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Translation is a key step in the synthesis of proteins. Accordingly, cells have evolved an intricate
array of control mechanisms to regulate this process. By constructing a multi-component mathe-
matical framework we uncover how translation may be controlled via interacting feedback loops.
Our results reveal that this interplay gives rise to a remarkable range of protein synthesis dynamics,
including oscillations, step-change and bistability. This suggests that cells may have recourse to a
much richer set of control mechanisms than was previously understood.
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Control of gene expression refers to the processes by
which the production of proteins is regulated by the cell.
This is at the heart of the functioning of all living or-
ganisms and it allows cells to adapt to their environ-
ment. Control of gene expression can occur at multiple
levels [1, 2]. In this paper we focus on translational con-
trol.

Translation is the process by which a protein is made
from a messenger RNA (mRNA) molecule. An mRNA
consists of a sequence of codons, each coding for a certain
amino acid. Translation is performed by molecular ma-
chines called ribosomes, which bind to the beginning of
the mRNA (5’ UTR region), scan it for the start codon
and hop from one codon to the next, thereby producing
the chain of amino acids which form the protein. When
the ribosome reaches the stop codon, the protein is com-
plete, is released into the cytoplasm and the ribosome
binds off the mRNA.

Recent years have witnessed an explosion of informa-
tion about how translational mechanisms regulate pro-
tein levels [3]. Prominent examples include translational
control during cell stress [4], switching in the mechanism
responsible for translation initiation during the cell cy-
cle [5], and translational repression by microRNAs [6–9].
One of the main advantages of translational control is
that allows for a rapid cell response [10].

In this paper, we focus on one important case of
translational control that has remained unexplored
within this research framework, namely the interplay
between positive and negative regulatory mechanisms.

∗ f.a.davidson@dundee.ac.uk

Proteins that bind to the 5’UTR region of mRNAs and
hinder translation play an important role in regulation
of gene expression [18–20]. Examples include proteins
involved in neural differentiation and plasticity [21],
cognitive problems [22], cell cycle and differentiation of
mammalian cells [23, 24] and DNA repair [25]. On the
other hand, virtually all mRNAs are subject to positive
feedback via ribosome recycling due to their pseudo-
circular structure [26, 27]. A particularly pertinent
example is the Poly(A) binding protein (PABP) [28–32].
PABP binds to the 3’ end (poly(A) tail) of all mRNAs
and strongly affects both translational efficiency and
stability of all transcripts. Moreover, PABPs interact
with the initiation factors bound to the cap of the
mRNA, facilitating the circularisation of the mRNA
and consequent recycling of ribosomes [26, 33]. Finally,
PABPs protect the mRNA from degradation [34].
Therefore, PABPs exert control on protein synthesis via
a two-fold mechanism, and as consequence, regulation
of PABP availability provides a global mode of transla-
tional regulation.

Here we show that the interplay between negative
translational feedback and ribosome recycling gives rise
to a novel range of dynamical behaviour in protein syn-
thesis, including oscillations, step-change and bistabil-
ity. The existence of at least one negative and one pos-
itive feedback loop has been proved to be a necessary
condition for oscillatory behaviour and multistability, re-
spectively [11–15], but examples of this dynamical be-
haviour have been studied mainly in transcriptional regu-
lation [16] or coupling between transcription and transla-
tion [17]. To our knowledge, the generation of oscillatory
and bistable behaviour by purely translational regulatory
mechanisms has not been studied before.

Modelling framework.–Our mathematical framework
is a multi-component model that accounts for transla-
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FIG. 1. Schematic of translation model with ribosome re-
cycling and auto-negative feedback. Competitive recycling
(dashed line), non-competitive recycling (solid line). Each
site can be occupied by no more than one particle, so that at
any time t the state at site i given by Si(t) is either Si(t) = 0
or Si(t) = 1, with i = 1, ..., L, where L is the lattice length.
Particles bind to the first site of the lattice at rate α̃, then
hop from one site to the next at rate γ (usually rescaled to
one and done so here) and finally leave the lattice from the
last site at rate β, marking the point where the associated
protein synthesis is completed. See text for further details.

tion, protein complex formation and binding of protein
complexes and ribosomes at the 5’UTR (see Fig. 1). At
its core is a stochastic model of one-dimensional trans-
port extensively studied in non-equilibrium statistical
physics - the Totally Asymmetric Simple Exclusion Pro-
cess (TASEP) [35]. Here we augment this standard model
with processes that explicitly account for protein synthe-
sis and associated positive and negative feedbacks. This
allows us to consider both steady state and dynamic be-
haviours. Our model predicts the average number of par-
ticles per site ρ and the consequent production of pro-
teins. Ribosomes are assumed to attach at a rate α̃ and
move along the mRNA at a rate γ. On reaching the fi-
nal site, ribosomes leave with rate β and are recycled at
rate k. At this stage a protein is produced. The pro-
tein number N is controlled by a balance of synthesis
and degradation with rate constant r. Critical to the
model is that both proteins and ribosomes feed back to
affect the loading rate α̃ (see Fig. 1). We consider lattices
representing realistic mRNA lengths of 500 codons and
simulation times that are of the order of the half-life of
typical prokaryotic mRNAs (see Supp. Mat.).

Translation. Ribosomes are represented by particles
that hop stochastically along the sites of a one di-
mensional lattice corresponding to the codons of the
mRNA [36]. Note that in the standard case (setting
recycling and feedback to zero here) steady state traffic
on the lattice can be classified into three main phases:
low density (LD) (α < β, α < 1/2), high density (HD)
(β < α, β < 1/2) and the maximal current (MC)
(α, β > 1/2). Each of these phases has an associated
average density ρ and current J (average flux of par-
ticles), which in the limit of an infinitely long lattice
are given by: ρLD = α, ρHD = 1 − β, ρMC = 1/2

and Jp = ρp (1− ρp), p ∈ {LD,HD,MC} [37, 38].
Corresponding expressions for the modified TASEP
considered here will be presented below.

Translational negative feedback. A protein can bind
(often in multimeric form) to its own mRNA, thereby
blocking the loading of ribosomes. Since protein bind-
ing/unbinding to the mRNA is generally much faster
than ribosome loading [39], the probability of the start
codon being free for ribosome loading can be described
by a Hill-function f(N) = 1/ (1 + (N/θ)n), where N
is the protein copy number, θ measures the protein
level that induces half maximal ribosome binding rate
and n measures cooperativity of the protein multimer
(see Supp. Mat.). Thus, the intrinsic initiation rate is
modified from α (the standard constant rate) to αf(N).

Translational positive feedback. The two ends of the
mRNA can interact leading to a pseudo-circular struc-
ture [40], which together with the recycling complex
Rli1p [41] promote terminating ribosomes to start a
new round of translation on the same mRNA [42].
Following [43], a ribosome on site i = L is assumed to
either detach at rate β and enter the reservoir of free
ribosomes or move directly onto site i = 1 at a recycling
rate k (if S1(t) = 0) to re-initiate the translation process.

Protein degradation. Once synthesised, proteins enter
the intra-cellular pool, where they are subjected to
degradation. This can be a complex process [44, 45].
However, as a detailed description is not critical to the
work presented, we adopt the widely used approach of
modelling removal as a Poisson process with resultant
removal rate rN .

Finally, note that if the processes detail above are in
steady state, then J = rN and hence N ≡ N∗ = J/r
and hence we can write f = 1/ (1 + (4I J)

n
), where

we have introduced the reciprocal factor I := 1/(4θr)
that measures feedback intensity (the factor of 4 is for
algebraic convenience).

Models for interacting feedback loops. Experimental re-
sults suggest that recycled ribosomes are channelled
downstream of the normal de novo initiation site and
thus may evade the blocking effect of the protein com-
plex [46]. This is the case discussed here and referred to
as non-competitive recycling. However, the relative posi-
tion of the protein complex binding site and the recycled
ribosome initiation site is not clear. Hence, an alternative
is that both recycled ribosomes and de novo initiation are
blocked by the protein complex, (competitive recycling)
(see Fig. 1). We comment on this alternative case below.

In the non-competitive recycling case a system of ordi-
nary differential equations that determine the dynamics



3

of the average occupancies ρi of the lattice sites is:

dρ1
dt

= αf(N)(1− ρ1)︸ ︷︷ ︸
de novo

+ kρL(1− ρ1)︸ ︷︷ ︸
recycled

−ρ1(1− ρ2),

(1)

dρi
dt

= ρi−1(1− ρi)− ρi(1− ρi+1), i = 2, . . . , L− 1,

dρL
dt

= ρL−1(1− ρL)− βρL − k(1− ρ1)ρL︸ ︷︷ ︸
recycled

.

By direct comparison with the corresponding system for
the standard TASEP, effective entry and exit rates can
be defined as follows

αeff := αf(N) + kρL, βeff := β + k(1− ρ1). (2)

Effective rates for the competitive recycling case can
be defined equivalently (see Supp. Mat.). However,
the behaviour of these two cases is similar in almost
all parameter regimes and we present only the results
for the non-competitive case highlighting where any
differences in the two cases arise.

Steady-state analysis of protein production and
ribosome density.– Setting the right hand side of Sys-
tem 1 to zero and applying a mean-field approach leads
to conditions that partition steady states of the system
into phases aligned with those for the standard case (LD,
HD and MC). These conditions are defined by direct sub-
stitution of α and β with αeff and βeff , respectively, in
the standard conditions stated above. In turn and after
some lengthy analysis, expressions for these phases and
their boundaries in terms of the system parameter are as
follows - note these definitions collapse to the standard
cases on setting k = I = 0 (see Supp. Mat.).
Maximal Current Phase

α

2α+ k (1 + In)
6

β 6
αk

1 + In − 2α
α <

1

2
(1 + In) ,

β otherwise.
(3)

Within this region,

αeff =
α

1 + In
+

k

2

(
β +

√
β

(
β +

k

α
(1 + In)

)) and

βeff =
1

2

(
β +

√
β

(
β +

k

α
(1 + In)

))
.

Low Density Phase

α <


β

(
1 +

(
4I(β + k)(1− β)

(1 + k)2

)n)
2β + k < 1,

β

2β + k
(1 + In) otherwise.

(4)

Within this region, there exists a unique, positive expres-
sion for αeff that yields unique, positive expressions for
βeff and N∗.
High Density Phase

α >


β

(
1 +

(
4I(β + k)(1− β)

(1 + k)2

)n)
2β + k < 1,

kβ

1− 2β
(1 + In) otherwise.

(5)
Within this region, there exist either one, two or three
positive solutions, βeff , that yield positive expressions
for αeff and N∗.

For k, I > 0 and for a large range of parame-
ter space, long run Monte-Carlo simulations of the
modified TASEP reveal steady state phases that are
well-characterised by Eqs. (3)-(5) (see Figs. S1 and S2).
However, a deeper analysis reveals that the complex
interplay of positive and negative feedback can generate
distinct and novel dynamical behaviour.

Negative feedback and ribosome recycling induce
oscillations in cellular protein level.– Monte-Carlo
simulations reveal periodic oscillations in the number of
proteins N(t) within the initiation limited regime (LD
phase). The stochastic nature of the individual simu-
lations makes it difficult to systematically differentiate
periodic oscillations from random fluctuations by visual
inspection. However, a power spectrum analysis provides
a clear demarcation: a tight, single-peaked spectrum is
associated with periodic oscillations (Figs. 2A,C) whereas
a broad band response is obtained in the case of stochas-
tic fluctuations (Figs. 2B,D).

The time needed for a ribosome to transit the mRNA
induces a delay between initiation and completion of pro-
tein synthesis. This generates a delay in the action of the
negative feedback - a mechanism known to generate oscil-
latory behaviour [47]. A simplified model for the protein
copy number N(t) in the LD regime is:

dN(t)

dt
= J(t)− rN(t)

= αeff(t− T )
(
1− αeff(t− T )

)
− rN(t), (6)

where T denotes the translational delay time [48]. Ap-
pealing to Eqs. 2 and setting ρL = J(t)/βeff , it follows
that

αeff(t) =
α(β + k)

αk + β
(

1 +
(
4IrN(t)

)n) . (7)

Substituting Eq. 7 into Eq. 6 results in a delay differential
equation for N . The translational delay can be estimated
as T = L/(1 − ρ∗), where ρ∗ := αeff (N∗). This simpli-
fied model reproduces the amplitude and period of the
stochastic simulations (cf. Fig. 2 A and Fig. S3D). It
can be shown that on increasing α the steady state of
(6) can be driven unstable via a Hopf bifurcation with
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FIG. 2. Simulation and power spectrum of protein level in
low density phase. (A,B) Protein number as a function of
time. Averages over 5,000 realizations of stochastic simula-
tions (black lines), 20 example realizations (grey lines), single
example trajectory (green line). Red dashed lines are mean
field N∗ as computed using the steady state theory. Typ-
ical simulation (A) and the corresponding power spectrum
(C) from the region where oscillation are predicted to exist
(α = 0.8; note αeff = 0.17 < 0.5 therefore corresponding to
the system being in LD phase). Typical simulation (B) and
the corresponding power spectrum (D) from the region where
oscillation are not predicted to occur (α = 0.05). In all cases
β = 0.5, k = 0.2, I = 5/2, r = 0.002, n = 5, L = 500. 1
time unit = 1/22 secs.

the Hopf locus given by

B cos(
√
B2 − r2 T ) + r = 0, (8)

where B is a function of the system parameters (see Supp.
Mat.). This locus forms a curve in the α − β-plane (see
Fig. 3). After some algebra, it can be shown that nec-
essary conditions for the existence of the Hopf locus are
n > 1 and I > F (α, β, k, n) for some positive function
F (see Supp. Mat.). The condition n > 1 indicates that
cooperativity in protein binding is necessary for the on-
set of oscillations [49]. The second condition indicates
that the onset of oscillations occurs when the feedback
intensity is sufficiently strong.

As one would intuitively expect, increasing feedback
intensity induces onset of oscillations at lower values of
the intrinsic loading rate α (see Fig. 3A), Interestingly,
the Hopf locus also shifts left on increase the recycling
rate (see Fig. 3B). Hence, counterintuitively, ribosome
recycling - a positive feedback mechanism - also enhances
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FIG. 3. The Hopf locus and the effect of varying recycling and
feedback. Hopf bifurcation locus in the α−β plane computed
using Eq. (8). The effect of varying feedback intensity (A)
and recycling (B) is shown. Black arrows indicate direction
of increasing effect. (A) I = 25/14 (red), I = 25/12 (green),
I = 25/10 (blue) with k = 0.2 (B) k = 0.2 (red), k = 0.4
(green), k = 0.6 (blue) with I = 25/10. L = 500 sites, r =
0.002, n = 5.

the onset of oscillations [50].

Interplay between recycling and negative feed-
back induces bistability in protein production. –In
the MC and LD phases, the current J is uniquely defined
for any given parameter set. On the contrary, in the HD
phase J can be multiply defined: after some algebra it
can be shown that βeff is the solution to the following
2n+ 1 degree equation (see Supp. Mat.):

4nkInββn
eff (1− βeff )

n+1−(kβ+α)βeff +β(α+k) = 0.
(9)

For k = 0, Eq. (9) has the unique solution βeff = β.
For I = 0, βeff is uniquely defined by βeff = β(α +
k)/(kβ + α) [43]. However, when both k, I > 0, Eq. (9)
can have three admissible solutions, depending on the
value of α. Thus, for suitably chosen parameters, there
exists an interval of values of α for which three steady
state values of N∗ = J/r co-exist. Figure 4A shows N∗

as function of α, so that on increasing α from zero to
one, the model transits from the LD to the HD phase (at
α ≈ 0.5).

With values of α selected from the co-existence inter-
val shown in Fig. 4A, simulations reveal that the num-
ber of proteins remains centred on high or low states for
a time scale orders of magnitude larger than stochastic
fluctuations (4B). Rapid switching events between the
favoured state are accompanied by a brief hiatus at an
intermediate state. The mean locations of these favoured
and intermediate states are well-approximated by the an-
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FIG. 4. (A) Protein number N∗ as a function of the initiation
rate α as predicted by the steady state theory. N∗ is first
monotonically increasing (LD phase) then decreasing (HD
phase) [43]. N∗ then passes through two fold bifurcations,
leading first into, and then out of the interval of co-existent
states - with the upper and lower branches (solid black lines)
separated by an intermediate state indicated (dashed grey
line). (B) Monte-Carlo simulation of protein number a func-
tion of time (solid black line) with the mean field solutions
N∗ (red dashed lines) from A (α = 0.77). In both cases
β = 0.015, k = 0.8, I = 6, r = 0.002, n = 2, L = 500. 1 time
unit = 1/22 secs.

alytic expressions for the steady states obtained from
Eq. 9 (Fig. 4A). Frequency histograms reveal the effect
of varying α across the bistable region and together with
dwell-time histograms, indicate this to be a memory-less
stochastic switching process (see Figs. S5 and S6)

Fixing k (resp. I) and increasing I (resp. k) increases
the interval of values of α for which the fold exists
(fold width - see Fig. S7). Interestingly, the location
of the fold is also an increasing function of I and k.
Indeed, somewhat counter-intuitively, for a fixed value
of α, increasing the intensity of the negative feedback
I can force the system from a low to high N∗ state.
To understand this recall that within the HD regime,
any change of parameters leading to a decrease in the
ribosome density leads to an increase in the ribosomal
current: increasing I, decreases αeff , thereby decreasing
the density of ribosomes on the mRNA. Finally, we note
that bimodality in protein production rate is a result
of a careful balance between the negative and positive
feedback loops and tuning one or the other can drive
the system both into and out of a bimodal response (see
Fig. S7). Indeed, in the case of competitive recycling no
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FIG. 5. Step-change in steady state protein levels. (A) Signal-
response curve for protein number N∗ as a function of the
initiation rate α (black curves). Inadmissible solutions for (9)
red dotted curve. The LD-HD boundary vertical grey dashed
line. (B) Time series of the number of proteins: α = 0.28
then switched to α = 0.3 at time t = 4.5 × 106. In each case
β = 0.015, k = 0.263, I = 6, r = 0.002, n = 2, L = 500. 1
time unit = 1/22 secs.

bistability occurs. Following similar calculations, it can
be shown that the equation corresponding to Eq. 9 has
a unique solution. It appears that feedback dominates
and locks the system into a unique steady state.

Feedback interplay can induce step-changes in
protein production–If k is fixed to ensure bistability,
a critical value of I exists at which the right bound-
ary of the bistable region coincides precisely with the
LD-HD boundary. In this case, as the initiation rate α
passes through the LD-HD boundary, a discontinuity in
the number of proteins occurs (Fig. 5A). [Qualitatively
similar behaviour is obtained on keeping I fixed and vary-
ing k.] This step-change in the number of proteins can
be large, suggesting that small changes in the ribosome
initiation rate α can result in a significant shift in pro-
tein levels. Simulations confirm this theoretical predic-
tion. On increasing α dynamically during a simulation, a
step change (around 75% reduction) was clearly induced
on transept of the LD/HD critical value (Fig. 5B). This
cliff-edge response is another unique feature of resulting
from the interplay between feedback and recycling.

Conclusions.–Our model shows the rich dynamical
behaviour caused by the interplay of negative and
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positive feedback loops in translation, and it provides
a general mathematical framework to analyse other
kinds of gene expression regulation, such as regulation
exerted by miRNAs [51]. It suggests that this interplay
could provide cells with a versatile mechanism to adapt
their protein levels according to the environment. The
centrally important protein PABP is subject to ribosome
recycling and is known to exhibit translational negative
feedback. Interestingly, PABP has also been implicated

in circadian oscillations [52]. Finally, disturbances of
poly(A) tail length have been linked to a number of
physiological and pathological processes. Therefore,
a better understanding of the interplay of ribosome
recycling and translational negative feedback has far
reaching consequences.
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