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RÉSUMÉ

Le problème du voyageur de commerce, ou problème du commis voyageur, est l’un des prob-
lèmes les plus importants dans le domaine de l’optimisation combinatoire. Il a fait l’objet
d’inombrables travaux de recherche, à la fois théoriques et pratiques.

Parmi les aspects de ce problème, nous nous intéressons particulièrement, dans le cadre de
notre sujet, à certaines de ses relaxations, qui ont aussi été étudiées pour apporter de nou-
velles approches à la résolution du problème. Les structures combinatoires de ces relaxations
peuvent être encapsulées dans des contraintes globales existantes en programmation par con-
traintes (PPC), ce qui nous motive à tester une approche basée sur des travaux récents sur
les heuristiques de dénombrement en PPC.

L’objectif de ce projet est d’améliorer la résolution du problème du voyageur de commerce en
appliquant les densités de solution aux relaxations du problème. On pose l’hypothèse qu’une
arête a très peu de chance d’appartenir à la solution optimale du problème si plusieurs
relaxations retournent de faibles densités de solution pour cette arête et qu’on peut donc
l’éliminer pour nettoyer le graphe d’entrée du problème. On évalue donc chaque arête en
fonction de leur densité de solution pour chaque relaxation et on élimine les arêtes évaluées
comme "mauvaises" par toutes les relaxations.

Pour l’expérimentation, cet algorithme de pré-traitement sera appliqué à plusieurs exem-
plaires de TSPLIB, une bibliotheque d’exemplaires du problème de voyageur de commerce.
On évaluera d’abord le temps de calcul de notre méthode. Enfin, on résoudra nos exemplaires
élagués avec différents solveurs (concorde, Gurobi et IBM CP Optimizer) et on comparera
les résultats obtenus à la résolution des exemplaires originels. L’élagage est efficace si le temps
de résolution gagné en pré-traitant les exemplaires compense le temps de pré-traitement.
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ABSTRACT

The Traveling Salesman Problem is a combinatorial optimization problem, which, broadly
speaking, consists of visiting a certain number n of cities, by passing through each city ex-
actly once and by traveling the shortest possible distance. This problem is very prominent
in research, as a representative of the NP-hard class of problems and as a problem with ap-
plications in various areas, including routing, networking and scheduling. Nowadays, integer
programming methods dominate the landscape of TSP solvers, with the state-of-art solver
concorde.

As part of the efforts to solve the TSP, several of its relaxations have been studied, for com-
puting lower bounds or domain filtering. Since these relaxations can provide insight on the
combinatorial structure of the problem, we believe recent work in Constraint Programming
concerning counting-based branching heuristics can bring new effective methods of using
these relaxations.

In this Master’s thesis, we present an approach to the traveling salesman problem which
exploits cost-based solution densities from counting-based search. we propose a method for
eliminating edges from the input graph of TSP instances in pre-processing, by using the so-
lution densities from relaxations of the TSP to determine promising edges. Solution densities
from different relaxations can also be combined for branching in a constraint programming
solver. The efficiency and robustness of our pre-processing algorithm is evaluated by applying
it to instances from TSPLIB and comparing the time to solve them with that of the original
complete instances. We consider various solvers in our experimentation, namely the IBM CP
Optimizer, concorde and Gurobi.
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CHAPTER 1 INTRODUCTION

The project presented in this thesis belongs to the fields of Constraint Programming and
Integer Programming, two distinct branches of mathematical optimization. The aim of this
project is to use techniques from constraint programming to simplify the Traveling Salesman
Problem, so it can be solved quickly in constraint programming or integer programming
solvers. In this first chapter, we will introduce concepts necessary to understand the field
of study and the context of our research project. We will then present our own objectives,
hypotheses and give an outline of the rest of this thesis.

1.1 Constraint Programming

Constraint Programming (CP) is an optimization paradigm designed to solve constraint
satisfaction problems, as well as constraint optimization problems. It differs from other
methods of solving optimization problems, in that constraints in the model are declared in
literal terms rather than being formatted in a specific way, such as constraints in Linear
Programming which must take the form Ax ≤ b. Global constraints, a common example
of which is the AllDifferent constraint, are constraints found in CP that involve multiple
variables and that are simply defined by name in CP models.

Since there is no strict formulation for constraints in CP models, methods for solving these
models efficiently are not generalized, like the simplex algorithm for LP. Instead, algorithms
specific to each global constraint must be implemented to help with solution search and are
already available in CP solvers. These algorithms can involve domain filtering, i.e., removing
unsupported values from the set of potential assignments of a variable, or guiding the search
tree using heuristics.

The solving process in CP operates as a depth first search tree. But before beginning the
search, the first step of the process is domain filtering. First, it is important to note that, in
CP, variables have a finite domain of values. Constraint-specific algorithms are implemented
to remove unsupported values, or values that are not part of any feasible solution of the
problem, from the domains of each variable, to reduce the search space that the branching
algorithm must traverse. Formally speaking, we say that General Arc Consistency is reached
when, for every constraint c and every variable x that c applies to, all values in the domain
of x are consistent with c, i.e., found in an assignment satisfying c.
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Once filtering is done and consistency is reached, we can begin the search. At a node of the
search tree, a branching heuristic is used to determine which variable x, and sometimes value
v, to branch on. The tree splits into two sub-trees. How the tree splits varies from heuristic
to heuristic: there could be a sub-tree where x < v and one where x ≥ v or there could be a
sub-tree where x = v and one where x 6= v.

Before proceeding to the next node, constraint propagation takes place. This consists of re-
ducing the feasible domains of other variables in the problem depending on which variable we
branched on and which constraints these variables share. Essentially, by reducing a variable’s
domain during branching, some solutions may become infeasible. Thus, we need to check
if variables sharing a global constraint with the branching variable have had values in their
domain become unsupported. If so, we remove these values and we then check all variables
sharing a constraint with this newly modified variable, hence the term "propagation". These
propagation algorithms have unique implementations according to the global constraint they
are applied to.

Once propagation is done, branching continues, until either a solution is found or until
the sub-tree is infeasible. The sub-tree becomes infeasible when fixing a variable during
branching causes another variable’s domain to become empty during propagation. In this
case, the algorithm backtracks and explores the other sub-tree.

When optimizing in CP, branching does not stop after finding a first solution and continues
until it can prove that the best solution found is optimal. In order to avoid going through
the entire search tree, partial assignments at each node are used to find lower bounds on the
solutions of the corresponding sub-tree and if a sub-tree’s lower bound is greater than the
upper bound, in case of minimization, then the sub-tree is not explored.

There are various popular branching heuristics that perform well in practice : min-domain-
size selects the variable with the smallest number of values in its domain, as the name implies.
As is the case with all heuristics that do not specify the value, the value to assign is chosen
lexicographically, i.e., in numerical or alphabetical order. dom/ddeg selects the variable
with the smallest ratio of its domain size to its degree, the number of constraints it is found
in. dom/wdeg follows the same idea as dom/ddeg but adds a weight to each constraint,
starting at one, which is incremented each time this constraint causes infeasibility during
branching. Counting-based search (CBS) heuristics [2] select the variable-value assignment
with the largest solution density (SD), a value indicating how often the assignment appears
in solutions satisfying a constraint.
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1.2 Integer Programming

An integer programming problem is a mathematical optimization problem in which all vari-
ables must take integer values. Generally speaking, integer programming refers to Integer
Linear Programming, where the objective function (value we aim to maximize or minimize)
and the constraints are linear expressions:

min
x

cTx c ∈ Rn

s.t. Ax ≥ b A ∈ Rm×n, b ∈ Rm

x ≥ 0

x ∈ Zn

Different nomenclature exists for certain variants of ILP problems. Mixed integer program-
ming (MIP) refers to problems where only some of the variables are under integrality con-
straints and others can be non-discrete. 0-1 programming problems are problems where all
variables are binary.

There are many generic algorithms, either exact or heuristic, which can solve any given ILP
problem.

One of the most relevant exact methods is using cutting planes, introduced by Ralph Gomory
[3]. Cutting plane methods consist of solving the ILP’s linear programming (LP) relaxation,
which is obtained by relaxing the integrality constraints of the problem, with the simplex
algorithm and adding linear constraints, known as cuts, to remove non-integer solutions
without reducing the feasible integer solution space. Commonly used cuts include Chvátal-
Gomory cuts [3], MIR inequalities [4], cover cuts, flow covers [5].

In practice, cutting plane methods prove to be impractical and inefficient on their own. How-
ever, a method called branch-and-cut [6] was introduced, combining these cutting planes with
a branch-and-bound algorithm [7]. In branch-and-bound, we first find the optimal solution of
the LP relaxation. If there is a variable xi such that its optimal value x′i is not integer, then
the problem is split into two sub-problems, one with the constraint xi ≤ bx′ic and the other
with xi ≥ dx′ie. The process is repeated recursively on these two new problems. Sub-trees
can be eliminated if the lower bound of the node (solution value of the LP relaxation) is
greater than the upper bound of the problem (best found integer solution), when minimizing
the objective function, since all solutions found in the sub-tree will be greater than its lower
bound and thus worse than the best solution found so far. In branch-and-cut, cutting planes
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can be applied at each node to tighten the LP relaxation.

Some ILPs can prove very difficult to solve in which case heuristic algorithms, providing ap-
proximate solutions to the problem, can be used instead of exact algorithms. These methods
include local search algorithms, such as hill climbing [8] and tabu search [9, 10], simulated
annealing [11] and ant colony optimization [12] algorithms.

1.3 The Traveling Salesman Problem

Given a set of cities and the pair-wise distance between each city, the Traveling Salesman
Problem (TSP) consists of finding the shortest cycle visiting each city exactly once. Formally
speaking, this problem consists of finding an Hamiltonian cycle in a undirected graph G =
(V,E).

First called the “Messenger problem” by Karl Menger in 1930, then the “48 States problem”
by Hassler Whitney in 1932, the name “Traveling Salesman Problem” was popularized by
Merrill Flood in 1948. This problem is one of the most heavily studied problems in optimiza-
tion, for various reasons.

One of these reasons is that the problem has practical applications in a wide range of fields.
As the problem statement suggests, it has many applications in the fields of transportation,
routing, as well as logistics or scheduling, for such applications as the routing of delivery
trucks, the scheduling of warehouse cranes or the planning of telecommunication networks.
Additionally, since its model is relatively simple, it is open to interpretation for use in other
areas by modifying the definition of the city and the definition of a distance. For instance, we
have seen this problem applied in such fields as genetics, for DNA sequencing, in astronomy
and in X-ray crystallography.

Furthermore, what makes this problem interesting is that, despite its intuitive formulation,
it is very difficult to solve it in practice. The TSP, like many other ILP problems, is part
of the NP-hard class of optimization problems and no polynomial-time algorithm capable of
solving it has been found as of yet. This gives the problem a lot of theoretical interest, as
solving this problem in polynomial time, or proving it cannot be done, would answer the
millennium question “P=NP?”. The difficulty of the problem also makes it a good option for
testing general methods.
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1.4 Research Objectives

Our research aims to find a new way to exploit solution densities from constraints in CP
and apply this method to the Traveling Salesman Problem. We believe that, by drawing out
different CP constraints from various relaxations of the TSP and applying CBS (Counting-
Based Search) to each of these relaxations individually, we can combine the information
given by these constraints to identify the edges that are most likely to be found in an optimal
tour of the TSP. This hypothesis comes from the fact that each constraint in Constraint
Programming often represents a combinatorial substructure of the problem and different
relaxations will reveal different substructures. Thus, we propose a method for removing
undesirable edges, according to the counting-based search’s computations, from the input
graph of TSP instances as pre-processing and test its effectiveness by comparing the time
necessary for solving the initial instance and our sparse instance. We will also use the SDs
of different constraints for branching in CP and test the performance of various heuristics,
combined with our pre-processing method.

1.5 Outline

In this document, we will first go over existing literature relevant to our project, in chapter
2, including breakthroughs in solving the TSP as well as work on counting-based search.
We will then present our method for pre-processing graphs and the models we applied it
to, in chapter 3, which will finally lead to the experimentation done to test our method’s
effectiveness, in chapter 4.
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CHAPTER 2 LITERATURE REVIEW

In order to better understand our problem, we present this literature review taking a look
at previous works in the context of our project. It will first cover relevant works on the
Traveling Salesman Problem and its relaxations. It will then go over counting-based search
heuristics in constraint programming. In particular, we will be interested in applications of
constraint programming on the 2-matching relaxation, the 1-tree relaxation and the n-path
relaxation of the TSP.

2.1 Traveling salesman problem

This section reviews relevant literature pertaining to the Traveling Salesman Problem. We
will present common formulations of the TSP, as well as state-of-the-art methods of solving
the problem, and, finally, various works on the problem’s relaxations, which are of particular
interest for our research.

2.1.1 Formulations

Karg and Thompson [13] state the TSP as : Given an n×n matrix of real numbers C = (cij),
the traveling salesman problem consists of finding an acyclic permutation (i1, i2, ..., in) of
integers 1, 2, ..., n such that ci1 i2 + ci2 i3 + ...+ cin−1 in is minimized.

The TSP can be stated conceptually as finding the shortest Hamiltonian cycle in a graph.
Considering a directed graph, a Hamiltonian cycle is a cycle, a set of arcs where each arc is
adjacent to two other arcs, that passes exactly once through each node of the graph. The
concept also applies to undirected graphs, where the arcs are replaced by unordered pairs of
nodes, called edges, or links in the context of flow networks. Fulkerson [14] describes the
traveling salesman problem using the concept of Hamiltonian cycles.

Integer programming formulations of the traveling salesman problem have been presented by
many authors such as Dantzig et al. [15], Bellmore and Nemhauser [16], Miller and al. [17],
and Golden [18].
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Given a matrix c = (cij) of pairwise distances between nodes i and j for i, j = 1, ..., n :

min
n∑
i=1

n∑
j=1

cijxij

s.t.
n∑
i=1

xij = 1, j = 1, ..., n

n∑
j=1

xij = 1, i = 1, ..., n

sub-tour elimination constraints

xij ∈ {0, 1}, i, j = 1, ..., n

where xij = 1 if arc (i, j) is in the tour, and 0 otherwise.

Or, given an undirected graph G = (V,E) and costs C = (cij) associated with the edges of
the graph :

min
∑

(i,j)∈E
cijxij (2.1)

s.t.
∑

(i,j)∈δ(i)
xij = 2, i ∈ V (2.2)

sub-tour elimination constraints (2.3)

xij ∈ {0, 1}, (i, j) ∈ E (2.4)

where δ(i) denotes edges incident with node i.

Sub-tour elimination constraints are often formulated as:

∑
(i,j)∈A(S)

xij ≤ |S| − 1, S ⊆ V, 2 ≤ |S| ≤ |V | − 2

where A(S) denotes the edges with both endpoints in set S. This also works with the undi-
rected case, by specifying i > j, as to not count both xij and xji, and replacing A(S) with
E(S). This particular integer programming formulation was introduced by Dantzig, Fulker-
son and Johnson [15]. Despite the exponential number of sub-tour elimination constraints,
this integer programming model of the TSP is often used since it offers the most effective
linear programming relaxation.
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For undirected graphs, there is another equivalent formulation for these constraints:

∑
i∈S,j∈S̄

xij ≥ 2, S ⊆ V, 2 ≤ |S| ≤ |V | − 2

where S̄ = V \S, meaning that subset S must be connected to the rest of the graph by at
least two edges.

Miller, Tucker and Zemlin [17] propose an integer programming formulation which only
requires a polynomial number of sub-tour elimination constraints. It should be noted that
this formulation is for the asymmetric TSP and that there is no direct equivalent to this
formulation for the symmetric TSP. However, any symmetric TSP (STSP, i.e., one in an
undirected graph) is a special case of the asymmetric one (ATSP, in a directed graph) so the
formulation can be used anyhow. The MTZ formulation introduced n−1 additional variables
ui (i = 2, ..., n) and defines the sub-tour elimination constraints as follows :

ui − uj + (n− 1)xij ≤ n− 2 i, j = 2, ..., n, i 6= j

1 ≤ ui ≤ n− 1 i = 2, ..., n

The ui variables do no represent any concrete aspect of the problem, but are defined such
that, for an assignment of x defining a valid tour, there is an assignment of u satisfying
each individual constraint. The idea behind these sub-tour elimination constraints is that,
if there was a sub-tour (2, 3, ..., k + 1), then taking the sum of these constraints for (i, j) =
((2, 3), (3, 4), ..., (k, k+ 1), (k+ 1, 2)) would yield k(n− 1) ≤ k(n− 2), which is contradictory.

Despite its compactness, this formulation has a weaker linear relaxation than the Dantzig,
Fulkerson and Johnson formulation (DFJ) defined prior.

2.1.2 Approaches to solving the TSP

As this problem has been thoroughly studied, many algorithms have been developed in recent
years to solve it. Among these methods are exact methods which guarantee that the solution
found is optimal and heuristic methods which cannot guarantee optimality but find solutions
reasonably close to the optimal.

Several algorithms have been implemented using tour-to-tour improvements, such as algo-
rithms by Croes [19], Lin [20], Lin and Kernighan [21], Helsgaun [22] and Golden [23]. Tour-
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to-tour improvement methods consist of finding an initial feasible tour and improving upon it
until it can no longer be improved. The way these tours are improved varies from algorithm
to algorithm. The Lin-Kernighan algorithm aims to improve by swapping two edges of the
tour with two other unused edges, whereas LKH (Lin-Kernighan-Helsgaun) [22] can swap up
to five. These methods are heuristic and do not always find the optimal TSP tour, since,
like many neighborhood algorithms, they tend to fall into a local optimum, i.e., a solution
better than all its neighboring solutions. Regardless, implementations of the Lin-Kernighan
algorithm have been shown to find values 1% of optimality and LKH finds solution 0.1%
short of optimality.

Though this may be the most prominent example, there are many other types of heuristic
methods, such as tour merging [24,25] and genetic algorithms [26].

One of the biggest breakthroughs in solving the TSP is Dantzig, Fulkerson and Johnson’s
cutting plane method [15]. This method is based on the observation that the assignment
problem, which consists of finding a minimum-weight perfect matching in a weighted bipar-
tite graph, is a relaxation of the TSP and that if the optimal solution of the assignment
problem contains no sub-tours then it is an optimal solution of the TSP. The result is an
example of a row generation algorithm. The idea is to relax the sub-tour elimination con-
straints from the TSP model and start by solving this relaxed problem. We then check if the
solution violates any of the sub-tour elimination constraints and, if it does, these constraints
are added to the problem and we solve again. This process is repeated until a solution that
respects all sub-tour elimination constraints is found. This work not only influenced the TSP,
but extends to solve many combinatorial problems, as well as many integer linear program-
ming problem.

Today, the state-of-art solver for the TSP is concorde, an Integer Programming solver
developed by W. Cook et al. [27, 28], solving instances up to size 85,900. concorde com-
bines many of the methods mentioned previously. It computes an initial upper bound on the
solution by using a Chained Lin-Kernighan [29] heuristic algorithm. This initial solution is
used to bound the branch-and-cut search tree that follows.

There have been several approaches which rely on eliminating edges from the input graph
of routing problems, in order to work on simpler, sparse graphs. Granular tabu search
(GTS) [30] is a variant of the tabu search algorithm, proposed by Toth and Vigo for the
Vehicle Routing Problem (VRP), though it can be adapted to the TSP. GTS works with
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restricted neighborhoods, called granular neighborhoods, obtained from a sparse graph. This
sparse graph includes edges whose costs are lower than a granularity threshold value ν = βz̄

(where β is a sparsification factor and z̄ is the average cost of the edges) and edges belonging
to the best feasible tour. More edges are considered for the VRP, but they are not relevant
to the TSP.

GENIUS [31] is a tour construction algorithm, followed by a post-optimization step, consist-
ing of removing a vertex from a feasible tour and re-inserting it. When constructing the tour,
each vertex can only be inserted next to vertices belonging to its p-neighborhood, i.e., the
p closest vertices in the tour. Limiting the search to a vertex’s p-neighborhood is necessary
to reduce the number of possible tours resulting from its insertion. The use of this nearest
neighbor heuristic resembles sparsification, since the resulting tours will cover a sparse subset
of the graph’s edges, namely the edges between a vertex and its nearest neighbors.

Hougardy and Schroeder [32] also proposed an algorithm for removing edges form TSP
graphs. Their algorithm consists of proving that an edge (p, q) is useless and can be re-
moved, by identifying two points r and s such that, if (p, q) and any two edges incident to r
and s respectively are part of a tour, there exists a valid 3-opt move that improves this tour
by replacing (p, q). If such two points r and s exist, then (p, q) cannot belong to the optimal
tour.

2.1.3 2-matching relaxation

The 2-matching relaxation is obtained for a TSP model by removing the sub-tour elimination
constraints, while maintaining integrality constraints. As implied by the removal of sub-
tour elimination constraints, solutions of this resulting 2-matching problem are collections of
disjoint cycles over all vertices. Figure 2.2 shows an example of a 2-matching solution on the
simple graph in Figure 2.1.

Figure 2.1 Full graph Figure 2.2 2-matching solution
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Edmonds [33] provides an algorithm for solving this problem in polynomial time.

2.1.4 1-tree relaxation

Given a vertex of an undirected graph, say vertex 1, a 1-tree is a tree spanning the vertices
in V \{1}, with two additional edges incident with vertex 1. The relaxation can be obtained
by removing degree constraints from the TSP.

We can see intuitively that a 1-tree has at most one cycle and that a 1-tree composed of a
minimum-cost spanning tree and two edges of minimum cost provides a lower bound on the
optimal cost of the TSP. A minimum-cost 1-tree can be computed in polynomial time and
has been used in a breakthrough algorithm by Held and Karp [34,35].

2.1.5 n-path relaxation

This relaxation was introduced by Christofides et al. [36] and is generally used with a path
representation of the problem. A vertex, say vertex 1, is considered the starting point of the
path and duplicated, as to transform a tour into a path from vertex 1 to itself. From this
representation, the n-path relaxation is obtained by removing degree constraints on every
vertex, while enforcing that |V | = n edges need to be selected in the path. A shortest path
can be found in polynomial time through dynamic programming, but the resulting path will
not necessarily be elementary, meaning some vertices may be visited multiple times, and as
a result some vertices will not be visited.

The n-path relaxation has been used in column generation approaches for complex routing
problems, like the Capacitated Vehicle Routing Problem and its variants.

Figure 2.3 Solutions for the 1-tree and n-path

Figure 2.3 shows example solutions for the 1-tree and n-path relaxations for the graph in
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Figure 2.1.

2.2 Counting-based search

In this section, we review the existing CP optimization constraints that can be used to capture
the combinatorial structure of the TSP relaxations presented previously and the methods for
computing solution densities on these constraints.

2.2.1 Cost-based solution densities

Counting-based search was originally introduced by Pesant et al. [2] for solving constraint
satisfaction problems and was then extended for constraint optimization problems [37]. Cost-
based solution densities are computed in counting-based search and serve as the criterion for
selecting branching variables and values. Given a constraint c(x1, . . . , xk) on finite-domain
variables xi ∈ Di 1≤i≤k, let f : D1 × · · · × Dk → N associate a cost to each k-tuple t of
values for the variables appearing in that constraint and z be a finite-domain cost variable.
An optimization constraint c?(x1, x2, . . . , xk, z, f) holds if c(x1, x2, . . . , xk) is satisfied and
z = f(x1, x2, . . . , xk). Let ε ≥ 0 be a small real number and z? = mint : c(t) f(t) (without loss
of generality consider that we are minimizing). We call

σ?(xi, d, c?, ε) =
∑
t=(x1,...,xi−1,d,xi+1,...,xk) : c?(t,z,f)∧z≤(1+ε)z? ω(z, z?, ε)∑

t=(x1,...,xk) : c?(t,z,f)∧z≤(1+ε)z? ω(z, z?, ε)

the cost-based solution density of variable-value pair (xi, d) in c? given ε. This value is found
between 0 and 1, and represents how often the assignment xi = d is found in assignments
satisfying constraint c?. The number ε serves as a margin for including close-to-optimal
solutions in the ratio. If ε = 0, then the solution density is restricted to optimal solutions of
the constraint, with respect to f . Otherwise, if ε is positive, then sub-optimal solutions can
be included but are discounted proportionally to their distance from z?, the minimum value
of f over solutions of c. This discount is given by the weight function ω(z, z?, ε), which can
vary depending on the constraint.

2.2.2 minWeightAllDifferent constraint

The collection of minimum-cost disjoint cycles for the integer programming model mentioned
in Section 2.1 can be translated in constraint programming terms by a minimum-cost assign-
ment, and can be implemented as a minWeightAlldifferent optimization constraint, as
defined in Caseau and Laburthe [38].
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Pesant [37] describes how to compute solution densities for this optimization constraint. We
first compute a minimum-weight bipartite matching using the Hungarian algorithm. This
computation also yields a reduced-cost matrix R = (rij) as a by-product. The non-negative
rij indicate the expected increase in cost if the variable/value assignment (i, j) replaces an
assignment of the computed matching. Given z?, the cost of the minimum-weight matching,
we define the related matrix R′ where :

r′ij = max(0, (εz? + 1)− rij
εz? + 1 )

Finally, to compute the solution densities of the constraint, we must compute the permanent
of matrix R′. The permanent of an n× n matrix A = (aij) is defined as :

per(A) =
∑
p∈P

n∏
i=1

aij

where P is the set of permutations of {1, 2, ..., n}. In the case of a binary matrix where a
"1" entry indicates that value j is in the domain of i, the permanent represents the number
of solutions to the constraint, as we sum over every assignment and the product equals 1
only if each variable has the assigned value in their domain. With our matrix R′, optimal
assignments count as 1, assignments whose cost exceeds (1 + ε)z? count as 0 and other
assignments are counted at a discount proportional to its distance from the optimum. Thus,
we obtain a weighted counting of feasible assignments within our defined margin ε.

The cost-based solution density of a variable-value assignment xi = d is computed as the
ratio of two permanents, the permanent of R′xi=d over that of R

′, where R′xi=d sets all values
in column i except in row d to 0. Since computing permanents is #P -complete, we will use
an upper-bound defined in Soules [39], as :

U1(A) =
n∏
i=1

t(Ai)µ(m(Ai), s(Ai)/t(Ai))

where s(Ai) denotes the sum of the entries in Ai, the ith row of A, t(Ai) denotes the maximum
entry in Ai, m(Ai) denotes the number of positive entries in Ai and µ(m, z) denotes the
geometric mean of m numbers, equally-spaced from 1 to z.
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2.2.3 minWeightSpanningtree constraint

The 1-tree structure can be represented in CP using a minWeightSpanningtree constraint.
When implementing the 1-tree into our model, it can be represented by building a new graph
with n+1 vertices, by duplicating the vertex that would be excluded, and finding a minimum
spanning tree over the whole graph. To maintain the 1-tree structure with this representation,
it is preferable to remove the vertex with the largest average distance from other vertices,
to hopefully guarantee that said vertex and its duplicate each only have one incident edge.
Theoretically, this does not guarantee a perfect 1-tree structure, but the relaxation works
well in practice regardless. Figure 2.4 shows an example of a spanning tree on this modified
graph, from the original graph on Figure 2.1.

Figure 2.4 Comparing 1-tree with spanning-tree on modified graph

We will now present work done on counting weighted spanning trees in CP. Delaite and
Pesant [40] propose a method for computing the solution densities of an edge in a weighted
spanning tree.

They start by defining a matrix M = (mij) where mij are univariate polynomials defined
from edge set E and weight function w defined over E :

mij =


−xw(e), i 6= j e = (vi, vj) ∈ E

0, i 6= j (vi, vj) 6∈ E∑
e=(vi,vk)∈E

xw(e), i = j

Broder and Mayr [41] proved that any minor of M (i.e., the determinant of the submatrix
obtained by removing any row and column i from M) yields a polynomial ∑

k akx
k where the

monomial akxk indicates that there are ak spanning trees of cost k in the graph. Rather than
computing this minor on a matrix of polynomials, which can be time-consuming, Delaite
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and Pesant chose to instantiate x to real value between 0 and 1, to work with a matrix of
scalars. This value also serves to apply an exponential decay to the number ak according
to the difference between the weight k and the weight of an optimal spanning tree, benefit-
ing close-to-optimal trees over trees of higher weight. An x value of 1 would not apply any
decay and count every tree equally and the decay becomes more aggressive as it approaches 0.

To compute the solution density of an edge, Brockbank, Pesant and Rousseau [42] describe
an efficient method, exploiting the fact that the matrix M of a graph without that edge is
nearly identical to the original. In order to compute the solution density of a given edge
(i, j) ∈ E, we can take the ratio of the number of spanning trees without that edge over the
total number of spanning trees. Consider the matrix M ′ defined similarly to the matrix M
above, but over the edge set E ′ = E\(i, j). The solution density of edge (i, j) not being in
the spanning tree can be calculated as a ratio of any minor of M ′ over a minor of M . Since
M ′ is identical to M except for entries mii, mij, mj i and mjj, removing row and column i
from M and M ′ leaves us with two sub-matrices, say N and N ′, that are nearly identical
except for entry mjj. The Sherman-Morrison formula states that if matrix N ′ is obtained
from N by replacing column (N)j by column vector u, then :

det(N ′) = (1 + eTj N
−1(u− (N)j)) det(N)

By using this formula, the solution densities of every edge can be computed with only a linear
(in terms of vertices) number of determinant computations, rather than quadratic.

2.2.4 cost-regular constraint

The n-path relaxation can be represented in CP with a cost-regular constraint, a weighted
variant of the regular constraint. The constraint is applied on variables 〈x1, x2, ..., xn〉,
where xi is the vertex in ith position on the path and the TSP instance’s input graph serves
as the automaton.

Pesant [37] proposes an algorithm for computing cost-based solution densities for this con-
straint. The domain filtering algorithm for the regular constraint builds a layered digraph
by unfolding the automaton over the sequence of variables. A path from the first layer to the
last layer of the digraph corresponds to a solution, which in our case is an n-path. The cost-
based solution density algorithm needs to find paths whose costs are at most (1+ ε)z?, where
z? is the cost of the shortest n-path. At every node of the digraph, it computes the number
of incoming and outgoing partial paths of costs up to (1+ε)z?. The number of relevant paths
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containing a given variable-value pair is computed as the sum over all corresponding arcs of
the products of number of partial incoming and outgoing paths at their endpoints, provided
their composition makes an n-path of cost at most (1 + ε)z?.
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CHAPTER 3 IMPLEMENTATION

This chapter will describe our contribution in this field. We will mention the CP model
implemented to use and test our method, the different algorithmic options explored for our
pre-processing method, and lastly we will go over methods to improve the computing time
of cost-based solution densities.

3.1 Description of our CP model

In order to apply our method, we need a functioning CP model which will be used for com-
puting the cost-based solution densities of the global constraints drawn from TSP relaxations
as mentioned previously. This model is implemented in IBM ILOG CP Solver 1.6.

3.1.1 Initial model with minWeightAllDifferent constraint

We start off with a basic CP model:

min z = ∑n
i=1 γisi

s.t.
minWeightAlldifferent({s1, . . . , sn}, z,Γ)
noCycle({s1, . . . , sn})
si ∈ {2, 3, . . . , n+ 1} 1 ≤ i ≤ n
z ∈ N

Table 3.1 A basic CP model for the tsp

where Γ is a cost matrix and si are our variables. These are successor variables, i.e., the
value of si is the city following city i in the tour. We implement this model as follows:

next = IloIntVarArray(env, n);
IloIntArray domain = IloIntArray(env)
for(int i=0; i<n; i++){

domain.clear();
for(int j=1; j<n+1; j++){

if(instance[i][j] != 0)
domain.add(j);

}
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next[i] = IloIntVar(env, domain);
}

We start by defining the successor variables si as the array of n integer variables next in
environment env. We define an empty domain (domain.clear()) for each variable si and if
there is an edge between vertex i and j (instance[i][j] != 0) we add j to the domain. We
end the iteration by defining the individual variable next[i] with the appropriate domain
parameter. It should be noted that the values in the domain of next range from 1 to n,
vertex n being a duplicate of vertex 0, rather than 0 to n− 1.

costTotal = IloIntVar(env, 0, IlcIntMax);
IloIntVar cx(env, 0, IlcIntMax);
for(int i=0; i<n; i++){

model.add(cx[i] == cost[i][next[i]-1]);
}
model.add(costTotal == IloSum(cx));

Then, we define the cost function of our model, as the integer variable costTotal which can
take any value from 0 to the maximum integer value. It is defined as the sum of variables
cx, themselves defined by the constraint cx[i] == cost[i][next[i]-1], where cost is the
cost matrix of the instance. Overall the code represents the function z = ∑

i cisi
.

addCountableConstraint(IloCostAllDiffCounting(env, next, getRandomGenerator,
cost, costTotal, 0.1));

model.add(IloNoCycle(env, next));

Finally, we add our global constraints to the model. The minWeightAllDifferent constraint
is implemented in CPO as the function IloCostAllDiffCounting, taking as parameters the
environment, the next variables, a random generator, the instance’s cost matrix, the cost
function and a lowCostGap parameter, whose value is 0.1 here and which represents ε from the
definition of SDs, as seen in Section 2.2.1. The sub-tour elimination constraint IloNoCycle
is implemented as follows:

int i = _next.getIndexValue();
int j = _next[i].getValue();

end[start[i].getValue()].setValue(solver,end[j].getValue());
length[start[i].getValue()].setValue(solver,
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length[start[i].getValue()].getValue()+
length[start[j].getValue()].getValue()+1);

start[end[j].getValue()].setValue(solver,start[i].getValue());

if (end[j].getValue() < n) {
_next[end[j].getValue()].removeValue(start[i].getValue());

}
else {

if (length[0].getValue()+length[start[i].getValue()].getValue()+1 < n)
_next[end[0].getValue()].removeValue(start[i].getValue());

}
if ((start[i].getValue() == 0) &&

(length[0].getValue()+length[start[n].getValue()].getValue()+1) < n)) {
_next[end[0].getValue()].removeValue(start[n].getValue());

}

When next[i] is fixed to j, the partial path ending at i is merged with the partial path
starting at j. This merging is done in the first three lines, where the end of the path that
started at j also becomes the end of the path that ended at i and the start of the path that
ended at i also becomes the start of the path that started at j. A valid tour would be defined
as a path from 0 to n, its duplicate. The three if conditions serve to prevent sub-tours by
removing values from certain domains if those conditions are met. If a partial path does not
end at n, then its end vertex cannot be followed by its start (see Figure 3.1). If a partial
path does end at n, but the sum of its length and the length of the path starting at 0 is less
than n− 1, then the end vertex of the path starting at 0 cannot be followed by the start of
the path ending at n. The last if checks the same thing as the second. In the second, the
index i is in the partial path ending in n, whereas, in the third, the index i is in the partial
path starting in 0.

Figure 3.1 Eliminating subtours. Reprinted from [1]
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By branching on the variables next and using counting-based search, the program yields the
cost-based solution densities corresponding to the minWeightAlldifferent constraint. For
pre-processing, we are only interested in the first iteration of cost-based solution densities,
so we can stop the execution of the solver as soon as that first iteration is over.

3.1.2 Additional minWeightSpanningTree and cost-regular constraints

Next, we want to add to this model the minWeightSpanningtree constraint corresponding
to the 1-tree relaxation. This constraint is defined in such a way that the next variables
defined above are not compatible, so a new set of variables must also be added to the model.
These variables will be binary variables eij, whose value is 1 if the edge (i, j) is in the solution
tour and 0 otherwise. It is implemented as follows:

edgevars = IloIntVarArray(env, nbEdges, 0, 1);
model.add(edgevars);
model.add(IloSum(edgevars) == n );

The variables eij are implemented as an array nbEdges (number of edges in the graph com-
puted when reading the instance) variables, with lower bound 0 and upper bound 1. We add
the constraint ∑

i,j eij = n to strengthen the model.

treeCost = IloFloatVar(env, 0, IlcFloatMax);
model.add(treeCost);

treeCost will be the objective value of the spanning tree constraint, taking any floating-point
value from 0 to the max value.

addCountableConstraint(IloSpanningT(env, edgevars, treeCost, graph,
getConfiguration()->getHeuristic()));

The minWeightSpanningTree constraint, implemented as IloSpanningT, takes as parameters
the environment env, the decision variables edgevars, the objective value treeCost, the
input graph graph and a Heuristic parameter, which helps determine the value of variable
x (2.2.3) depending on whether or not the heuristic is cost-aware or not.
In case we want to solve the CP model using both sets of variables (4.2.1), another set of
constraints is necessary to link the two sets of variables:
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for(int i=0; i<n; i++){
int n1 = edges[i].n1;
int n2 = edges[i].n2;
model.add(edgevars[i] == (next[n1%n]==n2)||(next[n2%n]==n1))

}

edges[i].n1 and edges[i].n2 are the extremities of edge edges[i]. For each edge, we add
a constraint which states that if that edge is in the solution (edgevars[i]==1) then either
next[n1%n]==n2 or next[n2%n]=n1. The reason for the n modulo is that the graph for the
spanning tree has a vertex n, a duplicate of vertex 0.

Lastly, we want to implement the cost-regular constraint that corresponds to the n-path
relaxation. Again, this constraint also requires its own set of variables. The value of these
variables pi represents which vertex is found in the ith position of the tour. We implement
the constraint as:

state = IloIntVarArray(env, n, 0, n-1);
model.add(state);
pathcost = IloFloatVar(env, 0, IlcFloatMax);
model.add(pathcost);
addCountableConstraint(IloRegular(env, state, automaton,

auto_cost, pathcost, 0.1))

The n integer state variables represent the variables pi and can take a value from 0 to
n − 1, representing any of the vertices. The variable pathcost is the objective value of the
n-path. The constraint IloRegular takes as parameters an environment variable env, the
decisions variables state, an automaton which represents the input graph, the cost function
cost_auto of said automaton, the objective value pathcost and a lowCostGap parameter,
arbitrarily set at 0.1.
We also link the variables with the successor variables like this:

model.add(next[0] == state[0]);
for(int i=1; i<n-1; i++){

model.add(next[state[i-1]] == state[i])
}
model.add(next[state[n-2]] == n);
model.add(state[n-1] == 0);
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The starting point of the automaton is vertex 0, so the first decision state[0] corre-
sponds to next[0]. state[i] follows state[i-1] in the path, hence next[state[i-1]]
== state[i]. Finally, for the path to close, we must have state[n-1] == 0 and
next[state[n-2]] == n, keeping in mind that, in the domains of the next variables, n rep-
resents vertex 0.

Finally, we may want to solve the CP model using a counting-based search branching heuris-
tic which takes into account several of these constraints. However, because of the differing
structures of these constraints and their variables (linear number of integer successor vari-
ables v.s. quadratic number of binary edge variables for example), it is necessary to add a
function homogenizing the cost-based SDs of these constraints. For this, we use the functions
IloEdge2Next and IloPos2Next which associate the SDs of edgevars from SpanningT and
state from Regular to their corresponding next variable.

IloEdge2Next is somewhat intuitive since next[i]=j and edgevars[i,j]=1 both represent
the same edge being present in the tour. The only modification needed is normalizing the
solution densities to guarantee ∑

j(next[i]=j) = 1. The function IloEdge2Next is essentially
an implementation of the formula:

SD(next[i]=j) = SD(edgevars[i,j]=1)∑
k∈dom(next[i]) edgevars[i,k]=1

Unlike the next and edgevars variables, the state variables do not represent an edge of
the tree but rather the position of a vertex in the tour. The idea behind the algorithm of
IloPos2Next is that, if k is a likely position for vertex i and k + 1 is a likely position for
vertex j, then (i, j) is likely to be an edge in the tour. We get the initial result:

SD′(next[i]=j) =
∑

k : i∈dom(state[k])

SD(state[k+1]=j)
|dom(state[k])|

Essentially, we consider the solution densities of vertex j being in position k + 1 of the tour
for every possible position k of vertex i. The reason for dividing by the size of the domain
of state[k] is that, if state[k+1]=j, any vertex that can be found in position k could be
a predecessor of j, not necessarily i. Therefore, the SD of state[k+1]=j is divided equally
among all possible predecessors.
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Finally, we must normalize the SDs:

SD(next[i]=j) = SD′(next[i]=j)∑
k SD′(next[i]=k)

3.2 Using SDs for pre-processing

Thanks to the model described previously, we can extract solution densities for all three
of the constraints/relaxations observed. We will now explain how we exploit these solution
densities to clean up input graphs of TSP instances.

By ordering the set of solution densities of one constraint, we effectively get a ranking of the
most promising edges according to that relaxation. We call a promising edge an edge that
is found in many good solutions satisfying the constraint. Our objective is to remove edges
from the graphs of TSP instances, according to the edges that each constraint finds promis-
ing. Lastly, we would like our method to remove as many edges as possible from the graph,
making it as sparse as possible, while minimizing the risk of removing edges that would be in
the optimal tour of the instance. We must remember that the solution densities we obtained
come from relaxations of the TSP and not the problem itself. Therefore, an edge found in
the optimal solution of the TSP is not necessarily found in many good solutions of one of its
relaxations.

3.2.1 Selecting good edges

The first step to the pre-processing is defining a threshold as to what a promising edge is,
in other words, how many edges should we consider from each set of cost-based solution
densities. The most intuitive option is taking a percentage of all edges. For example, we
could take the top half or the top quartile of edges with regards to their solution densities.
One advantage of this method is that, by taking the same percentage for each relaxation, we
can guarantee that each relaxation is considered equally, but conversely, we could also modify
the percentages to give a relaxation more representation than another, in case a relaxation
makes better decisions than another.

Another criterion for defining a promising edge is setting a threshold on the value of their
solution densities, meaning we would only consider edges above a certain solution density.
This method poses some problems however. First of all, the average solution density can
vary according to the size of the instance but also according to the constraint itself. For
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instance, SDs for the Spanningtree constraint are very heterogeneous since the variables are
binary, and so, we will often see assignments eij = 0 with very large SDs (> 0.9) whereas
their respective eij = 1 assignment will be very low (< 0.1). This method will also yield
an inconsistent number of edges for a given threshold, which will make it more difficult to
control the dimension of the sparse graph. As you can see on Figures 3.2 and 3.3, the larger
pre-processed graph ends up being considerably sparser despite a more lenient threshold on
the solution densities. Indeed, the average SD tends to drop as the size of the instance rises.
Considering that the edge density of the pre-processed graph affects how likely we are to pre-
serve the optimal tour, finding a threshold that can be relatively aggressive while maintaining
optimality for every instance seems unlikely, and recalculating an appropriate threshold per
instance is not an interesting alternative.

Figure 3.2 Removing edges of SD be-
low 0.1 in gr21

Figure 3.3 Removing edges of SD be-
low 0.075 in gr48

Now, we propose a more robust criterion for selecting promising edges which tends to reduce
the risk of removing edges that would be part of the optimal tour. Rather than taking a
percentage of edges overall, we will consider a percentage of the edges incident with each
vertex. The idea is that in many cases, the distribution of solution densities over each vertex
of the graph may be uneven and a certain vertex may have twice as many incident edges
in the top quartile of solution densities than another. Since an optimal tour must have two
edges incident to each vertex, having certain vertices with fewer incident edges in our sparse
graph increases the chance that we lose the optimal tour around these vertices. Therefore,
if we take the top quartile of the edges incident to each node rather than a quartile of the
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edges overall, our pre-processing method will prove to be much more robust and will have
more chance of keeping the optimal tour intact.
On Figures 3.4 and 3.5, the optimal tour of the instance is represented as the perimeter of

Figure 3.4 15% best SDs overall for
the TSP instance gr24

Figure 3.5 15% best SDs per vertex
for the TSP instance gr24

the circle. As we can see, when considering the same number of edges (15% of edges) for
each method, we lose two edges, (22, 3) and (15, 10), from the optimal tour in the former
method while keeping this tour intact in the latter. Looking closely, we can see that vertex
10 only has one incident edge, so not only would we not get an optimal solution, but the
problem would be infeasible. Though this is only one example, it clearly shows the merit of
distributing the edges evenly among the vertices of the graph. One slight inconvenience of
the later method is that it may be slightly more time consuming than the others.

Now that we have determined which edges are promising for each relaxation, we combine
this information to decide which edges to keep in our final sparse graph and which to remove.
We explore two options for combining the sets of promising edges from each relaxation.

The first option is to keep the edges in the intersection of these sets. In other words, we
would only keep edges considered promising by each relaxation. The second option is to
keep the edges in the union of the sets, which means we would only remove edges considered
unpromising by each relaxation.

The second option proves to be much better than the first. As mentioned previously, the
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solution densities we are working with are taken from relaxations of the problem and not the
problem itself, therefore a relaxation could consider poor an edge that is actually part of the
main problem’s optimal solution. If any of the relaxations does make such a mistake, then,
by only keeping edges considered promising by all relaxations, we run a high risk of losing
the optimal tour and the only way to prevent that would be to increase the threshold until
those missing edges are recovered. Thus, in some cases, using the first option could require a
much denser graph than we would like to have. On the other hand, if we opt for the second
option then there is a chance that if one relaxation does not find an optimal edge promising,
another relaxation will make up for it and, in practice, we find that it is rare for edges in the
optimal tour of the TSP to be severely misjudged by two different relaxations.

Figure 3.6 Top 15% of edges accord-
ing to Alldifferent

Figure 3.7 Top 15% of edges accord-
ing to Spanningtree

In the graphs in Figures 3.6 and 3.7 , we can see that, in this case, the Alldifferent and
Spanningtree constraints each consider an edge in the optimal tour ( (9,16) for Alldifferent
and (18,19) for Spanningtree ) not to be in the top 15% of edges. If we were to pre-process
by taking the intersection of both, we would lose two edges and, in order to restore the
optimal tour, we would need to increase the number of edges taken from each relaxation.
However, by taking the union, each relaxation covers the other’s mistake and we can maintain
the optimal tour without increasing the number of edges from each relaxation.



27

3.2.2 Choice of relaxations

As stated in Section 3.1, the CP model we exploit has three global constraints that we
can extract cost-based solution densities from, but we will only be using the ones derived
from the 2-matching and 1-tree relaxations, and ignore the n-path relaxation. A solution
density is linked to a variable-value assignment and, in the case of the Alldifferent and
Spanningtree these assignments define edges very intuitively: si = j and eij = 1 represent
edge (i, j) directly. Secondly, the structures of these relaxations’ solutions still hold many
of the characteristics of the TSP’s structure and thus edges in the TSP’s solution could be
common in the solutions of these relaxations. Specifically, in both relaxations, all vertices
are "visited" by the solution, i.e., there are edges incident to each vertex. Additionally, the
2-matching conserves the structure of tours, with exactly 2 incident edges per vertex and the
1-tree’s structure contains exactly one tour.

On the other hand, the n-path relaxation poses various problems. First of all, the variables
for the Regular constraint representing the n-path indicate the vertex in a certain position of
the tour and thus do not provide direct information on edges of the tour. There is a way to go
around this problem to gain information on edges. If vertex i is a promising value for variable
posk and vertex j is a promising value for variable posk+1, then edge (i, j) is promising. We
can define a recursive algorithm where we consider vertex 0 as a starting point and we add
edges from 0 to good values of position 1, from these vertices to good values of position 2,
and so on and so forth.

However one finds that even with this workaround, the structure of the relaxation itself yields
undesirable results with regards to which edges it finds promising. The best n-path solutions
will often be non-elementary paths, since we allow the paths to ignore vertices and pass mul-
tiple times through other vertices. As a result, there will often be a subset of vertices, with
small distances from one another relative to the rest of the graph, and all the best solutions
of the n-path will be various ways of looping around those same vertices. Therefore all the
best assignments, in terms of solution density, will be assignments where, for any i, posi is
in this subset of vertices. This leads to very poor edge selection from this relaxation.

The graph in Figure 3.8 shows a primitive method of pre-processing using the n-path relax-
ation. We considered the top 25% of position assignments and built the edges recursively
over these positions as defined previously. We can see many of the vertices are excluded and
we are left with a dense graph over a small subset of vertices.
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Figure 3.8 Simple pre-processing of gr24 from Regular constraint’s solution densities

There is a better way of exploiting the Regular constraint, though its results remain difficult
to use. Using the function IloPos2Next mentioned in Section 3.1, we can translate the SDs
of the Regular constraint into SDs of successor variables. Figures 3.9 and 3.10 show what we
get on the same instance as before by pre-processing taking the best SDs from this conversion.

As we can see, despite these modifications the edges considered promising remain uninter-
esting and ignore much of the optimal tour. IloPos2Next computes the SD of edge (i, j)
as the sum over k of the product of SDs for posk = i and posk+1 = j. Since, the best SDs
of posk for every k have the same small subset of vertices as their value, then every edge
incident to those values is heavily favored. Even by distributing edges more evenly over the
vertices (figure 3.10), the overall result is the same. We therefore concluded that the Regular
constraint’s solution densities provide no viable information for pre-processing.

Therefore, in our tests, we will only pre-process the instance by combining SDs from Alldifferent
and Spanningtree. Regardless, these two relaxations prove to be sufficient for a relatively
aggressive yet robust pre-processing. By taking into account our best options, i.e., taking
k% of edges incident to each vertex and considering the union of SDs from Alldifferent
and Spanningtree, we are able to eliminate a large number of edges, while having relatively
low chances of losing the optimal tour.
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Figure 3.9 15% best SDs overall from
IloPos2Next

Figure 3.10 15% best SDs per vertex
from IloPos2Next

3.2.3 Full algorithm

To summarize our algorithm, we begin by computing solution densities for the 2-matching
and 1-tree relaxations, order the edges of the graph from largest to smallest SD, in 2 different
lists depending on the relaxation and decide on the percentage of edges we want to keep per
vertex. Then, for each relaxation, we go through their list of edges, edge by edge, and if
either of its extremities have less selected edges than the minimum percentage we defined
then the edge is added to the final list of selected edges. We can stop looking through the
list once all vertices have met their quota.

list1 := list of edges sorted by SD from AllDifferent
list2 := list of edges sorted by SD from SpanningTree
limit := number of edges to keep per vertex
count := [limit for each vertex]
edge_list := []
loop :

(i,j) := next in list1
if count[i]>0 or count[j]>0 :

add (i,j) to edge_list
if count[i]>0 : count[i]--
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if count[j]>0 : count[j]--
if sum(count) = 0 :

exit loop
count := [limit for each vertex]
loop :

(i,j) := next in list2
if count[i]>0 or count[j]>0 :

add (i,j) to edge_list
if count[i]>0 : count[i]--
if count[j]>0 : count[j]--

if sum(count) = 0 :
exit loop

return edge_list

To show our algorithm’s effectiveness for pre-processing, we compare our method (Figure
3.11) to a much simpler method of eliminating edges (Figure 3.12) which only considers the
cost of the edges. As we can see for this particular instance, our approach yields a much
sparser graph without losing the optimal tour, whereas a simpler method loses edge (0, 24)
despite keeping twice as many edges.

Figure 3.11 Pre-processing taking the
top 15% of SDs

Figure 3.12 Pre-processing taking the
top 30% cheapest edges

However, there is, for now, no way of proving whether or not the optimal tour will be preserved



31

when keeping k% of edges for a given k. That being said, despite some rare outliers which
require keeping up to 50% of edges, most instances of TSPLIB that we experimented with
maintain optimality when keeping a fourth of the edges and many of the larger instances
can go as low or lower than 10%. Unfortunately, the appropriate percentage can still only
be determined empirically. That being said, in the event that too few edges are kept and
optimality is lost as a result, this approach may still provide a good solution relatively close
to optimal tour.

3.3 Faster alternatives to the original SDs

The first methods for computing cost-based solution densities proved to be quite time con-
suming when tackling larger instances of our problem, starting at sizes around 500. To test
our pre-processing on even larger instances, we required faster alternatives to computing SDs.

First of all, for the minWeightAlldifferent, it was found that there was a strong correlation
between the solution density of assignment si = j and the reduced cost rij yielded by the
Hungarian algorithm (see 2.2.2).

Table 3.2 Comparison of reduced costs and solution densities

instance m: reduced costs of 0 common edges in top lists percentage
eil101 205 201 98.05
lin105 170 167 98.24
gr120 201 191 95.02
ch150 264 260 98.48

kroA150 262 257 98.09
kroB150 238 238 100.00

si175 377 377 100.00
brg180 180 180 100.00
rat195 367 367 100.00
ts225 608 608 100.00
pr226 480 480 100.00
a280 688 688 100.00

lin318 518 509 98.26
rd400 676 676 100.00
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To compare these two criteria, we count the numberm of edges whose reduced costs are equal
to 0, i.e., the best m edges according to this criterion, and then count how many of these
edges are also found in the top m edges according to solution densities. There are several
edges with the same reduced costs, making the ordering of these edges irrelevant, which is
why we chose to limit the comparison to edges of reduced cost 0 and consider only which
edges are in these top lists, rather than how they are ordered. As we can see in Table 3.2,
these two top lists are identical for several instances and the percentage of edges in common
between them rarely goes below 98%.
Thus, we concluded that we could rank edges for this constraint according to their reduced
cost, rather than the corresponding solution density, which in practice is considerably faster.

Speeding up the computation of cost-based SDs for the Spanningtree constraint requires
a bit more work, but the new method remains closely related to the algorithm described
in Section 2.2.3. That section explains that by applying the Sherman-Morrison formula
for each SD computation, the number of determinant computations necessary to compute
solution densities can be reduced from a quadratic number to a linear number. This led
us to believe that by using it twice for each SD computation we could compute all solution
densities with only one determinant computation.

Consider the same matrices M and M ′ defined in Section 2.2.3. We consider N the minor of
M respectively obtained by removing row and column 1. For edges incident with vertex 1,
nothing changes from the previous method. The determinant of N is computed traditionally
and, for each edge, the determinant of N ′, obtained by removing row and column 1 from M ′,
is computed by applying the Sherman-Morrison formula once, since mjj is the only difference
between the two. And the solution density is computed from the ratio of det(N ′) and det(N).

Unlike the previous method, which would create a new matrix N for every vertex i by
removing row and column i from M , we want to keep the same N (without row and column
1). This allows us to continue without any more determinant computations. For every other
edge (i, j), the only differences between N and N ′ are entries nii, nij, nj i and njj, so we can
obtain the determinant of N ′ from the determinant of N from only two applications of the
Sherman-Morrison formula since only two columns need to be replaced. We can first consider
a matrix L obtained from N by replacing the ith column of N by the ith column of N ′ and
we obtain its determinant by applying Sherman-Morrison:

det(L) = (1 + eTi N
−1((N ′)i − (N)i)) det(N)

From there, we reach the determinant of N ′ by replacing the jth column of L (equivalent to
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the jth column of N) with the jth column of N ′:

det(N ′) = (1 + eTj N
−1((N ′)j − (L)j)) det(L)

Now every SD has been computed with only one determinant computation and multiple
applications of the Sherman-Morrison formula.

Using this method another slight time gain can be implemented. The ratio det(N ′)
det(N) for a given

edge (i, j) defines the SD for the edge not being in the solution (assignment eij = 0), since
M ′ is defined as the matrix representing the graph without edge (i, j). Therefore, ranking
edges from most to least promising is equivalent to ranking this ratio from lowest to highest.
However, when applying this faster method, N is always the same since we only ever remove
row and column 1 from M . Since all these ratios have the same denominator, we can rank
edges by ranking their determinant of N ′ from lowest to highest.
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CHAPTER 4 EXPERIMENTATION AND RESULTS

In this section, we will present the empirical evaluation of our methods and our implemented
algorithms. We tested this on a variety of solvers, from generic CP and MIP solvers to the
specialized concorde solver. We also evaluate the potential effect of certain parameters.

4.1 Computation time for SDs and pre-processing

We begin by evaluating the effectiveness of our pre-processing algorithm by observing the
time necessary to compute solution densities and the computation time of the pre-processing
algorithm itself.

4.1.1 Computing SDs for minWeightAllDifferent

First we will evaluate how long it takes to compute the solution densities for the 2-matching
relaxation and we will compare the original algorithm, as seen in Section 2.2.2, and the faster
alternative, as seen in Section 3.3.

Table 4.1 Computation time of AllDifferent SDs and their alternative one for instances of
size 150 to 280
instance time(s) for original SD time(s) for alternative

ch150 32.414 0.682
kroA150 21.932 0.717
kroB150 20.436 0.635

si175 142.448 0.828
rat195 117.048 0.744
d198 76.584 0.957

kroA200 76.885 0.758
kroB200 84.446 0.961

ts225 158.823 1.302
pr264 102.241 0.995
a280 562.098 1.124

As we can see from Table 4.1, computing the SDs completely is considerably slower than
only computing the reduced cost of the bipartite matching. We can also see in Table 4.2 that
computing these reduced costs is still very fast on much larger instances.

Table 4.2 Computation time of faster SDs for the 2-matching on larger instances

instance fl417 pcb442 d493 rat575 p654 d657 u724 rat783 u1060 vm1084 pcb1173
time (s) 2.046 2.387 2.818 3.385 4.541 4.733 5.585 5.821 14.118 15.744 14.203
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4.1.2 Computing SDs for minWeightSpanningTree

This time, we will evaluate how quickly we can compute SDs for the 1-tree relaxation, using
the original algorithm (Section 2.2.3) and the faster algorithm (Section 3.3).

Table 4.3 Computation time of SpanningTree SDs and their alternative one for instances of
size 150 to 280
instance time(s) for original SD time(s) for alternative

ch150 3.085 1.082
kroA150 2.822 1.054
kroB150 2.695 1.106

si175 4.166 1.452
rat195 5.559 1.721
d198 5.884 1.929

kroA200 5.945 1.825
kroB200 5.996 1.941

ts225 9.143 2.355
pr264 14.941 3.655
a280 17.806 4.159

We can see from Table 4.3 that the original computation of SDs for the spanning-tree is
quite a bit faster than it was for the AllDifferent. That being, although our alternative
for computing these SDs does scale better than the original algorithm, there is significantly
less improvement than the alternative for the AllDifferent and, for larger instances (see
Table 4.4), these computations still take a significant amount of time (over 10 minutes for
instances of size 1000 and above).

Table 4.4 Computation time of faster SDs for the 1-tree on larger instances

instance fl417 pcb442 d493 rat575 p654 d657 u724 rat783 u1060
time (s) 12.265 15.684 21.760 52.266 76.069 80.670 124.570 186.409 629.787

4.1.3 Time for pre-processing

Finally we will observe the performance of our pre-processing algorithm described in Section
3.2.3, once the SDs for each relaxation have already been computed.

Looking at Table 4.5, we can see that the pre-processing algorithm itself is relatively efficient,
compared to the time required to compute the solution densities beforehand. Although its
scaling is worse than the “faster SDs” of the 2-matching, it remains significantly faster than
computing SDs for the 1-tree.
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Table 4.5 Time (in seconds) necessary to pre-process instances of dimension 150 to 1173

instance time(s) instance time(s)
ch150 0.232 lin318 1.059

kroA150 0.264 rd400 2.130
kroB150 0.312 fl417 3.636

si175 0.359 d493 6.413
rat195 0.389 rat575 6.039
d198 0.526 p654 8.090

kroA200 0.447 d657 10.876
kroB200 0.487 u724 10.805

ts225 1.172 rat783 14.172
pr264 0.767 u1060 34.386
a280 0.789 vm1084 35.576
pr299 0.928 pcb1173 50.268

4.2 CP solver for the TSP

In this part, we evaluate two methods of exploiting solution densities within a CP model.
Taking small symmetrical instances from tsplib, we first discard edges from the initial graph,
then use solution densities for variable branching while using the IBM ILOG CP solver.
It should be noted that the CP model is not competitive with the state-of-the-art IP solvers
when it comes to the TSP, but remains useful for evaluation purposes.

4.2.1 Choice of branching heuristics

We first compare different branching heuristics on both complete instances and instances
that have been preprocessed using k = 15%. The heuristics observed are maximum regret
(a); maxSD* on 2-matching (b), on 2-matching and 1-tree (c), and on 2-matching, 1-tree
and n-path (d); arithmetic mean of SDs on 2-matching and 1-tree (e) and of 2-matching,
1-tree and n-path (f). Table 4.7 compares these heuristics on the complete graphs, whereas
Table 4.6 compares them on the pre-processed instances. Both tables indicate, for each in-
stance and heuristic, the best found solution value within a 30 minute time limit, the time
it took to find that solution and the number of fail nodes in the search tree.

Comparing both tables, we can see that every heuristic performed much worse on the complete
instances, proving that removing edges from the graph in this way is beneficial. This is
especially true with the maximum regret heuristic which generally finds poor solutions on
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complete instances. For the larger instances, the best found solutions on complete instances
are over twice the value of the instances’ optimal solutions.

Secondly, our proposed heuristics generally perform better than the maximum regret heuris-
tic. They consistently find better solutions when the optimal solution cannot be reached
and find the optimal solution faster when it can be found. However, heuristics involving the
n-path relaxation behave poorly, as they are too computationally expensive.

Table 4.6 Performance of IBM ILOG CP 1.6 on 9 small sparsified instances (30 min timeout).
opt best time(s) fails opt best time (s) fails opt best time(s) fails

gr21 2707 a 2707 0.11 173 gr24 1272 a 1272 0.26 359 fri26 937 a 937 0.43 475
b 2707 0.04 48 b 1272 0.03 25 b 937 1.71 2163
c 2707 0.14 27 c 1272 0.07 2 c 937 16.54 3156
d 2707 34.90 60 d 1272 76.67 182 d 937 485.96 1367
e 2707 0.15 31 e 1272 0.31 47 e 937 12.37 2393
f 2707 35.23 70 f 1272 30.39 51 f 937 1684.26 3254

bays29 2020 a 2020 125.36 118869 dantzig42 699 a 699 0.26 0 swiss42 1273 a 1464 1537.48 1349413
b 2020 7.57 9341 b 722 114.73 40888 b 1298 127.31 42503
c 2020 8.37 1179 c 722 1147.09 73431 c 1397 24.85 1316
e 2020 9.03 1287 e 718 72.78 3505 e 1410 25.30 1266

gr48 5046 a 5898 1097.14 423271 hk48 11461 a 14734 1486.84 970394 berlin52 7542 a 10434 1162.14 702850
b 5055 548.57 195503 b 12466 591.61 277333 b 8224 104.56 123179
c 5174 860.07 31897 c 12039 765.05 29543 c 8193 621.60 18781
e - - - e 12032 1379.09 54948 e 8016 558.90 15548

Table 4.7 Performance of IBM ILOG CP 1.6 on 9 small complete instances (30 min timeout).
opt best time(s) fails opt best time (s) fails opt best time(s) fails

gr21 2707 a 2707 68.01 36326 gr24 1272 a 1861 1679.27 865198 fri26 937 a 937 1003.97 336475
b 2707 4.85 1648 b 1272 0.20 199 b 937 736.95 161226
c 2707 11.98 1640 c 1272 1.04 200 c 954 194.34 21214
e 2707 13.25 1829 e 1272 0.96 171 e 937 1615.59 161633

bays29 2020 a 3743 1774.69 1312433 dantzig42 699 a 699 1.03 0 swiss42 1273 a 2228 1538.42 1030452
b 2093 1610.44 527637 b 783 71.97 20390 b 1368 3.79 817
c 2123 1556.13 153615 c 783 400.75 21259 c 1368 16.44 711
e 2020 64.36 7342 e 769 1002.58 48854 e 1381 100.00 3787

gr48 5046 a 14247 850.31 150656 hk48 11461 a 31822 1547.52 973401 berlin52 7542 a 18904 395.59 342182
b 5075 1152.88 126075 b 12061 245.78 55344 b 8446 408.00 909200
c 5169 1235.57 32022 c 12078 17.52 491 c 8449 1585.79 57455
e 5278 12.55 285 e 12078 434.98 18616 e 8122 1652.49 49203
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4.2.2 Effect of parameters

lowCostGap

Table 4.8 reports the results of ILOG CP on three different branching heuristics (costMaxSD
on 2-matching (b), costMaxSD on 2-matching and 1-tree (c), and arithmetic mean of SDs on
2-matching and 1-tree (e)) and for different values (0.01, 0.05, 0.1, 0.2, 0.5) of the lowCostGap
parameter for the weighted allDifferent constraint (section 3.1.1).

Table 4.8 Performance of IBM ILOG CP 1.6 on 9 small sparsified instances with varying
lowCostGap values (30 min timeout) (the values in the top row are the lowCostGap values).

0.01 0.05 0.1 0.2 0.5
instance opt best time(s) fails best time(s) fails best time (s) fails best time(s) fails best time(s) fails

gr21 2707 b 2707 0.03 52 2707 0.04 48 2707 0.04 48 2707 0.03 43 2707 0.02 27
c 2707 0.05 38 2707 0.18 38 2707 0.14 27 2707 0.10 19 2707 0.10 20
e 2707 0.14 23 2707 0.17 45 2707 0.15 31 2707 0.10 15 2707 0.10 15

gr24 1272 b 1272 0.01 4 1272 0.02 14 1272 0.03 25 1272 0.03 32 1272 0.03 32
c 1272 0.07 4 1272 0.07 0 1272 0.07 2 1272 0.09 4 1272 0.09 4
e 1272 0.08 7 1272 0.13 15 1272 0.31 47 1272 0.06 2 1272 0.08 3

fri26 937 b 937 5.62 14920 937 0.06 25 937 1.71 2163 937 0.95 2510 937 1.25 2245
c 937 45.23 12371 937 0.22 21 937 16.54 3156 937 9.88 2743 937 8.15 2498
e 937 11.08 3321 - - - 937 12.37 2393 937 8.19 1563 937 6.14 1853

bays29 2020 b 2020 38.41 84781 2020 11.70 15896 2020 7.57 9341 2020 6.73 15052 2020 9.88 15394
c 2020 325.79 68458 2020 74.50 14653 2020 8.37 1179 2020 11.11 2463 2020 11.05 2472
e 2020 69.32 14895 2020 52.18 10652 2020 9.03 1287 2020 18.10 4085 2020 18.13 4095

dantzig42 699 b 722 1217.60 2153592 717 1624.40 1912419 722 114.73 40888 758 837.78 935309 812 1421.77 1217315
c 727 525.24 60972 725 1325.24 97320 722 1147.09 73431 734 86.74 6435 735 780.91 63355
e - - - - - - 718 72.78 3505 - - - 710 1690.36 132285

swiss42 1273 b 1281 181.08 327922 1304 1233.83 567634 1298 127.31 42503 1344 1500.15 726983 1386 1079.35 385777
c 1294 1488.11 140039 1342 99.29 5779 1397 24.85 1316 1347 1051.76 92650 1347 1020.59 89211
e 1286 717.17 67975 1342 81.99 2907 1410 25.30 1266 1327 60.34 3007 1354 76.74 5939

gr48 5046 b 5123 1121.25 1539460 5083 546.51 334262 5055 548.57 195503 5297 2.88 2731 5416 391.64 168015
c 5262 66.13 4460 5083 680.09 24947 5174 860.07 31897 5395 78.91 4907 5336 626.81 36237
e 5270 1633.62 98785 5201 1670.83 84736 - - - 5340 1146.98 42093 5338 638.91 35868

hk48 11461 b 12221 306.46 1138587 12437 747.98 282211 12466 591.61 277333 11952 1261.66 503770 - - -
c - - - 12522 108.30 4149 12039 765.05 29543 11805 1383.38 85816 11788 1326.51 77572
e 11894 1380.76 94225 11828 694.46 27448 12032 1379.09 54948 12718 224.89 8689 12718 140.79 8722

berlin52 7542 b - - - 8056 1570.87 718325 8224 104.56 123179 8404 41.04 32984 9575 171.20 108173
c - - - 8107 935.44 24836 8193 621.60 18781 8488 484.11 24969 8665 1022.22 49513
e 7844 1.43 0 8432 1670.83 84736 8016 558.90 15548 8053 554.52 15896 7981 1636.31 75122

First of all, the larger values of lowCostGap perform better on the smallest instances (those
that can be solved to optimality by the CP model), as they generally require fewer fails,
hence reducing the solve time. Then, as the size of the instances increases and the time limit
prevents the solver from reaching optimality, the smaller lowCostGap values consistently find
better solutions.

However, looking at the largest instance in the table (berlin52 ), two of the three heuristics
could not find any solution within 30 minutes when the lowCostGap was 0.01, whereas a
solution was found for every heuristic for every other value of lowCostGap. This trend has
been confirmed on a few larger instances that do not appear in the table. Why does this
happen? When lowCostGap is very small, the heuristic is only concerned with solutions very
close to optimal, for the 2-matching, not the TSP itself. This could explain why on smaller
instances, it tends to find the solutions with the lowest values. That being said, it also con-
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siders much fewer sub-optimal solutions than the larger lowCostGap values. Therefore, if it
fails to find a good solution immediately on harder instances, backtracking could prove to
be more difficult, since it could be locked in a series of decisions that would be good for the
2-matching relaxation but far away from a feasible solution of the TSP. On the other hand,
with large values of lowCostGap, our branching decisions could lead to weaker solutions of
the 2-matching, but they are more likely to lead to feasible TSP solutions.

Finally, the results suggest that, for these sizes of instances, the value 0.1 may be the best.
Among these 5 values, it is the most consistent in terms of solution quality and time. In a
sense, it provides a good compromise between focusing on the best solutions, like the smaller
values, and making more informed decisions, like the larger values. It is possible that this
value’s performance is a result of it also being used for pre-processing, although we see no
theoretical reason behind this. This value was also the most interesting for pre-processing
because large values of lowCostGap could increase the time of computing SDs non-negligibly
and small values of lowCostGap could lead to many edges having SDs of 0, which we need
to avoid.

k% of edges

Now, we evaluate how the value of k, i.e., the percentage of edges we take from each relaxation
when pre-processing, affects the performance of the CP solver on a few small instances, small
enough to be solved to optimality when sparsified.

Table 4.9 reports, for 3 instances and values of k from 15 to 75, the best solution found within
30 minutes, the time to find that solution, the number of fails before finding it and the time
required to prove optimality, if the optimal solution was found. These results were obtained
by running the CP solver with the branching heuristic (b) (see section 4.2.1).

First of all, we note that as k increases, the total run-time, which includes the optimality
proof, consistently increases, aside from one outlier (k = 35 for gr24 ), which is to be expected
since the size of the search tree depends on the number of edges in the graph. Additionally,
on the larger instance bays29, which only reaches optimality when k equals 15 or 20, the best
solution found progressively gets worse, with some exceptions.

We do also note however that this is not necessarily the case for the time and fails necessary
to simply find the optimal solution. For two of these instances, when k is between 45 and
60, the optimal is found in fewer fails than with the smallest value of k, 15. Again, this is
not entirely surprising, considering that branching in CP is heuristic. It is not unlikely that
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Table 4.9 Performance of ILOG CP solver (30 min timeout) depending on the k% of edges
kept in pre-processing

gr24 fri26 bays29
k best found time (s) fails proof time (s) best found time (s) fails proof time (s) best found time (s) fails proof time (s)
15 1272 0.03 25 0.12 937 1.19 2163 5.39 2020 7.53 9341 59.90
20 1272 1.05 1927 11.15 937 55.93 46367 152.40 2020 3.51 4023 1800
25 1272 3.45 4319 24.42 937 5.62 4603 164.61 2028 70.01 46813 1800
30 1272 15.96 14962 45.13 937 25.23 7384 474.86 2028 144.20 72478 1800
35 1272 34.07 19479 93.53 937 32.12 8166 806.31 2036 302.19 108174 1800
40 1272 0.08 5 62.39 937 169.74 44734 818.71 2094 196.84 100630 1800
45 1272 0.09 0 66.16 937 1.84 1644 745.99 2086 1092.80 379392 1800
50 1272 0.10 0 80.40 937 1.12 665 990.18 2086 72.38 47038 1800
55 1272 0.09 0 82.22 937 1.47 505 1630.10 2086 7.49 5496 1800
60 1272 0.10 0 84.60 937 1.62 478 1800 2086 7.52 5496 1800
65 1272 0.17 199 89.16 937 16.53 10326 1800 2093 894.50 347034 1800
70 1272 0.18 199 89.41 937 736.29 160978 1800 2093 155.66 58747 1800
75 1272 0.18 199 91.03 937 761.16 165748 1800 2110 1689.67 576498 1800

adding certain edges opens up a branch of the search tree leading to an optimal solution that
was previously inaccessible. Another interesting detail is that, despite requiring fewer fails
than when k = 15, the solution time in most of these cases is still greater. We can conclude
from this that the greater k is, the longer each branching decision takes, which is supported
by the rest of the data in the table. Again, theory supports these results, since fewer edges
means smaller domains for the decision variables and fewer solution densities to compute.

4.3 concorde

In this section, we report on the performance of concorde, the state-of-the-art IP solver,
to see if removing edges from input graphs with our algorithm affects it.

4.3.1 Smaller instances

To further evaluate the effect of sparsifying TSP instances as indicated in Section 3.2, we
pre-processed 16 tsplib instances containing between 150 and 400 nodes, keeping only 1% of
edges per relaxation. These pre-processed instances as well as the original instances were then
solved on concorde, yielding the results shown in Table 4.10. The reported characteristics
are the number of branch-and-bound nodes, the overall computing time, the time required
for branching, and the number of generated cuts. Since the performance of concorde varies
from run to run due to a random seed, the numbers are all averages over 10 executions.

Of course, these instances are not challenging for concorde, since the largest average tree
size for the original instances is only 11.2 and 9 of the 16 instances do not require branching
at all. There is little room for improvement in that regard, but nevertheless there is an
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Table 4.10 Average performance (10 runs) of concorde to solve to optimality symmetric
instances of size 150 to 400 from the tsplib, with and without preprocessing.

original graph graph with discarded edges
instance # bbnodes total time (s) branching (s) # cuts # bbnodes total time (s) branching (s) # cuts
ch150 1.00 0.49 0 111.50 2.40 0.35 0.21 88.20
kroA150 1.00 0.88 0 164.30 1.00 0.19 0 32.90
kroB150 1.20 0.84 0.01 171.30 1.20 0.42 0.02 58.80
si175 2.80 3.42 0.24 294.20 1.00 0.25 0 53.80
brg180 1.00 0.71 0 5.00 1.00 0.09 0 1.80
rat195 5.60 5.49 3.14 314.80 4.60 4.07 2.67 325.60
d198 3.20 2.29 0.31 193.00 1.60 1.12 0.28 95.10
kroA200 1.00 0.77 0 250.10 1.40 0.39 0.10 103.70
kroB200 1.00 0.44 0 136.60 1.20 0.21 0.02 33.10
ts225 1.50 8.01 0.23 875.00 1.00 0.44 0 197.90
pr226 1.00 0.51 0 101.90 1.00 0.24 0 42.10
pr264 1.00 0.44 0 49.70 1.00 0.28 0 17.90
a280 1.00 1.18 0 107.00 3.00 1.04 0.23 111.40
pr299 1.80 3.24 0.09 446.90 2.20 2.11 0.84 387.40
lin318 1.00 1.77 0 237.00 2.40 3.53 0.62 306.90
rd400 11.20 18.20 12.30 754.10 11.00 17.97 14.62 814.20
Average 2.21 3.04 1.02 263.28 2.31 2.04 1.23 166.93

overall improvement in the solving process, as we can see a reduction in the overall time and,
especially, in the number of cutting planes needed to reach optimality.

4.3.2 Larger instances

Larger instances of size 500 to 1000 can take several seconds to solve in concorde, leaving
more room for improvement compared to the smaller instances tested in the previous section.
However, pre-processing instances still does not seem to have much of an effect on the solve
time of concorde.

Figures 4.1 and 4.2 show the evolution of the best upper and lower bounds over time for
the complete and pre-processed versions of instances d493 and rat575. We notice that con-
corde quickly finds better upper bounds on the pre-processed instances, but, on the other
hand, the lower bounds are consistently worse for the pre-processed instances, which unfor-
tunately can lead to a slower convergence of the bounds and longer runtime. The behavior
of the lower bound seems consistent with the results for the smaller instances, that showed
that, on average, pre-processed instances took longer for branching.

It appears our pre-processing method is not competitive with concorde for instances of
any size, which is not entirely surprising considering how well optimized this solver is for the
TSP. Even if there is a slight improvement on some instances, it does not compensate the
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required time for pre-processing.

Figure 4.1 Evolution of bounds over
time(s) on complete and sparse ver-
sions of d493 in concorde

Figure 4.2 Evolution of bounds over
time (s) on complete and sparse ver-
sions of rat575 in concorde

Hougardy and Schroeder [32] present their own method of removing edges from TSP in-
stances, which has been shown to yield improvement on concorde for extremely large
instances. Unfortunately, our pre-processing method does not scale well for such large in-
stances, especially the computation of SDs for the 1-tree.

4.3.3 Effect of k%

Table 4.11 reports the performance of concorde on 2 instances, rd400 and d493, pre-
processed with varying values of parameter k. The results reported are, again, averages over
10 executions.

We can see, from this table, that the solve time, the number of branch-and-bound nodes and
the number of cuts are all rather consistent across all values of k, with only some negligible
variance. These results seem to confirm our previous observations, namely that our pre-
processing algorithm has little bearing on the performance of concorde, at least for the
range of instance size that was observed.
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Table 4.11 Performance of concorde depending on the k% of edges kept in pre-processing

rd400 d493
k time (s) # bb nodes # cuts time (s) # bb nodes # cuts
25 18.10 9.40 763.60 60.34 7.40 1927.50
30 18.10 8.50 736.40 55.63 8.60 1991.80
35 19.07 9.80 723.90 59.23 7.80 1840.40
40 21.80 11.80 806.00 54.31 8.00 1856.00
45 20.01 10.00 753.90 60.41 7.40 1854.60
50 19.50 10.00 763.50 55.53 7.80 1867.60
55 18.20 9.20 756.10 55.62 7.40 1778.00
60 18.05 10.80 710.20 57.22 8.00 1805.20
65 18.61 10.20 706.80 64.85 8.40 1969.50
70 18.23 9.80 759.00 59.76 7.60 2001.20
75 17.69 9.20 750.00 58.36 6.80 1890.00

4.4 Mixed-Integer Model

In this section, we evaluate the performance of two MIP models for the TSP, implemented
in Gurobi. These models are implementations of the two formulations presented in Section
2.1.1.

4.4.1 DFJ formulation

The first Gurobi model is an implementation of the DFJ formulation of the TSP. The ex-
ponential number of sub-tour elimination constraints are implemented as lazy constraints,
meaning they are added progressively as they are violated.

Table 4.12 Performance of the DFJ model on Gurobi to solve symmetric instances of size 150
to 400, with a time limit of 7200 seconds

original graph graph with 25% edges
instance time (s) # nodes # cutting planes pre-processing (s) time (s) # nodes # cutting planes

ch150 21.87 2541 77 1.94 7.47 2539 72
kroA150 53.91 8556 116 2.04 9.94 6844 82
kroB150 60.56 16548 120 2.05 21.37 25718 216
rat195 168.54 25595 236 2.85 27.49 10049 142
d198 344.40 57912 246 3.41 51.90 51827 303

kroA200 345.48 57759 0 3.03 122.84 162874 399
kroB200 86.10 8799 109 3.39 18.70 9104 165

ts225 x x x 4.83 x x x
pr226 x x x 4.14 319.97 287358 582
pr264 243.57 37947 182 9.81 386.89 87383 329
a280 20.75 1109 61 6.07 6.72 776 52
pr299 312.51 32056 102 6.74 417.49 218922 332
lin318 605.64 71831 554 8.51 302.45 71910 558
rd400 428.31 20063 91 12.47 462.53 156359 459

Table 4.12 compares the performance of this DFJ model on the original complete instance
and on a graph that we pre-processed keeping 25% of edges per vertex. Unsurprisingly, it
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performs much worse than concorde on these instances, though it greatly outshines a CP
model. Overall, we see considerable improvement in most instances, when pre-processing the
graph. It is interesting to note that, though the pre-processed instances sometimes requires
more branch-and-bound nodes to reach optimality, there is still a time gain since each sim-
plex iteration is much quicker.

Although some instances reached optimality quicker when they were complete, Figures 4.3
and 4.4 show that the sparse instances find good bounds much quicker, which can be useful
in cases where we are constrained to strict time limits and have to settle for approximate
solutions. We can see that it is especially beneficial for the upper bound, corresponding
to the best found solution, as the pre-processed instances find a first upper bound several
hundreds of seconds before the complete instance.

Figure 4.3 Evolution of bounds over
time (s) on complete and sparse ver-
sions of rd400 for the DFJ model

Figure 4.4 Evolution of bounds over
time (s) on complete and sparse ver-
sions of rat575 for the DFJ model

4.4.2 Effect of k%

In this section, we analyze how the value of parameter k affects the performance of the DFJ
model in Gurobi. Table 4.13 reports, for three instances, the time, the number of branch-
and-bound nodes and number of cuts required to reach optimality.

Looking at this table, we see that the behavior of the model can vary greatly from instance
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to instance and, as k increases, there is no consistent increase in the solve time, the number
of nodes or the number of cuts. For kroA200, the average number of nodes and cuts decrease
when k > 50, but the opposite is true for a280. On the other hand, the number of nodes and
cuts is pretty consistent for all values of k, for lin318.

However, we do see a trend in the correlation between the time and the number of nodes.
It can be noted that an increase in k leads to an increase in time per branch-and-bound
node and this trend can be observed in each of these instances. For kroA200, solving takes
just under 100 seconds when k = 25, though it explores over 100 000 nodes, whereas when
k > 50, it consistently takes over 100 seconds despite exploring much fewer nodes. For a280,
both k = 30 and k = 70 yield a solve time of around 12 seconds, despite the case of k = 30
having over twice as many branch-and-bound nodes. For lin318, the k = 75 case is the second
slowest case in terms of time, despite having the second lowest number of branch-and-bound
nodes.

We can conclude from these results that removing edges aggressively will, in a majority of
cases, be the most beneficial method, since it is difficult to predict the size of the branch-
and-bound search tree and having the fewest possible edges leads to a better ratio of time
over tree size.

Table 4.13 Performance of DFJ model on Gurobi on three instances depending on the k% of
edges kept in pre-processing

kroA200 a280 lin318
k time (s) # bb nodes # cuts time (s) # bb nodes # cuts time (s) # bb nodes # cuts
25 95.60 110324 251 8.51 776 54 302.45 71910 558
30 128.78 115726 282 11.50 1799 43 337.52 66306 494
35 199.13 193125 281 8.56 883 56 405.70 74097 561
40 118.54 100664 37 8.16 884 60 409.07 83502 566
45 231.04 221424 226 7.84 745 0 389.46 73474 497
50 100.44 56750 50 18.08 1048 64 421.52 79142 575
55 165.30 84032 0 19.58 2461 62 425.61 68067 462
60 191.26 82080 60 58.73 8088 149 526.84 86069 548
65 145.11 68862 54 34.08 4461 102 452.48 67818 438
70 135.81 64828 32 12.10 760 39 351.76 44350 351
75 166.92 66315 40 110.94 14849 223 490.07 57305 425

4.4.3 MTZ formulation

The second model implemented in Gurobi is a direct implementation of the MTZ formulation,
with n − 1 extra variables and a quadratic number of sub-tour elimination constraints. As
mentioned in Section 2.1.1, this formulation, unlike DFJ, is for the ATSP. It can also be used
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to solve the STSP instances we worked with, but we have to slightly adapt how we apply
the pre-processing to the model. The solution is rather intuitive: removing edge (i, j) from
a STSP instance is equivalent to removing arcs i → j and j → i from its equivalent ATSP
instance.

Table 4.14 Performance of the MTZ model on Gurobi to solve instances of size 48 to 100,
with a time limit of 7200 seconds

original graph graph with 25% edges
instance time (s) # nodes # cuts pre-processing (s) time (s) # nodes # cuts

gr48 37.77 14033 151 0.59 36.47 24871 342
hk48 7.78 4956 126 0.59 12.95 11676 102

berlin52 1.52 397 113 0.73 1.45 604 57
brazil58 276.05 93543 413 0.67 105.27 83663 527

st70 672.10 155387 455 0.99 374.13 165210 568
pr76 1567.91 181319 952 0.93 447.00 154772 759

kroA100 4010.80 468474 1017 1.52 583.88 138651 489
kroB100 x x x 1.26 x x x
kroC100 x x x 1.37 x x x
kroD100 x x x 1.53 x x x
kroE100 1527.41 151098 660 1.28 676.49 92565 1176

The MTZ implementation in Gurobi is a lot less efficient than the DFJ model evaluated in
the previous section. As we can see from Table 4.14, a majority of instances of size 100 could
not be solved to optimality within 2 hours.

On the smallest instances, pre-processing the instances did not yield much improvement in
terms of time, but we can see again that, with fewer edges, less time is required per branch-
and-bound nodes visited. On the other hand, pre-processing was very beneficial for the larger
instances in this set. The solving time for these instances was reduced to at least 55% and
at best 15% (for instance kroA100 ) of the original solve time.

Figures 4.5 and 4.6 serve to illustrate a point made in Section 4.4.1, which is that in case
optimality cannot be reached quickly, pre-processing graphs helps to find much better bounds
on the optimum in a limited amount of time. On the instance kroD100, after 2 hours of
runtime, the complete graph has a gap of approximately 14% between the upper and lower
bound, whereas the sparse graph reduces this gap to under 2%.
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Figure 4.5 Evolution of bounds over
time (s) on complete and sparse ver-
sions of kroC100 for the MTZ model

Figure 4.6 Evolution of bounds over
time (s) on complete and sparse ver-
sions of kroD100 for the MTZ model
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CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 Summary of Works

In this thesis we presented an efficient method removing undesirable edges from the input
graph of TSP instances. We explained how to combine the best edges, in terms of solution
density, from two different relaxations of the TSP to make this method as robust as possible,
while removing edges in a relatively aggressive manner.

We also propose faster alternatives to rank the solution densities of the minWeightAllDifferent
and minWeightSpanningTree constraints.

5.2 Limitations

The method presented in this thesis does have certain limitations and weaknesses, which we
will discuss now.

Firstly, there is no definitive method for choosing the number of edges to keep in the graph,
while guaranteeing that no edge of the optimal tour is removed. In other words, there is
no way of proving optimality for a given parameter k%. As a result of this limitation, it is
necessary to find this percentage empirically for every instance and although a large majority
of instances tested have proven to stay optimal with 25% of edges, some instances required
more, making it difficult to obtain results that are uniform while being as efficient as possible.

Secondly, the computation time of our method scales somewhat poorly when the size of in-
stances approaches 2000. This is due to the algorithm itself and the computation of SDs for
the SpanningTree constraint, which on top of scaling poorly can fail due to overflow when
instances become so large. Improving these 2 algorithms’ performance would be necessary
to see if this approach of removing edges can help concorde on very large instances that
require a lot of time to be solved.

Another limitation of our method in this context is that we could only use the SDs from
two constraints, AllDifferent and SpanningTree, in our pre-processing, since the Regular
constraint we implemented was not exploitable and no other prominent relaxation of the
TSP came to mind. Having more relaxations to choose from could have given us access to
more information regarding which edges can be safely removed from the input graph. There
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is a caveat to using more relaxations though, namely the computation time of the SDs for
the extra relaxations.

One major weakness of our method is that it does not help the state-of-the-art solver for the
pure TSP, concorde. This weakness appears two-fold. First of all, the time required to
pre-process large instances (size of multiple hundreds to the thousands) is much larger than
the time required for concorde to solve the complete instance. Second of all, disregarding
the time required for pre-processing, solving the sparse instance on concorde hardly ever
improves upon the initial solve time.

The reason it is difficult to improve on concorde with our pre-processing reduction is that,
on large symmetric Euclidian instances, concorde does not receive, on input, the full cost
matrix but only the Euclidian coordinates. The edges are priced in as they are needed, i.e.,
when they are “cheap”. In other words, it is likely that concorde never needs to price the
edges that we would remove in pre-processing and that would explain the lack of benefit
we observe. Another partial confirmation of this interpretation is that, in [32], the authors
report an improvement through edge elimination especially on instances in which the LP
relaxation is degenerate [43], i.e., instances in which a lot of edges need to be priced in.

5.3 Future Research

There is plenty of room for improvement in this field and future research is required to ex-
pand this method’s range of application.

Future works could potentially be done to compute some sort of "proof of optimality" for the
pre-processing, to deal with the first limitation mentioned in Section 5.2. Since the method
involves solution densities, it is a heuristic method and, thus, it would be impossible to
guarantee 100% that the optimal solution is preserved given the percentage of edges kept in
pre-processing. However, it may be possible to develop a probabilistic value, indicating the
likelihood of optimality being preserved after pre-processing.

Furthermore, our approach could be combined with other methods, to make it more robust or
exact. Discrepancy-based search [44] could be considered, for example, to make the approach
exact by considering an increasingly large percentage of edges, until reaching 100% or until
we can prove that the optimal solution was found.

In my opinion, the best way to expand upon this research in the future is to generalize the
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method to other types of routing problems. There are multiple motivations for this.

For starters, I believe that our pre-processing method can be adapted somewhat intuitively
to many other routing problems. After all, these problems certainly share some relaxations
and possess similar structures.

Secondly, concorde can only solve pure TSPs and therefore TSP variants and other routing
problems, whose exact solvers may not be as efficient as concorde is for the TSP, could
further benefit from the pre-processing.

Additionally, an interesting aspect of adapting this method to more complex routing prob-
lems is that their additional constraints could yield new relaxations and new constraints to
compute SDs for. For instance, the n-path may be more exploitable for the Vehicle Rout-
ing Problem with Time Windows or the Capacitated Vehicle Routing Problem. These new
relaxations could bring more information on the problem’s structure, which opens up more
options when selecting edges for pre-processing and could allow for a more robust method.
We should address a concern mentioned in Section 5.2, regarding the additional computa-
tion time of SDs when working with more relaxations. Given more relaxations, it is possible
for the pre-processing time not to increase, if we simply choose not to use every relaxation
available. We could study each relaxation or constraint, and keep only those that provide
the most useful information for pre-processing or, if we are very worried about computation
time, keep those with the fastest method of computing SDs.
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