

N + 1) + N !
(n− 1)!(N − n)!

{√
2Rβ r

2R
(n+ 1, N − n+ 1)−

r√
2
β r

2R
(n,N − n+ 1)

})

= 2R(r −R)(N − n+ 1)
N + 1 + (r −R)N !

(n− 1)!(N − n)!
(
2Rβ r

2R
(n+ 1, N − n+ 1)− rβ r

2R
(n,N − n+ 1)

)
.
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For (x, y) ∈ A3 and R < r ≤ 2R, we have p(R, r, x, y) = (2R2 −
√

2R(x′ + y′) + x′y′)/2R2

and with the change of variables x′ = x− r−R√
2 and y′ = y − r−R√

2 we write

∫∫
A3
FRn|(x,y)(r) dx dy =

∫ 2R−r√
2

0

∫ 2R−r√
2

0
I( 2R2−

√
2R(x′+y′)+x′y′

2R2

)(n,N − n+ 1) dx′ dy′

=
∫ 2R−r√

2

0

∫ 2R−r√
2

0

1
B(n,N − n+ 1)

N−n∑
k=0

(n−N)k
k!(n+ k)

(
2R2 −

√
2R(x′ + y′) + x′y′

2R2

)n+k

dx′ dy′

=
N−n∑
k=0

(n−N)k
k!(n+ k)B(n,N − n+ 1)

∫ 2R−r√
2

0

∫ 2R−r√
2

0

(
2R2 −

√
2R(x′ + y′) + x′y′

2R2

)n+k

dx′ dy′

=
N−n∑
k=0

N !(n−N)k
k!(n− 1)!(N − n)!(n+ k)

∫ 2R−r√
2

0

{
(
√

2R− y)n+k[(2R)n+k+1 − rn+k+1]
(n+ k + 1)2 3

2k+ 3
2n+ 1

2R2(n+k)

}
dy′

=
N−n∑
k=0

N !(n−N)k
k!(n− 1)!(N − n)!(n+ k)


[
(rn+k+1 − (2R)n+k+1

]2
2(n+ k + 1)2(2R)2(n+k)


=

N−n∑
k=0

(−1)kN !
2k!(n− 1)!(N − n− k)!(n+ k)

[
(rn+k+1 − (2R)n+k+1

]2
(n+ k + 1)2(2R)2(n+k) .

Plugging these back into (5.9), yields

F̃Rn(r;R ≤ r ≤ 2R) = (R− r)2

R2 + 4(r −R)(N − n+ 1)
R(N + 1) +

2(r −R)N !
(n− 1)!(N − n)!

( 2
R
β r

2R
(n+ 1, N − n+ 1)− r

R2β
r

2R
(n,N − n+ 1)

)

+ 1
R2

N−n∑
k=0

(−1)kN !
k!(n− 1)!(N − n− k)!(n+ k)

[
(rn+k+1 − (2R)n+k+1

]2
(n+ k + 1)2(2R)2(n+k) . (5.11)

It is now possible to compute the PDF f̃(r) as

f̃Rn(r; 0 ≤ r ≤ R) = 2N !
r2R2(n− 1)!(N − n)!

r(r −R)2
(

1− r2

R2

)N−n (
r2

R2

)n
+r2(2r −R)B r2

2R2
(n,−n+N + 1)− 2R3B r2

2R2
(n+ 1,−n+N + 1)

+r2(R− 3r)B r2
R2

(n,−n+N + 1) + 2R3B r2
R2

(n+ 1,−n+N + 1)
}

+ 2N !
R2(n− 1)!

N−n∑
k=0

(−1)k
k!(N − n− k)!(n+ k)(n+ k + 1)

(2n+k+1 − 1)2r2n+2k+1

(2R)2n+2k ,
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and

f̃Rn(r; R < r ≤ 2R) = 2
R2

{
r + (N − 2n+ 1)R

N + 1 + N !
(n− 1)!(N − n)!

[
(R− 2r)β r

2R
(n,N − n+ 1)

+2Rβ r
2R

(n+ 1, N − n+ 1)
]

+
N−n∑
k=0

(−1)kN !
k!(n− 1)!(N − n− k)!(n+ k)

rn+k
[
(rn+k+1 − (2R)n+k+1

]
(n+ k + 1)(2R)2(n+k)

 .

Using these relations the moments of Rn are obtained as

E[Rl
n] = 2Rl


(
2l+1 − 1

)
(−2n+N + 1)

(l + 1)(N + 1) + 2l+2 − 1
l + 2 + N !

(n− 1)!

(l + n+N + 1)Γ
(
l
2 + n

)
2Γ
(
l
2 +N + 2

)
−

Γ
(
l+1
2 + n

)
Γ
(
l+3
2 +N

) + Φ
 ,

where

Φ =
N−n∑
k=0

−1k
k!(N − n− k)!

2−k−n
(
l − 2k+l+n+1 (k2 + k(l + 2n+ 3) + l(n+ 3) + (n+ 1)(n+ 2))

)
(k + n)(k + n+ 1)(k + l + n+ 1)(k + l + n+ 2) +

4
(
−2−k−n + 2l + 1

)
(k + n)(k + n+ 1)(2k + l + 2n+ 2) +

2−k−n
(
−2k+n(4k + 2l + 4n+ 1) + 2k + l + 2n

)
(k + n)(2k + l + 2n+ 1)(2k + l + 2n+ 2) +

2−k−n+1 − 2l+2

(k + n)(k + n+ 1)(k + l + n+ 1) +
2−k−n

(
2k+n+1 − 1

)
(k + n+ 1)(2k + l + 2n+ 1)

 .

5.2.1 Remarks

In Figure 5.1, we compare the Poisson and edge-corrected probability density functions of
the Euclidean distance to the n-th nearest neighbor, given respectively by (5.1) and (5.8), for
different values of n and the total number of points N . Under the assumption of a circular
region, the PDF obtained from (5.8) is exact and hence the PDF obtained from the simulation
is not plotted. We clearly see that as expected, while the approximation by the PPP seems
acceptable for n = 1 (the nearest neighbor), its accuracy rapidly deteriorates with increasing
n for a given N . Also, the PPP nearest neighbor distance is more accurate when the number
of total points is greater. The PDFs corresponding to the case with Manhattan metric are
plotted in Figure 5.2 where the case with the travel directions parallel to the sides of the
region, which we obtained from simulation, is also included. In addition to the similar trend
for the accuracy of the PPP assumption, we see that even with the region rotated 45 degrees,
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Figure 5.1 Distribution of the Euclidean distance to the n-th nearest neighbor out of N u.i.d
random points.

the edge-corrected PDF remains a good approximation, particularly compared to the relation
obtained through the Poisson assumption.

These observations are important to us, since in Chapter 6 we mostly deal with under-
resourced (or over-loaded) emergency service systems where typically limited number of
response units (or free response units) are deployed within a finite service area and the
distribution of distances to every response unit is an important part of our analysis of such
systems.

It might also be worth mentioning that the author has devoted considerable effort to obtain
closed-form approximations of the form

FRn(r) =
m∑
k=1

βg(r,N,n)(n,N − n+ 1)

to the distribution of the distance to neighbors in the general case of a rectangular region of
arbitrary proportions and a given metric; however, those efforts has not yet concluded at the
time of writing this manuscript.
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Figure 5.2 Distribution of the Manhattan distance to the n-th nearest neighbor out of N
u.i.d random points.
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CHAPTER 6 ON OPTIMAL DISPATCH POLICIES FOR EMERGENCY
SERVICE SYSTEMS WITH DYNAMIC RELOCATION: A QUEUING

THEORETICAL FRAMEWORK WITH APPLICATIONS

In Chapter 4, we presented an approximation algorithm based on queuing theory to describe
the performance of an Emergency Service System (ESS) for a given set of tactical decisions
on the locations of the servers, the subset of demand zones allocated to each server and the
preference order of assigning incoming calls to potential candidate servers. Various prescrip-
tive models can then be developed upon this descriptive tool by simply exploring the space
of combined location and dispatch decisions via an optimization method of some sort to
maximize a desirable performance metric such as the response time, intervention outcome,
equity or a combination of such objectives. These optimization models will arguably be
more realistic and reflective of the actual dispatchers’ behavior than the models with the
full backup assumption because they allow the dispatch preference lists of each priority and
demand zone to have different lengths. In this text, however, we do not concern ourselves
with the optimization models of this kind. Instead, recognizing the role of partial backup
dispatch strategies in maximizing system performance, we present in this chapter, another
general descriptive tool for studying the impact of a class of partial backup dispatch policies
on the key system performance metrics in a general setting where the ESS and the demand
it serves are minimally defined. As we will see, the simplifying assumptions we make, will
lead us to deem the idealized situation considered here as a crude representation of a large
class of ESSs with dynamic relocation.

As discussed in Chapter 4, the rationale behind partial backup dispatch policies is to improve
the system performance by intentionally denying service to (losing) or queuing the calls that
require travelling excessive distances, and more importantly, lead to potentially unsatisfac-
tory response times. In an overloaded system and particularly when a service quality rapidly
decays with response time, we expect the aggressive denial of immediate response to these
relatively high-cost, low-return requests for service to improve the performance and decrease
the workload imposed on the system at the same time. Besides potential performance im-
provements, the partial backup policy offers a more flexible and realistic way to model the
complex behavior of a human dispatcher. To see this, suppose that a call arrives when the
closest idle ambulance is 40 minutes in travel time away from the call location, but another
ambulance that is 5 minutes away is currently busy and expected to complete its job and
become available in 5 minutes. Obviously, the full-backup assumption does not reflect the
typical decision of a dispatcher in situations like this, which is to queue the call and wait for
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the closer ambulance to become free. The partial backup policy, however, will approximately
model this aspect of dispatch decision making, by putting an upper limit on the permissible
travel distance.

In their excellent review of the recent trends in location, relocation, and dispatching of emer-
gency medical services, Bélanger et al. (2019) highlight the significant potential impact of
ambulance relocation and dispatching decisions on the performance of EMS and the close
relationship between the two, and call for more research effort in this direction. Further-
more, reviewing the published optimizing models involving dispatch decisions, they remark
that the studies performed so far are sometimes too specific and attached to particular con-
texts to allow a clear and unbiased assessment of the impact of dispatching decisions on
system performance. They also notice the shortcoming of current EMS optimization models
in reflecting the fairly complex dispatcher behavior in general, and in particular, dispatchers’
consideration of remaining time to job completion in making dispatch decisions, and envision
more detailed models, perhaps based on simulation, to address these issues. As stated earlier,
the model described in Chapter 4 combines the location and dispatch decisions while allow-
ing for priority dependent partial backups, relaxing the unrealistic full backup assumption.
Repeated solutions of an optimization model developed around this descriptive model, for
different instances of the demand pattern, corresponding to different times during the plan-
ing horizon, will result in periodic relocation plans. Dynamic relocation policies can also be
generated by solving the static deployment problem for N and then N−1, N−2, down to one
available server, while the costs and constraints associated with each relocation are accounted
for in the respective optimization stage. More sophisticated dynamic relocation policies that
depend on system states beyond the number of available servers, can also be synthesized by
solving the associated optimization model in real-time or by generating a collection of feasible
solutions off-line and aggregating them into the compliance tables. In any case, the general
approach to obtain static location plans or relocation policies remains exactly the same as
those proposed in the literature; however, by incorporating a probabilistic approach in the
core optimization model, and relaxing the full backup assumption by replacing the approx-
imate hypercube model of Larson (1975) with the extended version proposed in Chapter 4,
and provided that the computational requirements of searching the expanded solution space
are met, the resulting location, relocation, and dispatching strategies should be of higher
quality and more accurately reflect the operations of the real system. The model proposed
in this chapter, on the other hand, which can be viewed as a stripped down version of the
one in Chapter 4, allows one to measure the impact of a general family of partial backup
dispatching policies on the performance of an ESS with an unspecified dynamic relocation
strategy. Therefore, in light of the observations made by Bélanger et al. (2019), these new
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descriptive models can be seen as steps in the right direction.

To put ideas in perspective, we recall that in the extension of the hypercube queuing model
in Chapter 4, we introduced the queue with partial service and used it to obtain an approx-
imation of the distribution of the number of busy servers in the actual spatially distributed
service system with partial backups. We also remember that, in case of the system with a
single priority and full backups, that is when any idle server can respond to an incoming call,
the classic approximate hypercube model of Larson (1975) is obtained with an M/M/N/0
or M/M/N/∞ queue (depending on whether queues are allowed or not) to approximate the
distribution of the number of busy servers. Now, if we keep the focus on the dispatching pol-
icy with partial backups, but ignore the exact geometry of the demand distribution, and of
the distribution of the locations of the servers responding to those calls, then the queue with
partial service will be a good candidate to represent the entire system. This way, not only the
distribution of the number of busy servers, but also other performance metrics, such as the
probability of loss or queue, and the distributions of the response times and queuing delays
can be taken as approximates to their actual counterparts observed for the corresponding
ESS. Such an admittedly abstract model, will allow us to study the impact of resource pre-
serving partial backup dispatch policies, such as those considered here, on the performance of
the system, without having to resort to detailed application-specific simulation models with
potentially high cost of development and conducting the subsequent numerical experiments.
In particular, for a given outcome function of an ESS response time, our descriptive model
will reveal any opportunities to improve the expected outcome while possibly minimizing the
workload imposed on the servers, by following a partial backup strategy in the sense speci-
fied shortly. If so desired, the general insight gained from this analysis can then be refined
upon through subsequent detailed investigations, perhaps using simulation models or even
empirical and field experiments. Alternatively, the results obtained from the model might
be accepted and perhaps applied in practice as they are. At any rate, the decision to invest
resources in conducting detailed complementary studies and the size and extent of decision
spaces explored through such studies will be informed by this preliminary analysis.

Although compared to optimization models, the published work on descriptive models for
emergency service systems appear to be few and far between, and mostly limited to extensions
and modifications of the hypercube queuing model reviewed in Chapter 4, we wish to draw
parallels between the work presented here and of Maxwell et al. (2014) who construct a lower
bound on the fraction of late arrivals (defined based on a given response time threshold) in an
EMS with a given shift schedule for the ambulances, without knowing how the ambulances
will be dispatched or relocated around the city. Although, the objective and the methods used
in their study to compute the aforementioned bound, which involves solving a series of integer
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programs and then simulating a multi-sever queue, are fundamentally different from what we
try to achieve here, the overall theme of trying to answer questions regarding the performance
of an emergency system without full knowledge of its important operational details is shared
with our present research question, which is "what are the potential performance gains to
be had, if any, by introducing partial backup dispatching strategies, without knowing the
relocation policies under which the system operates?".

Before proceeding, we give the definition of the Laplace-Stieltjes transform which is used
later in this chapter. The Laplace-Stieltjes transform of a real-valued function f is given by
the Laplace-Stieltjes integral of the form

∫
e−sx dg(x)

for s a complex number. Similar to the regular Laplace transform, we get a slightly different
transform depending on the domain of integration. The bilateral Laplace-Stieltjes transform
is given by

{L∗g}(s) =
∫ ∞
−∞

e−sx dg(x) ,

whereas
{L∗g}(s) = lim

ε→0+

∫ ∞
−ε

e−sx dg(x)

gives the unilateral transform. Here we will be working with the transforms of the CDFs
of waiting times supported on (0,∞]; therefore, the two definitions will lead to identical
transforms. The Laplace-Stieljtes transform of a real-values function can be seen as a special
case of the Laplace transform; we have

L∗g = L(dg).

The Laplace-Stieltjes transform appears naturally in applied and theoretical probability. In
fact, if X is a random variable with F as its CDF, then the Laplace-Stieltjes transform of F
is given by the expectation of the random variable e−X ; that is

{L∗F} (s) = E
[
e−sX

]
,

which can also be recognized as the moment generating function of the random variable
Y = −X.

We now present the model and then two example applications.
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6.1 Mathematical Model

In this section, we give the basic definitions and underlying assumptions first, and then derive
all the required relations that will eventually merge into an iterative algorithm outlined in
the end.

We assume that calls arrive as a Poisson stream of rate λ originating from uniformly dis-
tributed random locations within a service region of total area A. The location of each of
the N servers is also assumed to be uniformly and independently distributed in the service
region independent of the state of the system.

Let Πκ
ξ designate a partial backup dispatching policy in which the κ closest servers to the

location of an incoming call or those that are less than ξ away from the call location are
considered eligible for dispatch. Under this policy, the closest free and eligible server is
always dispatched if one exists and, depending on the queue discipline, the call is queued or
lost if all eligible servers are busy at the time of call arrival. Moreover, the call is lost to both
the queuing and loss system if no eligible servers are found. The policy for the loss system
will be denoted by Π̄κ

ξ . We will also consider two special cases of this policy as well. In the
special case with ξ = 0, that is Πκ

0 , the closest κ response units to a call location will be
considered for dispatch; therefore, we must have κ ≥ 1 for this policy to be meaningful in
practice. In the special case Π0

ξ , on the other hand, there are no guaranteed backups and only
the response units that happen to be within distance ξ from the call location upon arrival
will be dispatch candidates. In this case, we must have ξ ≥ 0 and set to a reasonably large
value for the policy to be meaningful in practice.

6.1.1 Distribution of the number of busy servers

Let C be the random number of servers, busy or available, residing within distance ξ of the
random call location. The probability of exactly c servers being within distance ξ from the
call location, denoted by ζc, might be obtained from a binomial distribution as

ζc = Pr{C = c} = N !
(N − c)!c! (

πξ2

A
)c(1− πξ2

A
)N−c, c = 0, · · · , N, (6.1)

with every π replaced by 2 for the Manhattan metric; however, as discussed earlier, equation
(6.1) does not take the boundary effects into account. We can obtain an edge-corrected ζc
by first recognizing that

Pr{C = 0} = 1− Pr{C > 0} = 1− Pr{R1 ≤ ξ} ,



70

Pr{C = N} = Pr{RN ≤ ξ} ,

Pr{C = c} = Pr{C ≥ c} − Pr{C ≥ c+ 1} = Pr{Rc ≤ ξ} − Pr{Rc+1 ≤ ξ} ,

and then arriving at

ζc =


F̃Rc(ξ)− F̃Rc+1(ξ) c = 1, · · · , N − 1,

1− F̃R1(ξ) c = 0,

F̃RN (ξ) c = N,

(6.2)

where F̃Rn(r) = Pr{Rn ≤ r} is the CDF of the edge-corrected distance to the n-th neighbor
we obtained as (5.7) for the Euclidean and as (5.10) and (5.11) for the Manhattan metric.
Now, if we let ζ ′c denote the probability of {C = c} under a policy that guarantees at least κ
covering servers, we have

ζ ′c =


0 c < κ− 1 ,∑κ
c′=0 ζc′ c = κ ,

ζc c > κ ,

from which the demand vector [λc] immediately follows as

λc = λζ ′c , c = 1, · · · , N .

We note that ζc = ζ ′c if κ = 0 and that λ = ∑N
c=1 λc only if κ ≥ 1.

Finally, the distribution of the number of busy servers follows from the results we have for
the queue or loss system with partial service with N servers and the demand vector [λc].
More specifically, Pn the probability of n = 0, · · · , N servers being busy is given by (4.1) and
(4.2) for the system with queues and by (4.3) and (4.4) for the loss system.

6.1.2 Probability of Loss and Queue

Let Ploss be the probability of a random arrival leaving the system without receiving service.
Fo r the customers who do receive service, let Pq be the probability of entering the waiting
queue and hence experiencing a non-zero queuing delay, that is Pq = Pr{Wq > 0} where Wq

is the random queuing delay experienced by customers receiving service. We then obtain Pq

and Ploss as follows.
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Loss System

For the loss system we have
Pq = 0 ,

by definition.

An arrival to a loss system will be lost if there are no free compatible servers to attend
to the call; otherwise, one of the free compatible servers will be dispatched immediately.
Conditioning on the number of covering and then busy servers, the loss probability Ploss

under Πκ
ξ is obtained as

Ploss =
N∑
c=0

ζ ′c

N∑
n=c

(
n
c

)
(
N
c

)Pn =
N∑
c=0

ζ ′c

N∑
n=c

n!(N − c)!
N !(n− c)! Pn . (6.3)

special case Π0
ξ

In this case, it also holds that

Ploss =
N∑
c=0

ζc
N∑
n=c

n!(N − c)!
N !(n− c)! Pn ,

since ζ ′c = ζc. The loss probability thus becomes

Ploss =
N∑
n=κ

(N − κ)!n!
N !(n− κ)!Pn ,

special case Πκ
0

In this case, (6.3) simplifies to

Ploss =
N∑
n=κ

n!(N − κ)!
N !(n− κ)! Pn ,

since ζ ′κ = 1 and ζ ′c = 0 for c 6= κ.

Queueing System

In the system where queues are allowed, any customer that, upon arrival, finds at least one
compatible server will eventually enter service either immediately or incurring a queuing
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delay. Hence, the loss probability simply is

Ploss = ζ ′0 ,

and with probability 1−Ploss a customer will enter service. The probability of getting queued
for such a customer is then

Pq = 1
1− Ploss

N∑
c=1

ζ ′c

N∑
n=c

(
N−c
n−c

)
(
N
n

) Pn = 1
1− ζ ′0

N∑
c=1

ζ ′c

N∑
n=c

(N − c)!n!
(n− c)!N ! Pn . (6.4)

We remember that Pq represents the fraction of queued customers to all served customers;
this is reflected in the summation in (6.4) starting from c = 1 instead of c = 0 excluding the
lost arrivals, and is accounted for via the division by 1− Ploss.

special case Π̄0
ξ

Again, since ζ ′c = ζc, we might use

Pq = 1
1− ζ0

N∑
c=1

ζc
N∑
n=c

(N − c)!n!
(n− c)!N ! Pn . (6.5)

special case Π̄κ
0

The queuing probability becomes

Pq =
N∑
n=κ

Pn
(N − κ)!n!
N !(n− κ)! (6.6)

because ζ ′κ = 1 and ζ ′c = 0 for c 6= κ, and in particular ζ ′0 = 0 since κ 6= 0 (Note κ ≥ 1).

6.1.3 Queuing Delay

In this section, we characterize the delay incured by the customers who enter the waiting
queue in a system where queues are allowed. In Chapter 3, we derived the distribution
of the number of busy servers in a stable queuing system with partial service (for which
Nµ >

∑N
c=1 λc). We have the following result for the waiting times and the number of

waiting customers.

Theorem 3. For class c customers, the Laplace-Stieltjes transform of the waiting time Wc
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and the generating function of the queue length Lc will be

E
[
e−sWc

]
= 1−

N∑
n=c

Pn
(N − c)!
N !

 n!
(n− c)! − c

n∑
j=c

(j − 1)!
(j − c)!

n∏
k=j

kµ− k!
N !
∑k
c′=1 λc′

(N−c′)!
(k−c′)!

kµ− k!
N !
∑k
c′=1 λc′

(N−c′)!
(k−c′)! + s


and

E[zLc ] = 1−
N∑
n=c

Pn

1−
n∏
j=c

jµ−∑j
c′=1 λc′

j!(N−c′)!
N !(j−c′)!

jµ−∑j
c′=1 λc′

j!(N−c′)!
N !(j−c′)! + λc

j!(N−c)!
N !(j−c)!(1− z)

 ,

with the corresponding expected values as

E[Wc] =
N∑
n=c

Pn
(N − c)!
N !

n∑
j=c

j!/(j − c)!
jµ− (j!/N !)∑j

c′=1 λc′
(N−c′)!
(j−c′)!

,

and
E[Lc] = λc

N∑
n=c

Pn
(N − c)!
N !

n∑
j=c

j!/(j − c)!
jµ− (j!/N !)∑j

c′=1 λc′
(N−c′)!
(j−c′)!

;

moreover, for the waiting time W and queue length L of all customers we have

E[e−sW ] =
N∑
c=1

λc
λ

E[e−sWc ] ,

E[zL] = 1−
N∑
n=1

Pn

1−
n∏
j=1

jµ−∑j
c′=1 λc′

j!(N−c′)!
N !(j−c′)!

jµ−∑j
c′=1 λc′

j!(N−c′)!
N !(j−c′)! + λc

j!(N−c)!
N !(j−c)!(1− z)

 ,

E[W ] =
N∑
c=1

λc
λ

E[Wc] =
N∑
c=1

λc
λ

N∑
n=c

Pn
(N − c)!
N !

n∑
j=c

j!/(j − c)!
jµ− (j!/N !)∑j

c′=1 λc′
(N−c′)!
(j−c′)!

,

E[L] = λE[W ] .

Proof. Given the setup described in the proof of 1, we now proceed to find an expression for
Wc the distribution of the waiting time of class c customers of the queue with partial service.
We first note that this distribution is independent of the identities of the corresponding
compatible servers since they are indistinguishable; that is E[zWc ] = E[zWκ ] = E[zWκ′ ] for all
κ, κ′ ∈ Cc with Cc the class of customers that are compatible with exactly c servers. We can
therefore specialize the product form

E[e−sWκ ] =
N∑
n=0

∑
(M1,··· ,Mn)∈Pn

Pr(M1, · · · ,Mn)
n∏
j=1

κ∈U({M1,··· ,Mj})

µ{M1,··· ,Mj} − λU({M1,··· ,Mj})

µ{M1,··· ,Mj} − λU({M1,··· ,Mj}) + s
.

(6.7)
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for the queue with partial service to obtain the distribution of Wc in transform.

We first acknowledge that a class c customer observing the sequence of busy servers (M1, · · · ,Mn)
upon arrival, will eventually be handled by the j-th server (c ≤ j ≤ n) in the sequence with
probability

(
j−1
c−1

)
/
(
N
c

)
; moreover, this customer will be compatible with at least one of the idle

servers and hence experience zero waiting time with probability 1−
(
n
c

)
/
(
N
c

)
if c ≤ n (Note

that ∑n
j=c

(
j−1
c−1

)
=
(
n
c

)
). Therefore, conditioning on the receiving server j and substituting

(A.4) and (A.5) in (6.7) implies

E
[
e−sWc |(M1, · · · ,Mn), c ≤ n

]
= 1−

(
n
c

)
(
N
c

) +
n∑
j=c

(
j−1
c−1

)
(
N
c

) n∏
k=j

kµ−∑k
c′=1 λc′

(kc′)
(Nc′)

kµ−∑k
c′=1 λc′

(kc′)
(Nc′)

+ s
,

which naturally (for a system with indistinguishable servers) depends only on the num-
ber of busy servers. Using E

[
e−sWc |(M1, · · · ,Mn), c > n

]
= 1, summing over all possible

(M1, · · · ,Mn) ∈ Pn and simplifying yields

E
[
e−sWc

]
= 1−

N∑
n=c

Pn
(N − c)!
N !

 n!
(n− c)! − c

n∑
j=c

(j − 1)!
(j − c)!

n∏
k=j

kµ− k!
N !
∑k
c′=1 λc′

(N−c′)!
(k−c′)!

kµ− k!
N !
∑k
c′=1 λc′

(N−c′)!
(k−c′)! + s

 ,

(6.8)
where Pn is given by (A.6). The expected waiting time of a class c customer is then obtained
as

E[Wc] = − dE[e−sWc ]
ds

∣∣∣∣∣
s=0

=
N∑
n=c

Pn
(N − c)!
N !

n∑
j=c

j!/(j − c)!
jµ− (j!/N !)∑j

c′=1 λc′
(N−c′)!
(j−c′)!

. (6.9)

We now calculate the distribution of the number of class c waiting customers in the queue
with partial service. Letting Lκ be the random number of class κ customers in the skill-based
queue we first note that the product form (6.7) has been obtained by first computing E[zLκ ]
and then using the relation

E[zLκ ] = E[e−λκWκ(1−z)] , (6.10)

which is a distributional form of Little’s law for Poisson arrivals obtained by Keilson and
Servi (1988) applied to class κ customers in the skill based queue discussed above (See Haji
and Newell (1971) for the more general form). Unlike class κ customers in the skill based
queue, class c customers in the queue with partial service do not satisfy the required FIFO
condition since overtaking may happen within the class (A class c customer who enters service
with a server will overtake all earlier class c waiting customers who are not compatible with
that particular server). Thus, the distributional Little’s law does not hold and hence we
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cannot use an expression similar to (6.10) to obtain E[zLc ] by replacing s = λc(1 − z) in
(6.8); instead, we directly derive this distribution following arguments similar to those used
by Visschers et al. (2012) who make two observations: first, the product form stationary
distribution implies a geometric distribution with parameter αj for Nj the random number of
customers waiting between servers Mj and Mj+1. Second, with independent Poisson arrivals
and if κ ∈ U({M1, · · · ,Mj}), the distribution of Nκ,j the number of class κ customers waiting
between servers Mj and Mj+1 conditional on Nj is binomially distributed with parameters
Nj and θj = λκ/λU({M1,··· ,Mj}). It is then shown that Nκ,j will be geometrically distributed
with parameter

ηκ,j = αjθj
1− αj(1− θj)

= λκ
µ{M1,··· ,Mj} − λU({M1,··· ,Mj}) + λκ

,

which, combined with the fact that the Nj and thus the Nκ,j are mutually independent leads
to

E[zLκ|(M1, · · · ,Mi)] =
n∏
j=1

κ∈U({M1,··· ,Mj})

1− ηc,j
1− ηc,jz

.

Replacing class κ with class c and noting that for j ≥ c a fraction
(
j
c

)
/
(
N
c

)
of total class c

arrivals will belong to U({M1, · · · ,Mj}), we can argue following a similar line of reasoning
that Nc,j will also be geometrically distributed with parameter

η̃c,j = α̃j θ̃j

1− α̃j(1− θ̃j)
,

with

θ̃j =
λc
(
j
c

)
/
(
N
c

)
λ̃U({M1,··· ,Mj})

.

Furthermore, from the mutual independence of Nc,j, j = 1, · · · , N , and noting that there will
be no class c customers waiting between servers Mk−1 and Mk for k = 2, · · · , c, we conclude

E[zLc |(M1, · · · ,Mn)] =
n∏
j=c

1− η̃c,j
1− η̃c,jz

.

De-conditioning using the stationary distribution Pn and summing over all possible (M1, · · · ,Mn)
we have

E[zLc ] =
c−1∑
n=0

Pn +
N∑
n=c

Pn
n∏
j=c

1− η̃c,j
1− η̃c,jz

,
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which after expanding the expression for η̃c,j and simplifying becomes

E[zLc ] = 1−
N∑
n=c

Pn

1−
n∏
j=c

jµ−∑j
c′=1 λc′

j!(N−c′)!
N !(j−c′)!

jµ−∑j
c′=1 λc′

j!(N−c′)!
N !(j−c′)! + λc

j!(N−c)!
N !(j−c)!(1− z)

 .

One can then verify that the average queue length of class c customers will be

E[Lc] = dE[zLc ]
dz

∣∣∣∣∣
z=1

= λc
N∑
n=c

Pn
(N − c)!
N !

n∑
j=c

j!/(j − c)!
jµ− (j!/N !)∑j

c′=1 λc′
(N−c′)!
(j−c′)!

. (6.13)

Remark 1. Equation (6.13) can also be obtained from (6.9) and Little’s law for class c
customers E[Lc] = λcE[Wc].

We have the following corollary for the waiting time of customers who actually experience a
nonzero queuing delay (delayed dispatches).

Corollary 1. The delay experienced by class c customers that enter the queue in a queuing
system with partial service, that is WD

c = Wc|Wc > 0, satisfies

E
[
e−sW

D
c

]
=
c
∑N
n=c Pn

∑n
j=c

(j−1)!
(j−c)!

∏n
k=j

kµ− k!
N !
∑k

c′=1 λc′
(N−c′)!
(k−c′)!

kµ− k!
N !
∑k

c′=1 λc′
(N−c′)!
(k−c′)! +s∑N

n=c
n!

(n−c)!Pn
, (6.14)

with the expected value

E[WD
c ] =

∑N
n=c Pn

∑n
j=c

j!/(j−c)!
jµ−(j!/N !)

∑j

c′=1 λc′
(N−c′)!
(j−c′)!∑N

n=c
n!

(n−c)!Pn
.

The form of the Laplace transform of WD
c in (6.14) implies a mixture of sums of independent

exponentially distributed random variables. Now for n exponentially distributed random
variables Xi , i = 1, · · · , n, with rate parameters µi, the PDF of the sum Sn = ∑n

i=1Xn is
given by

fSn(x) =
n∑
i=1

fi(x)
n∏
j=1
j 6=i

µj
µj − µi

, (6.15)

with fi(x) = µe−µx the PDF of the exponential distribution with rate parameter µ. For this
and other results related to the convolution of exponential distributions see Bibinger (2013),
Sen and Balakrishnan (1999), Lomonosov (1974), Kordecki (1997), Johnson et al. (1994),
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Jasiulewicz and Kordecki (2003). With (6.15) and (6.14) we get the following result for the
PDF of WD

c .

Corollary 2. The PDF of the delay experienced by class c customers that enter the queue
in a queuing system with partial service is given by

fWD
c

(x) =
c
∑N
n=c Pn

∑n
j=c

(j−1)!
(j−c)!

∑n
k=j µke

−µkx∏n
m=j
m 6=k

µm
µm−µk∑N

n=c
n!

(n−c)!Pn
, (6.16)

with
µk = kµ− k!

N !

k∑
c′=1

λc′
(N − c′)!
(k − c′)! . (6.17)

To obtain the PDF of WD the queuing delay for all served calls, we let Pq,c be the probability
of a class c customer getting queued and recognize that

fWD(x) =
∑N
c=1 λc Pq,c fWD

c
(x)∑N

c=1 λc Pq,c
,

where
Pq,c =

N∑
n=c

Pn
n!(N − c)!
N !(n− c)! .

We thus obtain fWD(x) as the following.

Corollary 3. The PDF of the delay experienced by the queued customers in a queuing system
with partial service is given by

fWD(x) =

∑N
c=1

c(N−c)!
N ! λc

∑N
n=c Pn

∑n
j=c

(j−1)!
(j−c)!

∑n
k=j µke

−µkx∏n
m=j
m 6=k

µm
µm−µk∑N

c=1 λc
∑N
n=c

n!(N−c)!
N !(n−c)!Pn

,

with µm from (6.17).

Now, the above corollary holds for the general queuing system with partial service; for the
ESS considered in this chapter, for which λc = λζ ′c and Pq as in (6.4) (or (6.5) and (6.6) in
the special cases), we get

fWD(x) =

∑N
c=1

c(N−c)!
N ! ζ ′c

∑N
n=c Pn

∑n
j=c

(j−1)!
(j−c)!

∑n
k=j µke

−µkx∏n
m=j
m 6=k

µm
µm−µk

Pq
,
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with
µk = kµ− λ k!

N !

k∑
c′=1

ζ ′c′
(N − c′)!
(k − c′)! .

This PDF will enable us to compute the convolution of WD with other relevant random time
elements to characterize the response times of the delayed dispatches.

6.1.4 Dispatch Distance

In this section, we obtain the moments and distribution of DΠ the random travel distance for
a dispatch assignment under the partial backup dispatch policy Π. In the next section, we
will use these results together with a suitable travel time model to determine the properties
of the random travel time that a server takes to arrive at the call location.

In the previous chapter, we derived expressions for the distribution of the distance to the k-
th neighbor with boundary-effects and under some simplifying assumptions. However, these
edge-corrected results are way too complicated to be used in the proceeding analysis and as
stated before, our attempts to derive simple and tractable approximations to edge-corrected
distance distributions has not yet concluded; therefore, although we used the edge-corrected
results of Chapter 5 in computing ζc and consequently every other metric dependent on ζc
such as Pq, Ploss, and fWD(x), we shall temporarily resort to the nearest neighbor distance
distribution obtained from the PPP in deriving the properties of the random dispatch distance
in the present subsection.

Assuming that entities are scattered on an infinitely large area according to a PPP with an
intensity of σ points per unit area, the PDF of the Euclidean distance to the n-th neighbor
from an arbitrary origin is given as

fRn(r) = 2(πσ)n
(n− 1)!r

2n−1e−πσr
2
, r ≥ 0, n = 1, 2, · · · , (6.18)

with the corresponding CDF
FRn(r) = γ(n, πσr2)

(n− 1)! , (6.19)

and the l-th moment
E[Rn

l] =
Γ(n+ l

2)
(πσ) l2 (n− 1)!

. (6.20)

For the Manhattan distance metric, (6.18), (6.19), and (6.20) hold with every π replaced by
2.

We will also need ∆l
ξ the l-th moment of the distance from a uniformly distributed random
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point within distance ξ from an arbitrary origin. From (6.18) we have

∆l
ξ = 2

l + 2ξ
l, ξ ≥ 0, l = 0, 1, · · · ,

for both Euclidean and Manhattan metrics.

We now proceed to obtain the moments and distribution of DΠ the random dispatch distance
under different queue disciplines and partial backup dispatch policies.

Loss System

To obtain the l-th raw moment of the expected dispatch distance, we need to condition on
the distance rank M of the closest free server. The general relation for κ ∈ {0, 1, · · · , N}
and ξ ≥ 0 is

E[{DΠκ
ξ
}l] = 1

P ′serv

[
κ∑

m=1
Pr{M = m}E[Rm

l] +
N∑

m=κ+1
Pr{M = m}

∫ ξ

0
fRm(r)rldr

]
, (6.21)

where
P ′serv =

κ∑
m=1

Pr{M = m}+
N∑

m=κ+1
Pr{M = m}FRm(ξ)

gives the probability of an arrival receiving service from the system. In general, we should
have Pserv = 1 − Ploss; however, this ceases to be the case as we proceed to replace FRm(ξ)
with the expression obtained from the spacial Poisson process assumption. This is because of
the fact that the special Poisson assumption gives us an approximation of FRm(ξ), whereas
Ploss is exact under our basic assumptions. Therefore, to keep the analysis consistent and
minimize the approximation errors, instead of Pserv = 1−Ploss, we normalize expressions like
(6.21) with P ′serv (instead of Pserv = 1−Ploss) which is also obtained in terms of approximate
expressions FRm(ξ) and fRm(ξ).

We use the shorthand notation Ψm,N to represent the distribution of M as

Ψm,N ≡ Pr{M = m} =
N−1∑

n=m−1

(
N−m
n−m+1

)
(
N
n

) Pn =
N−1∑

n=m−1

n!(N −m)!(N − n)
N !(n−m+ 1)! Pn m = 0, 1, · · · , N.

We obtain the integral in (6.21) as

∫ ξ

0
fRm(r)rldr = 2(πσ)m

(m− 1)!

∫ ξ

0
r2m−1e−πσr

2
dr =

γ(m+ l
2 , πσξ

2)
(m− 1)!(πσ)l/2 ,
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where γ(s, t) =
∫ t

0 x
s−1e−xdx is the lower incomplete gamma function. We thus get

E[{DΠκ
ξ
}l] = 1

P ′serv

[
κ∑

m=1

Γ(m+ l
2)

(πσ)l/2(m− 1)!Ψm,N +
N∑

m=κ+1

γ(m+ l
2 , πσξ

2)
(πσ)l/2(m− 1)! Ψm,N

]

with
P ′serv =

κ∑
m=1

Ψm,N +
N∑
m=1

γ(m,πσξ2)
(m− 1)! Ψm,N ,

where Γ(x) is the gamma function. For FDΠκ
ξ
(x) the CDF of the dispatch distance, we write

FDΠκ
ξ
(x) = Pr{DΠκ

ξ
≤ x} = 1

P ′serv

{
κ∑

m=1
Pr{M = m}

∫ x

0
fRm(r)dr+

N∑
m=κ+1

Pr{M = m}
∫ min(x,ξ)

0
fRm(r)dr

}

= 1
P ′serv

{
κ∑

m=1

γ(m,πσx2)
(m− 1)! Ψm,N +

N∑
m=κ+1

γ(m,πσmin(x, ξ)2)
(m− 1)! Ψm,N

}
.

The PDF is then obtained as

fDΠκ
ξ
(x) = 1

P ′serv

{
κ∑

m=1

2(πσ)mx2m−1e−πσx
2

(m− 1)! Ψm,N + 1(x < ξ)
N∑

m=κ+1

2(πσ)mx2m−1e−πσx
2

(m− 1)! Ψm,N

}
.

Special Case Π0
ξ:

The moments and the distribution of the dispatch distance for this policy are given by

E[{DΠ0
ξ
}l] = 1

P ′serv

N∑
m=1

γ(m+ l
2 , πσξ

2)
(πσ)l/2(m− 1)! Ψm,N , (6.22)

FDΠ0
ξ

(x) = 1
P ′serv

N∑
m=1

γ(m,πσmin(x, ξ)2)
(m− 1)! Ψm,N , (6.23)

and
fDΠ0

ξ

(x) = 1(x < ξ)
P ′serv

N∑
m=1

2(πσ)mx2m−1e−πσx
2

(m− 1)! Ψm,N , (6.24)

with
P ′serv =

N∑
m=1

γ(m,πσξ2)
(m− 1)! Ψm,N .

Alternatively, we recognize that conditional on n servers busy, the dispatch distance is dis-
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tributed as the distance to the nearest server out of a total of N − n free servers; with the
Poisson assumption, this means a density of σ = N−n

A
. Therefore, we can write

E[{DΠ0
ξ
}l] = 1

P ′′serv

N−1∑
n=0

Pn
γ(1 + l

2 , π
N−n
A
ξ2)

(πN−n
A

)l/2

with
P ′′serv =

N−1∑
n=0

Pnγ(1, πξ
2(N − n)
A

) .

Similarly, we obtain for the CDF and PDF as

FDΠ0
ξ

(x) = 1
P ′′serv

N−1∑
n=0

Pnγ(1, πmin(x, ξ)2(N − n)
A

)

and
fDΠ0

ξ

(x) = 1(x < ξ)
P ′′serv

{
N−1∑
n=0

2πN − n
A

xe−π
N−n
A

x2
}
.

These alternative expressions are somewhat simpler than (6.22), (6.23) and (6.24) and ac-
cording to our experiments, lead to almost identical numerical results.

Special case Πκ
0 :

In this case, we have λκ = λ and λc = 0, for c ∈ {1, 2, · · · , N} \ {κ} and obtain

E[{DΠκ0}
l] = 1

P ′serv

κ∑
m=1

Γ(m+ l
2)

(πσ)l/2(m− 1)!Ψm,N ,

FDΠκ0
(x) = 1

P ′serv

κ∑
m=1

γ(m,πσx2)
(m− 1)! Ψm,N ,

and
fDΠκ0

(x) = 1(x < ξ)
P ′serv

κ∑
m=1

2(πσ)mx2m−1e−πσx
2

(m− 1)! Ψm,N ,

with
P ′serv =

κ∑
m=1

Ψm,N ,

for the moments and the distribution of the dispatch distance.
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Queuing System

Although the difference between the travel distances associated with the immediate and
delayed dispatches is much less significant than between the corresponding travel times, one
would still rather make this distinction. Therefore, we will consider the random dispatch
distance of the immediate and delayed assignments, respectively denoted by DI

Π̄κ
ξ
and DD

Π̄κ
ξ
,

and obtain the corresponding moments and distributions. The expressions for all dispatches
are then easily recovered through

E[{DΠ̄κ
ξ
}l] = (1− Pq) E[{DI

Π̄κ
ξ
}l] + Pq E[{DD

Π̄κ
ξ
}l] ,

FDΠ̄κ
ξ

(x) = (1− Pq)FDI
Π̄κ
ξ

(x) + Pq FDD
Π̄κ
ξ

(x) ,

and
fDΠ̄κ

ξ

(x) = (1− Pq) fDI
Π̄κ
ξ

(x) + Pq fDD
Π̄κ
ξ

(x) .

We first consider the policy with at least one backup, that is with κ ≥ 1, denoted by Π̄κ+
ξ .

To analyze this case, we first need to define θiξ(m, r) as the probability of at least i servers
being in vicinity ξ of the call location given that the m-th neighbor is at distance r from the
call location; we then readily see that

θiξ(m, r) = Pr{Ri ≤ ξ |Rm = r} = 1−
i−1∑
j=0

(m− 1)!
j!(m− j − 1)!

(
ξ

r

)2j (
1− ξ2

r2

)m−j−1

=
m−1∑
j=i

(m− 1)!
j!(m− j − 1)!

(
ξ

r

)2j (
1− ξ2

r2

)m−j−1

.

Conditioning on the distance rank of the first free server and then on the location of the κ-th
closest server, we write for the moments of the immediate dispatch distances

E[{DI
Π̄κ+
ξ

}l] = 1
1− P ′q

{
κ∑

m=1
Pr{M = m}E[Rm

l] +
N∑

m=κ+1
Pr{M = m}

∫ ξ

0
fRmr

l dr

}
, (6.25)

where P ′q = Pr{Wq > 0}, defined only for the system with queuing, is the probability of a
served customer entering service with a queuing delay, and is obtained as

1− P ′q =
κ∑

m=1
Pr{M = m}+

N∑
m=κ+1

Pr{M = m}FRm(ξ) .

Simplifying gives
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E[{DI
Π̄κ+
ξ

}l] = 1
1− P ′q

(
κ∑

m=1

Γ(m+ l
2)

(πσ)l/2(m− 1)!Ψm,N +
N∑

m=κ+1

γ(m+ l
2 , πσξ

2)
(πσ)l/2(m− 1)!Ψm,N

)
,

where
1− P ′q =

κ∑
m=1

Ψm,N +
N∑
m=1

γ(m,πσξ2)
(m− 1)! Ψm,N .

For the delayed dispatches, we first write

E[{DD
Π̄κ+
ξ

}l] = 1
P ′q

{
PN

(
∆ξFRκ(ξ) +

∫ ∞
ξ

fRκ(r)
[1
κ
r + (1− 1

κ
)∆r

]
dr
)

+

N∑
m=κ+1

Pr{M = m}
∫ ∞
ξ

fRm(r)
(

∆l
ξFRκ|Rm=r(ξ) +

∫ r

ξ
fRκ|Rm=r(x)

[1
κ
xl + (1− 1

κ
)∆l

x

]
dx
)
dr

]}
;

(6.26)

where FRn|Rm=r(x) = Pr{Rn ≤ x|Rm = r} and fRn|Rm=r(x) = d
dx
FRn|Rm=r(x) are respectively

the CDF and PDF of Rn conditional on the m-th nearest server residing at distance r. It is
easy to see that FRn|Rm=r(x) = θnx(m, r) and thus fRn|Rm=r(x) = d

dx
θnx(m, r). We then write

∫ ∞
ξ

fRm(r)∆l
ξFRκ|Rm=r(ξ)dr =

m−1∑
j=κ

2(πσ)m
j!(m− j − 1)!∆

l
ξ (Φj(∞)− Φj(ξ)) ,

with

Φj(r) =
∫
r2m−1e−πσr

2
(
ξ

r

)2j (
1− (ξ

r
)2
)m−j−1

dr

= −1
2π

j−mξ2je−πσξ
2
σj−mΓ(m− j, πσ(r2 − ξ2)) ;

so, we get

∫ ∞
ξ

fRm(r)∆l
ξFRκ|Rm=r(ξ)dr = ∆l

ξe
−πσξ2

m−1∑
j=κ

(πσξ2)j
j! ,

which can be written in terms of incomplete gamma functions as

∫ ∞
ξ

fRm(r)∆l
ξFRκ|Rm=r(ξ)dr = ∆l

ξ

(
Γ(m,πσξ2)

(m− 1)! −
Γ(κ, πσξ2)

(κ− 1)!

)

= ∆l
ξ

(
γ(κ, πσξ2)
(κ− 1)! −

γ(m,πσξ2)
(m− 1)!

)
.
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Since for m ≥ κ+ 1, Rκ ≥ ξ implies Rm ≥ ξ, by the law of total expectation we have
∫ ∞
ξ

fRm(r)
∫ r

ξ
fRκ|Rm=r(x)

[1
κ
xl + (1− 1

κ
)∆l

x

]
dx dr =

∫ ∞
ξ

fRκ(x)
[1
κ
xl + (1− 1

κ
)∆l

x

]
dx

=
(2κ+ l)Γ(κ+ l

2 , πσξ
2)

(l + 2)κ!(πσ)l/2 .

We also have

PN

(
∆l
ξFRκ(ξ) +

∫ ∞
ξ

fRκ(r)
[1
κ
rl + (1− 1

κ
)∆l

r

]
dr
)

=

PN

∆l
ξγ(κ, πσξ2)
(κ− 1)! +

[
−

(2κ+ l)Γ(κ+ l
2 , πσr

2)
(l + 2)κ!(πσ)l/2

]r=∞
r=ξ


= PN

(
∆l
ξγ(κ, πσξ2)
(κ− 1)! +

(2κ+ l)Γ(κ+ l
2 , πσξ

2)
(l + 2)κ!(πσ)l/2

)
.

Combining all the above results into (6.26), we get

E[{DD
Π̄κ+
ξ

}l] = 1
P ′q

[
PN

(
∆l
ξγ(κ, πσξ2)
(κ− 1)! +

(2κ+ l)Γ(κ+ l
2 , πσξ

2)
(l + 2)κ!(πσ)l/2

)
+

N∑
m=κ+1

Ψm,N

{
∆l
ξ

(
γ(κ, πσξ2)
(κ− 1)! −

γ(m,πσξ2)
(m− 1)!

)
+

(2κ+ l)Γ(κ+ l
2 , πσξ

2)
(l + 2)κ!(πσ)l/2

}]
.

Based on the same conditioning sequence, we write

FDI
Π̄κ+
ξ

(x) = 1
1− P ′q

{
κ∑

m=1
Pr{M = m}FRm(x) +

N∑
m=κ+1

Pr{M = m}FRm (min(x, ξ))
}

and

FDD
Π̄κ+
ξ

(x) = 1
P ′q

{
N∑

m=κ+1
Pr{M = m}

[∫ ∞
ξ

fRm(r)FRκ|Rm=r(ξ)
min(x, ξ)2

ξ2 dr+

∫ ∞
ξ

fRm(r)
∫ r

max(x,ξ)
fRκ|Rm=r(y)

[
(1− 1

κ
)x

2

y2

]
dydr

]
+

PN

(
min(x, ξ)2

ξ2 FRκ(ξ) +
∫ max(x,ξ)

ξ
fRκ(r)dr +

∫ ∞
max(x,ξ)

fRκ(r)κ− 1
κ

x2

r2 dr

)}
,

for the CDF of the immediate and delayed dispatch distances, respectively, and finally arrive
at

FDI
Π̄κ+
ξ

(x) = 1
1− P ′q

(
κ∑

m=1

γ(m,πσx2)
(m− 1)! Ψm,N +

N∑
m=κ+1

γ(m,πσmin(x, ξ)2)
(m− 1)! Ψm,N

)
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and

FDD
Π̄κ+
ξ

(x) = 1
P ′q

[
PN

(
min(x, ξ)2γ(κ, πσξ2)

ξ2(κ− 1)! + γ(κ, πσmax(x, ξ)2)− γ(κ, πσξ2)
(κ− 1)! +

(κ− 1)πσx2 (Γ(κ− 1, πσmax(x, ξ)2))
κ!

)
+

N∑
m=κ+1

Ψm,N

{
min(x, ξ)2

ξ2

(
γ(κ, πσξ2)
(κ− 1)! −

γ(m,πσξ2)
(m− 1)!)

)

+γ(κ, πσmax(x, ξ)2)− γ(κ, πσξ2)
(κ− 1)! + (κ− 1)πσx2Γ(κ− 1, πσmax(x, ξ)2)

κ!

}]
,

which lead to the corresponding PDFs

fDI
Π̄κ+
ξ

(x) = 2
1− P ′q

{
κ∑

m=1
Ψm,N

(πσ)mx2m−1e−πσx
2

(m− 1)! + 1(x < ξ)
N∑

m=κ+1
Ψm,N

(πσ)mx2m−1e−πσx
2

(m− 1)!

}

and

fDD
Π̄κ+
ξ

(x) = 2
P ′q

[
PN

(
1(x < ξ)x γ(κ, πσξ2)

ξ2(κ− 1)! + 1(x ≥ ξ)(πσ)κx2κ−1e−πσx
2

κ! +

πσx(κ− 1)Γ(κ− 1, πσmax(x, ξ)2)
κ!

)
+

N∑
m=κ+1

Ψm,N

{
1(x < ξ)x

ξ2

(
γ(κ, πσξ2)
(κ− 1)! −

γ(m,πσξ2)
(m− 1)!

)

+1(x ≥ ξ)(πσ)κx2κ−1e−πσx
2

κ! + (κ− 1) πσxΓ(κ− 1, πσmax(x, ξ)2)
κ!

}]

for the immediate and delayed dispatch distances, respectively.

In the next subsection, where we consider the response times, we will see that to derive
exact expressions under the Πκ+

ξ policy, distributions of the dispatch distance conditional
on C the number of covering servers are required. Therefore, we now provide an alternate
characterization of the dispatch distance under the Πκ+

ξ policy by conditioning on C instead
of M. The conditional PDFs we obtain in the process will be used in the next subsection.

We first recognize that under the policy Π̄κ+
ξ , that is with κ = 1, 2, · · · , N and ξ ≥ 0, we

have

C = κ ↔ Rκ+1 > ξ ,

C > κ ↔ Rκ+1 ≤ ξ .
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Now, conditioning on C and using the above reasoning, we write for the l-th moment of the
dispatch distance for calls covered by exactly κ servers

E[{DD
Π̄κ+
ξ

|C = κ}l] = 1
1− FRκ+1(ξ)

∫ ∞
ξ

fRκ+1(r) ∆l
r dr

=
2(πσ)− l

2 Γ(κ+ 1 + l
2 , πσξ

2)
(l + 2) Γ(κ+ 1, πσξ2) .

For C ∈ {κ+ 1, κ+ 2, · · · , N} we simply have

E
[{

DD
Π̄κ+
ξ

|C ∈ {κ+ 1, · · · , N}
}l]

= ∆l
ξ .

For the CDFs conditional on C we write

F{DD
Π̄κ+
ξ

|C=κ}(x) = 1
1− FRκ+1(ξ)

{∫ ∞
max{x,ξ}

fRκ+1(r) x
2

r2 dr +
∫ max{x,ξ}

ξ
fRκ+1(r) dr

}

=1 + πσx2 Γ(κ, πσmax{x, ξ}2)− Γ(κ+ 1, πσmax{x, ξ}2)
Γ(κ+ 1, πσξ2) ,

and
F{DD

Π̄κ+
ξ

|C∈{κ+1,··· ,N}(x) = min(x, ξ)2

ξ2 .

Differentiation yields the required conditional PDFs; after simplifications we get

f{DD
Π̄κ+
ξ

|C=κ}(x) = 2πσ xΓ(κ, πσmax{x, ξ}2)
Γ(κ+ 1, πσξ2) , (6.27)

and
f{DD

Π̄κ+
ξ

|C∈{κ+1,··· ,N}(x) = 1(x < ξ)2x
ξ2 . (6.28)

Now, for sake of completeness, we give the moments and distribution of the dispatch distance
obtained through a conditioning and then de-conditioning on C. Letting Q be the event of a
call getting queued, we write

E[{DD
Π̄κ+
ξ

}l] =

∑N
c=κ Pr{C = c}Pr{Q |C = c}E[{DD

Π̄κ+
ξ

|C = c}l]∑N
c=κ Pr{C = c}Pr{Q |C = c}

,

which after substitutions gives

E[{DD
Π̄κ+
ξ

}l] =
{

N∑
c=κ

ζ ′c

N∑
n=c

Pn
(N − c)!n!
N !(n− c)!

}−1

×
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ζ ′κ2(πσ)− l
2 Γ(κ+ 1 + l

2 , πσξ
2)

(l + 2) Γ(κ+ 1, πσξ2)

N∑
n=κ

Pn
(N − κ)!n!
N !(n− κ)! + ∆l

ξ

N∑
c=κ+1

ζ ′c

N∑
n=c

Pn
(N − c)!n!
N !(n− c)!

 .

Similarly, we have

FDD
Π̄κ+
ξ

(x) =
{

N∑
c=κ

ζ ′c

N∑
n=c

Pn
(N − c)!n!
N !(n− c)!

}−1

×
[(

1 + πσx2 Γ(κ, πσmax{x, ξ}2)− Γ(κ+ 1, πσmax{x, ξ}2)
Γ(κ+ 1, πσξ2)

)
ζ ′κ

N∑
n=κ

Pn
(N − κ)!n!
N !(n− κ)!

+min(x, ξ)2

ξ2

N∑
c=κ+1

ζ ′c

N∑
n=c

Pn
(N − c)!n!
N !(n− c)!

]
,

and

fDD
Π̄κ+
ξ

(x) =
{

N∑
c=κ

ζ ′c

N∑
n=c

Pn
(N − c)!n!
N !(n− c)!

}−1

×
[(

2πσ xΓ(κ, πσmax{x, ξ}2)
Γ(κ+ 1, πσξ2)

)
ζ ′κ

N∑
n=κ

Pn
(N − κ)!n!
N !(n− κ)!

+1(x < ξ)2x
ξ2

N∑
c=κ+1

ζ ′c

N∑
n=c

Pn
(N − c)!n!
N !(n− c)!

]
.

for the PDF and the CDF of the dispatch distance, respectively.

Special Case Π̄0
ξ:

For the case with κ = 0, denoted by Π̄0
ξ , we might have a non-zero probability of loss, that

is Ploss ≥ 0. Under this policy, (6.25) for the moments of the immediate dispatch distance
specializes to

E[{DI
Π̄0
ξ
}l] = 1

(1− Ploss)(1− Pq)

N∑
m=1

Pr{M = m}
∫ ξ

0
fRm(r)rl dr ,

and when evaluated using the Poisson assumptions, yields

E[{DI
Π̄0
ξ
}l] = 1

(1− P ′loss)(1− P ′q)

N∑
m=1

γ(m+ l
2 , πσξ

2)
(πσ)l/2(m− 1)! Ψm,N ,

where the normalizing factor (1 − P ′loss)(1 − P ′q) is understood to represent the fraction of
immediate dispatches to all arrivals (including the lost ones) obtained using the distance
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distributions derived based on special Poisson assumption, that is

(1− P ′loss)(1− P ′q) =
N∑
m=1

γ(m,πσξ2)
(m− 1)! Ψm,N . (6.29)

For the delayed dispatches and for κ = 0, (6.26) reduces to

E[{DD
Π̄κ+
ξ

}l] = 1
Pq

{
PN∆l

ξ + 1
(1− Ploss)

N∑
m=1

Pr{M = m}∆l
ξ

∫ ∞
ξ

θ1
ξ(m, r) fRm(r) dr

}
,

and gives

E[{DD
Π̄0
ξ
}l] = 1

(1− P ′loss)P ′q

N∑
m=1

∆l
ξ

(
1− e−πσξ2 − γ(m,πσξ2)

(m− 1)!

)
Ψm,N + ∆l

ξ

PN
P ′q

, (6.30)

where it holds that

(1− Ploss)Pq = PN(1− Ploss) +
N∑
m=1

Ψm,N

∫ ∞
ξ

θ1
ξ(m, 1)fRm(r) dr ,

and thus

(1− P ′loss)P ′q = PN(1− P ′loss) +
N∑
m=1

Ψm,N

(
1− e−πσξ2 − γ(m,πσξ2)

(m− 1)!

)
, (6.31)

after substituting for fRm(r). Combining (6.29) and (6.31) and simplifying (Note that PN +∑N
m=1 Ψm,N = 1) we get

P ′loss = e−πσξ
2
, (6.32)

which can be verified by direct computation of P ′loss as

P ′loss = 1− FR1(ξ) = 1− γ(1, πσξ2) = e−πσξ
2
.

Plugging (6.32) back into (6.31) we get P ′q as

P ′q = 1−
∑N
m=1 Ψm,N

γ(m,πσξ2)
(m−1)!

1− e−πσξ2 .
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With P ′loss and P ′q determined, the moments of the delayed dispatch distances is then obtained
from (6.30). Alternatively, one can simply recognize that

E[{DD
Π̄0
ξ
}l] = ∆l

ξ ,

since any delayed dispatch under this policy will be to the call location from a uniformly to
obtain the distribution of the random point within distance ξ. We use this straightforward
reasoning in computing the distribution of the dispatch distance as well.

The CDF of the immediate and delayed dispatch distances are then obtained as

FDI
Π̄0
ξ

(x) = 1
(1− P ′loss)(1− P ′q)

N∑
m=1

γ(m,πσmin(x, ξ)2)
(m− 1)! Ψm,N

and
FDD

Π̄0
ξ

(x) = min(x, ξ)2

ξ2 ;

with the corresponding PDFs

fDI
Π̄0
ξ

(x) = 1(x < ξ)
(1− P ′loss)(1− P ′q)

N∑
m=1

2(πσ)mx2m−1e−πσx
2

(m− 1)! Ψm,N

and
fDD

Π̄0
ξ

(x) = 1(x < ξ)2x
ξ
,

where the normalizing factor (1− P ′loss)(1− P ′q) is given by (6.29).

Special Case Π̄κ
0 :

For the case with only a limit on the backup number, the queuing probability becomes

Pq =
N∑
n=κ

Pn
(N − κ)!n!
N !(n− κ)! ,

and we note that
Pq = 1−

κ∑
m=1

Ψm,N . (6.33)

For the immediate dispatches we write

E[{DI
Π̄κ0
}l] = 1

1− Pq

κ∑
m=1

Pr{M = m}E[Rm
l]
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which gives

E[{DI
Π̄κ0
}l] = 1

1− Pq

κ∑
m=1

Γ(m+ l
2)

(πσ)l/2(m− 1)!Ψm,N .

Note that, in this case, the queuing probability depends only on M and not on Rm and hence
Pq can be used for normalizing, as reflected in (6.33).

Every delayed dispatch under this policy will assign the call to one of the first κ neighbors
with equal probability (servers are indistinguishable); therefore

E[{DD
Π̄κ0
}l] = 1

κ

κ∑
h=1

E[Rh
l] = 1

κ

κ∑
h=1

Γ(h+ l
2)

(πσ)l/2(h− 1)! .

The corresponding CDFs are

FDI
Π̄κ0

(x) = 1
1− Pq

κ∑
m=1

γ(m,πσx2)
(m− 1)! Ψm,N

and
FDD

Π̄κ0
(x) = 1

κPq

κ∑
h=1

γ(h, πσx2)
(h− 1)! ,

with the PDFs
fDI

Π̄κ0
(x) = 2

1− Pq

κ∑
m=1

(πσ)mx2m−1e−πσx
2

(m− 1)! Ψm,N

and
fDD

Π̄κ0
(x) = 2

κPq

κ∑
h=1

(πσ)hx2h−1e−πσx
2

(h− 1)! ,

for the immediate and delayed dispatches.

6.1.5 Response Time

With the dispatch distance and queuing delay characterized in previous sections, we are
now in position to analyze the response time, which is defined as the time elapsed from the
moment the call is received to the moment the server arrived at the emergency scene. In
general, we can think of the response time as comprising of two main components, the pre-
travel delay and the travel time. The pre-travel delay may further be broken down into two
segments, the dispatch time, taken by the dispatcher to assess the call and make a decision,
and the time-to-on-route or chute time, from the moment the dispatch decision is made until
the server is actually starts moving towards the scene. The number of components and the
analytic or numerical methods used in modelling the pre-travel delay, and by extension other
non-travel components of the service time, highly depend on the application and the level of
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detail justified or desired by the analyst. Therefore, we suffice to write the random response
time R as

R = Tque + Tpre−trv + T ,

where Tque is the random queuing delay, Tpre−trv is the total pre-travel delay, and T is the
travel time. Now, while the randomness in the pre-travel delay can be reasonably assumed
to be independent of the dispatch distance, the travel time obviously depends on the travel
distance. However, the travel time may, in reality, depend on many other factors besides the
travel distance, and these can also be accounted for via models such as the one proposed in
Budge et al. (2010) that we utilized in Section 4. These secondary dependence on factors
beside the travel distance are mostly application-specific and might be ignored for a simpler
model, as we do here. Thus, we only consider the variation of the travel time with the travel
distance.

Recall (4.25) of the Budge et al. (2010) travel time model that gives the median of the
stochastic time to travel a distance of d. Now, ignoring the stochasticity of travel time about
this average value (that is setting cv = 0), we arrive at

g(d) =

2
√
d/a if d ≤ 2dc

vc/a+ d/vc if d > 2dc
,

which is in fact the original travel time model of Kolesar et al. (1975), where g(d) is now the
mean travel time t(d) to cover a given travel distance d; a and vc are the acceleration and
the cruising speed; and we have dc = v2

c/(2a). We then get the CDF and PDF of TΠ the
random travel distance under a general unspecified dispatch policy Π as

FTΠ(t) = FDΠ(h(t)) (6.34)

and
fTΠ(t) = h′(t) fDΠ(h(t)) , (6.35)

where

h(t) = g−1(t) =


1
4 a t

2 t ≤ 2vc
a
,

t vc − v2
c

a
t > 2vc

a
, .

(6.36)

The l-th raw moment of the travel time is of course obtained via

E[Tl
Π] =

∫ ∞
t=0

fTΠ(t) tl dt ,

for l = 1, 2, · · · . Now, replacing fDΠ and FDΠ in (6.34), (6.35), and (6.36) with the appropriate
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expressions from Section 6.1.4, we obtain the PDF and CDF of TI
Π and TD

Π the random travel
time for the immediate and delayed dispatches, respectively.

Having computed the distribution of the travel time and assuming a given distribution for the
non-travel components of the response time, the distribution of the response time is obtained
as the convolution of its components. For a system with queues, however, we distinguish
between the response times of immediate and delayed dispatches. With f ∗ g designating
the convolution of functions f and g, the distribution of the response time for the immediate
dispatches RI

Π is given as
fRI

Π
(t) = fTI

Π
∗ fTpre−trv ,

while for the delayed dispatch we have to include the queuing delay as well; we write

fRD
Π

(t) = fTD
Π
∗
(
fTque ∗ fTpre−trv

)
, (6.37)

which is exact when Tque and TD
Π are independent; otherwise, it will be an approximation.

In fact, within the context considered here, the queuing delay and the travel time may
depend on C the random number of compatible servers and thus, depending on the policy,
a conditioning and de-conditioning on C may be required to arrive at the exact expression.
For the special case of Πκ

0 , every call is covered by exactly κ servers and hence C = κ with
probability 1; therefore, equation (6.37) holds exactly. For the special case of Π0

ξ , C might
assume values in the set {0, 1, · · · , N}; however, as discussed earlier and regardless of C,
the dispatch distance will be distributed as the random distance from the call location to
a uniformly random point within a neighborhood of radius ξ. Consequently, although the
queuing delay will depend on C, the travel time will not, and (6.37) will again be exact.
Under the general Πκ+

ξ policy, however, both Tque and TD
Π will depend on C and we must

condition on C if an exact expression is desired. We have already obtained the distribution
of the queuing delay conditional on C as (6.16) and the PDF of the delayed dispatch distance
conditional on C as (6.27) and (6.28). We first obtain the travel time conditional on C as

f{TD
Πκ+
ξ

|C=c}(t) = h′(t) f{DD
Πκ+
ξ

|C=c}(h(t)) , c = κ, κ+ 1, · · · , N ,

and then, conditioning on C as before, we obtain the PDF of the response time as the mixture
of convolutions

fRD
Π̄κ+
ξ

= fTpre−trv ∗

( N∑
c=κ

ζ ′c

N∑
n=c

Pn
(N − c)!n!
N !(n− c)!

)−1

×
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N∑
c=κ

ζ ′c

f{TD
Π̄κ+
ξ

|C=c} ∗ fWD
c

 N∑
n=c

Pn
(N − c)!n!
N !(n− c)!

 ,
which completes our analysis of the response times.

Finally, we note that the pre-travel delay may itself be a convolution of its components and
that these components may depend on whether the dispatch is immediate or delayed. For
instance, we might break the pre-travel time of the immediate dispatches into dispatch and
chute times, but for the delayed dispatches consider only the chute time since for a queued
call, the dispatch process will most probably be completed while the call is waiting in the
queue. Likewise, the chute time can be distributed differently for immediate and delayed
dispatches.

6.1.6 Response Outcome

Let u(t) be a real-valued function giving the outcome, the service quality, or in general, the
effectiveness of responding to a call in t time units. Obviously, in most realistic applications,
u(t) will be a non-decreasing function. The average outcome of the ESS under the policy Π
is then obtained by evaluating the integral

E[UΠ] = Ploss

{
Pq

∫ ∞
t=0

fRD
Π

(t)u(t) dt+ (1− Pq)
∫ ∞
t=0

fRI
Π
(t)u(t) dt

}
+ (1− Ploss) E[Uloss] ,

where E[Uloss] is the expected outcome for the lost calls. Furthermore, if one is interested in
the distribution of the outcome, the CDF and PDF are given by

FUΠ(x) = PlossFUloss(x) + (1− Ploss)
{

(1− Pq)(1− FRI
Π
(τ(x))) + Pq(1− FRD

Π
(τ(x)))

}
,

if the distribution of Uloss is given, and

FUΠ(x) = 1(E[Uloss] ≤ x)Ploss + (1− Ploss)
{

(1− Pq)(1− FRI
Π
(τ(x))) + Pq(1− FRD

Π
(τ(x)))

}
,

if only the expectation of Uloss is available. The corresponding PDFs are

fUΠ(x) = PlossfUloss(x) + τ ′(x)(1− Ploss)
{

(Pq − 1)fRI
Π
(τ(x))− PqfRD

Π
(τ(x))

}
,

and
fUΠ(x) = τ ′(x)(1− Ploss)

{
(Pq − 1)fRI

Π
(τ(x))− PqfRD

Π
(τ(x))

}
,
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where the last expression is defined over R+/{E[Uloss]} instead of R+, and τ(x) = u−1(x)
gives the response time corresponding to the outcome value x.

6.1.7 Service Time

In addition to [λc], we need the service rate µ to obtain the state probabilities of the queuing
or loss system with partial service. Looking at the components of the service time in reverse
chronological order, we write

Tserv = Treset + Ttrans + Tscene + Ttrv + Tpre−trv ,

where Treset is the reset or turnaround time from the moment the call is completed until the
server is back in service, Ttrans is the time it takes to transport the patient to a care center
in case a transport is needed, and Tscene is the time spent on the scene of the incident. The
rest of the time components have been mentioned before as comprising the response time.
We obtain the mean service rate as

µ = 1
E[Tserv]

,

which implies that the variations of the service time caused by variations in the travel time can
be ignored. This is a classic assumption in the analysis of the spatially distributed systems
and is closer to reality when the travel time constitutes a smaller fraction of the total service
time (Larson and Odoni (1981)). It is worth clarifying that, unlike the other non-travel
components of the service time, the distribution of the travel time will generally depend on
system state and thus vary from call to call, which in turn results in state dependent and
not identically distributed service times. However, in most practical applications involving
ESSs, where the quickness of response is important, it seems reasonable to assume the travel
time component to be a small fraction of the service time, and as mentioned in Alanis et al.
(2013), we make this assumption to avoid complications.

Assuming that the components of the service time are mutually independent, we write

E[Tserv] = E[Treset] +PtransE[Ttrans] + E[Tscene] + E[Tpre−trv] +Pq E[TD
Π] + (1−Pq) E[TI

Π] ,

where Ptrans is the given probability of a patient requiring a transport to a care center.
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6.1.8 The Algorithm

We are finally in position to use an iterative algorithm to compute the quantities of interest
for the ESS with re-positioning discussed under our dispatch policy.

1. Initialization: Initialize the problem definition parameters N , A, λip

2. Compute the demand vector [λc]

3. Compute the state probabilities Pn

4. Compute the loss and queue probabilities, Pq and Ploss;

5. Compute the mean and distribution of the immediate and delayed dispatches

6. Compute the mean and distribution of the travel times for the immediate and delayed
dispatches

7. Compute the mean service time and update the service rate accordingly

8. If the change in the service rate is smaller than a given threshold, start a new iteration
from step 2.

9. Compute the expected and possibly the distribution of the response outcome using the
values of the parameters from the last iteration

6.2 Drone-Van Combo Systems

The analysis presented in the previous section cannot be directly applied to the quickly
emerging drone-van combo systems (see the project with Mercedes-Benz vans and drones from
Matternet) where drones launch from their host mobile ground bases (vans) in response to
calls for service and fly back to their home bases when the service is completed. Fortunately,
however, these systems can still be treated using a modified version of the analysis presented
in the previous section.

Let there be K mobile ground bases, or vans, each operating and carrying H drones resulting
in a total of N = KH drones responding to requests for emergency services of some sort
with the Poisson arrival rate of λ originating from uniformly random locations over a service
region of total area A. In response to a new call, the closest free and compatible drone under
a partial backup dispatch policy Π will be assigned to the call for service and return to the
same van upon finishing the service. With the dispatching policy specified as Πκ

ξ for the loss



96

system or Π̄κ
ξ in case of the system with queues, κ ∈ {0, 1, · · · , K} is now understood to

indicate the maximum number of neighboring ground bases (vans), rather than drones, to
consider for dispatch to a call arrival. Likewise, ξ ≥ 0 specifies the distance from the call
location within which every van is deemed eligible for dispatch. A ground base with at least
one free drone is considered free. The nearest free and compatible ground base will always
respond to the request for service by initiating the launch of one of its free drones to the call
location. If no compatible ground bases exist, the call will be lost. If all of the compatible
ground bases are busy, that is with no free drones, the call will be lost if queues are not
allowed and queued otherwise. The system will attempt to minimize the gaps in covering
of the service area by relocating the free ground bases to new waiting spots every time a
new ground base becomes available or busy, which happens when the number of busy drones
attached to a ground base drops from H to H−1 or increases from H−1 to H, respectively.

With k = 0, · · · , K busy ground bases, the number of busy drones will be at least kH and
at most k+K(H − 1). The probability of k busy ground bases conditional on n busy drones
is then

Pr{K = k|N = n} =

(
(K−k)(H−1)

n−kH

)
(
KH
n

) = [(K − k)(H − 1)]!(KH − n)!n!
(KH)!(n− kK)![K(H − 1) + k − n]! ;

thus from

Pr{K = k} =
k+K(H−1)∑
n=kK

Pr{N = n} Pr{K = k|N = n} ,

we get

Pk ≡ Pr{K = k} =
k+K(H−1)∑
n=kK

Pn
[(K − k)(H − 1)]!(MK − n)!n!

(MK)!(n− kK)![K(H − 1) + k − n]! ,

with the distribution of the the number of busy drones Pn, n ∈ {0, · · · , N} from (4.1) or (4.3)
for the queue and loss systems, respectively. To obtain Pn, however, we need the appropriate
demand vector [λc], c = 0, · · · , N , which, unlike before, cannot be computed from the distance
distributions via (6.2) as it is now the locations of the ground bases, and not necessarily the
drones’, which is assumed uniformly and independently distributed over the service area.
Paralleling the definition of C, we define Y as the random number of ground vehicles, busy
or available, residing within distance ξ from the random call location. Correcting for edge
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effects, we write

υt ≡ Pr{Y = t} =


F̃Rt(ξ)− F̃Rt+1(ξ) t = 1, · · · , K − 1,

1− F̃R1(ξ) t = 0,

F̃RN (ξ) t = K ,

with F̃Rt(ξ) the CDF of the edge-corrected random distance to the t-th neighbor as obtained
in 5. The assumption that drones fly back to the home base after each service implies that
each dispatch initiates from the location of the home base, tying the location of the drones
to their home bases regardless of their busy status. Therefore, we redefine C as the random
number of drones located within distance ξ of the call location if each drone were at the same
place as their home ground base. This implies the distribution of C as

ζc ≡ Pr{C = c} =

υi c = iH ,

0 c 6= iH ,

for c ∈ {0, · · · , N}. As before, we modify υt to enforce the minimum number of backups
specified in the dispatch policy Πκ

ξ or Π̄κ
ξ ; that is

υ′t =


0 t < κ− 1 ,∑κ
t′=0 ζt′ t = κ ,

ζt t > κ ,

for t ∈ {0, · · · , K}, which in turn gives ζ ′c as

ζ ′c =

υ
′
i c = iH ,

0 c 6= iH ,

and the demand vector [λc] through λc = λ ζc, for c ∈ {0, 1, · · · , N}.

Before incorporating these modification into a new algorithm, we remark that the key dif-
ference between the analysis of the regular systems discussed in the previous section and
the drone-van combo system considered here, is the computation of the moments and the
distribution of the dispatch distance, which are now obtained based on the random locations
of the ground bases and their busy statuses rather than the drones they operate.

The algorithm for computing the quantities of interest for the drone-van combo ESS system
with re-positioning under the dispatch policy Πκ

ξ or Π̄κ
ξ is given below.
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1. Initialize the problem definition parameters H, K, N , A, λ, and the dispatch policy
Πκ
ξ or Π̄κ

ξ .

2. Compute F̃Rk(ξ) and then ζk and ζ ′k for k = 0, · · · , K.

3. From ζ ′k compute ζ ′c and then the demand vector [λc] for c = 0, · · · , N .

4. With [λc] and µ, compute the distribution of the number of busy drones Pn, n =
0, · · · , N .

5. With Pn and ζ ′c, compute the loss and queue probabilities, Pq and Ploss.

6. With Pn, compute the distribution of the number of busy ground bases Pk, k =
0, · · · , K.

7. With K, Pk, and Ψm,K for m = 1, · · · , K and k = 0, · · · , K replacing N , Ψm,N , and Pn
for m = 1, · · · , N and n = 0, · · · , N , respectively, compute the mean and distribution
of the immediate and delayed dispatch distances using the appropriate expressions from
Section 6.1.4.

8. Compute the mean and distribution of the travel times for the immediate and delayed
dispatches.

9. Compute the mean service time and update the service rate accordingly.

10. If the change in the service rate is smaller than a given threshold, start a new iteration
from step 2.

11. Compute the expected and possibly the distribution of the response outcome using the
values of the parameters from the last iteration.

6.3 Examples

We present two application examples of the procedure described in this chapter. In the first
application, we deal with a fleet of drones deployed alongside an already existing EMS in
an urban environment to deliver Automated External Defibrillators (AEDs) to the scenes
of Out-of-Hospital Cardiac Arrest (OHCA). The drone fleet in this example application will
operate as a loss system where calls not responded to by the aerial fleet will be handed off
to the default ground crew. In the second application, we consider a general queuing ESS
operating as the main service provider to a geographic area. For ease of comparison, in both
cases, we will first assume a baseline total service area equal to the Island of Montreal, that
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is almost exactly 500 km2. We then examine the effects of the demand density by scaling
this baseline area by a factor fA. Likewise, we may scale the total demand by a factor fλ, in
order to see the effects of congestion. Finally, for both examples, we will take a closer look
into the case with zero-backup dispatch policies, that is with κ = 0.

6.3.1 Drones to deliver AEDs to cardiac arrest incidents in an urban environ-
ment

We consider a scenario in which a fleet of drones is deployed alongside an already existing
traditional ground EMS and the supporting services (fire, police, etc) to improve the survival
chance of patients with OHCAs. Drones can fly directly to the scene at high speeds, unaf-
fected by traffic, and without significant en-route times. In this example, they are equipped
with AEDs and reserved solely for the cases of OHCA thus significantly reducing the time-
to-defibrilation and ultimately patients’ chance of survival. Upon a call arrival, we assume
the dispatcher decides whether to dispatch the drone or leave the call to the ground crew. If
an intervention with drones is chosen, the closest drone will fly to the scene of the incidence
bringing an AED to the call location so the bystanders can start the defibrilation process
while the ground crew are on their way, perhaps following instructions on how to use the
AED remotely communicated through the drone. We assume that the ground EMS crew
will reset the dispatched drone after each service completes and take the drone with them
or send it flying to a new waiting location which is chosen to provide the sufficient coverage
of the service region according to a relocation policy. The resetting procedure may include,
for example, the change of batteries, AEDs, or other medical devices carried by the drone.
The ground vehicles will transport the patient to a hospital if needed, therefore, from the
perspective of the drone system, no arrival needs a transport to a hospital. Also, the drone
network operates as a loss system with the lost calls handled by the default ground EMS.

Naturally, one would expect that an intervention using drones will be worthwhile only if it
results in an improvement over the outcome expected from the ground EMS, which, given
the exponential decay of the survival chance with the response time, will be the case if the
distance between the call location and the dispatched drone is relatively small. As discussed
earlier, situations like this suggest possible usefulness of incorporating partial backup dispatch
policies in improving the system performance and resource utilization. We also expect the
potential improvements to be more pronounced when the same demand is dispersed over a
larger area leading to greater distances between the response units and scenes of emergency,
and also between the response units themselves. We thus apply the descriptive algorithm
described in this chapter to discover if and how a partial dispatch policy for this loss system
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will be beneficial. Table 6.1 summarizes the parameters selected for this application. The

Table 6.1 Parameters used in the first example

Parameter Value
Baseline area of service region 500 km2

Total arrival rate 0.1849 per hour
Average scene time 35 minutes
Average chute time 10 seconds
Average dispatch time 60 seconds
Probability of transport 0
Drones’ acceleration 1000 km/hour.min
Drones’ top speed 100 km/hour

expected survival probability of a patient experiencing an OHCA and treated by a traditional
ground EMS is taken to be 0.08 following the literature (Hansen et al. 2015, Wissenberg
et al. 2013, Chan et al. 2014, Brooks et al. 2010, Sasson et al. 2010, Nichol et al. 2008).
The arrival rate of 0.1849 per hour was obtained from the estimation of the North American
rate of OHCA given by Nichol et al. (2008) as 95 per 100000 people per year, adjusted for
the population of the island of Montreal (1704694 as of 2016). The average values for the
components of the service time and the acceleration and the maximum travel speed of the
drones were estimated from the few published works on the optimization of drone fleets for
AED delivery (Claesson et al. 2016, 2017, Sanfridsson et al. 2019, Boutilier et al. 2017) and
also the physical properties and capabilities of the most recent professional drones. The
model given by De Maio et al. (2003) for the survival probability in cases of OHCA was
selected as the outcome function, mainly because of its simplicity since it only depends on
the response time. The model is given by

u(t) = 1/(1 + e0.679+0.262 t) ,

and is also plotted in Figure 6.1-(a).

The results of the analysis for fA=1, 2, 4, and 8 are plotted in Figures 6.2—6.5, where the
full backup dispatch policy is compared with an optimal partial backup dispatch policy Πκ

ξ

obtained by exploring the space of possible values of κ and ξ. In addition to the (near)
optimal values of κ and ξ, we have also plotted the expected survival probability, average
server (drone) utilization and the loss probability corresponding to the optimal partial backup
and full backup policies. As we noted before, the loss probability in this case represents the
fraction of calls that are directly transferred to the ground EMS without a drone dispatch. We
observe that, as one would expect, for a large enough fleet size, there is no benefit in imposing
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Figure 6.1 Response outcome functions used in the example applications

limits on the dispatch distance. This is because increasing the fleet size will reduce both the
workload and the response area of each drone, which in turn decreases the need for the
drones to travel long distances, thus rendering the use of partial backup policies unnecessary.
For small fleet sizes, however, explicitly limiting the maximum dispatch distance through a
partial backup policy results in improved overal performance while reducing the load imposed
on the drones. This is, of course, achieved by avoiding the potential long-distance, inefficient
drone interventions by transferring them to the ground EMS as reflected in the plots of loss
probabilities and also the supplementary plots given in Appendix C.1 which clearly show
how the average travel time increases with ξ.

Also, the partial backup dispatch policies become more relevant for larger service areas. This
is natural as increasing the service area is expected to have the same effect as decreasing
the fleet size. In particular, the minimum number of drones to achieve the best performance
obtainable by a partial backup dispatch policy increases with the size of the service region.
For instance, for the baseline case of fA = 1 which represents demand densities typically
found in urban environments, no partial backup policies are required with three drones or
more; however, for fA = 8, which could reasonably considered to represent a rural region,
even with 10 drones, there will be room for performance improvements through utilization
of a partial backup dispatch policy.

We already noted that for fleets larger than a certain limit, that is N > Ñ , no improvements
will be possible by using a partial backup dispatch policy and hence the corresponding optimal
survival probability will be equal to the full-backup value within a small computation error.
This is reflected in the irregular changes in the optimal κ and ξ values; therefore, the optimal
backup numbers and maximum dispatch distances for N > Ñ should be effectively ignored.
For N ≤ Ñ , however, we observe that the optimal backup number is always zero regardless
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Figure 6.2 Analysis of the optimal dispatch policy for the drone system and fA = 1

of the demand density. This is explained by the fact that, a partial dispatch policy Πκ
ξ where

κ ≥ 1, allows dispatches with travel distances greater than ξ which increase proportionally
to the dimension of the service region; therefore, as long as the pure system performance
is considered, these policies with κ ≥ 1 will always be inferior to a zero-backup policy that
strictly limits the dispatch distances to a maximum of ξ. However, as we will discuss later,
policies with κ ≥ 1 will prove important when social aspects such as equity are considered.

The optimal ξ values in Figures 6.2—6.5 were selected based on survival probabilities only.
However, in practice, it makes more sense to decide on the optimal value by considering
both the survival probability and the corresponding server utilization. This warrants a closer
look at the performance of the zero-backup partial dispatch policy for the drone system with
different parameters. In Figure 6.6 we observe the variation of the survival probability and
the server utilization with ξ in a zero-backup dispatch policy Π0

ξ applied to drone system
with three drones (N = 3) with different service areas (fA = 1, 2), different system loads
(fλ = 1, 5, 10, 20, 40, 80), and different expected outcomes for lost calls (Uloss = 0, 0.08). The
server utilization plots for different values of Uloss are of course identical and hence are not
repeated. The vertical dashed line marks the value of ξ for which the outcome function
equals the expected loss outcome, that is ξ0 = u−1(Uloss). For the case with Uloss = 0, we
have ξ0 = ∞ and hence no marker. We make several key observations. First, although the
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Figure 6.3 Analysis of the optimal dispatch policy for the drone system and fA = 2

optimal ξ value, as expected, is bounded above by ξ0, the bound is not tight at all as the
optimal ξ can be considerably smaller than ξ0. This means we still need to use the presented
model to search for the optimal ξ and the resulting performance although the search interval
can be limited to (0, ξ0) to reduce the computation times. We also note that the gap between
ξ and ξ0 grows as the system becomes more congested. In fact, for a lightly loaded system,
say with fλ = 1, where servers are rarely busy, a dispatch to a call residing at any distance
x ≤ ξ0 will always be worth it because, first, it results in an outcome better than Uloss

and second, the temporary absence of the dispatched server is unlikely to have a noticeable
adverse effect on the system performance given the low workload. For such a system, any
partial dispatch policy within the interval ξ ∈ (ξ1, ξmax] with ξ1 ≤ ξ0 which of course includes
the full-backup case (that is ξmax), will perform at least near-optimally. This is reflected in
the almost constant portion of the survival probability plot, for example, in the baseline case
(fλ = 1, fA = 1) for both values of Uloss (Figure 6.6-(c) and (e)). For a heavily loaded system,
on the other hand, where the negative impact of the temporary absence of a dispatched server
on the system performance is significant, a worthwhile dispatch decision will have to yield an
outcome significantly better than Uloss to justify the drop in the number of available servers.
This explains the pushing of the optimal ξ towards 0 as the load (fλ) increases.

We discussed earlier that, at least in the example application considered here, the best non-
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Figure 6.4 Analysis of the optimal dispatch policy for the drone system and fA = 4

zero-backup dispatch policy, that is with κ ≥ 1 will lead to an expected performance inferior
to the best zero-backup policy. We attributed this to the fact that a policy with κ ≥ 1 allows
long-distance, low-outcome dispatches that become longer in distance and lower in outcome as
the service area increases in size. However, even with a zero-backup dispatch policy with the
maximum dispatch distance strictly capped at ξ, the size of the service region can significantly
shift the distribution of the travel distance towards the larger values and thus significantly
decrease the expected outcome without significantly impacting the server workloads. This is
clearly seen in Figure 6.6. Despite the server utilization plots for fA = 1 and fA = 2 looking
almost exactly identical, the survival probability plots exhibit significantly different behavior:
moving from fA = 1 and fA = 2, the best attainable survival probability decreases by 5% to
17% for the case with Uloss = 0.08 and by 19% to 29% for the case with Uloss = 0. The drop
in the performance of the corresponding full-backup policies as the area is doubled is even
more significant ranging from 10% to 25% for the case with Uloss = 0.08 and from 24% to
34% for the case with Uloss = 0. We note that despite the server utilization values changing
only slightly with the size of the service area, the survival probabilities corresponding to the
optimal partial backup and full-backup policies significantly change as the size of the service
area increases. The relative improvement in the survival probability by using an optimal zero-
backup dispatch policy for the three-server drone system with the baseline demand (fλ = 1),
the baseline outcome for lost calls equal to 0 and 0.08 (Uloss = 0, 0.08), and the baseline
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Figure 6.5 Analysis of the optimal dispatch policy for the drone system and fA = 8

and doubled service area (fA = 1, 2) is plotted in Figure 6.7. We observe that the impact of
using a partial backup policy is proportional to the demand intensity and also to the size of
the service area. In other words, we get more benefits from utilizing a partial backup policy
with higher arrival rates and larger service areas.

In Figure 6.8, we compare the performance of the drone system with the baseline demand
(fλ = 1) and a zero-backup dispatch policy with different loss outcomes (Uloss = 0, 0.08) and
service areas (fA = 1, 2, 10). This time, we change the fleet size (N = 1, 2, 5, 10, 20) instead
of the demand intensity. We observe that almost in all cases it is easy to find a common value
of ξ for which the survival probability reaches an optimal or near-optimal value regardless
of the fleet size. However, the variation of the survival probability with ξ does not exhibit a
common shape and indeed depends on the fleet size.

The scenarios depicted in Figure 6.8 represent light (for N = 1, 2) to extremely light loads
and thus we might expect the optimal values of ξ to be close to ξ0. However, this is not
generally the case as we observe from the plots of the survival probability versus ξ. For
Uloss = 0 where the nominal value of the optimal ξ is infinity, that is ξ0 = ξmax, we clearly
see in Figure 6.8-(a),(d), and (g) that the survival probability reaches its optimal or near-
optimal value for a value of ξ that is generally much smaller than ξmax, that is ξ∗ << ξmax.
For Uloss = 0.08, we observe the same pattern with ξ∗ << ξ0. We also observe that the
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survival probability will drop as ξ is extended beyond ξ∗ provided that the ratio of the fleet
size to the service area is small enough. For instance, for fA = 1 and fleet sizes of 5, 10,
and 20, the full-backup policy performs as good as the optimal zero-backup policy whereas
with the service area doubled, that is fA = 2, the full-backup policy is slightly inferior to
the best partial policy. Finally, with the service area increased 10-fold (fA = 10), the full-
backup policy results in significantly inferior performance compared with the best partial
backup policy. In case of the fleet with five drones, the resulting performance is even worse
that Uloss the expected survival probability provided by the ground system, which suggests
no benefit at all to deploying the drone system to aid the ground crew. As we will discuss
later, this observation can be used to develop a notion of sufficient fleet size. Finally, we note
that despite the server utilization values changing only slightly with the size of the service
area, the survival probabilities corresponding to the optimal partial backup and full-backup
policies significantly change as the size of the service area increases. In Figure 6.9 we see the
relative improvement in the survival probability by using an optimal zero-backup dispatch
policy for the drone system with the baseline demand (fλ = 1), the baseline outcome for lost
calls (Uloss = 0.08), a fleet of one to seven drones, and the service area sequentially doubled
(fA = 1, 2, 4, 8). We observe that the impact of using a partial backup policy is proportional
to the average number of servers per unit area of the service region. In other words, we get
more benefits from utilizing a partial backup policy with smaller fleet sizes and larger service
areas.

6.3.2 Queuing ESS

In the second example, we consider a queuing emergency service system operating as the
primary service provider to a service area. An example of such a scenario will be a network
of mobile medical units providing medical services, not necessarily urgent, to a community
in an underdeveloped region. The fact that the system is the sole service provider to the
region and the non-urgent nature of the service provided justify allowing waiting queues.
Nevertheless, we assume that the quickness of service is still important as reflected in the
chosen outcome function given as (6.38) and plotted in Figure 6.1. This outcome function
represents the quality of service as a piece-wise function of the response time. For a response
within 15 minutes from the call arrival, the outcome function will be equal to 1 reflecting
a perfect service, and for responses taking more than 15 minutes, the service quality drops
linearly until it reaches zero at the 45 minutes mark. The summary of the parameters chosen
for this example are given in Table 6.2.
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Table 6.2 Parameters used in the second example

Parameter Value
Baseline area of service region 500 km2

Total arrival rate 1 per hour
Average scene time 30 minutes
Average chute time 10 seconds
Average dispatch time 60 seconds
Probability of transport 0
Drones’ acceleration 25 km/hour.min
Drones’ top speed 30 km/hour

u(t) =


1 t ≤ 15

1− (t− 15)/30 15 ≤ t ≤ 45

0 t > 45

(6.38)

The optimal partial back up dispatch policies and the corresponding performance metrics
for the baseline demand (fλ = 1), different fleet sizes (N = 2, 3, · · · , 10), the service area
sequentially doubled (fA = 1, 2, 4, 8), and the expected loss outcome of 0 and 0.25 (Uloss =
0, 0.25) are plotted and compared with the full-backup policy in Figures 6.10—6.13. We
make several observations similar to the loss system considered in the previous example: 1)
For the partial backup dispatch policy to be effective, the fleet size should be below a certain
threshold; 2) Similarly, the larger the service area, the more effective the use of a partial
backup dispatch policy in obtaining the best performance possible. 3) For the range of fleet
sizes where the full-backup policy is not optimal, a zero-backup dispatch policy is optimal.

In Figure 6.14 we closely examine the performance of the zero-backup policies applied to the
queuing system with different loads and service areas. Again, similar trends are observed:
1) The optimal maximum dispatch distance, ξ∗ is generally smaller than ξ0 = u−1(t) and
the gap |ξ∗ − ξ0| grows with load intensity (fλ). 2) Despite the server utilization values only
slightly increased with the service area, the expected service quality significantly degrades as
the service area is doubled.

Figure 6.16 demonstrates the performance of the zero-backup policy applied to the queuing
EMS with different fleet sizes, service areas, and expected outcomes for the lost calls. Simi-
larly to the case with the loss drone system, we observe that: 1) The optimal or near-optimal
values of ξ do not change much with the fleet size, and in fact, it is no difficult to find a com-
mon value of ξ for which a near optimal performance is achieved across the different fleet sizes;
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and this explains the relatively constant value of ξ∗ observed in Figure Figures 6.10—6.13.
However, the shape of the variation of the service quality with ξ strongly depend on the fleet
size with near optimal values reached for values of ξ considerably smaller than the absolute
optimum value, ξ∗, particularly in cases of smaller fleet sizes and thus higher congestion; 2)
The performance of the system with large values of ξ, and in particular for the full-backup
policy (ξ = ξmax) will rapidly drop as the average number of servers per unit service area
decreases. For example, in the extreme case of one or two servers and the service area scaled
10-fold, the full-backup policy will be in fact completely inefficient in the scenario where
there is another system operating in tandem and providing an expected service quality of
Uloss = 0.25; 3) As before, while the average server utilization only slightly changes with
the service area, the expected service quality corresponding to the optimal partial and full
backup policies significantly change as the service area is scaled up.

Finally, the relative improvements in service quality when an optimal zero-backup policy is
applied to this example queuing EMS with three servers and different service areas and arrival
rates is plotted in Figure 6.15, and with varying fleet sizes, service areas and the baseline
arrival rate (fλ = 1) in Figure 6.17. Similar to the drone system, we observe very significant
potentials for enhancing the system performance via using a partial backup dispatch policy
instead of full backups. The plots reflect the fact that the potential for performance increases
with increasing demand, increasing service area, and decreasing fleet size.

6.4 Remarks

We conclude by remarks on the validation, potential applications and possible developments
of the descriptive model introduced in this chapter.

The validation of the model can be done at different levels. In Appendix C.1, we compare the
outputs of the model applied to the example applications given in the previous section with
the output obtained from an idealized simulation model. The ideal simulation model used in
these comparisons strictly follows the uniformity assumptions we made in our development of
the mathematical model. That is, the demand and response units are uniformly distributed
over the service area with the shape we assumed for the corresponding metric as in Chapter 5.
The goal of these comparisons is to validate the correctness of the mathematical expressions
and evaluate the magnitude of the errors introduced by using the Poisson approximation of
distance to neighbors instead of the actual edge-corrected distributions. However, to truly
gauge the validity of the theoretical framework presented in modelling practical situations, we
need to compare the performance of the system predicted by the model to predictions from
detailed simulation of large sets of scenarios with arbitrary demand distributions, relocation
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schemes, boundary shapes, etc. Such validation studies are not reported here, instead, we
propose the descriptive model as a standalone theoretical approach to be used in primary
and efficient evaluation of partial backup dispatch policies for ESSs with dynamic relocation.
Comprehensive validation tests can then be performed to establish the relationship between
this theoretical model and observations of the detailed simulations of realistic instances of
ESSs.

In the extended approximate hypercube model presented in Chapter 4 for analysis of static
deployments of ESSs with partial backups, we allowed for heterogeneous demand, categorized,
for instance, by priorities. The model presented in this chapter can also be extended to
include priorities. In that case, the distribution of the number of busy servers obtained from
the queue with partial service, will be approximate; however, the approximation errors will
be negligible as discussed in Chapter 4. In this extended model, a partial backup dispatch
policy, a total arrival rate, and an outcome function corresponding to each call type will be
specified as inputs to the algorithm, in addition to the service area and the fleet size. By
exploring the space of possible values of κ and ξ corresponding to each call type, as we did
in the example applications, one can arrive at theoretical optimal partial dispatch policies
to maximize the overall outcome by blending the individual outcomes with a given mixing
weight.

Looking at the plots of the expected server utilization and survival probability or quality
of service given for the examples considered in the previous section, may reveal a potential
application of the model to generate dynamic policies to control the maximum dispatch
distance as the system transitions into different states where the system state is defined
as the number of available servers. This is supported by the hypothesis that, as far as
the performance of the system per a given partial backup dispatch policy is considered, a
snapshot of the system with a fleet size of N servers withM < N free servers, can be treated,
at least approximately, as a system with a fleet size of M . Now, if this hypothesis is true,
which we conjecture it to be so, then instead of directly searching through a solution space
of 2N dimensions (N states of 1, · · · , N busy servers, each with a corresponding κ and ξ) for
an optimal dynamic partial backup dispatch policy, we can take the static optimal partial
dispatch policies obtained for a range of fleet sizes, and then implement it in real operation
(or a simulation of) by simply applying the static optimal policy corresponding to a fleet size
of n whenever the system hits the state of n free servers, regardless of the actual fleet size.

We remark that the limit on the maximum dispatch distance might be imposed by the
physical limitations of the response units or obvious operational facts, instead of being a
means to achieve potential performance improvements. As a prime example, one can think
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of a system comprised of aerial drones that typically have a limited flight range depending on
the battery capacity, or as mentioned numerous time before, dispatcher’s logical tendency to
not assign units to travel unreasonably long distances in response to time critical emergencies.
In these cases, an analysis with the model presented in this chapter, can help realistically
represent these important physical or operational characteristics of the system. For instance,
repeated applications of the algorithm will allow us to determine the minimum number of
such range-limited drones to provide a minimum level of expected outcome.

These types of fleet sizing analyses, however, are not limited to networks of range-limited
drones. In fact, the limited number of input parameters needed for the algorithm and the
short execution times compared to simulation, may suggest fleet-sizing as a promising ap-
plication of the model. Obviously, the expected outcome of an ESS will increase with the
increasing fleet size at an increasingly slower rates. This leaves it to the system manager
to decide on the upper bound on the fleet size based on the trade-off between the cost of
operating larger fleets versus the expected performance gains. As a reasonable lower bound
for the fleet size, we suggest the minimum fleet size for which no potential performance
improvements in terms of system workload or the corresponding expected outcome will be
possible by introducing a partial backup dispatch policies. This suggested minimum fleet size
makes sense as it implies that the number of response units is large enough to ensure, with a
certain reliability, that a free response unit will be available at a short enough distance from
a call origin to provide an effective intervention. In other words, the probability of the closest
free response unit being too far from a call origin becomes too small to adversely affect the
overall performance of the system to any noticeable extent. Adopting this notion of sufficient
fleet size, it appears that a fleet of at least three response units is required in both baseline
application examples (that is without scaling the service area, or fA = 1). However, with the
baseline demand density reduced by a factor of 2, that is the case with fA = 2, a minimum
of six drones, and three or four ground vehicles can be inferred from the plots in Figures 6.3
and 6.11 for the drone and ground vehicle fleets, respectively.
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Figure 6.6 Performance of the zero-backup drone system with different loads
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Figure 6.7 Performance improvement using zero-backup dispatch policy in the drone system
with three servers
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Figure 6.8 Server utilization and survival probability for the zero-backup drone system with
different fleet sizes and service areas
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Figure 6.9 Performance improvement using zero-backup dispatch policy in the drone system
with baseline demand (fλ = 1) and Uloss = 0.08
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Figure 6.10 Analysis of the optimal dispatch policy for the queuing EMS and fA = 1
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Figure 6.11 Analysis of the optimal dispatch policy for the queuing EMS and fA = 2
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Figure 6.12 Analysis of the optimal dispatch policy for the queuing EMS and fA = 4
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Figure 6.13 Analysis of the optimal dispatch policy for the queuing EMS and fA = 8
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Figure 6.14 Service quality for the zero-backup queuing EMS
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Figure 6.15 Performance improvement using zero-backup dispatch policy in the queuing EMS
with three servers
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Figure 6.16 Server utilization and service quality for the zero-backup queuing ems with dif-
ferent fleet sizes and service areas
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Figure 6.17 Performance improvement using zero-backup dispatch policy in the queuing EMS
with baseline demand
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CHAPTER 7 CONDITIONAL EXTENSION TO LITTLE’S LAW

We consider queuing systems where customers may observe different system states during
their sojourn and derive various relations between the waiting times spent and queue lengths
observed during a certain system state or for customers who observe that state upon arrival.
A degree of unification is provided to queuing theory as Little’s formula and its distributional
form are recovered as special cases.

In a queuing system with partial admissions waiting lines may form at any time when the
system is not empty. This naturally motivates us to derive the following conservation re-
sults relating the queue lengths and weighting times observed at particular system states or
pertaining to the sub-class of customers who arrive at the system at a specific system state

7.1 Results

We consider a general queuing system and let ti and t′i for i = 1, 2, · · · be the i-th customer’s
arrival and departure epochs, respectively; the waiting times are then given by wi = t′i − ti.
The number of arrivals in the interval [0, t] is denoted by λ(t) = max{i : ti < t]}; thus the
arrival rate is given by λ = limt→∞ t

−1λ(t). We assume that λ(t)→∞ only if t→∞, so there
is a finite number of arrivals in every finite time interval. The indicator function 1i(t) implies
the presence of the i-th customer in the system at time t; that is 1i(t) = 1 ⇔ t ∈ [ti, t′i].
Thus N(t) = ∑∞

i=0 1i(t) will be the number of customers in the system at time t ≥ 0.

Suppose that a state of the system or the environment is given by a continuous-time process
{Z(t) ∈ S; t ≥ 0} with S the set of all possible states. The state indicator function 1̄s(t)
is defined to imply the system to be in a given subset of states s ⊂ S at time t; that is
1̄s(t) = 1 ⇔ Z(t) ∈ s. Thus Ps(t) = t−1Ts(t) = t−1 ∫ t

0 1̄s(τ) dτ gives the average fraction of
the time interval [0, t] spent in state s.

Looking at the arrival epochs ti, the fraction of the first k customers who observe the system
to be in state s just prior to their arrival is given by π−s,k = k−1Ks,k = k−1∑k

n=1 1̄s(tn−).
The average number in the system of such customers up to time t is then given by Ls(t) =
t−1 ∫ t

0 Ns(τ) dτ with Ns(t) = ∑∞
n=1 1n(t)1̄s(tn−) the instantaneous number in the system of

these customers. In contrast, restricting our observation to periods where the system is in
state s, we denote the average number of customers in the system observed during such
periods up to time t by L̄s(t) = Ts(t)−1 ∫ t

0 N(τ)1̄s dτ .

Similarly for the waiting times, we denote byWs,k = Ks,k
∑k
n=1wn1̄s(tn−) the average waiting
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time of the first k customers who observed state s upon arrival; and let W̄s,k = k−1∑k
n=1 wn,s

be the average time the first k customers spend in state s where wi,s =
∫ t′i
ti 1i(t)1̄s(t) dt is the

length of time the i-th customer spends in state s.

Finally, letting t and k tend to infinity, we define the limiting averages of the numbers in the
system and of the waiting times as Ls = limt→∞ Ls(t), L̄s = limt→∞ L̄s(t),Ws = limk→∞Ws,k,
and W̄s = limk→∞ W̄s,k. Likewise, the customer-average pre-arrival state frequency and the
time-average state probabilities will be given by π−s = limk→∞ π

−
s,k and Ps = limt→∞ Ps(t),

respectively. Throughout the paper we implicitly assume the appeal to an appropriate ergodic
theorem or Strong Law of Large Numbers to establish the coincidence of these (sample-path)
limiting averages and the corresponding quantities in the stationary framework (for example
that Ps = Pr[Z(t) ∈ s], or Ws = E[Ws] where Z(t) and Ws are stationary random variables.
For details see El-Taha and Stidham Jr (2012)).

We are now in position to state our first result relating Ws and Ls.

Theorem 4. If the customer-average waiting time in a queuing system is finite then Ls exists
and is finite and given by Ls = π−s λWs.

Proof. The assumption of finite average waiting time implies limk→∞
∑∞
k k−1wk <∞; there-

fore, if we write

lim
n→∞

wn
tn

= lim
n→∞

wn
n

n

tn
≤ lim

n→∞

wn
n

λ(tn)
tn

,

for finite λ the right-hand side of the inequality tends to zero and we have limn→∞ tn
−1wn = 0.

This enables us to apply the original sample-path version of the H = λG law in Heyman
and Stidham Jr (1980) with ln = wn and fn(t) = 1̄s(tn−)1n(t) for n = 1, 2, · · · . We write

G = lim
k→∞

1
k

k∑
n=1

∫ ∞
0

fn(t) dt = lim
k→∞

1
k

k∑
n=1

∫ ∞
0

1̄s(tn−)1n(t) dt

= lim
k→∞

1
k

k∑
n=1

1̄s(tn−)
∫ ∞

0
1n(t) dt = lim

k→∞

1
k

k∑
n=1

1̄s(tn−)wn

= lim
k→∞

1
k
{Ws,k

k∑
n=1

1̄s(tn−)} = lim
k→∞

1
k

k∑
n=1

1̄s(tn−) lim
k→∞

Ws,k

where the last two limits are recognized as π−s and Ws, respectively; thus G = π−s Ws and is
finite since W and hence Ws is finite. On the other hand,
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H = lim
t→∞

1
t

∫ t

0

∞∑
n=1

fn(τ) dτ = lim
t→∞

1
t

∫ t

0

∞∑
n=1

1̄s(tn−)1n(τ) dτ = lim
t→∞

1
t

∫ t

0
Ns(τ) dτ = Ls

Thus H = λG yields Ls = π−s λWs.

For systems where arrivals see time averages (the ASTA property) we obtain the following
result as an immediate corollary to Theorem 4. For a review of ASTA conditions we refer
the reader to Melamed and Yao (1995), Melamed and Whitt (1990).

Theorem 5. If the customer-average waiting time in a queuing system with ASTA property
is finite then Ls exists and is finite and given by Ls = PsλWs.

Proof. The result follows from Theorem 4 and Ps = π−s from ASTA.

The next results establishes a relation between L̄s and W̄s.

Theorem 6. If the average waiting time in a queuing system is finite, then L̄s exists and is
finite, and we have PsL̄s = λW̄s.

Proof. Define f ′n(t) = 1̄s(t)1n(t), for n = 1, 2, · · · . We readily observe that f ′k(t) = 0 for
k /∈ [tk, wn]. Using the same arguments as in the proof of Theorem 4 we conclude that
limn→∞ n

−1wn = 0 and then apply the H = λG law with wn as ln, for n = 1, 2, · · · ; we write

G′ = lim
k→∞

1
k

k∑
n=1

∫ ∞
0

f ′n(t) dt = lim
k→∞

1
k

k∑
n=1

∫ ∞
0

1̄s(t)1n(t) dt

= lim
k→∞

1
k

k∑
n=1

∫ t′k

tk

1̄s(t)1n(t) dt = lim
k→∞

1
k

k∑
n=1

wn,s = W̄s

On the other hand

H ′ = lim
t→∞

1
t

∫ t

0

∞∑
n=1

f ′n(τ) dτ = lim
t→∞

1
t

∫ t

0

∞∑
n=1

1̄s(τ)1n(τ) dτ

= lim
t→∞

1
t

∫ t

0
1̄s(τ){

∞∑
n=1

1n(τ)} dτ = lim
t→∞

1
t

∫ t

0
1̄s(τ)N(τ) dτ

= lim
t→∞

1
t
L̄s(t)

∫ t

0
1̄s(τ) dτ = lim

t→∞
L̄s(t) lim

t→∞

1
t

∫ t

0
1̄s(τ) dτ

Thus H ′ = L̄sPs and since G′ = W̄s exists and is finite we have L̄sPs = λW̄s.



124

We are now interested in crossover results relating W̄s and L̄s to Ls and Ws. But first we
prove a relation in distribution between Ws and L̄s which represent the random variables
whose expectations coincide respectively with the limiting averages Ws and L̄s. Assume the
queuing system has the following properties

Property 1. 1. Customers arrive at the system and leave it one at a time without block-
ing, balking, and reneging.

2. Customers leave the system in the order of arrival (FIFO queue discipline)

3. New arriving customers do not affect the waiting times of the customers already in the
system.

4. Variations in the system state (described by Z(t)) after a customer’s arrival do not
affect its waiting time.

Theorem 7. If a queuing system in steady-state satisfies the assumptions in Property 1
then L̄s

d= λ(Ws).

Proof. Suppose a customer who enters the system at an arbitrary time t and observes state s
upon arrival, that is Z(t−) ∈ s. Let’s number the customers already waiting at time t in the
reverse order of arrival and denote the corresponding arrival and departure times respectively
by τi and τ ′i , for i = 1, 2, · · · as depicted in Figure 7.1. Let t′ denote the departure time of
the customer arriving at t. Now, t′ − t which is assumed independent of both λ(τ) and Z(τ)
for [τ,∞), will be distributed as Ws. Moreover, because of the FIFO discipline, the customer
arriving at time t can leave the system only after all the currently waiting customers have
departed; thus the following events are equivalent:

{L̄s ≥ n} = {Ws ≥ t′ − τ ′n}

Therefore

Pr{L̄s ≥ n} =
∫ ∞

0
Pr{t′ − τ ′n ≤ ω} dFWs(ω)

But the event {t′−τ ′n ≤ ω} is equivalent to the event that at least n customers depart during
[t′ − ω, t′) which coincides with γ(ω) since the system and hence the departure process is
stationary and therefore independent of t′. Thus

Pr{L̄s ≥ n} =
∫ ∞

0
Pr{γ(ω) ≥ n} dFWs(ω) = Pr{γ(Ws) ≥ n} = Pr{λ(Ws) ≥ n}
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where the last equality holds since the system is at steady-state.

n-1 n n-11 1
t t

n
time

Figure 7.1 The ordered arrivals and departures

Taking the first moments from the above result yields the following relation.

Theorem 8. If a queuing system in steady-state satisfies the assumptions in Property 1 then
L̄s = λWs.

Proof. Take first moments of both sides of the result in Theorem 7

Combining the previous relations we can derive a host of quick results.

Theorem 9. For a queuing system in steady-state which satisfies the assumptions in Property
1, Ls = π−s L̄s.

Proof. Combine Theorems 4 and 8.

Theorem 10. For a queuing system in steady-state for which the ASTA property and the
assumptions in Property 1 hold, Ls = PsL̄s.

Proof. Combine Theorems 5 and 8.

Theorem 11. For a queuing system in steady-state for which the assumptions in Property
1 hold, W̄s = PsWs.

Proof. Combine Theorems 6 and 8.

Now let define Wss′ as the average time spent in state s′ by a customer who has observed
state s just prior to arrival. We have the following result.

Theorem 12. For a queuing system in steady-state for which the assumptions in Property
1 hold, for s and s′ = S − s we have Wss(Ps − π−s ) = π−s̄ Ws̄s − PsWss̄.

Proof. Conditioning on the pre-arrival state we have

W̄s = π−s Wss + π−s̄ Ws̄s
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We also have
Ws = Wss +Wss̄

Multiplying the second equation by Ps and combining the two yields the desired result.

Theorem 13. For a queuing system in steady-state for which ASTA and the assumptions in
Property 1 hold, for s and s′ = S − s we have PsWss̄ = (1− Ps)Ws̄s.

Proof. Substitute Ps = π−s and Ps̄ = π−s̄ from ASTA into the result of Theorem 12.

7.2 An Application

As mentioned earlier, we can use the results presented in this chapter and in particular,
Theorem 8 to provide an alternative proof for the equilibrium state probabilities of the
queuing system with partial backups. Below we repeat the result and the alternative proof.

Theorem 14. The N-server queue with partial service, infinite queue capacity (M/M/[N]/∞),
service rate µ, and arrival rates λc ≥ 0, for c = 1, · · · , N , will reach steady state if and only
if

µ >
1
N

N∑
c=1

λc ,

with the equilibrium state occupancy probabilities given by

Pn = P0
N !

(N − n)!n!

n−1∏
j=0

N∑
c=1

λc

min{c−1,j}∑
h=max{0,
c+j−N))}

c!(N − c)!
(N + h− c− j)!(j − h)!(c− h)!h!

×
n∏
j=1

j!(N − j)!
N !jµ− j!∑j

c=1 λc
N−c
j−c

n = 1, · · · , N,

where

P0 =

1 +
N∑
n=1

N !
(N − n)!n!

n−1∏
j=0

N∑
c=1

λc

min{c−1,j}∑
h=max{0,
c+j−N))}

c!(N − c)!
(N + h− c− j)!(j − h)!(c− h)!h!

×
n∏
j=1

j!(N − j)!
N !jµ− j!∑j

c=1 λc
N−c
j−c

−1

;

Moreover, the expected queue times and queue lengths per customer class, are respectively
given by
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ωc =
N∑
n=c

ωc(n)Pn, c = 1, · · · , N,

and
Lc = λc

N∑
n=c

n!(N − c)!
N !(n− c)!ωc(n)Pn. c = 1, · · · , N.

Proof. Let qc(n) be the probability of a class c arrival entering the queue when there are
exactly n busy servers; we then have

qc(n) =

(
n
c

)
(
N
c

) = n!(N − c)!
N !(n− c)! . (7.1)

Also, let the ωc(n) be the expected waiting delay incurred and Lc(n) the expected queue
length observed by class c customers who actually enter the queue when there are exactly
n busy servers. Assuming the system is operating at steady state, we obtain the following
relation from Theorem 8 for class c customers

Lc(n) = λcqc(n)ωc(n).

Now consider a customer from class c who arrives at the system and finds exactly n servers
busy, including all of its own covering servers. This customer then joins the queue of already
waiting customers which is of the expected length of L(n) = L1(n)+L2(n)+ · · ·+Ln(n). We
also recognize that future arrivals do not affect the waiting time of the new customer since no
priorities in the queue are assumed. Therefore, we can remove all these future arrivals and
the resulting upward state transitions. This allows us to compute the expected waiting time
of the new customer by considering successive downward transitions from state n to c in this
suppressed system and conditioning on Sk, the system state when it finally enters service.
We readily observe that, on average, L(k) − L(k − 1) number of waiting customers should
be processed by k servers before a downward transition from state Sk to Sk−1 is possible.
Moreover, the probability that a class c customer arriving at state Sn will enter service at
state Sk is simply

(
k
c

)
/
(
n
c

)
. Finally, the time from the moment a class c customer enters the

queue until any of its c covering servers finishes its current job and becomes ready to receive
a new customer is equal to 1/cµ. Therefore, with all these observations we can express the
expected waiting time of our new customer as

ωc(n) = 1
cµ

+
n∑
k=c

1
kµ

(
k
c

)
(
n
c

) {L(k)− L(k − 1)} , c = 1, · · · , n, n = 1, · · · , N,
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or

ωc(n) = 1
cµ

+
n∑
k=c

1
kµ

(
k
c

)
(
n
c

) { k∑
c′=1

Lc′(k)−
k−1∑
c′=1

Lc′(k − 1)
}
, c = 1, · · · , n, n = 1, · · · , N,

and finally

ωc(n) = 1
cµ

+
n∑
k=c

1
kµ

(
k
c

)
(
n
c

) k∑
c′=1

λc′qc′(k)ωc′(k)−
n∑
k=c

1
kµ

(
k
c

)
(
n
c

) k−1∑
c′=1

λc′qc′(k − 1)ωc′(k − 1),

c = 1, · · · , n, n = 1, · · · , N.

Now if we re-arrange the above expression as

ωc(n) = 1
cµ

+
n−1∑
k=c

1
kµ

(
k
c

)
(
n
c

) k∑
c′=1

λc′qc′(k)ωc′(k)−

n∑
k=c

1
kµ

(
k
c

)
(
n
c

) k−1∑
c′=1

λc′qc′(k−1)ωc′(k−1)+ 1
nµ

n∑
c′=1

λc′qc′(n)ωc′(n), c = 1, · · · , n, n = 1, · · · , N,

and combine it with (7.1), we obtain the following relation

ωc(n) =
n
c

+ n!
N !
∑n
c′=c+1 λc′

(N−c′)!
(n−c′)! ωc′(n)

nµ− n!
N !
∑c
c′=1 λc′

(N−c′)!
(n−c′)!

. (7.2)

For any given n, equation (7.2) can be solved recursively to obtain ωn(n), ωn−1(n),..., and
ω1(n) which in turn enables us to compute the expected total number of waiting customers
for each system state, L(n) as

L(n) =
n∑
c=1

Lc(n) =
n∑
c=1

λcqc(n)ωc(n) =
n∑
c=1

n!(N − c)!
N !(n− c)!λcωc(n), n = 0, · · · , N. (7.3)

Now, if we construct a general birth-death model as shown in Figure A.1 and determine
its state-dependent transition rates, then we can easily obtain the desired state occupancy
probabilities. The effective arrival rate at state Sn designated by λ(n) can be simply computed
as the sum of the incoming customers who arrive at the system at state Sn and immediately
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gain access to a server and hence push the system to state Sn+1; or

λ(n) =
N∑
c=1

λc (1− qc(n)) =
n∑
c=1

λc(1−
n!(N − c)!
N !(n− c)!) +

N∑
c=n+1

λc, n = 0, 1, · · · , N − 1.

To find the state-dependent service rates, µ(n), let us first denote by Tn→n−1 the expected
time period from the moment the system enters the state Sn (either from Sn−1 or Sn+1) until
it transitions to stat Sn−1. We then will obviously have µ(n) = 1/Tn→n−1. Moreover, we can
break down Tn→n−1 as

Tn→n−1 = 1
nµ

+ L(n)− L(n− 1)
nµ

.

The first term on the right hand side is the expected time from the moment of transitioning
into state Sn until any of the busy servers finishes its current job; while the second term
represents the expected time spent by n servers on processing the waiting customers that
will need to be processed until the system can switch back to state Sn−1; these include all
class n waiting customers and those from other classes c < n that will receive service while
the queue of class n customers vanishes. Therefore, we can obtain µ(n) as

µ(n) = nµ

1 + L(n)− L(n− 1) ,

which can be expanded using (7.3):

µ(n) = nµ

1 +∑n
c=1

n!(N−c)!
N !(n−c)!λcωc(n) +∑n−1

c=1
(n−1)!(N−c)!
N !(n−1−c)! λcωc(n− 1)

.

Having determined λ(n) and µ(n), the state probabilities can simply be obtained as Pn =∏n
k=1(λ(k)/µ(k))P0, or

Pn = P0

k∏
k=1

∑n
c=1 λc(1−

k!(N−c)!
N !(k−c)!) +∑N

c=k+1 λc

kµ

×
[
1 +

k∑
c=1

k!(N − c)!
N !(k − c)!λcωc(n) +

k−1∑
c=1

(k − 1)!(N − c)!
N !(k − 1− c)! λcωc(k − 1)

]−1

, n = 1, · · · , N,

with P0 given by
P0 = 1

1 +∑N
n=1

∏n
i=1

λ(i)
µ(i)

,

or
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P0 =
1 +

N∑
n=1

k∏
k=1

∑n
c=1 λc(1−

k!(N−c)!
N !(k−c)!) +∑N

c=k+1 λc

kµ


.

(
1 +

k∑
c=1

k!(N − c)!
N !(k − c)!λcωc(n) +

k−1∑
c=1

(k − 1)!(N − c)!
N !(k − 1− c)! λcωc(k − 1)

)−1−1

.

For the system to be able to reach state state, it is necessary and sufficient to have ωc(n) <∞
for all c = 1, · · · , N and n = 1, · · · , N , which by requiring the denominator of (7.2) to be
positive translates to

µ >
(n− 1)!
N !

c∑
c′=1

λc′
(N − c′)!
(n− c′)! , c = 1, · · · , N ; n = 1, · · · , N. (7.4)

It is easy to verify by inspection that the right hand side of the set of constraints given
by (7.4) increases with both c and n; therefore, it suffices to satisfy the most stringent one
corresponding to c = n = N ; that is

µ >
1
N

N∑
c=1

λc .

Finally, having computed Pn and ωc(n), the expected waiting times and queue lengths for
each class, ωc and Lc can be obtained by conditioning on the system state as

ωc =
N∑
n=1

Pnqc(n)ωc(n) =
N∑
n=1

Pn
n!(N − c)!
N !(n− c)!ωc(n), c = 1, · · · , N

and
Lc =

N∑
n=1

PnLc(n) =
N∑
n=1

Pn
n!(N − c)!
N !(n− c)!λcωc(n), c = 1, · · · , N.
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CHAPTER 8 GENERAL DISCUSSIONS

As we stated in the introduction, mathematical models of emergency service systems that
allow for partial backups will provide a better approximate to the steady-state behavior of
the system since in many cases a limitation is imposed on the response units that can be
dispatched to a request for service. For example by a limited range of a drone used to deliver
AEDs to patients of OHCAs, by the explicit assignment of patrol zones to police patrol cars,
and by the fact that dispatchers may decide not to send vehicles over long distances because
of the resulting long response time and poor outcomes. Despite these simple observations on
the shortcomings of the usual full backup assumption, the literature is almost non-existent
on the descriptive models and algorithms that explicitly allow for partial backups and thus
can be used to approximate systems in which the assumption of full backups does not hold.
The main theme of the work presented in this thesis, however, is the the development of
new mathematical models or extension of the existing ones to include partial backups as
an explicit input parameter or decision variable than can then be optimized alongside the
other system variable to obtain the best performance possible. The descriptive models we
introduced in Chapter 4 and Chapter 6 thus represent our attempt to bridge this perceived
gap in the literature.

From the results presented in Chapter 4, it should be clear that relaxing the assumption of
full backups in the hypercube queuing model and allowing for priorities, will indeed enable
us to approximate and consequently optimize a wider range of emergency operations with
reasonable accuracy. In particular, one can apply the extended hypercube model to find the
optimal values of location and allocation decision variables at the same time while the allo-
cation variables may depend on priorities as well. As stated earlier, since periodic, dynamic,
and compliance-based deployments all can be obtained via solution of a series of static de-
ployments, the improved accuracy of the extended hypercube model in approximating more
realistic statistic scenarios, will directly translate to better and more realistic solutions to the
static, periodic, compliance-based, and dynamic deployment problems as well.

The queuing theoretical framework we proposed in Chapter 6 provided us with an abstract
descriptive model of emergency service systems with dynamic relocation. This model can be
used to assess the impact of utilizing partial backup dispatch policies on the system perfor-
mance or outcome given as a function of response time. While the extended hypercube model
in Chapter 4 can be incorporated into an optimization model for concurrent optimization of
location and allocation decisions, the algorithm in Chapter 6 can be used to find the best
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partial backup dispatch policy to obtain the best possible outcome for a system which is
only define by its most basic configurations such as the fleet size, total service area, total
arrival rate, a queuing or loss discipline, and the outcome function. The analysis using this
simplified model can reveal potential opportunities for improving the performance of a sys-
tem with dynamic relocation via utilization of a partial backup dispatch policy, especially in
under-resourced deployment situations. In a broader perspective, we use the model and the
application examples to raise an awareness of the role of managing dispatch rules in achiev-
ing optimal performance and its close relation with the system configuration, underlying
operating conditions, and the response time profile of the expected outcome.

Further work is however required to apply both of these models in optimization of realistic
system deployments and compare the results with solutions obtained from a less refined
model with a full backup assumption.
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CHAPTER 9 CONCLUSION AND RECOMMENDATIONS

In conclusion, we overview the topics visited in this manuscript along with major limitations
of the work presented and promising directions for future work.

9.1 Summary of the Work

The focus in this work has been on descriptive models for Emergency Service Systems where
we tried to relax some of the less realistic assumptions commonly made in the literature, such
as the assumption of full backups where every server can respond to every call for service. We
developed a new extension of the Larson Hypercube Queuing model where this assumption
of full backups was replaced with a more realistic partial backups where a given subset of
servers can respond to a call coming from a given region.

Building upon the queuing models we developed in the first contribution, we extended our
analysis to the systems with dynamic relocation and proposed a new descriptive framework
for evaluating the effects of partial backup dispatch policies on the performance of the system
in maximizing a given performance objective.

The analyses presented in Chapters 4 and 6, for emergency service systems, depended in part
on the results we obtained concerning the distribution of distances to neighbors in Chapter
5 and extensions to Little’s law in 7.

9.2 Limitations

Limitations of the study are for the most part reflected in the future research directions
we outline in the next Subsection. Besides these technical areas of potential improvement,
however, the lack of historical EMS data to use in the validation and evaluation of the
performance of the models presented, can be cited as an unfortunate limitation.

9.3 Future Research

The ideas and results presented in this work can be expanded upon and explored in more
depth in numerous ways. First of all, the descriptive models presented, can be applied in
development of many different optimization (prescriptive) models for different emergency
response scenarios. In fact, every probabilistic optimization model proposed in the literature
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that uses the classical hypercube model approximation, can easily be improved by replacing
it with the extended algorithm presented here.

As mentioned earlier, the framework presented in Chapter 6 for evaluating optimal partial
dispatch policies can be studied and modified in a few ways as well. First of all, perhaps
using realistic simulations of many application scenarios, we need to verify the optimality or
near-optimality of the partial dispatch policies suggested by this model. Second, it can be
rather easily extended to include more than one priorities with each priority level having its
own partial dispatch policy. Third, the potential use of the set of suggested optimal dispatch
policies per system states as a state-dependent adaptive dispatch policy seems promising to
explore in detail.

We also stated in Chapter 5 that, despite the effort dedicated, we were not successful in
derivation of simple close-form approximations to the distance to the k-th neighbor with
boundary effects. Needless to say, this still remains an interesting topic to the author and
a challenging open question in the literature with wide applications across many different
disciplines.

Finally, potential applications can be sought after for the state-dependent extensions of the
Little’s Law presented in Chapter 7. In particular, we believe that these results may pave
the road to approximate solutions of the queuing systems with skill-based routing.
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APPENDIX A PROOF OF THEOREMS IN CHAPTER 4

A.1 Theorem 1

Proof. We first briefly summarize the results obtained by Visschers et al. (2012) for a class
of queues with skill based service and exploit them to derive our expressions of interest.

In a skill based queue with a set of serversM = {m1, · · · ,mN}, and a set of customer classes
C = {κ1, κ2, · · · }, each server mk ∈ M has the skills to only serve a subset C(mk) ⊂ C
of customer types. Servers are memory-less with service rates µm, m ∈ M and customers
of class κ ∈ C arrive in a Poisson stream with rate λκ. The set of customer classes only
compatible with servers {M1, · · · ,Mn} ∈ Mn is denoted by U({M1, · · · ,Mn}) where Mn

is the set of all subsets of size n of M. We readily observe that U({M1, · · · ,Mn}) = C \⋃
m∈M\{M1,··· ,Mn} C(m). For a subset C ′ ⊂ C of customer types, we denote λC′ = ∑

κ∈C′ λc′ ;
similarly µM′⊂M = ∑

m∈M′ µm.

A state of the system, given by the sequence (M1, l1,M2, l2, · · · ,Mn, ln), represents a snap-
shot of the waiting customers and the relative positions of the busy servers in the queue:
there are l1 + · · ·+ li (li = 0, 1, · · · ) customers waiting between the sequence of busy servers
(M1, · · · ,Mn), plus n customers currently in service. Arriving customers start service imme-
diately if they find a compatible server among the set of idle servers {Mn+1, · · · ,MN}, and
push the system to state (M1, l1,M2, l2, · · · ,Mn, li,Mn+1, 0); otherwise, they join the right
end of the queue, pushing the system into state (M1, l1,M2, l2, · · · ,Mn, ln + 1). Customers
who find several available and compatible servers upon arrival, choose the receiving server
randomly according to given assignment probability distributions. Upon finishing their cur-
rent job, servers will scan the queue from the left and start servicing the first customer they
can handle, if one exists. This results in a new system state with the hosting server relo-
cated to the position of the received customer. If no compatible customers are found, the
newly released servers will join the set of other idle servers, transitioning the system to state
(M1, l1, · · · ,Mk−1, lk−1 + lk,Mk+1, · · · ,Mn, ln) where Mk is the newly idle server (k ≤ n).
We therefore have that the lk customers waiting between servers Mk and Mk+1 must belong
to U({M1, · · · ,Mk}). For a detailed description of this system and its transitions see the
original paper.

Within the setup summarized above and with Pr(∅) the probability of an empty system,
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Visschers et al. (2012) consider the product form distribution

Pr(M1, l1,M2, l2, · · · ,Mn, ln) = Pr(∅)Πλ({M1, · · · ,Mn})
Πµ(M1, · · · ,Mn)

n∏
j=1

α
lj
j , (A.1)

where
αj =

λU({M1,··· ,Mj})

µ{M1,··· ,Mj}
, for j = 1, 2, · · · , n ,

and
Πλ({M1, · · · ,Mn}) =

n∏
j=1

λMj
({M1, · · · ,Mj−1}) , (A.2)

for every subset {M1, · · · ,Mn} ∈ M of servers and

Πµ(M1, · · · ,Mn) =
n∏
j=1

µ{M1,··· ,Mj} ,

for every sequence (M1, · · · ,Mn) ∈ Pn with Pn the set of all permutations of all subsets of
size n of M. While Πµ(M1, · · · ,Mn) may depend on the order of servers in the sequence
(M1, · · · ,Mn), for the product form solution to exist, Visschers et al. (2012) show that
Πλ({M1, · · · ,Mn} must be independent of the order of servers. It is then shown that there
exist unique values for the activation rates λMj

({M1, · · · ,Mj−1}) which satisfy this assign-
ment condition and that these unique values can be calculated recursively. The assignment
probability distributions leading to these activation rates are often not unique and can be
obtained by solving a maximal flow problem for each set {M1, · · · ,Mj−1}.

Finally, the product form (A.1) implies the probability of having the sequence of busy servers
(M1, · · · ,Mn) as

Pr(M1, · · · ,Mn) = Pr(∅)Πλ({M1, · · · ,Mn})
Πµ(M1, · · · ,Mn)

n∏
j=1

1
1− αj

. (A.3)

The assignment condition is trivially satisfied for the queue with partial service where servers
are indistinguishable and hence the assignment of available compatible servers to incoming
customers is purely random. This allows us to derive the distribution of the number of
busy servers of the queue with partial service (not to be confused with class κ in the skill
based queue) by evaluating (A.3). Distinguishing the expressions obtained for the queue with
partial service with tildes we write
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λ̃U{M1,··· ,Mj} =
j∑
c=1

λc

(
j
c

)
(
N
c

) , (A.4)

and
µ̃{M1,··· ,Mj} = jµ , (A.5)

which immediately follow from servers being indistinguishable. We then have

α̃j =
λ̃U({M1,··· ,Mj})

µ̃{M1,··· ,Mj}
= (jµ)−1

j∑
c=1

λc

(
j
c

)
(
N
c

) ,
and

Π̃µ(M1, · · · ,Mn) =
n∏
j=1

jµ = n!µn .

To derive an expression for Π̃λ({M1, · · · ,Mn}), we consider the situation with j − 1 busy
servers and designate one of the idle servers to act as Mj. We then recognize the probability
of a class c customer being simultaneously compatible with the designated server as well as
exactly h of the busy servers as

φc(h, j) =

(
j−1
h

)(
N−j
c−h−1

)
(
N
c

) ,
j ∈M
h = max{0, c+ j −N − 1} , · · · ,min{c− 1, j − 1}

,

and the probability of such a customer being assigned to the designated server as 1/(c− h).
Conditioning on h and interpreting λ̃Mj

({M1, · · · ,Mj−1}) as the total activation rate of a
designated idle server given the set of busy servers {M1, · · · ,Mj−1} we get

λ̃Mj
({M1, · · · ,Mj−1}) =

N∑
c=1

λc

min{c−1,
j−1}∑

h=max{0,
c−(N−(j−1))}

φc(h, j)
c− h

,

and then from (A.2)

Π̃λ({M1, · · · ,Mn}) =
n∏
j=1

N∑
c=1

λc

min{c−1,j−1}∑
h=max{0,c−(N−(j−1))}

(
j−1
h

)(
N−j
c−h−1

)
(
N
c

) 1
c− h

,

which of course satisfies the assignment condition. Substituting the above expressions into
(A.3), summing over all members of Pn for n = 0, · · · , N , and simplifying we obtain
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Pn = P0
N !

(N − n)!n!

n−1∏
j=0

N∑
c=1

λc

min{c−1,j}∑
h=max{0,
c+j−N))}

c!(N − c)!
(N + h− c− j)!(j − h)!(c− h)!h!

×
n∏
j=1

j!(N − j)!
N !jµ− j!∑j

c=1 λc
N−c
j−c

, n = 0, · · · , N , (A.6)

with the normalizing factor P0 = (1 +∑N
j=1 Pj)−1.

Remark 2. Adan and Weiss (2014) showed that this product form is also valid for the
case where the random assignment policy is replaced with the Assign to the Longest Idle
Server (ALIS). Consequently, one can derive (A.6) assuming an FCFS-ALIS queue discipline;
however, we find the presented approach more direct and intuitive.

A.2 Theorem 2

Proof. A class c customer arriving to the loss system with partial service in state Sn will be
lost with probability qc(n) =

(
n
c

)
/
(
N
c

)
and will enter service immediately with probability

1 − qc(n). The system then can be modeled as a birth-death process shown in Figure A.1
with µ(n) = nµ for n = 1, · · · , N , and

λ(n) =
N∑
c=1

λcqc(n) =
N∑
c=1

λc
n!(N − c)!
N !(n− c)! , n = 0, · · · , N − 1 .

It is then easy to verify that the steady state distribution will be

Pn = P0

n∏
k=1

∑k
c=1 λc(1−

k!(N−c)!
N !(k−c)!) +∑N

c=k+1 λc

kµ
, n = 1, · · · , N ,

with the probability of the empty system P0 = (1+∑N
n=1 Pn)−1 as the normalizing factor.

Remark 3. This result also follows from the product form given in Adan et al. (2010) for
the loss version of the skill based systems considered in Visschers et al. (2012); the derivation
presented here, however, is simpler.

A.3 Correction of State Probability Approximations

The accuracy of the distribution of the number of busy servers obtained from the M/M/[N]
model with the demand vector [λc] and service rate µ given by (4.5) and (4.6) as parameters
can be further improved through the empirical scheme outlined her, which is obtained by
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Figure A.1 The birth-death model to compute state probabilities

S0 S1 S2 · · · SN

λ(0) λ(1)

µ(1)

λ(2)

µ(2)

λ(N − 1)

µ(3) µ(N)

analyzing a large set of test cases and comparing the outputs of the M/M/[N] and simulation
models.

We use Algorithm 1 to map any given partial service demand vector [λc] to a reshaped vector
[λ̂c] by moving the demand concentration towards the lower admission classes while keeping
the total arrival rate λ = ∑N

c=1 λc = ∑N
c=1 λ̂c intact. The parameter ζ ∈ [0, 1] controls the

intensity of the operation; with ζ = 0, we will have [λ̂c] = [λc] and with ζ = 1, all demand
will be moved into the admission class c = 1, that is λ̂1 = λ and λ̂c = 0 for c = 2, 3, · · · , N .

input : ζ ∈ [0, 1] and λc for c = 1, 2, · · · , N
output: λ̂c for c = 1, 2, · · · , N
λ̂c ← λc, c = 1, 2, · · · , N ;
for i← N to 2 do

∆← ζλ̂i;
for j ← 1 to i− 1 do

λ̂j ← λ̂j + ∆
i−1 ;

end
λ̂i ← λ̂i −∆;

end
Algorithm 1: Reshaping λc with a factor ζ

As the measure of variation among server workloads ρ1, ρ2, ..., ρN , we define

η =
∑
j∈J |ρj − ρ|
ρN1.3 ,

where ρ = 1
N

∑
j∈J ρj is the mean server workload. This specific expression for η was observed

to make the formulas proposed here effectively independent of the fleet size N . For a given
η, suitable values of ζ can be best predicted using a piece-wise expression given by

ζ =

b0η
3 if η ≤ ηs√
η−a0
a2

if η ≥ ηs
,
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where b0, a0, a2, ηs, and ζs are parameters depending on the nominal loading % = λ/Nµ

through as follows:

a0 =

0.0454%3 + 0.0510%2 − 0.3140%+ 0.2173 for systems with queues

0.1567%3 − 0.1043%2 − 0.2442%+ 0.2071 for loss systems

ζs =

0.7262%2 − 1.761%+ 1.341 for systems with queues

1.006%2 − 2.191%+ 1.3592 for loss systems

a2 =

0.18 for systems with queues

−0.4419%3 + 0.3262%2 − 0.0889%+ 0.1878 for loss systems

ηs = a2ζ
2
s + a0

b0 = ζsη
−3
s .

For systems with queues, this reshaping procedure does not affect the average server utiliza-
tion ρ as the total demand λ is kept unchanged; however, for loss systems, any alteration
of [λc] through the reshaping algorithm may also change ρ. Therefore, we also need to per-
form a normalization step so that the resulting average server workload matches the current
iteration value ρ. This is achieved by replacing the nominal service rate µ with an adjusted
version µ̂ through the following relation

µ̂ =

µ for systems with queues

(ρN)−1∑N
n=0 Pn

∑N
c=1 λc(1− qc(n)) for loss systems

,

where qc(n) is given by (4.8). This normalization step is equivalent to multiplying the input
vector [λc] by a factor of µ/µ̂.

Finally, the corrected state probabilities are obtained from an M/M/[N] model with the
reshaped input vector [λ̂c] and the normalized service rate µ̂ as parameters. Figure A.2
shows the average improvement of Pn estimations for queuing and loss systems at varying
workloads.



147

λ/Nµ
0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
n
 E

s
ti
m

a
ti
o

n
 E

rr
o

r

0

0.002

0.004

0.006

0.008

0.01

0.012
M/M/[N] without correction

M/M/[N] with correction

(a) Loss System
λ/Nµ

0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
n
 E

s
ti
m

a
ti
o

n
 E

rr
o

r

×10 -3

0

2

4

6

8
M/M/[N] without correction

M/M/[N] with correction

(b) Queuing System

Figure A.2 Comparison of the state probability estimation errors with and without the cor-
rection scheme averaged over randomly generated cases with 20 servers (N = 20) and varying
workloads. The estimation error is computed as ∑N

n=1 |Pmod
n − P sim

n |.
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APPENDIX B COMPLEMENTARY COMPUTATIONAL EXPERIMENTS
FOR CHAPTER 4

In this document, we present our algorithm for further improving the state probability ap-
proximations together with the extra computational experiments conducted to assess the
performance of the method.

B.1 Sensitivity to Service Time Distribution

So far we have assumed the service times to be exponentially distributed; however, this
assumption may be violated in many real-world applications where the service times exhibit
much less variability. Jarvis (1985) and Budge et al. (2009) showed loss service systems
to be fairly insensitive to the service time distribution beyond its mean. We consider both
queuing and loss systems and hence are interested in evaluating the impact of the service time
distribution on the accuracy of the approximation in each case. We have run simulations
with different service time distribution scenarios outlined in Table B.1 and compared the
results with the outputs of the approximation model which assumes exponential service
times. Scenario D1 represents the ideal case where the total service time is exponentially
distributed with the mean values given as the sum of the expectations of its components,
that is

t̄serijp = t̄dispijp + t̄chutijp + t̄trvijp + ᾱtrans(t̄scen/transijp + t̄transijp + t̄turnaroundijp ) + (1− ᾱtrans)(t̄scen/no.transijp ) ,

with the barred symbols indicating the mean values and ᾱtrans the probability of a patient
requiring a transport from the scene of the incident to a care center. Note that the mean travel
and transport times t̄trvijp and t̄transijp are obtained following from (4.27). Scenario D2 represents
deterministic service times equal to ᾱtrans. In scenario D3, service time components are
also deterministic, but the patient transport outcome αtrans is simulated in real time as a
binary random variable with Pr{αtrans = 1} = ᾱtrans. Patient transport is also random
in the rest of the scenarios. In scenario D4, each service time component is random and
exponentially distributed. Scenario D5 serves as our realistic base-case with stochastic travel
times and transport times given by (4.24), (4.25) and (4.26), with the remaining service
time components computed based on the empirical results given in Budge et al. (2010) and
Alanis et al. (2013), which suggest log-normally distributed stochastic models for service time
components with CVs around 0.394 (For each component, we can determine the scale and
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location parameters of the distribution based on its known mean value). In scenarios D6 and
D7, we test the effects of increased randomness in our realistic base-case by scaling the CV
of each component by a factor of two and four, respectively. Note that while multiplying the
CV by a given factor α, we also need to re-adjust the median travel times m(d) to keep the
mean values unchanged; that is

m̂(d) = m(d)e
(1−α2)c(d)2

2 ,

ĉ(d) = α · c(d) ,

with m̂(d) and ĉ(d) the parameters to use in the stochastic travel time model. Finally, in
scenarios D8 to D11, we let the total service time be log-normally distributed with CVs equal
to 0.5, 1, 1.5 and 2. This allows us to examine the impact of variability in random service
times on the accuracy of the approximation.

The average errors in the estimation of various performance measures with different service
time distributions described above are given in Tables B.2, B.3 and B.4. As expected, the
loss system is almost insensitive to the service time distribution used in the simulation. It
is more interesting, however, to observe the same level of insensitivity for the estimation of
server workloads and dispatch rates for the system with queues as well.

Unlike server workloads and dispatch rates, the waiting times computed by the simulation
model with non-exponential service times can substantially differ from those predicted by
the approximation model, especially in more restricting coverage threshold scenarios where
queues and waiting times are typically longer. More interestingly, the actual shape of the
service time distribution seems to have no significant impact on the waiting time estimation
accuracy compared with its CV. The error margins are comparable to the exponential case
(D1) when the CV is equal to one (D9, D12 and D13) and grow rapidly as it deviates from one.
This is in agreement with the original basic hypercube queuing model where the standard
deviation of the service time is assumed to be approximately equal to its mean. Beyond that,
however, the literature is scarce in studies on the impact of practical deviations from the
exponential service times on the accuracy of the exact or approximate hypercube procedures
and the existing works (Jarvis (1985) and Budge et al. (2009)) focus on loss systems. The
simulation model developed by de Souza et al. (2015) to test their extended exact hypercube
model, relaxes many of the restricting assumptions of the exact hypercube method of Larson
(1974); however, the computational results reported are rather limited for our purpose as
they only include the comparison of the simulation and model outputs for a case where the
average waiting times and the fraction of the delayed customers are low. Nevertheless, they
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report their hypercube model to be effective in their test cases.

We conclude that the approximation model can indeed be used to accurately predict the
server workloads and dispatch rates of loss and queuing systems where service times are not
necessarily exponentially distributed. However, the waiting times predicted by the model
remain valid only if the coefficient of variation of the service time distribution is sufficiently
close to one. Fortunately, in many practical applications, waiting times are of secondary
importance compared to server workloads and dispatch rates; this is particularly true for
systems designed to operate at low congestion levels where customers rarely have to wait.

Table B.1 Service time distribution scenarios used in the experiments.

Scenario Specification

D1 Total service time exponentially distributed
D2 Deterministic service times
D3 Deterministic service times with random patient transport outcomes
D4 Each service time component exponentially distributed
D5 Realistic base case
D6 Realistic base case with CV multiplied by two
D7 Realistic base case with CV multiplied by four
D8 Total service time log-normally distributed with CV=0.5
D9 Total service time log-normally distributed with CV=1
D10 Total service time log-normally distributed with CV=1.5
D11 Total service time log-normally distributed with CV=2
D12 Total service time beta-distributed with shape parameters a = 0.4 and b = 0.9333 (CV=1)
D13 Total service time beta-distributed with shape parameters a = 0.3 and b = 0.5571 (CV=1)

B.2 Impact of Location and Priority Dependent Service Times

In this section, we investigate the effects of letting service times depend on call priority and
server and customer locations on the approximation accuracy. To this end, we compare the
outputs of the simulation model with service times depending on both location and priority
with the values estimated by the approximation method with different scenarios in which
service times are identical or depend on either location or priority or both. For each test
problem, we average tijp values over all demand locations and servers to obtain service times
that depend only on the call priority; that is

tp =
∑
i∈I

∑
j∈J bijptijp∑

i∈I
∑
j∈J bijp

, p ∈ P ;
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Table B.2 Server workload estimation errors for different simulated service time distributions
(in %).

Loss Queue

Scenario C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

D1 1.68 1.51 1.50 1.31 1.09 0.70 1.69 1.58 1.26 1.34 1.13 0.46
D2 1.59 1.46 1.48 1.29 1.08 0.72 1.55 1.51 1.19 1.21 1.07 0.48
D3 1.61 1.48 1.48 1.30 1.09 0.69 1.60 1.52 1.21 1.25 1.07 0.48
D4 1.67 1.49 1.49 1.30 1.12 0.70 1.68 1.57 1.26 1.31 1.13 0.44
D5 1.64 1.48 1.47 1.31 1.11 0.69 1.63 1.52 1.22 1.28 1.08 0.45
D6 1.68 1.49 1.49 1.31 1.11 0.72 1.66 1.54 1.24 1.28 1.10 0.44
D7 1.68 1.51 1.52 1.32 1.11 0.72 1.71 1.59 1.29 1.36 1.16 0.45
D8 1.64 1.48 1.49 1.30 1.10 0.72 1.63 1.52 1.21 1.29 1.09 0.46
D9 1.67 1.49 1.50 1.31 1.15 0.74 1.68 1.58 1.26 1.32 1.15 0.46
D10 1.70 1.51 1.53 1.33 1.13 0.73 1.72 1.64 1.29 1.38 1.19 0.47
D11 1.70 1.51 1.50 1.28 1.15 0.73 1.72 1.66 1.30 1.40 1.20 0.48
D12 1.67 1.49 1.50 1.29 1.10 0.73 1.66 1.55 1.23 1.29 1.10 0.45
D13 1.63 1.51 1.50 1.29 1.12 0.70 1.62 1.55 1.23 1.28 1.10 0.46

similarly, we take averages over priorities

tij =
∑
p∈P bijptijp∑
p∈P bijp

, i ∈ I, j ∈ J ,

and the universal averages
t =

∑
i∈I

∑
j∈J

∑
p∈P bijptijp∑

p∈P bijp
,

as location-dependent and fixed service times, respectively.

Reported in Tables B.5 and B.6 are the corresponding estimation errors for server workloads
and total dispatch rates in different coverage threshold scenarios. We can see that removing
the service time dependency either on location or priority, significantly increases the estima-
tion errors. In addition, the approximation using a fixed service time value independent of call
location and priority, increases the error margins even further. This observation encourages
the use of location and priority-specific service times to enhance the approximation of both
loss and queuing systems, especially considering the little effort and negligible computational
overhead associated with implementing travel time models available in the literature.
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Table B.3 Total dispatch rate estimation errors for different simulated service time distribu-
tions (in %).

Loss Queue

Scenario C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

D1 5.43 4.31 3.32 3.23 2.47 0.96 5.42 5.19 4.01 3.97 3.19 1.20
D2 5.56 4.31 3.20 3.18 2.31 0.94 5.54 4.92 3.68 3.66 2.84 1.15
D3 5.54 4.30 3.24 3.21 2.37 0.95 5.53 4.93 3.80 3.70 2.92 1.16
D4 5.49 4.33 3.30 3.24 2.46 0.96 5.51 5.13 3.94 3.91 3.13 1.18
D5 5.53 4.30 3.29 3.22 2.42 0.95 5.53 5.02 3.82 3.75 2.98 1.16
D6 5.53 4.32 3.30 3.24 2.45 0.97 5.52 5.06 3.91 3.85 3.08 1.17
D7 5.46 4.32 3.35 3.25 2.48 0.97 5.48 5.25 4.11 4.05 3.22 1.22
D8 5.50 4.31 3.28 3.21 2.43 0.96 5.49 5.02 3.85 3.79 3.02 1.15
D9 5.43 4.32 3.31 3.22 2.46 0.97 5.44 5.21 4.06 4.00 3.18 1.21
D10 5.42 4.32 3.32 3.23 2.50 0.96 5.42 5.33 4.18 4.12 3.28 1.24
D11 5.41 4.33 3.34 3.26 2.50 0.96 5.43 5.37 4.28 4.21 3.33 1.27
D12 5.44 4.30 3.29 3.23 2.45 0.96 5.45 5.13 3.93 3.91 3.11 1.18
D13 5.46 4.30 3.30 3.22 2.43 0.96 5.46 5.08 3.90 3.86 3.05 1.16

B.3 Impact of System Workload

In this subsection, we look into the effect of varying system workloads on the performance
of the algorithm. The errors in prediction of system workloads, dispatch allocations and
waiting times for different coverage threshold scenarios with varying system workloads are
given in Tables B.7, B.8, B.9 and B.10 with the corresponding average server workloads given
in Table B.11. The load factor L is the scaling value used to modify the demand intensities
of the original problem. In the case where queues are allowed, one or more servers may get
saturated in some test problems; therefore, situations in which the number of these saturated
cases exceeds 60 (out of 100) are marked.

We can conclude from the results that regardless of the system queue discipline or the cover-
age scenario, the error margins in prediction of the performance measures, do not significantly
change with the system workload. The error margins in the estimation of server workloads
and dispatch rates remain generally under 2% and 6%, respectively. The waiting time esti-
mations are also within the range of 5% to 10%, except for some near saturation situations.
We also note that for the full-backup loss system, the errors in the estimation of server work-
loads and dispatch rates are observed to take their maximum around the average workload
of 0.5 and decrease as the average workload approaches 0 or 1.0. However, in most cases, a
slight monotonous increase in the error margins with the load factor is observed. Overall,
we expect the approximation model to be applicable in a wide range of system workloads as
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Table B.4 Waiting time estimation errors for different simulated service time distributions
(in minutes).

Scenario C1 C2 C3 C4 C5 C6

D1 0.00 0.15 0.69 0.58 0.49 1.18
D2 0.00 0.12 1.81 2.32 5.87 19.01
D3 0.00 0.10 1.51 2.01 5.24 17.06
D4 0.00 0.10 0.71 0.86 2.42 7.49
D5 0.00 0.10 1.34 1.83 4.81 15.61
D6 0.00 0.10 0.96 1.28 3.50 11.09
D7 0.00 0.13 0.97 1.18 2.20 7.96
D8 0.00 0.09 1.24 1.67 4.44 14.31
D9 0.00 0.11 0.55 0.39 0.41 1.09
D10 0.00 0.22 2.59 3.24 6.90 22.02
D11 0.01 0.38 5.44 7.46 16.32 49.61
D12 0.00 0.26 1.32 0.90 0.81 1.53
D13 0.01 0.30 1.52 1.00 0.90 1.65

Table B.5 Server workload estimation errors with alternative scenarios of service time depen-
dence on priority and location (in %).

Loss Queue

Case C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

Location and Priority 1.68 1.52 1.51 1.32 1.09 0.710 1.70 1.59 1.26 1.34 1.14 0.47
Location Only 2.22 2.38 2.67 3.21 1.21 2.01 2.24 2.13 1.88 2.27 1.54 1.80
Priority Only 6.55 2.76 2.32 2.30 2.06 1.25 6.66 2.38 1.60 1.83 1.65 1.15
None 8.65 4.19 3.58 3.91 1.99 2.25 8.85 3.90 2.69 2.92 2.45 2.12

long as none of the servers becomes saturated.

B.4 Computational Expense Reduction

Finally, we consider the computational expense of the algorithm and propose some strategies
to reduce it. On a Linux system with 32 GB of RAM and a Core-i7-3770 CPU clocked at
3.4 GHz, the MATLAB implementation of the algorithm typically runs in less than a tenth
of a second when no queues are allowed. However, when queues are allowed, it can take a
few seconds to converge, depending on the termination condition and the problem at hand.
Naturally, problems with more restricting coverage thresholds and hence significantly uneven
distribution of delayed dispatches will require longer run times; these problems also tend to
be the most sensitive to the values of κipi′p′ .
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Table B.6 Total dispatch rate estimation errors with different scenarios of service time de-
pendence on priority and location (in %).

Loss Queue

Case C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

Location and Priority 5.44 4.31 3.32 3.23 2.47 0.970 5.42 5.19 4.01 3.98 3.20 1.20
Location Only 5.67 4.75 3.85 4.06 2.46 1.34 5.63 5.55 4.56 4.47 3.51 1.57
Priority Only 8.09 4.93 3.69 3.69 2.83 1.15 8.08 5.69 4.33 4.33 3.45 1.35
None 9.54 5.70 4.29 4.41 2.76 1.52 9.56 6.52 5.02 4.77 4.03 1.72

The two major time-consuming steps of the algorithm when queues are allowed are the
updating of the residual service rates µDijp (including the prerequisite κipi′p′ and ρDijp) and
the updating of the state probabilities Pn through the solution of the M/M/[N] model.
Therefore, one approach to reduce the computational cost of the algorithm would be to
reduce the frequency of performing these steps. As an example, we have conducted tests
with random cases with 20 servers, different load factors and varying number of iterations
between successive updates denoted by Ku. We have considered the top 10 percent of the
test cases with the most sensitivity to the update frequency. Figure B.1 illustrates how the
average estimation errors and computation times for these selected worst cases vary with
the update interval. A trade-off between the computation time and the estimation accuracy
can be seen, and interestingly, server workload estimations seem to be the most influenced,
instead of the delayed dispatch rates that we would naturally expect.

Our experiments with different problems show that an integer in the range 0.1Niter to 0.2Niter,
where Niter is the typical number of iterations required for convergence with a given termina-
tion threshold, should be a good starting point for the optimal value of the update interval
Ku. Moreover, we suggest updating the state probabilities Pn whenever the residual service
rates are updated.

Finally, as described in Section 4.3, the approach chosen to compute κipi′p′ will have a poten-
tially significant impact on the computational expense of the algorithm depending on the
problem characteristics and the implementation platform. In our experiments, using (4.18)
led to slightly better estimations in most cases; however, using (4.17) was on average 50%
faster after all possible code optimizations. In practical applications, the choice between the
two methods should probably be based on their computational efficiency when implemented
on a given platform rather than the small differences in estimation errors.
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Table B.7 Server workload estimation errors for different load factors (in %).

Loss Queue

L C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

0.2 0.55 0.55 0.50 0.41 0.32 0.26 0.55 0.55 0.46 0.44 0.34 0.25
0.4 1.19 1.12 0.92 0.78 0.62 0.33 1.19 1.13 0.89 0.83 0.67 0.23
0.6 1.73 1.43 1.15 1.09 0.86 0.49 1.73 1.52 1.17 1.15 0.91 0.33
0.8 1.85 1.54 1.31 1.20 0.99 0.62 1.85 1.65 1.23 1.27 1.07 0.39
1.0 1.68 1.51 1.50 1.31 1.09 0.70 1.69 1.58 1.26 1.34 1.13 0.47
1.2 1.26 1.36 1.60 1.38 1.22 0.83 1.24 1.53 1.18 1.27 1.20 0.49
1.4 0.88 1.25 1.65 1.38 1.29 0.88 0.82 1.48 1.11 1.23 1.16 0.50
1.6 0.60 1.14 1.65 1.37 1.32 0.93 0.41 1.44 1.09 1.18 1.12 0.51*
1.8 0.42 1.02 1.63 1.34 1.32 0.97 0.23 1.29 0.83* 1.11* 0.91 0.56*

*Fewer than 40 unsaturated cases

Table B.8 Immediate dispatch rate estimation errors for different load factors (in %).

Loss Queue

L C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

0.2 1.26 1.26 1.05 0.95 0.74 0.38 1.26 1.26 1.09 0.99 0.78 0.40
0.4 2.69 2.55 2.01 1.82 1.34 0.53 2.69 2.59 2.16 1.98 1.49 0.62
0.6 3.92 3.60 2.76 2.62 1.85 0.70 3.90 3.78 3.14 3.00 2.26 0.89
0.8 4.78 4.12 3.15 3.08 2.21 0.84 4.77 4.54 3.90 3.71 2.87 1.13
1.0 5.44 4.31 3.32 3.23 2.47 0.97 5.41 5.17 4.30 4.10 3.29 1.38
1.2 5.96 4.44 3.36 3.39 2.53 1.07 5.82 5.73 4.53 4.41 3.57 1.62
1.4 5.64 4.31 3.41 3.45 2.65 1.14 5.13 5.91 4.59 4.65 3.78 1.79
1.6 4.82 4.02 3.36 3.44 2.70 1.20 4.05 5.44 4.17 4.20 3.74 1.95*
1.8 3.99 3.62 3.23 3.30 2.68 1.23 2.60 4.51 3.56* 3.93* 3.39 2.91*

*Fewer than 40 unsaturated cases

Table B.9 Delayed dispatch rate estimation errors for different load factors (in %).

L C1 C2 C3 C4 C5 C6

0.2 0.00 0.01 0.12 0.09 0.13 0.21
0.4 0.00 0.08 0.44 0.26 0.33 0.39
0.6 0.00 0.30 0.98 0.55 0.65 0.65
0.8 0.03 0.68 1.69 0.96 1.04 0.91
1.0 0.10 1.16 2.33 1.33 1.43 1.17
1.2 0.30 1.73 3.01 1.72 1.89 1.45
1.4 0.77 2.24 3.59 2.06 2.35 1.67
1.6 1.41 2.86 3.71 2.12 2.75 1.74*
1.8 1.54 3.65 3.66* 2.67* 2.92 2.65*

*Fewer than 40 unsaturated cases
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Table B.10Waiting time estimation errors for different load factors, with the actual simulation
values in parentheses (in minutes).

L C1 C2 C3 C4 C5 C6

0.2 0.00 (0.00) 0.00 (0.00) 0.04 (0.27) 0.05 (0.80) 0.08 (1.88) 0.17 (4.12)
0.4 0.00 (0.00) 0.01 (0.03) 0.12 (0.82) 0.09 (1.75) 0.14 (4.05) 0.26 (9.43)
0.6 0.00 (0.00) 0.04 (0.12) 0.29 (1.85) 0.18 (2.87) 0.24 (6.49) 0.41 (16.49)
0.8 0.00 (0.00) 0.09 (0.34) 0.48 (3.80) 0.33 (4.37) 0.37 (9.49) 0.71 (27.06)
1.0 0.00 (0.02) 0.16 (0.80) 0.70 (6.72) 0.58 (6.26) 0.50 (13.22) 1.19 (40.35)
1.2 0.02 (0.19) 0.23 (1.83) 1.10 (10.85) 0.98 (9.48) 0.75 (18.31) 2.21 (50.99)
1.4 0.10 (1.10) 0.54 (4.25) 1.89 (17.59) 1.84 (15.34) 1.31 (23.67) 4.13 (67.91)
1.6 0.31 (5.11) 2.40 (9.86) 4.57 (28.38) 4.36 (26.27) 3.29 (33.28) 4.83 (65.05)*
1.8 1.14 (28.77) 17.41 (27.42) 15.97 (45.91)* 8.68 (43.79)* 9.26 (47.64) 3.43 (59.51)*

*Fewer than 40 unsaturated cases

Table B.11 Average server workloads for different load factors.

Loss Queue

L C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

0.2 0.10 0.10 0.10 0.09 0.09 0.07 0.10 0.10 0.10 0.09 0.09 0.07
0.4 0.19 0.19 0.19 0.18 0.18 0.15 0.19 0.19 0.19 0.18 0.17 0.15
0.6 0.29 0.29 0.29 0.27 0.26 0.22 0.29 0.29 0.29 0.28 0.26 0.22
0.8 0.39 0.39 0.39 0.37 0.36 0.30 0.39 0.39 0.39 0.37 0.35 0.30
1.0 0.49 0.49 0.49 0.46 0.44 0.37 0.49 0.49 0.49 0.46 0.44 0.37
1.2 0.59 0.59 0.58 0.56 0.53 0.44 0.59 0.59 0.58 0.56 0.53 0.45
1.4 0.69 0.69 0.68 0.64 0.63 0.52 0.70 0.69 0.68 0.65 0.62 0.52
1.6 0.80 0.79 0.78 0.74 0.72 0.59 0.80 0.79 0.78 0.75 0.71 0.59*
1.8 0.90 0.88 0.88 0.83 0.81 0.67 0.92 0.89 0.88* 0.85* 0.80 0.66*
*Fewer than 40 unsaturated cases
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Figure B.1 Variation of estimation errors and computation times with the update frequency.
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APPENDIX C COMPARISON OF SIMULATION AND
APPROXIMATION MODELS FOR ESS WITH RELOCATION

In this appendix, we compare the outputs of simulation and mathematical model presented
in Chapter 6. Note that the simulation model used here follows the basic assumptions we
made in deriving our mathematical model. In particular, it assumes uniform distribution of
call locations and of the response units over the service region and hence can be considered
an idealized simulation model. The primary goal of comparison with this idealized simulation
model is to validate the correctness of the expressions comprising the mathematical model
and also measure the extent of errors introduced by the use of Poisson distance distributions.
We remember that distance distributions from the Poisson Point Process were used in the
most parts of the mathematical analysis. However, a Poisson Point Process which assumes
an infinite deployment area with independent number of points falling in any of its distinct
subsets can not be faithfully recreated by a simulation model which places an exact number of
N response units within a bounded service region. We thus use plot comparisons such as the
ones given in this appendix to assess the magnitude of the errors caused by this discrepancy
between the assumptions of the Poisson Point Process used in the mathematical model and
the more realistic simulation model.

C.1 Loss Drone System

The first set of figures correspond to the drone loss system introduced in Section 6.3.1. In the
interest of the space, we only include comparisons for a fleet size of N = 2, area scale factor
of fA = {1, 2, 4}, demand scale factor of fλ = {1, 2}, and an expected outcome of Uloss = 0.08
for lost calls handed off to the alternative supporting system.



159

0 5 10 15 20
Min. Dispatch Distance (km)

0.08

0.09

0.1

0.11

0.12
S

u
rv

iv
a

l 
R

a
te

N: 2, f : 1, f
A

: 1

0

1

2

Min. Backup

0 5 10 15 20
Min. Dispatch Distance (km)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f 
L

o
s
s

N: 2, f : 1, f
A

: 1

0

1

2

Min. Backup

0 5 10 15 20
Min. Dispatch Distance (km)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

S
e

rv
e

r 
U

ti
liz

a
ti
o

n

N: 2, f : 1, f
A

: 1

0

1

2

Min. Backup

0 5 10 15 20
Min. Dispatch Distance (km)

1

2

3

4

5

6

7

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 (

m
in

)

N: 2, f : 1, f
A

: 1

0

1

2

Min. Backup

0 5 10 15 20
Min. Dispatch Distance (km)

0

2

4

6

8

10

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 D
is

ta
n

c
e

 (
k
m

)

N: 2, f : 1, f
A

: 1

0

1

2

Min. Backup

Figure C.1 Simulation versus model: loss system, N = 2, fλ = 1, fA = 1.
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Figure C.2 Simulation versus model: loss system, N = 2, fλ = 1, fA = 2.
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Figure C.3 Simulation versus model: loss system, N = 2, fλ = 1, fA = 4.
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Figure C.4 Simulation versus model: loss system, N = 2, fλ = 2, fA = 1.
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Figure C.5 Simulation versus model: loss system, N = 2, fλ = 2, fA = 2.
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Figure C.6 Simulation versus model: loss system, N = 2, fλ = 2, fA = 4.
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Figure C.7 Simulation versus model: loss system, N = 2, fλ = 4, fA = 1.
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Figure C.8 Simulation versus model: loss system, N = 2, fλ = 4, fA = 2.
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Figure C.9 Simulation versus model: loss system, N = 2, fλ = 4, fA = 4.
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Figure C.10 Simulation versus model: queuing system, N = 4, fλ = 1, fA = 1.
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C.2 Queuing EMS

The second set of figures correspond to the queuing system introduced as an example in
Section 6.3.2. In the interest of the space, we only include comparisons for a fleet size of
N = 4, area scale factor of fA = {1, 2, 4}, demand scale factor of fλ = {1, 2}, and an expected
outcome of Uloss = 0 for lost calls.
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Figure C.11 Simulation versus model: queuing system, N = 4, fλ = 1, fA = 2.
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Figure C.12 Simulation versus model: queuing system, N = 4, fλ = 1, fA = 4.
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Figure C.13 Simulation versus model: queuing system, N = 4, fλ = 2, fA = 1.
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Figure C.14 Simulation versus model: queuing system, N = 4, fλ = 2, fA = 2.
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Figure C.15 Simulation versus model: queuing system, N = 4, fλ = 2, fA = 4.
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