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ABSTRACT 
 

MOLECULAR DIET ANALYSES OF NORTH AMERICAN BATS 
 

by  
 

Devon R. O’Rourke  
 

University of New Hampshire  
 

A food web is a model of the feeding relationships among organisms in an environment. 

The fidelity of this model is limited principally by the ability to detect these interactions. 

Researchers who study cryptic interactions such as nocturnal insectivory in bats 

typically rely on fecal samples to identify trophic connections. Historically these diet 

analyses were limited to morphological inspection of arthropod fragments, however 

modern metabarcoding techniques have improved the richness and specificity of 

consumed prey: rather than bats foraging for a few arthropod orders, we observe 

hundreds of species among guano samples. Animal metabarcoding is not without bias; 

nevertheless, a decade of improvements upon such biases have focused largely on 

molecular portions while bioinformatic considerations remain unresolved. When 

researchers use distinct software to perform their analyses—tools that have not yet 

been compared in animal metabarcoding studies—it is unclear if distinct perspectives 

between two experiments represent meaningful biological differences, or if they arise 

because of the alternative programs and parameters deployed. We investigated three 

fundamental bioinformatic tasks that impact a metabarcoding experiment: sequence 

processing, database construction, and classification (Chapter I). These comparisons 



 xiv 

offer guidance regarding which steps are most sensitive to parameterization and are 

therefore in need of optimizing for individual experiments, as well as highlight areas that 

are in need of critical improvement. We applied these bioinformatic lessons to a 

molecular diet analysis of Indiana bats, the first ever for this endangered species 

(Chapter II). While management decisions currently focus on protecting roosting habitat, 

our molecular analyses provide evidence that site-specific data is needed to more 

effectively inform conservation practices. For example, while these bats forage a broad 

swath of the arthropod community, the molecular data suggests they rely on particular 

aquatic habitats that are not currently protected. Finally, we investigated the diets of 

New Hampshire bats by collaborating with citizen scientist volunteers throughout the 

state to perform an extensive sampling regime in that spanned 20 locations over 2015 

and 2016, and sequenced more than 900 guano samples (Chapter III). Molecular 

analysis of these data suggested these bats are foraging hundreds of arthropod 

species, including some turf and forest pests, demonstrating that our local bats provide 

ecosystem services. Individual diets varied across season and site, providing evidence 

of highly flexible and local foraging behaviors.   
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INTRODUCTION 

Food webs are essential to understanding how resources are partitioned within a 

community and how energy flows through an ecosystem. Identifying the diets of species 

within an environment provides the foundation for constructing food webs. In some 

cases, trophic interactions are readily observable—a hummingbird feeds from a 

honeysuckle flower or an osprey captures a trout. In other systems, relationships are 

often more challenging to document because such interactions occur in environments 

that are difficult to directly observe; nocturnal animals, organisms in aquatic habitats, 

and consumers of phenotypically similar prey often require alternative strategies to 

describe who is eating whom. Historically, morphological analyses of fecal or gut 

materials have been widely applied to investigate such cryptic interactions, and include 

diets of herbivores 1, birds 2, bats 3, and marine mammals 4. Notably, these 

morphological analyses offer more than basic lists of gut contents. For instance, diets 

can elucidate the dynamics of native and exotic seed dispersal 5; or reveal how 

sympatric species allocate resources among wolves 6, birds 7–9, or bats 10–12. However, 

morphological techniques are often limited in several ways: teasing apart hundreds or 

thousands of fragments from a single sample is time-intensive; taxonomic resolution of 

diet contents is rarely species- (or genus-, or family-) specific; less digestible prey are 

more likely to be identified than soft-bodied organisms 13–15. Over the past decade, 

researchers have increasingly relied on several alternative techniques in an attempt to 
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overcome these shortcomings, with molecular metabarcoding increasingly adopted as 

the foremost method to describe previously intractable food webs 13,16–18. 

 

Modern molecular metabarcoding analyses of animal diets are conducted by extracting 

DNA from a sample, amplifying a particular marker gene shared among the group of 

taxa of interest, sequencing these gene fragments using a high throughput instrument, 

and assigning taxonomic identities to the observed sequence variants using a reference 

library 19–21. These molecular techniques are applied across the globe: from diet 

partitioning among African herbivores 22 and Jamaican frugivorous bats 23, to trophic 

interactions in the arctic 24 or Texas deserts 25, the high-speed, low-cost, and improved 

taxonomic resolution offered through metabarcoding has illuminated previously 

undocumented species relationships (see also: Table 1 of Deagle et al. 26). However, 

animal metabarcoding is not without complications 15,19. DNA from fecal material is 

typically highly fragmented 27 thus relatively short mitochondrial gene fragments—often 

Cytochrome Oxidase I (COI)—are targeted for amplification owing to the higher copy 

number of mitochondrial to nuclear genomes in a sample. While small mtDNA targets 

help capture as large a fraction of the available sequence diversity in a sample as 

possible, amplifying short fragments reduces the ability to distinguish among highly 

homologous taxa. In fact, one of the foremost resources for all COI datasets, the 

Barcode of Life Database (BOLD) 28, generates operational taxonomic units called 

Barcode Index Numbers (BINs) that frequently contain multiple species within a single 

group, with reference sequences for each BIN (derived from Sanger sequencing) 

typically spanning three times the length of a typical COI amplicon (derived from a high 
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throughput sequencer). Thus, species-level resolution depends on the nature of the 

expected phylogenetic diversity of the diet components, and few comprehensive 

analyses of interspecies variation across broad taxonomic groups exist for COI (though 

see Sun et al. 29 for one such example in mollusks, and Pentinsaari et al. 30 for select 

arthropods). Additionally, selective amplification of particular taxa is a primary concern 

for dietary analyses of generalist species such as insectivorous bats and birds. Both in 

silico 31 and empirical tests 32 have suggested that primers used in some earlier COI 

metabarcoding experiments 33,34 failed to characterize the available arthropod diversity 

among samples. Nevertheless, recent modifications of COI amplification protocols 

through blocking oligos 35, mixed primer sets 36, and alternative primer design 32 

represent a few examples of changes that improve the specificity and breadth of the 

diversity captured in molecular diet experiments. Despite these challenges, molecular 

metabarcoding remains an invaluable tool to investigate species interactions and 

construct food webs. 

 

Technical reviews of animal metabarcoding procedures have investigated the myriad 

molecular decisions a researcher faces when conducting an experiment 16,17,19,20,37: 

Which collection and storage practices are optimal? What is the best way to extract 

DNA from the sample? What primers and PCR settings are necessary? Do I need to 

amplify replicate samples? Does the sequencing platform used matter? However, far 

less attention has been given to the equivalent variety of bioinformatic considerations, 

though discussions of how to incorporate sequence counts in animal metabarcoding 

studies are emerging 26. In Chapter 1, I explore three of the significant challenges in 
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animal metabarcoding that occur after sequence data has been generated: sequence 

processing, database construction, and classification. Denoising refers to any method 

by which representative sequences are identified and counted from raw sequence data, 

and this is the first step in any sequence processing pipeline. Historically, denoising 

involved clustering sequences into operational taxonomic units (OTUs), and while the 

effect of OTU clustering parameters has been investigated in COI recently 19, this 

method is itself already outdated. Instead, programs that identify amplicon sequence 

variants (ASVs) offer a more precise representation of the exact sequences observed in 

the dataset. In addition to denoising programs themselves, sequence processing also 

includes decisions on how to best filter the resulting representative sequences. I used a 

biological mock community to explore how diversity estimates would vary depending on 

combinations of these filtering strategies and sequence. In addition, I compared the 

programs that perform the classification process, as well as evaluated differences 

among the databases that provide the reference libraries for classification. Collectively 

these insights provide animal metabarcoding researchers one example with which to 

guide their investigations and highlight particular bioinformatic processes that are sorely 

in need of improvement (e.g., hybrid classifier development, database versioned 

releases). 

 

I applied these bioinformatic insights to investigate diets of endangered Indiana bats in 

at Cypress Creek National Wildlife Refuge (Pulaski County, Illinois USA) in Chapter 2. 

White-Nose Syndrome has been particularly devastating to Indiana bats in the 

Northeastern U.S. 38–40, and Illinois hibernacula represent just one of four states where 
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Indiana bat populations are primarily concentrated 39. Eight artificial roosts were erected 

on the refuge previously in 2014 in attempts to protect against continued loss of suitable 

roosting habitat due to expanding agricultural practices surrounding the reserve. 

Ongoing monitoring efforts suggested that these efforts are indeed working as intended, 

as multiple Indiana bat maternity colonies have been maintained at these sites since 

their construction 41,42. Nevertheless, the existing management plan extends limited 

protections to bat roosting areas and does not specify what foraging habitat to protect 

43. Thus I applied our molecular techniques to determine the diet contents of these bats 

to understand better the likely landscapes used for foraging. Earlier morphological 

analyses of Indiana bat diets suggested they are generalist insectivores with diets 

primarily consisting of beetles, flies, and moths 44–46, though compositional changes in 

these arthropod orders, as well as other insects like caddisflies, vary across study sites 

47. These analyses revealed that these bats are capable of consuming an even broader 

diet than previously recorded, and the majority of the prey consumed are aquatic 

invertebrates—an observation that contrasts with previous morphological observations 

of Indiana bat diets in forested communities just twenty miles east of the reserve 46. This 

work provides clear evidence that future management practices can benefit from 

incorporating molecular diet analyses in determining when and where bats are foraging 

and illustrates that habitat conservation needs to extend beyond roosting sites.  

 

Indiana bats are one of several North American species to have suffered significant 

population declines due to White-Nose Syndrome 48,49. While recent reports suggest 

some areas are experiencing stabilization in population size 50,51, federal guidelines 52–54 
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and population models 55,56 alike suggest that management efforts are critical to 

preventing future declines even among seemingly stable populations. Effective 

management requires a thorough understanding of the foraging habitats required by the 

species, yet few molecular bat diet studies among North American species affected by 

White-Nose Syndrome have been performed. Previous metabarcoding work 

documented spatial and temporal variation in Little brown 57,58 and Big brown 59 bat 

diets, but no such molecular work has been performed in New Hampshire—a state Little 

brown bat populations have declined between 70-100% (K. Ineson, pers. comm). 

Additionally, these initial analyses were restricted to order-level comparisons, which can 

vastly underestimate differences in diet composition. Furthermore, seasonal variation 

was defined across spring, summer, and fall; these temporal windows may be too broad 

to accurately capture many of the changes in prey consumed given the ephemeral life 

histories of many aerial arthropods. In Chapter 3, I conducted an experiment to evaluate 

changes in biweekly diet composition among 18 bat colonies throughout New 

Hampshire in 2015 and 2016. I analyzed over 900 passively collected guano samples 

and found these bats to have highly flexible diets that vary by season and site. In 

addition, I discovered that a few of the most frequently detected insects were turf and 

forest pests, and discuss the likely limits of bat guano as a pest surveillance method. 

Collectively, these data suggest that molecular analyses can be used to act as an initial 

screen for potential pests of concern, as well as provide a broad characterization of the 

species' diet. However, we find that any such depiction is suitable only at a local level—

particularly among instances when this information is used to inform conservation of 

foraging habitat. 
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This dissertation aims to evaluate the tools available to a molecular ecologist interested 

in animal metabarcoding and apply these insights to characterize bat diets. While the 

specific techniques investigated will undoubtedly be rapidly replaced, I hope that this 

work serves to illustrate the value in comparing as many programs and parameters as 

possible. What is not well documented in this dissertation is the importance of 

community partnerships. Without citizen science volunteers I would have been unable 

to amass the vast collection of guano used in Chapter 3, and without partnerships with 

USFWS managers, there would be no molecular study of Indiana bat diets. I began 

characterizing bat guano in 2016 using QIIME 1 60 but switched to another platform, 

AMPTK 61, because of an ability to form a personal connection with the software 

developer. That relationship was the first instance with which I came to understand how 

many assumptions can be made within a single program, and was the impetus of 

Chapter 1. Notably, all of the analyses presented herein ultimately were performed 

using QIIME 2 software 62, which offers not only open-access software and extensive 

documentation but a community forum consisting of many users and developers. 

Platforms like these represent the best way for the animal metabarcoding community to 

discuss, contribute, and evolve best practices that provide the most accurate 

characterization of their particular environment. 
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CHAPTER I 

 

 

A Total Crapshoot? Evaluating Bioinformatic Decisions in Animal Diet Metabarcoding 

Analyses 

 

 

ABSTRACT 

 

Metabarcoding studies provide a powerful method to estimate the diversity and 

abundance of organisms. While strategies exist for optimizing sample and sequence 

library preparation, best practices for bioinformatic processing of amplicon sequence 

data are lacking in animal diet studies. Here we evaluate how decisions made in core 

bioinformatic processes including sequence filtering, database design, and classification 

can influence animal metabarcoding results. We show that denoising methods have 

lower error rates compared to traditional clustering methods commonly used by animal 

metabarcoding studies, although these differences are largely mitigated by removing 

low-abundance sequence variants. We also found that available reference datasets 

from Genbank and BOLD for the animal marker gene cytochrome oxidase I (COI) can 

be complementary and discuss methods to improve upon existing databases to include 

versioned releases. Taxonomic classification methods can dramatically affect results. 
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For example, the commonly used Barcode of Life Database (BOLD) Taxonomy API 

assigned fewer names to samples at the class through species levels in both a mock 

community and bat guano samples compared to all other classifier methods (BLAST, 

VSEARCH, SINTAX, and Naive Bayes). The lack of consensus on bioinformatic best-

practices limits comparisons among studies and may be introducing unknown or 

unappreciated biases. Our work suggests that biological mock communities offer a 

powerful tool to evaluate the myriad computational decisions impacting animal 

metabarcoding accuracy. Further, these comparisons highlight the need for continual 

evaluations as new tools are adopted to ensure that the inferences drawn reflect 

meaningful biology instead of digital artefacts.  

 

 

INTRODUCTION  

 

Metabarcoding of animal diets has fundamentally changed our insights into what these 

species are eating, expanding our understanding of the extent of dietary diversity and 

food web complexity 17-18, 20-21. Modern sequencing approaches have enabled a broad 

range of studies but have resulted in myriad customized molecular and bioinformatic 

workflows that make comparisons among studies difficult. While some differences are 

expected in software choices among the variety of systems being studied, there has 

been no systematic approach to evaluating which of these various bioinformatic 

differences between metabarcoding studies occur because of system-specific 

requirements or are simply the result of the choice of the researcher. The factors that 
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need to be considered for amplicon analyses are extensive, including sample collection, 

primer and barcode design, sequencing platform, as well as sequence data processing 

and taxonomic assignment (reviewed by Pompanon et al. 20, Clare 18, and Alberdi et al. 

19). A basic recommendation for diet metabarcoding workflows would include sampling 

as exhaustively as budget and time allow, choosing primers that appear to amplify the 

select taxa with as little bias as possible, and sequencing with the most accurate 

platform available. Yet, rarely is such general advice free of context-dependent caveats, 

and frequently these subtle, experiment-specific distinctions are buried in 

supplementary bioinformatic methods. We were motivated to shed light on these often 

overlooked bioinformatic steps to help illustrate which processes particularly affect 

interpretations of animal diets. 

 

Molecular metabarcoding experiments are motivated by a straightforward principle: 

characterizing the composition of a community. Nevertheless, the particular applications 

practiced by researchers are complex, and we focused on three related processes that 

are poorly described among animal metabarcoding projects: processing raw sequences 

into representative sequences, classifying those representative sequences, and 

constructing the necessary databases to perform such classification. Establishing the 

best practices for sequence filtering and classification are frequently determined using 

mock communities-known samples with expected sequence identity and abundance. 

This practice that is commonplace in microbial gene marker research 63, but less 

common for arthropod datasets 37. Wet-bench experiments with mock communities can 

be used to assess systematic error and biases in observed sequence data 64, optimize 
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filtering parameters 65, understand tradeoffs among sequence error correction 

approaches 66, and evaluate taxonomic classification regimes 67. Systematic evaluation 

of animal metabarcoding studies are growing but remain far more limited in scope 

relative to microbial experiments; synthetic mock samples have been used to explore 

the potential for alternative primer use 68, while biological mock samples have been 

used to improve quality filtering of spurious sequence variants 32 as well as to evaluate 

the utility of PCR replicates 69. In addition, a few studies have used real data (i.e. actual 

diet samples) to offer insights into the effects of sequencing platforms 70 as well as on a 

single filtering parameter 19. We build upon these sequence filtering considerations by 

using both real and biological mock data to illustrate how certain bioinformatic decisions 

impact the interpretation of community richness and composition, a common focus of 

diet analyses.  

 

One of the first considerations in an amplicon study is whether to correct unique 

sequences through a ‘denoising’ approach or a clustering approach. Denoising 

programs like DADA2 71 or Deblur 72 generate error models to address potential 

sequence errors, while clustering programs group sequence variants into operational 

taxonomic units at some user-defined similarity 73. These have been explored 

empirically in a microbial setting 74; while the observed differences were small in that 

single study, practical reasons such as database independence and the potential to 

preserve sequence diversity suggest that using amplicon sequence variants (ASVs, 

inferred exact biological sequences) is more advantageous than operational taxonomic 

units (OTUs) 75. Denoising methods have yet to see wider adoption in diet 
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metabarcoding studies (but see 76); most studies use clustering methods 70,77–80). We 

compare the denoising and clustering-based approaches using biological mock 

communities and a collection of bat guano samples to highlight their effects on common 

diversity metric results. 

 

As with sequence filtering considerations, the process of assigning taxonomic 

information to sequence variants is fraught with decisions that can significantly impact 

the subsequent interpretation of animal diets. In fact, classification is a pair of related 

issues: first, there are multiple approaches to classification including alignment-based 

and machine-learning methods, and second, any classification method is dependent on 

the database of reference sequences provided. With respect to database construction 

there are relatively few database resources available among conventional animal diet 

metabarcoding studies. In particular, the Barcode of Life Database (BOLD) 28 serves as 

the principal resource among arthropod-specific metabarcoding studies, while GenBank 

81 is often used for non-chordate investigations. Yet despite having few reference 

sequence sources, most animal diet studies differ from each other because each project 

generates a unique reference collection on an ad hoc basis prior to classifying 

sequences. In contrast to microbial reference databases such as Greengenes 82 and 

SILVA 83, BOLD and GenBank are continuously updated and lack the kind of versioned 

history found among microbial reference databases. Thus a pair of studies using the 

same resource (e.g. BOLD) in the same discipline that were conducted less than a year 

apart may differ by tens to hundreds of thousands of reference sequences. To make 

matters more challenging, the animal diet metabarcoding community lacks standards for 
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both curation and classification. For instance, should databases be dereplicated (i.e., 

identical sequences be consolidated into one representative sequence), and if so, how 

should identical sequences containing different taxonomic names be treated? Is 

clustering a reference database—as is often done in microbial systems—appropriate for 

animal marker genes such as cytochrome oxidase subunit I (COI), and does clustering 

reference sequences reduce the amount of taxonomic information equally among 

different kinds of organisms? The role of database composition on results is unclear and 

makes it challenging to understand if differences observed between studies is the 

product of meaningful biology or database curation. Thus, we examined how particular 

bioinformatic criteria applied to reference databases impacts subsequent composition of 

the references available for classification: reference dataset choice, filtering references 

for taxonomic completeness, and clustering reference sequences. 

 

Taxonomic classification of representative sequences varies considerably among 

animal diet metabarcoding studies but can directly affect results. Because of the 

extensive number of classifiers available, the potential for further variability among 

studies arises. For example, one may choose to classify sequences using a local 

alignment approach like BLAST 84, a global aligner like VSEARCH 85, or a kmer-based 

classifier, such as SINTAX 86 or Naive Bayes 87. BOLD even offers its own classifier 

although few details describing the underlying algorithm are currently available 28 and 

unlike most other classifiers no source code is publicly documented. Additionally, hybrid 

methods are available wherein multiple distinct classifiers converge on a best match 61. 

We compare a few of the most commonly used classifiers and further evaluate how 
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certain options within those programs may introduce biases—specifically by neglecting 

key parameters—and suggest specific measures that are needed to more accurately 

determine taxonomic identities in a dataset.  

 

Finally, there is the challenge of trying to estimate species abundance of specific taxa in 

a diet, e.g. what proportion of the diet is comprised of mosquitoes. While creating and 

classifying representative sequences are processes common to most animal diet 

metabarcoding projects, only very recently have researchers explored diversity 

assessments using relative abundances (RA) of sequence counts instead of 

transforming these counts into a presence-absence (PA) matrix of samples and 

observed sequence variants (reviewed by Deagle et al. 26). Despite this importance, the 

debate about the appropriateness of RA versus PA transformations often overlooks a 

more fundamental point: you need to design experiments with at least some insight into 

what sequences should and should not be present before you can consider any kind of 

transformation. While mock communities do not represent the true complexity observed 

in actual diet samples, mock samples are essential for ground-truthing bioinformatic 

processes such as filtering parameters. Specifically, the mock samples provide a 

positive control of known sequence identities and therefore enable evaluation of the 

frequency at which low-abundance sequence artifacts are generated, and how these 

relatively rare sequences are uniquely filtered by each bioinformatic pipeline. Mock 

communities can provide an empirically derived filtering strategy and assess the 

likelihood and relative abundances of unexpected sequences 61. 
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We assessed sequence processing and classification methods using four libraries of 

COI data generated from an ongoing bat diet study that included a biological mock 

community sample and hundreds of bat guano samples for each sequencing run. While 

mock data provide a ground truth when evaluating different sequence filtering and 

classification techniques, guano data can provide relative comparisons of these 

procedures using the more complex samples typically found in animal metabarcoding 

projects. In addition, we sought to understand how our interpretations of apparent 

diversity within and between samples are influenced by such count transformations, and 

how the count data are influenced by the specific filtering program. Notably, while we 

tested each of these three broad processes separately, the entire workflow is 

interconnected. Sequence processing decisions can influence the composition of the 

representative sequences; the set of representative sequences available following 

sequence processing can influence diversity estimates; diversity estimates that use 

phylogenetic information or sequence abundances can be influenced by the initial 

filtering decisions; classification methods inform these phylogenetic diversity estimates; 

database construction affect classification. Our aim is not to present a single best 

pathway for all animal metabarcoding projects, but to illustrate which of these processes 

appear most sensitive to program (or parameter) choices. We performed each of these 

analyses using the QIIME 2 framework 62 to allow for increased methods transparency, 

reproducibility, and use of open source tools within the diet metabarcoding community.  

 

 

MATERIALS AND METHODS  
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Documentation, scripts, and the majority of data referred to in this manuscript are 

available at our Github repo: https://github.com/devonorourke/tidybug/tree/master/docs. 

Several large database files are hosted at an Open Science Framework repo: 

https://osf.io/k3eh6/.  

An overview of the methods used and the resulting data tables and figures produced 

are summarized in Figure 1. 

 

Mock samples 

Mock community samples were constructed specifically for arthropod diet analyses of 

COI gene fragments 32. The mock community used in this experiment consists of 24 

representative arthropod COI sequences derived from 23 taxa; notably, one of the taxa 

(Harmonia axyridis) generated two distinct COI amplicons. The mock sample used in 

this project consists of equimolar concentrations of plasmids, not post-plasmid PCR 

product, thus some primer bias and variability in per-taxon abundance is expected. 

 

Guano samples 

Individual guano pellets were passively sampled weekly from sites throughout 

northeastern US (Figure S1, Table S1). Guano samples were obtained by using sterile 

forceps in which pellets were collected from clean plastic sheets and stored in 

microcentrifuge tubes filled with 1 mL storage buffer (3.5M ammonium sulfate, 16.7 mM 

sodium citrate, 13.3 mM EDTA, pH 5.2). Plastic sheets were replaced weekly to avoid 
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cross contamination over the season. Samples were stored at -80 °C until DNA 

extraction. 

 

Laboratory work 

Individual fecal pellets were extracted using the Qiagen DNEasy PowerSoil Kit (Qiagen, 

Hilden, Germany) following manufacturer guidelines. Samples were eluted with 60 µL of 

elution buffer and up to eight extraction blanks were included for 96-well each plate. We 

used a dual-indexed primer design inspired by Kozich et al. 88 to amplify a 181 bp COI 

gene fragment. This design incorporates the Illumina adapter as well as customized 

barcodes and COI-targeted primer sequences into a single oligo. The COI-specific 

primer region of this construct are identical to that used to generate the mock 

community data 32; see the Github repo for all primer sequence information. Additional 

details regarding PCR conditions, quantitation of amplicons, and pooling of libraries is 

available 

(https://github.com/devonorourke/tidybug/blob/master/docs/wetbench_workflow.md). 

Four libraries were submitted to Northern Arizona University and sequenced using an 

Illumina MiSeq platform (Illumina, San Diego, CA, USA) using v3 chemistry with 600 

cycles of 2x300 bp paired-end read lengths. Raw sequence reads available at NCBI 

BioProject PRJNA518082: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA518082.  

Note that each guano sample was sequenced only once, while the same mock 

community was independently amplified and pooled into every library. We describe the 

four sequencing runs as Libraries A–D, and specify the mock samples associated with 

each according to the library they are derived from. 
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Data processing with QIIME 2 

We imported raw sequence reads into a QIIME 2 v2018.11 environment 62 and trimmed 

unpaired reads with Cutadapt 89. Trimmed reads were then filtered with one of three 

pipelines in QIIME 2: OTU clustering with VSEARCH 85 or denoising with DADA2 71 or 

Deblur 72. Full details are available at the `sequence_filtering.md` document in the 

tidybug/docs directory of the GitHub repo. Each of the four libraries were individually 

processed through the respective pipelines. The OTU clustering approach with 

VSEARCH mirrored the parameters outlined at the VSEARCH Wiki GitHub page 

(https://github.com/torognes/vsearch/wiki/VSEARCH-pipeline). For the Deblur pipeline 

we altered two parameters from their default: `--p-min-reads 2` and `--p-min-size 1` 

ensured that only singleton reads were discarded and all singleton ASVs were retained. 

This matches the default behavior in DADA2 to ensure that filtering behaviors were 

uniform across methods. Bat-associated COI sequences were identified from filtered 

reads and removed, then representative sequence (fasta-like) files and frequency tables 

of sequence counts (OTU table-like) were merged for all libraries. Sequence filtering 

documentation is available: 

https://github.com/devonorourke/tidybug/blob/master/docs/sequence_filtering.md. 

 

Data filtering with R 

In addition to comparing the default outputs from the three sequence processing 

pipelines, we explored the potential effects of additional filtering parameters. Filtering 

rare sequence variants frequently occurs in diet metabarcoding studies 70,90. While 
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recommendations for removing samples with overall low read abundances are 

described in the microbiome literature 65,91,92, best practices have not been determined 

for animal diet metabarcoding projects. We applied two simple filters to the default 

outputs of the pipelines: first, a “standard” filter required (1) dropping any sequence 

variant observed in just one sample across the entire dataset, and (2) retaining only 

samples with ≥ 5000 total filtered reads. Second, an “extra” filter incorporated the 

“standard” filters, and subtracted a single, fixed integer from each element of the feature 

table. This second filter removed sequence variants with very low read counts while 

scaling with library throughput, given that increasing number of artifacts are likely 

related to sequencing depth 26. The integer used in the “extra” filter is obtained on a per-

library basis and was defined as the maximum count value observed of an unexpected 

sequence variant in the (library-specific) mock sample. We identified these unexpected 

sequence variants by aligning all sequence variants present in a mock sample to a 

reference set of expected mock representative sequences to determine which ASVs 

were exact matches (100% identity), partial matches (97–99.9% identity), or unlikely 

matches (< 97% identity). The maximum sequence count observed among unlikely 

match variants was what defined the “extra” filtering integer value on a per-library, per-

filtering method basis. These analyses were performed in R 93 version 3.5.1 by 

importing with the QIIME2R package 94 and processed with Tidyverse 95, Reshape2 96, 

Phyloseq 97, and Vegan 98 packages. A custom R script was used to process these 

sequences: 

https://github.com/devonorourke/tidybug/blob/master/scripts/R_scripts/1_sequence_filtering.R. 
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Figures and statistical tests with R 

Following all filtering steps, we assessed alpha diversity estimates using iNEXT 99,100 

and Vegan for each combination of filtering methods (VSEARCH, DADA2, or Deblur) 

and parameters (none, standard, extended). Parametric statistical tests were performed 

with base R “stats” function ‘aov’, and nonparametric pairwise comparisons were 

performed with the Matrix 101, FSA 102, and Dunn.test packages 103. 

 

To study the effects of filtering parameters and denoising methods on variation in 

community composition between samples, we conducted a permutational multivariate 

analysis of variance (PERMANOVA) using the ADONIS function in Vegan. We 

investigated these effects using three distance measures: an incidence-based measure 

(Dice-Sorensen (referred to as “Dice”)), and two quantitative metrics (Bray-Curtis 

(“Bray”) and Morisita-Horn (“Morisita”)); datasets were rarefied to a depth of 5000 

sequences per sample. We performed these tests first for mock community samples, 

investigating the effects of denoising method and filtering parameters. In addition, we 

tested for the effects of denoising methods and filtering parameters on a subset of 

guano samples collected at a single location (Fox State Forest, Hillsborough NH) from 

April–October 2016, and added the date of collection (“MonthStart”) to the model 

(Distance ~ Method * Filt + MonthStart). We visually evaluated community composition 

of these select guano data through non-metric multidimensional scaling (NMDS) for 

each distance measure using the metaMDS function in Vegan. Additional information 

linking figure and data tables to specific R scripts for diversity analyses is available: 

https://github.com/devonorourke/tidybug/blob/master/docs/diversity_analyses.md. 
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We relied on a series of additional R packages to create the figures used herein, 

including cowplot 104, ggpubr 105, ggrepel 106, ggridges 107, stringi 108, scales 109, and 

viridis 110. 

 

Database curation 

We compared three databases to assess the effects of database selection and curation 

on COI profiling results. Two databases were curated by other researchers. First, the 

AMPTK program 61 contains scripts to access a precompiled COI database containing 

both arthropod and chordate records derived exclusively from BOLD—this dataset is 

herein referred to as “Palmer”. Additional details regarding how this database was 

constructed are available (https://amptk.readthedocs.io). Second, a dataset containing 

Eukaryote-wide COI references derived exclusively from GenBank 111 was downloaded 

using the v3.2 reference sequences and is referred to as “Porter” herein. We restricted 

our comparisons across datasets to dereplicated arthropod records, which necessitated 

further filtering both of these datasets. The Palmer sequences required removing all 

chordate data, while the Porter dataset required the removal all non-arthropod records, 

applying the LCA algorithm to the remaining arthropod records, and then dereplicating. 

 

A third database was curated following our own methods as described below—this 

dataset is herein referred to as “tidybug”. We accessed arthropod records from the 

BOLD database using the bold R package 112 on February 24, 2019. We then applied a 

custom script to retain only those records that contained the “COI-5P” marker code, and 
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removed all records that failed to include at least family-level taxonomic information—

see `bold_datapull.R` for complete details. While the “bold” library package provided an 

invaluable resource to access data, it is limited in its capacity to thoroughly filter the 

records because the BOLD API itself restricts which columns of metadata can be 

accessed during downloading. For instance, we discovered that there are two “marker 

gene” fields that contain COI information among the specimen records, and only one of 

the two is used to filter records through BOLD directly. As a result, additional non-COI 

records, or those records that lack any information of that criteria, can pass through the 

R bold package’s “marker” filter. In addition, we discovered that the arthropod-wide 

dataset cannot be downloaded in a single request to the BOLD server. As a result we 

divided up our queries into smaller batches using the accompanying R ‘bold’ package. 

However, this approach can generate rare instances in which the NCBI formatted taxa 

do not match the BOLD terms, resulting in zero records in which such a discrepancy 

exists (see here for example: https://github.com/ropensci/bold/issues/60). We therefore 

applied our own method of data scraping to ensure all records in BOLD would be 

appropriately queried. Prior to dereplication, we adapted methods used to format the 

SILVA database that incorporated a least common ancestor (LCA) approach to retain 

only taxonomic information where redundant sequences contain disparate 

classifications. We then dereplicated with VSEARCH and applied the updated LCA-

classified taxonomies to the remaining sequences using a consensus approach. Finally, 

to compare how clustering databases can impact the composition and completeness of 

information of available records, we applied the same LCA approach to cluster our 

curated database at 99%, 97% and 95% identities. All code used to process and curate 
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reference databases can be found in the `database_construction.md` file in the project 

GitHub repo 

(https://github.com/devonorourke/tidybug/blob/master/docs/database_construction.md). 

 

Classification 

We tested classifier accuracy using a mock community, and consensus between 

classifiers using bat guano data. Three of these classifiers are implemented in the 

QIIME 2 plugin q2-feature-classifier 67: BLAST- 84 and VSEARCH-based 85 alignment 

followed by least common ancestor consensus taxonomy assignment; and a taxonomy 

classifier utilizing the kmer-based machine learning Naive Bayes classifier implemented 

in scikit-learn 113. We added a second kmer-based method using the VSEARCH 

implementation of the SINTAX 86 algorithm. Collectively, these four classifiers shared 

the same database information—the tidybug database described above. We also 

explored how the BOLD classification engine would compare to other classifiers, but 

this comparison was limited because the specific parameters used in the classification 

regime are not publicly documented, nor is the specific database used for classification 

defined (i.e. there is no single file to download that represents the BOLD database at 

the time in which their taxonomy API is queried). Parameters for classifiers were 

modified from defaults to reflect more conservative standards where appropriate. For 

example, we increased the query coverage and percent identity for alignment-based 

classifiers, and increased the SINTAX probability cutoff. We also tried to keep 

parameter values similar across classifiers where possible (e.g. between BLAST and 

VSEARCH). We applied a custom R script to the BOLD API output to mirror the default 
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parameters present in BLAST and VSEARCH: first, to retain only matches with greater 

than 97% identity, and second, to apply an LCA process on remaining taxa in instances 

where multiple distinct taxa records exist. Pipelines for classification and the specific R 

scripts used to access the BOLD API are documented here: 

https://github.com/devonorourke/tidybug/blob/master/docs/classification_analyses.md. 

 

Our classification comparisons focused on two DADA2-filtered datasets: the expected 

24 mock community sequences, and the entirety of the “basic” filtered guano data. 

Mock data contain not only a ground truth of expected sequences, but also carry an 

expectation of taxonomic identity. We therefore assigned an expected taxonomy to 

each of the 24 mock samples from class through species level and compared the 

proportion of true positive, false positive, and false negative classification assignments 

from each of the five classifiers. We quantified precision as Taxonomic Accuracy Rate 

(TAR), and recall as Taxonomic Discovery Rate (TDR) following the conventions used 

in a previous microbiome classifier benchmarking study 67. The F measure was 

calculated as the harmonic mean of TAR and TDR, and reflects a balance between 

precision and recall. 

 

Unfortunately these mock samples were not obtained as vouchered specimen, and 

although the researchers who developed the mock community consisted of scientists 

with extensive experience identifying many of the samples selected, Sanger sequences 

of the full 650 bp COI amplicon for each specimen were used to determine the 

taxonomic identities of specimens using BLAST at NCBI. The resulting expected mock 
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names range in varying degrees of taxonomic completeness, and while most samples 

contain species identity, some are only described at the genus, family, or order level. 

The guano data contain no such ground truth, but do contain vastly more ASVs to 

classify. Our intention in comparing classifiers with actual guano data was to assess the 

instances in which classifiers agree or disagree with respect to a given taxonomic name 

at a particular level (from class through species). 

 

 

RESULTS 

 

We evaluated sequence filtering and classification regimes using both bat guano and 

biological mock community sequence data. Biological mock community data provide an 

important means to compare how observed outcomes deviate from expected results, 

while bat guano samples provide a more realistic evaluation of how certain bioinformatic 

decisions impact an analysis. 

 

Sequence filtering 

Representative sequences were identified using one of three amplicon processing 

programs (hereafter termed denoising methods). Note that VSEARCH is not technically 

a denoiser in the traditional sense of building an error model to identify and act upon 

sequence error, but we use the term to refer to all three programs in the general sense 

of attempting to collapse the entirety of a dataset into representative sequence variants, 

whether they be OTUs or ASVs. The resulting abundances of filtered reads varied with 
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respect to denoising method among bat guano samples and mock replicates with 

Deblur retaining fewer filtered reads than DADA2 or VSEARCH (Figure 2).  

 

We aligned ASVs observed in each mock sample to the expected mock community 

reference sequences to determine the frequency of occurrence and relative read 

abundances of expected and unexpected sequence variants. For “basic” (default) 

parameters VSEARCH retained fewer expected sequence variants than DADA2 or 

Deblur, while VSEARCH produced more unexpected sequence variants than either 

DADA2 or Deblur (Figure 2). Likewise, DADA2 and Deblur retained similarly higher 

fractions of expected reads despite having substantially different total numbers of reads 

(Figure S3) among all replicate mock samples. Indeed, the number of observed exact 

matches was nearly identical among DADA2 and Deblur mock samples, although the 

proportion of unexpected sequences was greater with Deblur (Table S2). Applying 

“standard” and “extra” filtering parameters to each dataset reduced the number of 

unexpected sequences among mock samples for all denoising methods, although the 

impact of these filters was most evident for VSEARCH.  

 

Because the bat guano samples did not have any known set of ASVs, we could not 

apply a similar comparison of denoising methods as was performed with mock samples. 

We instead evaluated the distribution of sequences abundances to understand how 

denoising methods and filtering parameters perform with guano samples and a diversity 

of sequences. As was observed with mock data, the application of filtering parameters 

tends to eliminate observed differences among denoising methods among all guano 
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data collectively (Figure 3) and on a per-library basis (Figure S4). Notably, read 

abundances and frequency of occurrence for a particular ASV were dramatically 

different between mock and real datasets. Mock sequence variants are characterized 

either with high sequence counts that were detected repeatedly among samples (i.e., 

the expected mock sequences) or low sequence counts detected nearly always as 

singletons (i.e., sequencing error) (Figures 2, S3). Guano data, however, consisted 

mainly of infrequently observed low abundance ASVs (Figures 3, S4). Thus, similar to 

mock data, the application of “standard” or “extra” filtering parameters to guano data 

can result in fewer detections of any particular ASV by reducing these low-abundance 

detections, while retaining the majority of sequences in the entire dataset. Unlike mock 

data, it is not possible to determine whether these bat guano ASVs being removed are 

due to sequencing error, but our mock dataset suggests that several low abundance 

ASVs are indeed produced during sequencing, and that these filtering parameters can 

be effective at removing unexpected sequence variants. 

 

Overall, we found that the profiles of read distributions reflect the parameters of their 

respective pipeline for both mock and real datasets. For instance, because only DADA2 

functions to identify errors and correct them, the choice of a specific minimum 

abundance threshold to discard observations (e.g., per ASV or per sample) is pipeline 

dependent. For example, the effect of the “extra” filter is much less noticeable for 

DADA2 than either VSEARCH or Deblur, because many of the low abundance reads 

that were discarded with that filter had already been corrected by DADA2. Choosing 

optimal parameters to reduce sequence error without sacrificing loss of meaningful 
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biological data is especially critical for animal metabarcoding studies that use diversity 

metrics transform read abundances into presence-absence observations. 

 

Diversity estimates 

We separately evaluated the effects of denoising method and filtering parameters on 

estimates of inter-sample diversity among our mock community data and bat guano 

samples. However, because differences in sampling depth are known to influence 

diversity metrics among high-throughput datasets 114, we also investigated the impact of 

rarefying—randomly subsampling data without replacement—on diversity measures. 

We chose this method because of its widespread use, and because alternative 

normalization techniques have outcomes that are likely to be context dependent 115. Our 

motivation in comparing unrarefied to rarefied data was to highlight that additional 

normalization is yet another bioinformatic consideration that can impact diet analyses.  

 

We first generated accumulation curves of sequence diversity (analogous to species 

richness) for mock individual mock samples using both abundance information and 

transformed presence-absence data. We found that denoising method and filtering 

parameters both impact the asymptotic estimate of diversity for rarefied presence-

absence data (Figure 4a), but have negligible effects when abundance information is 

incorporated (Figure 4b). A more extreme version of the same trend was observed for 

unrarefied mock data (Figure S6), with both Deblur and VSEARCH making larger 

overestimates of richness. Nevertheless, as with rarefied data, incorporating abundance 

information in unrarefied data leads to similar estimates of diversity among all denoising 
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methods across each filtering parameter. Guano samples similarly demonstrated that 

incidence-based diversity estimates are higher than estimates using abundances for 

both rarefied data (Figure 5) and unrarefied data (Figure S7). The reduction in 

sequence variant equivalents using Hill values of 1 or 2 indicate that relatively few 

distinct sequences contribute to the majority of the sequence information in a given 

guano sample. Unlike the idealized mock sample where DADA2 using “extra” filtering 

had similar diversity estimates for abundance and presence-absence data, these guano 

data illustrate the variability in sequence abundances among ASVs and samples 

inherent in real data. Indeed, the inclusion of abundances provides a measure of 

robustness to denoising method and parameter combinations. In addition, rarefying data 

had a similar effect to the applied filtering parameters in that both reduce the number of 

observed sequence variants by removing low abundant samples and rare ASVs from 

the analysis.  

 

We applied a Kruskal-Wallis test to determine if diversity estimates for each Hill number 

among rarefied mock samples were different between groups (where a group was 

represented by the combination of a denoising method and filtering parameter). There 

were significant differences among groups for each Hill number:  q=0 (H(8) = 26.36, p ≤ 

0.001); q = 1 (H(8) = 30.55, p ≤ 0.001), and q = 2 (H(8) = 26.70, p < 0.001). A Dunn’s 

Test comparing diversity estimates per Hill number was performed for each pairwise 

combination of denoising method and filtering parameter (Tables S4-S6) among mock 

data. For presence-absence diversity estimates (Hill number q=0) each denoising 

method with “basic” filtering differed from each denoising data with “extra” filtering 
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parameters. Thus, for binary data types the choice of filtering method is important. 

However, when incorporating abundance information for diversity estimates (using Hill 

numbers 1 or 2), choice of  denoising method matters. Pairwise comparisons of “basic” 

filtered DADA2 or Deblur data were different from VSEARCH, and that “standard” and 

“extra” filtering DADA2 estimates differed from VSEARCH estimates. However, these 

differences in diversity estimates for q=1 and q=2 were minor among denoising 

methods, and the observed differences associated with VSEARCH reflect the fact that 

there were fewer than the number of expected sequence variants because this method 

clustered a few distinct expected sequence variants of a single OTU. We also applied 

the same nonparametric tests to rarefied bat guano data. There were significant 

differences among groups for each Hill number for Kruskal-Wallis tests:  q=0 (H(8) = 

1121.1, p ≤ 0.001); q = 1 (H(8) = 211.2, p ≤ 0.001), and q = 2 (H(8) = 138.5, p < 0.001). 

Subsequent Dunn’s Tests among guano data broadly suggested that there are fewer 

significant differences between groups with increasing Hill number, indicating that the 

inclusion of abundance information reduces the main effects of denoising method and 

filtering parameter (Tables S7-S9). 

 

To explore the effects of denoising method and filtering parameters on community 

composition between rarefied samples we used three distance estimates: Dice-

Sorensen uses unweighted (presence-absence) data, while Bray-Curtis and Morisita-

Horn measures incorporate weighted (abundance) data. Among mock samples, the 

main effects for denoising method (F(2,27) = 1.973, MSE = 0.024, p = 0.001), filtering 

parameters (F(2,27) = 2.704, MSE = 0.033, p = 0.011) and their interactions (F(4,27) = 
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3.276, MSE = 0.041, p = 0.001) were significant for the Dice-Sorensen distance 

measure (Table S10). Among abundance-based distance metrics, significant main 

effects were observed only for filtering parameter for Bray-Curtis (F(2,27) = 3.050, MSE = 

0.349, p = 0.04) and Morisita-Horn (F(2,27) = 3.054, MSE = 0.02, p = 0.036) diversity 

estimates (Tables S11-S12). We chose a subset of bat guano samples collected at the 

same location across several months, and therefore added the collection date as an 

additional main effect to the model estimating beta diversity. We found that distance 

estimates for real data were robust to the various bioinformatic criteria. Main effects of 

filtering parameter and (F(2,710) = 1.582, MSE = 0.570, p = 0.006) collection date (F(3,710) 

= 40.149, MSE = 14.464, p = 0.001) were significant for the Dice-Sorensen incidence 

distance measure (Table S13). Only the main effect of collection date was significant for 

both Bray-Curtis (F(3,710) = 22.013, MSE = 9.382, p = 0.001) or Morisita-Horn (F(3,710) = 

23.325, MSE = 9.822, p = 0.001) distance measures (Tables S14-S15). Ordination by 

NMDS of the select guano data illustrate that all three distance measures produce 

similar clustering of data according to the month in which samples were collected 

(Figures S8-S10). As with previous studies examining the effects of quality filtering on 

subsequent diversity measures of microbial communities 65, our data indicate that beta 

diversity estimates are less sensitive to filtering criteria than equivalent alpha diversity 

estimates.  

 

Database Construction 

Assigning taxonomic identity to a dataset of ASVs is limited by the collection of available 

references. We compared how the composition of arthropod COI records varied among 
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three databases: two created from BOLD records (Palmer and tidybug) and one from 

GenBank records (Porter). While the Porter (1,280,577 total COI records; 515,780 

arthropod-specific COI records) and Palmer databases (1,617,885 total COI records; 

1,565,831 arthropod COI records) contained arthropod as well as non-arthropod COI 

records, the tidybug database was constructed exclusively with arthropod COI records 

yet contained the largest number of distinct sequences overall (1,841,956 arthropod 

COI records). The quality of a database is not only a function of how many records it 

contains, but also by how complete the taxonomies are for the references. For instance, 

references may or may not contain a name at the family, genus, or species rank. With 

respect to the number of unique taxa and unique sequences we found the tidybug 

database to contain more distinct records from species through order levels (Figure 6, 

Tables S16-S17). In addition, we evaluated the number of shared taxa (found in two or 

more databases) and unique taxa (found in only one database) at the family, genus, or 

species rank to determine how distinct the records were among the three databases 

(Figure S11). While all three databases shared many species records in common 

(39,068), it was in fact the tidybug database contained the most unique species records 

(49,822). The Porter dataset (20,542 species records) and Palmer dataset (4,845 

species records) contained fewer distinct records overall. There were also more distinct 

genus and family taxa, although these differences were largely confined to comparing 

databases created using BOLD versus GenBank.  

 

Database composition can be further impacted by whether or not a set of references are 

clustered. We clustered our tidybug database at three levels (99%, 97%, and 95%) to 
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understand the effects of clustering on taxonomic composition (Figure 7). Even a minor 

amount of clustering dramatically reduces the original number of dereplicated 

sequences from 1,841,946 to 407,356 in the 99% identity-clustered datasets. Further 

clustering at 97% (265,885 records) and 95% (215,055 records) results in additional 

reductions in the number of representative sequences. While clustering can speed up 

the process of classifying a dataset, it can result in loss of meaningful biological 

information in a database. In situations where two or more sequences that share 

disparate taxonomic information are clustered, a least common ancestor (LCA) process 

is invoked to determine the new reference cluster taxonomy. Consequently, taxonomic 

information is lost should that LCA process apply a consensus approach (instead of a 

majority approach). For example, if a cluster is derived from two sequences that differ at 

the species rank, the resulting taxonomy for that clustered representative sequences 

would be ‘ambiguous’ at the species rank even when the two ancestral sequences are 

known. Our tests indicate that clustering both reduces sequence diversity and 

taxonomic diversity, and that as the percent identity for a given cluster is reduced, the 

proportion of ambiguous taxa (i.e., unassigned taxa) in a dataset is increased. 

 

Clustering at a fixed threshold can also skew the resulting sequence diversity and 

taxonomic information for groups of taxa with distinct evolutionary rates (Figure S12). 

For instance, the dipteran order contains more than twice as many unique sequences 

(740,201) in the dereplicated tidybug database compared to the lepidopteran records 

(349,346). Yet, after clustering at even 99% identity, the Lepidoptera contains more 

unique records (114,285) than Diptera (97,708), and this disparity increases as the 
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clustering radius is reduced. While clustering generally reduces the amount of 

taxonomic information retained for all groups of organisms, some arthropod orders are 

more sensitive than others to its effects. For example, 65% of psocodean references 

clustered at 100% identity contained species names, while just 40% of the psocodean 

records clustered at 95% identity contained species information. However, among 

tricopteran records the difference between 100% identity and 95% identity clustering 

results in a minor change from 82% to 75% of records containing species names. 

Database construction that demands further clustering would likely benefit from 

investigating flexible clustering radii that reflect the evolutionary diversity of taxa. 

 

Classification Comparisons 

We used Taxonomic Accuracy Rate (TAR) and Taxonomic Discovery Rate (TDR) as 

modified metrics of precision and recall, respectively. These measures had been 

previously described to quantify rates of precision and recall at the community level, 

rather than the per-sequence level 67. TAR measures the ratio of true positives to all 

(true and false) positive results, and therefore reflects the proportion of observed taxa 

that are expected. We found that all classifiers agreed at class and order levels: each 

classifier scored a value of 1, indicating no false positives were detected. The BOLD 

API scored the highest for TAR at family (0.94), genus (0.94), and species (0.92) levels 

(Figure 8). However, this score is potentially biased by virtue of the challenge in 

accurately defining the expected taxonomies. There were three instances where the 

expected taxonomy is undefined for a mock taxa name at family through species levels 

while the non-BOLD classifiers (BLAST, VSEARCH, Naive Bayes, SINTAX) proposed 
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identical taxonomic names at each level. Thus, these false positives may reflect an 

unnecessary penalty: for instances where a taxonomic name is lacking because they 

were not documented by the researcher, classifiers that assign taxonomic information 

are not necessarily incorrect, but they are penalized as overclassifying. Because we do 

not know exactly what the family, genus, or species names are for this mock specimen 

on these occasions (because the specimen could not be accurately classified by 

experts or full length COI Sanger sequences), it is impossible to determine with this 

mock community whether these classifiers are misclassifying those taxonomic ranks, or 

if these classifiers are assigning the proper taxonomy for those species even though a 

false-positive is registered.  

 

We used TDR to measure the proportion of expected sequences that were observed. 

TDR measures the ratio of true positives to the sum of the true positives and false 

negatives, therefore scores closest to 1 reflect classifiers that tend to assign the correct 

expected taxonomies while reducing the instances in which expected assignments are 

left unassigned. The BOLD classifier scored lowest at class (0.96), order (0.83), and 

family (0.77) levels for TDR. In fact, BOLD was the only classifier to have any false 

negatives at class and order levels (scores for all other classifiers at these levels equal 

1), and indicates that the BOLD classifier assigned fewer taxonomic names for mock 

samples compared to alternative classifiers. Naive Bayes scored highest for TDR at the 

genus level (0.9), while BLAST and VSEARCH had the highest TDR scores at the 

species level (0.87), indicating that no single classifier is superior at all taxonomic levels 

using standard parameters. Further optimization of the classifiers was beyond the scope 
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of this study, and is an area that warrants further attention for animal metabarcoding 

experiments.  For example, lowering the SINTAX bootstrap confidence cutoff value from 

0.9 to 0.8 would retain more expected Species names in the mock dataset, however, 

this may also lead to an increase in the number of false positives. This tradeoff in 

precision and recall is expressed as the F measure, and indicates that the QIIME 2 

classifiers perform best from class through family levels (Figure 8). As mentioned 

previously, the highest TAR scores were consistently attained by the BOLD API but may 

reflect a bias of over-classifying by non-BOLD classifiers in the few instances where an 

incompletely described mock community does not depict the expected ground truth. 

Further tests using vouchered specimen with completely described taxonomic identities 

are clearly needed to better evaluate the strengths and weakness of available 

classifiers. 

 

Classifier performance was also compared on a relative basis using bat guano data. We 

were interested in understanding two phenomena: first, the frequency with which ASVs 

were assigned a taxonomic name from class through species levels, and second, the 

degree with which one or more classifiers assigned the same taxonomic name to that 

ASV. While there is no ground truth to these particular assessments, this comparison 

allows for the potential discovery of patterns among the classifiers. For instance, do 

classifier types agree more with each other (e.g. kmer-based vs. alignment-based)? We 

found that fewer sequence variants were assigned class or order names by alignment-

based VSEARCH (61% class; 61% order) or BLAST (62% class; 62% order) compared 

to BOLD (99% class; 83% order) or kmer-based SINTAX (91% class; 77% order) or 
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Naive Bayes (96% class; 81% order) classifiers (Table S19, Figure S13). The number 

of named ASVs are reduced from family through species levels, though no one 

classifier was assigned the most taxa at each level: Naive Bayes assigned the most 

taxa with family names (68%), BOLD assigned the most taxa with genus names (61%), 

and SINTAX contained the greatest number of taxa with named species (42%). The 

relatively larger fraction of taxa with assigned family, genus or species names may 

reflect differences in classification processes (i.e. kmer vs. alignment based), but at 

least part of the reduction in named taxa for VSEARCH or BLAST is explained by the 

fact that these alignment-based classifiers apply an LCA process after identifying 

potential matches while kmer-based approaches do not. More expansive mock 

communities as well as in silico tests will be useful for identifying which classifiers are 

best served to balance the desire to classify as many taxa at as many levels as possible 

without introducing false indications of certainty where taxonomic ambiguity is more 

appropriate. Finally, the BOLD classifier reported the lowest number of named species 

(35%) after we applied an LCA process. Because their API required using a closed 

source reference database, it is unclear whether the lower number of records is a 

function of the classifier itself or the database queried. The BOLD API has not published 

the parameters of the classification process, thus it is not clear what parts of that 

algorithm are likely behind the fewer classified records. 

 

We assessed 31 distinct ‘sets’ to compare the various ways the five classifiers may 

converge upon a proposed taxonomic assignment for a particular ASV at the class, 

family, or species levels: one set in which all five classifiers contain the same 
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information; five sets in which four of the five classifiers agree and one differs; 10 sets in 

which three of the five classifiers agree and one or more differ; 10 sets in which two 

classifiers agree and one or more differ; five sets in which a classifier uniquely ascribes 

a taxon in which all other classifiers fail to provide information (Figure 9). The largest 

fraction of ASVs converged on a similar classification at all taxonomic levels: 59% of all 

class names, 57% of orders, 46% of families, 43% of genera, and 32% of species (in 

the case of family, genus, and species, more ASVs were unnamed than named). 

However, the degree with which differences existed between classifiers increased from 

class to family to species levels. In particular, we found that the four classifiers using the 

tidybug database assigned many of the same species (21% of named species) and 

family-level names (23% of named families) when BOLD failed to provide any 

taxonomic name at that level. This was in contrast with just 4% of named taxa being 

common to the non-BOLD classifiers when BOLD did not classify the same ASV. These 

results indicate that differences between BOLD and non-BOLD classifiers are partly 

attributed to potential differences in database composition. However, note that our 

database was derived from BOLD references, but because no information is available 

on the particular records the BOLD API uses, we could not determine whether these 

differences were due to the classifier or the references. Nevertheless, classifier-type 

trends also emerged among those using our common tidybug database. Kmer-based 

classifiers assigned more information where alignment-based classifiers did not: this 

effect was most pronounced at the class level with SINTAX and Naive Bayes classifiers 

classifying 2,875 ASVs that BOLD, VSEARCH, or BLAST did not (22% of all unique 

taxa). Likewise, alignment-based classifiers converged on common species-level 
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names that BOLD or kmer-based classifiers either differed in assignment (114 ASVs, 

2% of all taxa) or failed to assign any name (272 ASVs, 4% of all taxa). Species names 

unique to a classifier were most frequently assigned by Naive Bayes (698 ASVs, 10% of 

dataset).  

 

These findings suggest that classifiers using the same database can differ substantially 

with respect to the degree of taxonomic completeness an ASV is assigned. Kmer-based 

approaches produce more species-level assignments than alignment-based classifiers. 

However, the reference database used may also impact taxonomic identities. The 

second largest set of shared taxa names consisted of all non-BOLD classifiers. For 

example, 20% of all named family-level ASVs were common to all non-BOLD classifiers 

but not to taxa classified by the BOLD API. These results suggest that either the BOLD 

API is fundamentally different than these other classifiers, or, that the database 

accessed by the API is distinct from the tidybug database the other non-BOLD 

classifiers used. Public documentation of the BOLD Taxonomy API would be required to 

make such a distinction. 

 

 

DISCUSSION 

 

Sequence filtering and diversity estimates 

As with wet-bench work undertaken in metabarcoding studies, there are many 

bioinformatic decisions that can impact estimates of diversity as well as the specific taxa 
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identified among detected sequence variants. Moreover, the particular molecular steps 

of an experiment are inextricably linked to the bioinformatic processes; poor decisions 

made in either realm reduce accurate scientific inferences. In addition, the expanding 

availability of computational tools coupled with the lack of a community standard for 

their usage makes comparing studies within even highly related disciplines challenging. 

Further complicating matters is the fact that many animal diet analyses transform read 

abundances into presence-absence frameworks. Our work was motivated to better 

understand how several of these common bioinformatic decisions affect interpretations 

of diversity and classification. Indeed, even if a researcher was to execute an ideal 

molecular workflow, the computational parameters invoked have the potential to alter 

the number of sequence variants observed depending on the denoising method of 

choice, and even more strikingly, completely ignore particular taxa depending on the 

classification strategy or choice of database.  

 

The first major bioinformatic decision that has yet to reach consensus in practice among 

animal diet metabarcoding studies relates to identifying unique sequence variants. 

Because we standardized the baseline filtering assumptions, the observed differences 

of expected and unexpected sequences within the mock samples reflect differences in 

the denoising method. As has been shown for microbial studies (for which these 

methods were developed), denoising methods appear advantageous over OTU 

clustering both for retaining expected sequence variants and reducing spurious 

sequence variants. With respect to recalling the expected sequence variants among our 

mock community data, both DADA2 and Deblur worked similarly well. DADA2 and 
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Deblur detected all 24 expected sequences, while VSEARCH failed to detect 1–4 

expected mock members among the four sequencing runs. For DADA2 and Deblur 

datasets, 22 or 23 of these were exact matches, with the remaining matches identified 

as “partial” alignment. The “partial” designation more likely indicates incorrectly 

assigned reference sequences than sequencing error itself for two reasons: first, these 

particular partial matches were the same sequence across all four sequencing runs, and 

second, they generated a similar abundance of reads as the “exact” mock sequences. 

The missing “exact” matches among the VSEARCH data highlights a problem inherent 

with clustering: loss of information due to shared sequence similarity. Two of our mock 

sequences were variants of the same species; one each of the exact variants were 

clustered together in the VSEARCH library. Because the most abundant sequence acts 

as the centroid when clustering, other missing “exact” matches were replaced with more 

abundant erroneous sequences as “partial” matches. For example, the “exact” 

sequence for mock sample IM44 was detected in libraries B and C, yet not present in 

libraries A and D. However, another sequence with over 99% identity to that exact 

match was present in libraries A and D as a “partial” match. Because the variant of this 

sequence present in libraries A and D was never identified in either DADA2 or Deblur, it 

suggests that this is a sequencing error and not the result of our mock community 

containing multiple distinct variant templates to amplify (as in the case of H. axyridis). 

Without the capacity to model sequencing error, a clustering approach such as 

VSEARCH is inadequate for two reasons: first, it generates more false positives, and 

second, it reduces the number of expected sequences when a sequence error variant is 

more abundant than the actual sequence.  
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Unlike microbial studies, relatively few animal metabarcoding studies incorporate read 

abundance information in their diversity estimates because of uncertainty in associating 

biomass with sequence counts 19,26. This is particularly meaningful given that our 

observed differences among denoising methods performance with “basic” and 

“standard” filtering is entirely attributed to low-abundance sequences. Thus, the choice 

of denoising method as well as the filtering parameters invoked can dramatically change 

interpretations of richness for researchers using a presence-absence framework. For 

instance, 539 of the 604 unexpected ASVs contained 10 or fewer total sequences per 

ASV in just a single mock sample (“libD”) when processed with “basic” filtering using 

VSEARCH. Deblur follows a similar pattern, retaining many sequence variants with 

extremely low abundance: the same “basic” filter dataset from that same sample 

contains 525 total variants, yet all 364 “miss” variants contain 11 or fewer sequences 

per ASV. Yet only after applying the “extra” filter were all unexpected sequences 

removed from each sample, and every denoising method required had at least some 

unexpected ASVs removed by this filter. Discarding observed sequence variants with 

low abundances on a per-sample basis or on a per variant basis operates with the 

assumption that rarity is more indicative of sequencing error than true biological 

variation. For experiments that do not include positive controls with their true samples, 

one is left with the challenge of arbitrarily assigning what minimum read count to use. 

Our mock data suggest that DADA2 is most effective at eliminating low abundance 

errors and would be particularly useful in situations whereby no additional filtering 

threshold can be empirically derived. Suggestions to apply some fixed value have been 
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previously validated for clustering approaches 65 but are not necessarily encouraged for 

denoised data. We also found that COI datasets processed with a clustering approach 

absolutely required further filtering. However, removing low frequency sequences 

invalidates the use of some classic (e.g., Chao1 116) and newer modeling approaches 

that leverage singleton and low-abundances counts for estimating richness 117 and other 

diversity measures 118. Given the widespread availability and documentation of 

denoising tools, we see no reason to cluster sequence data. As with most bioinformatic 

software currently utilized in animal metabarcoding sequence analyses, these platforms 

were initially designed and tested on microbial datasets. We recommend that additional 

animal marker datasets-particularly synthetic mock communities that more accurately 

reflect the diversity of the study-to understand how software parameterization affects 

performance. 

 

Because of a dependence on transforming read abundances to presence-absence, 

reports of animal metabarcoding compositional similarity have historically been limited 

to richness for inter-sample similarity and one of a few indices (e.g., Dice-Sorensen or 

Raup-Crick) for intra-sample analyses. Incidence-based approaches are often justified 

as a more appropriate choice compared to using relative abundances of sequences due 

to the challenges of associating counts to biomass 18,26. That is, the number of reads for 

a sample often is not a reliable measure of the abundance of that specific arthropod. 

Yet as Deagle 26 observes, “to accept the notion that relative sequence counts provide 

no meaningful information would mean that, within one sample, a few DNA sequences 

from one food taxon are equivalent to 10,000 sequences from another”. Our analyses of 
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bat guano data suggest that read abundances are indeed completely different than the 

proportions of sequences in our mock samples. In contrast, real metabarcoding data is 

better defined as a sparse matrix, with ASV abundances that can vary substantially 

among samples and a distribution of taxa that is highly uneven. Researchers do not 

have to choose between Including or excluding abundance information in diversity 

estimates; both articulate related, yet distinct aspects of the data. Unweighted estimates 

of observed richness, for example, can protect overestimating the importance of taxa 

that may be easier to amplify or extract, while abundance information can help reveal 

which ASVs are common or dominant in a dataset. Thus both detections and relative 

abundances provide important insights when making inferences about the diversity of 

samples. As reviewed extensively by Jost 119 and Chao 99, Hill Numbers provide a 

mechanism to unify measurements of richness, evenness, and diversity. Such a 

mechanism enables researchers to estimate the effective number of species necessary 

to produce the observed diversity on a continuum whereby read abundances are 

increasingly more relevant to the diversity estimate itself. This framework does not 

resolve the challenge of relating biomass to read abundances, but it does allow the 

researcher to investigate the degree with which read abundances contribute to their 

observed diversity estimates.  

 

Alpha diversity estimates were sensitive to both denoising method and filtering 

parameters for presence-absence data but generally robust to these parameters when 

read abundances were included in the model. Among rarefied mock community 

samples, DADA2 performed well for all pipeline settings while Deblur required additional 
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filtering to accurately estimate the expected number of observed sequence variants. 

Diversity estimates weighted with abundance information performed similarly for all 

combinations of parameters, with the exception that VSEARCH failed to detect a few 

expected sequence variants. In contrast, estimates of beta diversity for mock samples 

and the real bat guano dataset were generally robust to the denoising method used 

regardless of whether rarefied read abundance information was used in the model or 

not. Similar findings have been reported for microbial studies 65. We also compared 

alpha diversity estimates using unrarefied data and found that relatively more sequence 

counts were needed to obtain reliable richness estimates for Deblur and VSEARCH 

than the equivalent sample processed by DADA2. However increasing the sampling 

depth for real data can result in dropping many more samples from the dataset, thus 

most researchers invoke some level of filtering. Applying the “standard” filtering 

parameter is highly effective at reducing this sampling depth concern for Deblur data, 

however among VSEARCH mock samples the asymptotic estimate of diversity appears 

to monotonically increase. This suggests that when low abundance samples are 

removed but no minimal threshold of per-sample read abundance filtering is applied, 

richness estimates are confounded by the sequencing depth due to the positive 

relationship between throughput and sequence error. Thus, while presence-absence 

data may alleviate complications with how to interpret counts, the process itself can be 

highly sensitive to the bioinformatic pipeline used unless per sample read abundances 

are normalized in some fashion.  

 

Database construction 
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Assigning taxonomic information to a set of sequence variants requires a reference 

database, yet there is no single curated and versioned resource that is widely adopted 

among animal diet metabarcoding studies. This makes comparing the interpretations 

among experiments that use different database resources to classify representative 

sequences extremely difficult. In contrast to the way that BOLD is currently managed, 

microbial databases for Greengenes 82, SILVA 83, and UNITE 120 are versioned. Thus 

when a researcher desires to evaluate multiple studies completed at different dates 

using different versions of a database, the older experiments can be updated with 

newer databases for more equitable comparisons. While BOLD had previously 

presented packaged versioned releases, this practice ended in 2015. To complicate 

matters the BOLD API does not provide any mechanism to filter records by the date of 

collection, though many records lack this information altogether. Motivated by the fact 

that these same complications persist for users relying on NCBI resources, Porter and 

Hajibabaei 121 created a pipeline that makes versioned releases manageable. However, 

their database construction choices may reflect the needs of their experiments, and may 

not be best suited to other COI projects. For instance, their requirement that all records 

contain species-rank names prioritizes taxonomic information over sequence diversity. 

Other projects may benefit from a more diverse database that contains records that lack 

species or even genus-rank names. While no single database will be sufficient for all 

animal metabarcoding projects, versioned resources are essential for ensuring that 

unique properties between experiments reflect differences in biology and not the 

reference databases.  
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Versioned databases must also thoroughly document the decisions made regarding 

their construction. We focused on three major decisions: filtering references with 

taxonomic ambiguity, dereplicating sequences, and clustering related sequences. 

Taxonomic ambiguity differed between the Porter references versus the Palmer and 

tidybug databases. The Porter database consists nearly exclusively of full taxonomic 

identities—references that include species-rank names. This likely explains why there 

are almost half the total number of unique sequence records available between the 

Porter database compared to either the Palmer or tidybug databases, both which allow 

varying levels of taxonomic ambiguity in their records. In fact, the Porter dataset was 

constructed initially to contain only records with named species, however, by failing to 

dereplicate their records, there are over ten thousand instances where identical 

sequences contain distinct taxonomic identities. In this case, the LCA algorithm we 

applied to their database reduces these records to a common shared taxonomic level, 

eliminating species-level information. This highlights that dereplicating will in general 

reduce the total number of available records when a consensus LCA process is applied. 

For example, our ‘original’ BOLD arthropod records contained over 3.1 million 

sequences, while just 1.8 million of these references remained in our dereplicated 

dataset. Dereplication is essential to database construction, and we opted for a 

consensus LCA approach instead of a majority method to avoid potentially over-

classifying the reference records. 

 

Clustering reference sequences is routine among microbial databases and was 

introduced to COI references with the BOLD barcode index number (BIN) 122. The 
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process is performed to alleviate the computational burden of classification by reducing 

the number of highly similar reference sequences. Yet a tradeoff occurs between 

computational burden and compositional representation. Clustering by decreasing 

percent identities creates fewer groups of distinct sequences, thus reducing the number 

of records needing to be searched. This makes searching a database faster, but the 

number of potentially distinct records—distinct in terms of both sequence identity and 

taxonomy—are fewer. An additional problem with clustering arises from the fact that 

groups of taxa may have distinct evolutionary rates and thus are differentially impacted 

by applying a single value when related sequences are merged. For example, there is 

greater variation in COI sequence in Coleoptera than Lepidoptera 30. However the 

degree with which this variation exists among the millions of COI sequences and its 

effects on taxonomic classification is not well understood. We found that clustering 

reduced the number of the most abundant arthropod orders in a non-uniform manner. 

For example, while there are twice as many unique dipteran sequences in the tidybug 

database as the next most abundant order (Lepidoptera), clustering at 99% identity 

resulted in fewer overall dipteran representative sequences than lepidopteran. If 

clustering is a necessity, the dynamic clustering approach used by UNITE 120 may be 

preferred to the fixed binning approach currently, but it remains unresolved exactly what 

clustering radii are appropriate for each taxonomic level. 

 

Overall we found that the relative amount of taxonomic information retained at a given 

rank did not change with clustering, but clustering did increase the overall fraction of 

ambiguous taxa in a dataset. While some ambiguity is unavoidable when dereplicating, 
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the reduction in sequence and taxonomic diversity following clustering do not appear 

worth the benefit of the added time to classify a dataset. We favor filtering modest 

taxonomic ambiguity (removing all references that lack family-level information) and 

applying a consensus LCA approach prior to dereplication. This retains substantially 

more sequence and taxonomic diversity than the species-level requirements of the 

Porter dataset, while the family-level filtering protects against rare instances where 

retaining multiple best hits with one reference lacking taxonomic information eliminates 

the a more information-rich alternative reference sequences. For example, if one best 

match reference has all taxonomic levels named, while the other best match contains 

only class-level information, the consensus LCA process produces a final reference that 

contains only class-level information. No single resource is likely sufficient to represent 

the various metabarcoding markers, while a combination of resources advocated by 

Porter et al. 111,121 ensures as diverse a set of reference sequences as possible. 

Unfortunately the status quo is such that researchers either must possess the 

computational background to create the exact set of references needed, or default to 

accessing databases that are either outdated or possibly ill-suited for their project. It 

would be particularly useful if the versioned releases were themselves managed by the 

curators of the reference information, with users spanning the various animal 

metabarcoding disciplines providing input regarding database management. 

 

Classification 

Assigning taxonomic identities to representative sequences is often the primary goal in 

animal diet metabarcoding studies. Yet as with sequence processing, the classification 
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method adopted and parameters defined therein can alter the biological inferences 

obtained. These choices are extensive, and begin with the broad classification type 

employed (e.g. Hidden Markov Models, alignment-based, k-mer based). Other 

fundamental decisions on how taxa are filtered are equally important though often less 

well documented. For example, some researchers apply an LCA process 69, though 

many do not; some researchers filter acceptable taxa outside of expected geographic 

boundaries 70,123, though this decision may preclude many undiscovered taxa; others 

may choose to drop any species with an ambiguous name like “sp.”. Moreover, once a 

classifier is chosen, optimizing parameters for an experiment requires ground truthing, 

yet to our knowledge comparing various classifiers and parameters using biological 

samples with known taxonomic identities exists only for microbial amplicon data 67,124 

and microbial 125 and viral 126 metagenomes. Thus, we used COI amplicons derived 

from both biological mock data as well as bat guano samples compare classifier 

performance of a commonly used animal marker gene. 

 

We found broad agreement among classifiers for the mock data, although the non-

BOLD classifiers tended to classify more samples at each taxonomic level than the 

BOLD API. Non-BOLD classifiers performed remarkably similar with respect to 

precision, while the SINTAX algorithm was less likely to specify genus or species-level 

names to mock samples.  Because several mock specimen did not contain complete 

taxonomic names (9 lacked species names, 4 lacked genus names, and 2 lacked family 

names), we were not able to discern whether the BOLD classifier was under-classifying 

taxa or if the non-BOLD classifiers were over-classifying certain mock sequences. Even 
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among trained taxonomists, arthropod mock communities often are unable to be 

identified to species level and supporting Sanger data can improve taxonomic resolution 

37. However, we did not want to label specific taxonomic names unless the sequence 

data was unambiguous. To complicate matters, the BOLD Taxonomy API uses a 

database of unknown composition, and a classifier of unknown parameters. Thus the 

under-classification may be part of an internal classification difference, or may be simply 

because their particular database used during classification lacks that record. Notably, 

the tidybug database that served as the reference for all non-BOLD classifiers was 

derived exclusively from BOLD records. Therefore we expect the BOLD API to contain 

the same information, but because the database that the BOLD Taxonomy API 

accesses is undocumented, we could not use the same database to compare that 

classifier to resolve the issue of potential database differences. It would be of great 

benefit to those who use the BOLD Taxonomy API samples to have more thorough 

documentation on the exact model parameters of the process as well as a versioned 

and public release of the specific references within the database that are queried during 

classification. 

 

Future classifier comparisons would benefit from requiring that only vouchered 

specimen with distinct species names are included. Further, given the potential for 

variation in COI evolutionary rates among taxonomic orders 30, mock community 

designs should incorporate both a breadth of diversity as well as substantial overlap 

within groups to better optimize parameters. For example, if a sliding scale of percent 

identities is adopted to retain taxonomic information at specific levels (e.g., > 98% for 
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species, > 97% for genus, > 95% for family), it is imperative to understand whether 

these fixed values are consistent across the potential taxa in the dataset. In our work 

with bat guano data we routinely see over 15 arthropod orders, making it unlikely that 

single fixed value could define all species or genus. While it is unlikely that species-level 

information can be consistently resolved with short-read amplicons, a growing body of 

full-length sequences using third-generation technologies 127,128 will improve this 

resolution, and therefore necessitates a more detailed understanding of whether fixed 

percent identity boundaries are sufficient for classifying to a particular taxonomic level.  

 

Kmer-based classifiers offer an orthogonal method to classify samples without 

demanding a fixed percent identity. Indeed, the default method for some amplicon 

pipelines like AMPTK use a combination of global alignment and kmer-based classifiers 

61. We found that kmer-based classifiers nearly always assigned class and order names 

to our bat guano data, while alignment-based approaches often returned equivalent 

ASVs as undefined. Lowering the percent identity threshold from our conservative value 

of 0.97 to something less would undoubtedly retain more of these undefined taxa. 

However, because we apply an LCA process to all hits retained, there is an inherent 

tradeoff between precision and recall. For an alignment approach, lowering the percent 

identity may result in fewer undefined ASVs (increasing recall), but the proportion of 

ASVs with species-level information will also be reduced (decreasing precision). Thus, 

kmer-based approaches offer an alternative to this problem in situations in which far 

less of a full sequence is needed to assign some degree of taxonomic identity. 

However, they can also be problematic in that a small section of that sequence may be 
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sufficient to classify a chimera or artifact sequence. Overall our comparison of 

classifiers with bat guano data suggest that substantial differences exist between the 

BOLD Taxonomy API and all other classifier approaches, particularly at family through 

species levels. Given the central role of BOLD in many animal metabarcoding studies, 

we hope future researchers will provide additional comparisons with both biological 

mock data and other animal diet samples. Among non-BOLD classifiers we find that a 

kmer-based approach can be especially useful at retaining class and order information 

that alignment-based classifiers would otherwise discard, but caution that specific 

sequence pre-processing for amplicon length, quality, and chimera filtering are 

necessary. 
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FIGURES 
 

 
 
 
Figure 1. Methods and analysis workflow. See Appendix for supplementary figures and tables. 
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Figure 2. Denoising program and parameter evaluations of mock data. Denoising pipeline (vertical 
facets) and filtering parameters (horizontal facets) result in distinct number of inexact matches 
among expected mock community sequences. Values beneath each dot cloud reflect the number of 
ASVs among all four mock replicates in that group. ‘Exact’ matches reflect 100% alignment identity 
between ASV detected in mock community and a known mock sequence, ‘partial’ reflects between 
97–99.9% identity, and ‘miss’ represents an ASV with less than 97% identity to known mock 
sequences. All queries must span at least 97% of the reference target. VSEARCH produced the 
fewest exact matches across all four replicate mock samples and the highest number of unexpected 
(partial and miss) ASVs. Both VSEARCH and Deblur produced more unexpected matches than 
DADA2 for unfiltered output. The “standard” filter reduced the number of unexpected sequences, yet 
only after applying an “extra” filter are all unexpected ASVs removed. 
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Figure 3. Read abundances per sequence variant for bat guano data. Unlike mock samples the 
more complex communities of guano data are dominated by ASVs with low sequence abundance. 
DADA2 retains more sequence variants with larger abundances than Deblur or VSEARCH for 
default outputs and “standard” filter. DADA2 is less sensitive than Deblur and VSEARCH datasets to 
the removal of low-abundance ASVs by the “extra” filtering parameter. Note some distributions are 
non-normal because this plot displays the read abundances for four separate sequencing libraries. 
Only sequence variants per sample with ≤ 1000 filtered reads shown, representing between 87–98% 
of all observations. 
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Figure 4. Accumulation curves of rarefied mock samples. Interpolated (solid line) and extrapolated 
(dashed line) diversity estimates are shown for each mock sample relative to expected diversity 
(dotted line) for each denoising method (vertical facets) and filtering parameter (horizontal facets). 
(A) Estimated diversity is calculated using Hill Number q=0 (richness, or number of observed 
sequence variants). DADA2 has fewer unexpected sequence variants compared to Deblur or 
VSEARCH for default output, while imposing “standard” and “extra” filters reduces the differences 
among denoising methods. (B) Estimated diversity is calculated using Hill Number q=2 (similar to 
Simpson’s 1-D). Differences among denoising methods are negligible among diversity estimates that 
incorporate abundance information because all the unexpected ASVs are of low abundance. 
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Figure 5. Diversity estimates for rarefied bat guano. Denoising methods are compared within each 
subplot according to the respective Hill value (vertical facet) and filtering parameter (horizontal 
facet). Sequence diversity is reduced with increasing Hill number. Filtering parameters reduce 
diversity estimates at a Hill a value of 0 (equivalent to observed OTUs) but are negligible for diversity 
estimates that incorporate abundance information (Hill values 1 or 2).  
Sequence variant equivalents for q=1 and q=2 are reduced compared to q=0 estimates, indicating 
that relatively few distinct sequences encompass the majority of the sequence information in a given 
sample.  
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Figure 6. Database comparisons. Number of unique taxa and sequences at various taxonomic levels 
vary by database. (A) Porter and Palmer databases contain fewer unique arthropod taxa records 
than tidybug from species through order ranks. (B) Number of unique sequences are much lower in 
Porter database than Palmer or tidybug databases, though this reflects their decision of database 
design to include only taxa with known species names. 
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Figure 7. Effect of database clustering on taxonomic ambiguity. Clustering reduces the total number of 
distinct sequences and increases the proportion of ambiguous taxa. Our tidybug database consists 
of arthropod COI sequences that either contain taxonomic information (Present) or lack information 
(Missing) at taxonomic ranks class through species. Ambiguous taxa information is created via 
dereplication (clust 100%) or clustering (clust 99% - clust95%) when grouped sequences have 
discordant taxonomic description for a given rank. (A). Total number of distinct sequences are 
reduced by clustering, with increasing loss of sequence diversity as the clustering percent identity is 
lowered. (B) Clustering increases the relative fraction of ambiguous taxa in a database, with greatest 
amounts of ambiguity at the genus and species levels. 
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Figure 8. Classifier evaluations with mock data. Classifier performance of mock community data as 
measured by TAR, TDR and F. Taxon Accuracy Rate (TAR) measures the fraction of observed taxa 
that were expected, while Taxon Discovery Rate (TDR) measures the fraction of expected taxa that 
were observed. The F measure reflects the harmonic mean of TAR and TDR, and represents a 
balance between the precision and accuracy that TAR and TDR represent. Among classifiers 
(colored points) the BOLD API classifier retains the highest score across family through species 
levels for TAR. BLAST, VSEARCH and Naive Bayes classifiers retain higher TDR scores than BOLD 
or SINTAX indicating higher accuracy from class through genus level. VSEARCH values are 
identical to BLAST across all plots. 
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Figure 9. Common taxonomic identities among classifiers for guano data. Vertical bars represent the 
number of taxonomic names matching to a given set of classifiers. The particular classifiers included in a 
set is indicated by the connected and shaded dots in the bottom panel. For instance, the leftmost set (five 
shaded dots connected by a vertical line) represents instances in which all five classifiers agree for a 
particular taxonomic name, while the right-most sets (single shaded dots) represent instances in which a 
single classifier contains a unique taxonomic name. Among vertical bars, red represents instances in 
which a set is assigned a taxonomic name that is different from one or more non-set members (i.e. a non-
ambiguous alternative exists), while blue represents the case in which the set agree on a name but the 
other non-set members do not have any information for that name (i.e. no alternative exists for that ASV). 
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CHAPTER II 

 

 

Lord of the Dipterans: Molecular Diet Analyses of Indiana Bats in Illinois 
 

 

ABSTRACT 

 

Effective management of threatened wildlife requires an understanding of the foraging 

habitats used by those populations. Molecular diet analysis of fecal samples offers a 

cost-effective and non-invasive method to investigate the dietary breadth and temporal 

trends within wild populations. As opposed to traditional morphological identification, 

molecular analyses provide a rapid and more taxonomically detailed understanding of 

host diets. For the federally endangered Indiana bat (Myotis sodalis), documenting its 

preferred food sources can provide critical information to promote its effective 

conservation. Using sequence data from Cytochrome Oxidase I (COI) amplicons from 

bat guano data collected at Cypress Creek National Wildlife Refuge, we found that the 

dietary breadth of the Indiana bat is extensive, with 14 arthropod orders detected in at 

least 10 percent of samples and 190 unique families identified among those orders. 

However, the foraging activity inferred from the sequence abundance data suggests 

that dipteran taxa (i.e. flies) comprise the majority of the diet, indicating that this bat 

species consumes a broad spectrum of prey while repeatedly targeting specific taxa. 
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We applied machine-learning classification methods to investigate dietary preferences 

by month of collection and identified several taxa with strong seasonal variability. 

Collectively, these data depict the Indiana bat both as flexible consumers whose diet 

mirrors the expected life histories of available food resources, yet also aquatic 

invertebrate specialists making the most of the resources in the riparian habitat of 

Cypress Creek National Wildlife Refuge. These data can better inform policy holders 

faced with decisions of how to best allocate time and money to manage species habitat 

and improve conservation efforts. 

 

 

INTRODUCTION 

 

The Indiana bat, Myotis sodalis, has the dubious distinction of being the first North 

American bat listed under the Endangered Species Preservation Act 129. The historically 

broad distribution of Indiana bats once spanned much of the eastern United States 

130,131, however, populations were dramatically reduced through decades of 

anthropogenic effects and required regional and national efforts to mitigate declines 131–

133. Indiana bat populations appeared stable from the 1980’s through the early 2000’s 

39,40, but the emergence of White-Nose Syndrome (WNS)—an infectious disease 

caused by a fungal pathogen 134,135—has decimated several bat species, resulting in 

near complete loss of some bat species at particular sites 49,136. WNS has been 

particularly devastating to Indiana bats in the Northeastern U.S. 39,40,137, and populations 

are currently concentrated primarily in just four states; populations in Kentucky, 
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Missouri, Indiana, and Illinois constitute over 95% of all Indiana bats detected in winter 

2019 39.  

 

Effective bat conservation requires protecting critical resources such as winter and 

summer habitats 52,132. Radio telemetry has identified foraging preferences of Indiana 

bats for forested areas over agricultural 138,139 or urban 44 landscapes, although the 

species occupies a range of riparian and upland environments 140–142. Understanding 

the particular habitats used by bats from maternity colony roosts, for example, has led 

to refined strategies by policy-holders to engage with land managers 52. However, 

because Indiana bats occupy distinct territories within a landscape and often travel 

several kilometers between foraging habitats and roost sites 47,143, research that 

identifies preferences about roost site selection (for example, see Jachowski et al. 144) 

does not fully convey the habitat needs of the species.  

 

Understanding food preferences may identify unique and additional habitat in need of 

protection. Yet there are limited accounts of Indiana bat foraging preferences, in part 

because the initial diet identification methods were time-consuming and required 

substantial taxonomic expertise to classify the arthropod contents. While these early 

studies suggest that Indiana bats are frequent consumers of dipterans (flies), 

coleopterans (beetles), and lepidopterans (moths and butterflies) 44,45, as well as 

trichopterans (caddisflies) in certain conditions 47, the lack of precise taxonomic 

identification of food items makes it challenging to translate observations into detailed 

management strategies. For instance, detecting a codling moth can indicate that bats 
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are foraging over an agricultural landscape while detecting a tent caterpillar would 

indicate a proclivity for forested habitat. Applying a molecular approach to diet analysis 

can provide the necessary taxonomic resolution to detail the breadth and specificity of 

Indiana bat foraging behaviors, and therefore give a more complete understanding of 

the habitat needs of the species. 

 

DNA metabarcoding provides a cost-effective method to rapidly generate datasets rich 

with taxonomic information 20-21. Molecular diet analyses have been widely applied to a 

range of systems and organisms, although the methodology is not without challenges 

and biases 13,15. Early bat diet studies using a molecular approach described greater 

breadth and specificity of prey items consumed compared to traditional microscopy 

33,145. While both in silico 31 and empirical 146 studies have identified potential taxa that 

may be missed due to PCR biases, recent modifications of primer sequences have 

resolved many of the amplification issues for certain taxa 32. Subsequent applications 

using this molecular method have revealed key features of bat foraging in several 

Myotis species that indicated prey specificity for Myotis septentrionalis 147 and M. 

daubentonii 123; protections for the habitats that sustain these prey items would ensure 

these bats have available food resources. Studies of M. lucifugus indicate that core 

dietary components can vary both by location 57 and season 58 , suggesting that 

incorporating diet information into conservation efforts may require factoring in regional 

and temporal variation into management considerations. However, informed policy 

requires more than simply generating a list of prey items detected in a batch of guano—

understanding which taxa constitute the largest portion of a bat’s diet is critical when 
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using a molecular approach that can often identify hundreds of amplicon sequence 

variants (ASV’s, or if clustered, similarly known as Operational Taxonomic Units).  

 

While metabarcoding has improved our understanding of the depth and specificity of bat 

diet contents, linking the sequence data (i.e. counts of amplicons) to species 

abundances remains unresolved 15,26. How these data are treated and analyzed is 

particularly relevant because the taxa that are identified as comprising the majority of 

the diet are potentially quite different depending on whether or not relative abundances 

of sequence counts are considered. Supervised learning (SL) tools (a type of machine 

learning) provide a potential method that leverages both occurrence and abundance 

information. A Random Forest classifier is one such SL tool, and has recently been 

applied to a range of 16S rRNA and ITS amplicon studies including identifying origins of 

ballast water 148, predicting taxonomic signatures of host fecal microbiomes 149, 

understanding maternal microbiome patterns associated with preterm delivery 150, and 

predicting wine metabolomes 151. Rather than summarizing the unique sequence 

variants of the data directly (e.g. through ordination), important features are identified in 

Random Forest classifiers by quantifying their relative contribution to the predictive 

accuracy of a model 87,152. The motivation in using a Random Forest classifier in 

amplicon analyses is that it can assist in isolating the taxa that differentiate samples by 

some class variable. For example, determining which taxa are most predictive of 

location or seasonality can assist in identifying which are critical foraging areas or the 

seasonality of when those arthropod resources are most needed.  
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Located in between the Ohio and Mississippi Rivers in Southern Illinois, Cypress Creek 

National Wildlife Refuge contains ideal summer roosting habitat in addition to being 

within 8 km of a large Indiana Bat hibernaculum 43. However, concerns of habitat loss 

and limited roost availability served as impetus to evaluate if artificial roost structures 

installed at two areas within the refuge (Egner and Hickory Bottom sites) would expand 

roosting use of areas that were otherwise not suitable for maternity colonies 42. Guano 

collected as part of this study afforded an opportunity to provide the first molecular 

analysis of M. sodalis diet. Using a novel reference collection that combined Barcode of 

Life Database (BOLD) and GenBank sequence records, we highlight the breadth of prey 

consumed and document the seasonal changes in arthropod diet composition. In 

addition, we used Random Forest SL models to identify relevant taxa associated with 

Indiana bat foraging patterns across spatial and temporal dimensions. Indiana bats are 

one of several threatened or endangered species in need of significant protections. 

Identifying trends in foraging complements ongoing efforts to identify optimal habitat to 

preserve. We hope the methods described herein offer one such means with which 

improved species protections can be attained, and documented the bioinformatic work 

at the project GitHub repo: https://github.com/devonorourke/mysosoup. 

 

MATERIALS AND METHODS 

Site selection and guano collection  

Installation of Brandenbark™ artificial roost structures 153 was completed in 2014 in two 

areas of Cypress Creek National Wildlife Refuge: Egner and Hickory Bottoms. These 
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areas consist of agricultural land mixed with mature bottomland forests containing live 

and standing dead trees with snags and crevices suitable for Indiana bat roosts. Both 

locations have access to riparian habitat, with Egner roosts abutting the Cache River, 

and Hickory Bottoms sites abutting Cypress Creek. Four artificial roosts were erected 

within each area (Figures S14-S15). Use of these structures by Indiana bats was 

confirmed through fieldwork conducted in July and August 2016 at the refuge using 

mist-netting, radio-telemetry, and acoustic surveys 41.  

 

Guano was collected at each of the eight roosts June 21, July 27, and September 15, 

2017. Plastic sheets were placed at the base of each roost the night prior to collection 

and replaced with new sheets before the next collection date. Up to ten guano pellets 

were obtained at each roost at each date using sterile forceps and were stored 

individually in microcentrifuge tubes. Following individual pellet collection, remaining 

guano was pooled into 50 mL polypropylene conical tubes as a batch sample. All guano 

was sent to the University of New Hampshire and stored at -80 °C until DNA extraction. 

 

DNA Extraction 

Individual guano pellets were extracted using the Qiagen DNeasy PowerSoil kits 

(Qiagen, Hilden, Germany) following manufacturer guidelines. Two 96-well plates were 

used to process the initial samples, and the remaining samples were processed with 

single tube extractions using the same kit chemistry. All samples were eluted with 100 

µL of elution buffer and up to eight extraction blanks were included for each 96-well 

plate. Batch samples were extracted using the same kit reagents with a modified 



 70 

protocol. In these extractions, guano was thawed at 4 C° and up to 8 g per batch was 

transferred to a 50 mL conical vial. We added 15 mL of PowerBead solution and 1.2 mL 

of C1 solution along with five 5/32” 500C stainless steel grinding balls (OPS 

Diagnostics, Lebanon, NJ, USA) and homogenized at 1500 rpm for 10 min using a 1600 

MiniG mixer (SPEX SamplePrep, Metuchen, NJ, USA). Then 400 µL of Proteinase K 

was added to the conical vial, briefly vortexed, and incubated for 1 h at 56 °C. Samples 

were pulse vortexed, then spun at 3220 xg for 5 minutes. Aliquots of 500 µL of 

supernatant were transferred to 2 mL microcentrifuge tubes, after which solution C2 

was added and manufacturer guidelines were followed. 

 

Metabarcoding 

Concentrations of guano extract DNA were estimated with a Nanodrop 

spectrophotometer (Thermo Fisher, Waltham, MA, USA) to guide the appropriate 

volumes of sample to add for subsequent normalization with SequalPrep plates 

following manufacturer guidelines (Applied Biosystems, Foster City, CA, USA). Highly 

concentrated samples were diluted so that samples were standardized to approximately 

2 ng/µL prior to normalization. Normalized DNA was used as input for our overlap 

extension PCR method that targets arthropod COI fragments. Arthropod COI gene 

fragments are targeted for amplification using primers detailed in Jusino et al. 32. We 

modified the original primer sequences to preserve the COI-specific regions, but added 

5’ extensions of 17 and 19 bp respectively. The constructs below illustrate these 

additional tails (bold underlined bases) as part of the modified oligos using the original 

Jusino sequences (not underlined): 
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UT-ANML-LCO1490:      5'-ACCCAACTGAATGGAGCGGTCAACAAATCATAAAGATATTGG-3' 

UT-ANML-CO1-CFMRa:    5'-ACGCACTTGACTTGTCTTCGGWACTAATCAATTTCCAAATCC-3' 

 

Samples were amplified in 15 µL reactions, with 3 µL of normalized guano DNA extract 

added to 12 µL of solution containing 0.2 µM of the forward and reverse primers, 0.16 

µg/µL BSA, 0.03 U/µL Platinum Taq, 0.2 mM dNTPs, 1.5 mM MgCl2, and 1.5 µL of 10X 

buffer (Invitrogen, Carlsbad, CA, USA). Thermal cycler settings for the reaction 

consisted of an initial 5 min denaturation at 94 °C, followed by 5 cycles of 60 s at 94 °C, 

90 s at 45 °C, and 90 s at 72 °C; an additional 35 cycles of 60 s at 94 °C, 90 s at 50 °C, 

and 60 s at 72 °C and finally a 10 min extension at 72 °C.  

 

PCR reactions were subject to a 1X Ampure XP bead cleanup (Agilent Technologies, 

Santa Clara, CA, USA) and 10 µL of the concentrated solution was normalized in 

SequalPrep plates (Applied Biosystems, Foster City, CA, USA). These normalized PCR 

products were then subject to a second amplification using custom oligos that contained 

the requisite Illumina adapters, a distinct 8mer barcode, and the complementary 

sequence to overlap with the 5’ terminus of the amplicon. The example below illustrates 

an example of these constructs, where the underlined portion represents an 8mer 

barcode, with the Illumina adapters upstream of the barcode, and the complementary 

overlap downstream from the barcode (in bold) to facilitate polymerase extension of the 

original PCR product: 
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Indexed-UT1-example_pair1a:  

5’-AATGATACGGCGACCACCGAGATCTACACCACACAAAGCTGGTCATCGTACCCAACTGAATGGAGC-3’ 

 

Indexed-UT1-example_pair1b: 

5’-CAAGCAGAAGACGGCATACGAGATTTTGTGTGAGTCAGTCAGCCACGCACTTGACTTGTCTTC-3’ 

 

We added 2 µL of normalized PCR products (from the initial amplification) with 0.4 µM 

of each index primer in 25 µL reaction volumes using KAPA HiFi HotStart ReadyMix 

(KAPA Biosystems, Wilmington, MA, USA). Reaction conditions consisted of a 2 min 

denaturation at 98 °C, followed by 10 cycles of 30 s at 98 °C, 20 s at 60 °C, and 30 s at 

72 °C, and a final extension for 5 min at 72 °C. These final PCR products were subject 

to another 1X bead cleanup and normalization following the same methods described 

above. We created the final library by pooling 10 µL of normalized PCR products into a 

single tube and concentrated to 40 µL with a 1X bead cleanup.  

 

Library concentration was quantified by qPCR using the KAPA ROX Low Complete Kit 

(KAPA Biosystems, Wilmington, MA, USA). An Illumina MiSeq machine (Illumina, San 

Diego, CA, USA) with v3 chemistry generated 600 cycles of 2x300 bp paired-end reads. 

Raw sequence reads are available at NCBI BioProject PRJNA548356 

(https://www.ncbi.nlm.nih.gov/sra/PRJNA548356).  

Bioinformatics 

Complete details including scripts and documentation of the various bioinformatic 

strategies employed for sequencing processing, database curation, classification, and 
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diversity estimates are provided in the project repo: 

https://github.com/devonorourke/mysosoup/tree/master. 

 

Sequence processing 

Demultiplexed sequences were trimmed using Cutadapt v.1.18 89. Unpaired trimmed 

reads were imported into a QIIME 2 v2019.1 environment 62 and representative 

sequences were identified using DADA2 v1.6.0 71 via the q2-dada2 QIIME 2 plugin 

function ‘qiime dada2 denoise-paired’. Of the 15 negative control samples submitted for 

sequencing, 12 generated raw sequences, but following denoising just 7 retained 

sequence data. All 289 guano samples submitted generated sequence data following 

denoising. The remaining control samples were included in subsequent classification 

and diversity estimates to determine the nature of potential contamination. Full details 

regarding sequence processing are outlined in the ‘sequence_processing.md’ 

document: 

https://github.com/devonorourke/mysosoup/blob/master/docs/sequence_processing.md.  

 

Constructing databases 

While the primers used in this study were designed to target arthropod COI sequences, 

host (bat) DNA also potentially amplifies 32. Because guano was passively collected, we 

first developed a host database consisting of sequences derived from all known bat 

species in the region. We developed this database to identify host DNA to assign the 

bat species for each guano sample, and separate these host sequences from the 

dataset to ensure diet analyses did not include bat DNA. Because our lab had other 
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guano-related projects happening concurrently with this experiment, we included all 

other known host reference sequences from those unrelated projects as a precaution 

for potential cross contamination (ultimately no unexpected host sequences were 

detected). Full details regarding host database design are documented in the 

‘host_database.md’ file: 

https://github.com/devonorourke/mysosoup/blob/master/docs/host_database.md. 

 

We collected reference sequences and associated taxonomy information from two 

resources: BOLD 28 and a GenBank-derived dataset curated by Terri Porter 111. 

Reference sequences included COI records from arthropod, chordate, and other animal 

taxa, as well as fungal, protist, and other microeukaryote COI records. We dereplicated 

the initial collection of sequences, then applied a Least Common Ancestor (LCA) 

process using a consensus approach to classify records that shared identical sequence 

information but differed with respect to taxonomic information. Additional filters included 

discarding references with non-standard IUPAC DNA characters, removing sequences 

less than 100 bp, and retaining only references that contained at least family-level 

names. The final dataset included 2,181,331 distinct sequences. See the 

‘database_construction.md’ file for complete details: 

https://github.com/devonorourke/mysosoup/blob/master/docs/database_construction.md.  

 

All database files are stored in the Open Source Frameworks repo of this project: 

https://osf.io/qju3w.  
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Classification 

Representative sequences were initially aligned to the custom host database of bat 

sequences using VSEARCH 85 to identify and separate host ASVs from non-host ASVs. 

Candidate matches were further queried with NCBI BLAST 84 to confirm host identities. 

We then used our full COI database as a third means with which to discriminate among 

host and non-host sequences, and classified all representative sequences using the 

classify-consensus-vsearch (which performs VSEARCH global alignment followed by 

LCA taxonomy assignment) and classify-sklearn (a Naive Bayes supervised learning 

taxonomy classifier) methods available through the QIIME 2 feature classifier 87. Each 

method identified a common set of bat host ASVs which were removed from the original 

dataset as described in the ‘classify_host_seqs.md’ document: 

https://github.com/devonorourke/mysosoup/blob/master/docs/classify_sequences.md. 

Classification information derived from VSEARCH using the full COI database was used 

for assigning taxonomic identity for non-host ASVs. We used a custom script to remove 

sequence variants not assigned to the phylum Arthropoda, and discarded any ASVs 

that did not contain at least family-level names: 

https://github.com/devonorourke/mysosoup/blob/master/scripts/r_scripts/sequence_filtering.R. 

In addition, we evaluated a number of metrics to determine how to further filter the 

remaining non-bat sequencing variants, in part because 7 of the 15 negative controls 

contained some sequence data. Ultimately we discarded only those ASVs detected 

exclusively in negative controls samples while retaining sequence variants present in 

both guano and negative control samples. The ‘contamination_investigations.md’ file 
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documents these steps: 

https://github.com/devonorourke/mysosoup/blob/master/docs/contamination_investigations.md. 

 

Diversity estimates 

We estimated sequence diversity among guano samples using Hill Numbers in a 

custom R script: 

https://github.com/devonorourke/mysosoup/blob/master/scripts/r_scripts/Alpha-HillEstimates.R. 

Reviewed extensively by 119 and Chao 99, Hill Numbers estimate the effective number of 

species necessary to produce the observed diversity on a continuum whereby read 

abundances are increasingly more relevant to the diversity estimate itself. We used 

three Hill values of 0, 1, and 2, corresponding to the traditional diversity estimates of 

richness, Shannon’s entropy, and Simpson’s 1-D diversity, respectively. Kruskal-Wallis 

and Dunn’s tests were performed to determine if diversity estimates varied by month or 

site.  

 

Dissimilarities in community composition (of sequence variants) were evaluated with 

binary (Dice-Sorensen) and abundance-based (Bray-Curtis, Morisita-Horn) non-

phylogenetic metrics with Phyloseq 97 and Vegan 98 packages in a custom R script 

(https://github.com/devonorourke/mysosoup/blob/master/scripts/r_scripts/betadiver_wor

k.R). We also calculated unweighted and weighted distance measures with the Unifrac 

implementation in QIIME 2 154–158 to compare whether phylogenetic measures of binary 

or abundance-based estimates were more similar to non-phylogenetic distance 

estimates. We tested for main effects of site and month on community composition 
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using the Vegan ‘adonis’ function, and performed an analysis of multivariate 

homogeneity of group dispersions with the Vegan ‘betadisper’ function.  

 

Supervised learning with Random Forest classifier 

The QIIME 2 ‘classify-samples’ pipeline (part of the q2-sample-classifier plugin 87,113) 

provided a convenient open-source toolkit to train a Random Forest supervised learning 

classifier. We increased the number of decisions trees available to the model from the 

default (100) to 1000 estimators, with the intention of improving the predictive accuracy. 

In addition, we selected options to identify optimal feature selection using recursive 

feature elimination (--p-optimize-feature-selection) and optimize hyperparameters (--p-

parameter-tuning) to automatically select the number of features considered during 

node splits on a given decision tree. Two classifiers were trained: the first classified 

samples by their respective site and month groupings, while a second classifier was 

trained using only month information. A recursive feature extraction quantified the 

relative importance of each feature (ASV) for each classifier. Classifier outputs were 

exported and processed in a pair of custom R scripts to produce the confusion matrices 

evaluating classifier accuracy: 

https://github.com/devonorourke/mysosoup/blob/master/scripts/r_scripts/machine_learn_heatmaps.R, 

and slope plots and heatmaps relating how relevant feature abundance and detections 

vary by month only or site and month groups: 

https://github.com/devonorourke/mysosoup/blob/master/scripts/r_scripts/machine_learn_analyses.R.
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All data processing measures related to diversity estimates and supervised learning 

analyses are described in the ‘diversity_workflow.md’ document: 

https://github.com/devonorourke/mysosoup/blob/master/docs/diversity_workflow.md. 

 

Additional software 

We relied on a series of additional R 93 libraries and Python packages such as Pandas 

159 and other statistical software within the QIIME 2 environment including 160 and 115 . R 

libraries include tidyverse 95, reshape2 96, cowplot 104, ggpubr 105, ggrepel 106, scales 109, 

qiime2R 94, viridis 110, gganimate 161, xkcdcolors 162, ape 163, stringr 164, taxize 165,166, 

FSA 102, formattable 167, and rvest 168. 

 

 

RESULTS 

 

Dietary breadth 

We applied a metabarcoding technique to amplify arthropod COI gene fragments and 

generated sequence data from 285 bat guano samples collected at artificial roosts in 

the Cypress Creek National Wildlife Refuge during the summer of 2017. Although the 

primers used to amplify COI fragments were designed for arthropod sequences, other 

COI sequences such as host DNA often amplify as well. Thus, we first identified and 

separated host from non-host sequence variants. Many of our samples contained low 

abundances of one of three species of bat DNA: Indiana bat (M. sodalis), little brown bat 

(M. lucifugus), and evening bat (Nycticeius humeralis) (Figure S16). Of the 184 guano 
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samples with a unique bat species identified (66% of all samples sequenced), the vast 

majority of these were classified as the Indiana bat (177 samples). The rare detections 

of little brown bat (5 samples) and evening bat (2 samples) corroborate previous field 

observations 41,42 indicating that while other species transiently occupy similar roosts, 

the Indiana bat is the primary occupant of the colonies where guano was collected. We 

included all guano samples in our subsequent analyses regardless of host classification 

(or lack thereof), as many samples did not generate any host sequences. We 

acknowledge that a minor fraction of arthropod data may have come from a species 

other than Indiana bat. 

 

The breadth of arthropod taxa detected among samples was substantial, with 14 of 21 

unique orders identified in at least 10% of all samples (Table S20). Among these 

frequently observed orders we identified 190 unique families, although just five orders 

represented over 75% of all distinct families: Lepidoptera (39), Coleoptera (34), Diptera 

(34), Araneae (18), and Hemiptera (18) (Table 1). Although the Lepidoptera contained 

the greatest diversity of uniquely named families, genera, and species observed, the 

dipteran order contained more than twice as many unique ASVs (1190) as the next 

most frequent order (Lepidoptera, 567) (Table 1). However, despite the extensive 

diversity of the collective dataset, most ASVs were rarely observed in multiple samples. 

Of the 2,575 arthropod ASVs, just 63 of these were observed in more than 10% of all 

samples. Among those taxa observed in at least 10% of samples, most were classified 

as dipterans (44 unique ASVs among 6 distinct dipteran families). However, the ASV 

that was observed in the most samples throughout the study was a spider from the 
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genus Eustala, detected in over 70% of all samples (Table S21). Overall, our molecular 

techniques appear robust to amplify a wide range of arthropod taxa, with examples of 

high per-sample read abundances for several orders (Figure S17). Despite the 

extensive taxonomic variation of ASVs observed, our interpretations of diet preferences 

are fundamentally different if sequence abundances are considered (Figure 10). While 

occurrence information shows a plethora of arthropod orders being detected at different 

frequencies across collection sites and months (Figure 10A), the relative abundances 

of arthropod orders is decidedly dipteran (Figure 10B). We found that Indiana bats 

forage on taxonomically diverse assortment of arthropods, yet the high frequency of 

detections across samples and disproportionate fraction of sequences dedicated to a 

particular subset of ASVs within samples—particularly dipteran taxa—indicate that 

specific prey are consistently consumed throughout the season. 

 

Diversity estimates 

We compared diversity of ASVs in guano samples using Hill Numbers 0, 1, and 2 

(Figure 11, Table S22). A similar pattern emerged from each diversity estimate: 

samples collected in June and July had more sequence variants (or equivalents) than 

from September. A Kruskal-Wallis test was conducted to determine if diversity estimates 

for each Hill number varied among groups (group are defined by distinct combinations 

of site and month). A highly significant difference was observed for Hill Number 0 ((H(5) 

= 21.98, p = < 0.001)). However, group differences were less pronounced for both Hill 

Number 1 ((H(5) = 10.95, p = < 0.052)) and Hill Number 2 ((H(5) = 11.14, p = 0.049)), 

suggesting less variation exists between groups for estimates incorporating sequence 
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abundances. Post-hoc Dunn’s Tests for pairwise significance were also performed for 

each Hill Number. We found that the differences among group observed richness (Hill 

Number 0) varied between September and June, or September and July, across each 

site, but not between June and July (Table S23). Both Hill Numbers 1 and 2 (Tables 

S24-S25) identified a single pairwise difference (Hickory Bottoms-July, and Egner-

September). Collectively we observed that the richness of ASVs within samples (Hill 

Number 0) was substantially larger than the ‘common’ or ‘abundant’ ASVs (as 

represented by Hill Numbers 1 and 2). Differences in diversity among groups are largely 

confined to datasets analyzed in a presence-absence context, with variation attributed 

by month, but not by site of collection. These data suggest that while bats may be 

foraging across a broad swath of the arthropod community, relatively few of these 

sequence variants dominate the overall abundance of reads generated in a single 

sample. Clearly, interpretations of bat foraging breadth are sensitive to whether or not 

abundance information is used as part of the analysis. 

 

We next explored how community composition varied among groups using a 

multifactorial PERMANOVA (Adonis) to test for group differences in spatial median. We 

also used a univariate ANOVAs (betadisper) to test for dispersion differences for each 

group separately. Significant differences among group spatial medians were detected 

for each of the distance metrics applied, indicating that dietary components vary by site 

and month (Tables S26-S30). However, the PERMDISP tests also proved significant; 

because we used a balanced design, these results suggest that month and site 

variability in community composition occurs both because of dispersion and spatial 
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group median differences. We found a larger proportion of variation was explained by 

month than either site or the interaction term for every metric. Indeed, the PCoA 

ordinations suggested that samples were partitioned largely by month but not site 

(Figure 12), particularly for unweighted estimates (Figures 12A and 12D). However, 

the proportion of variation explained by the first two principal components is generally 

small for most distance measures, likely due to the fact that many of the prey items that 

bats consume are present throughout the entire sampling period of the study, thus the 

overall impact of month or site differences are likely minor. Notably, the weighted 

Unifrac measure had the largest proportion of variation (32.6% for weighted Unifrac, 

and between 11.3–17.1% for all others).  

 

Important features in Random forest classifier model 

To identify the relevant features (ASVs) of our data important to discriminating among 

site and month class variables, we trained a Random Forest classifier using a hold-out 

set consisting of 80% of the samples. We then tested the classifier accuracy using the 

remaining 20% of the data (not used in the training dataset) and observed a high overall 

accuracy rate of 0.89 (Figure 13). The few instances in which the classifier mis 

assigned a sample to the wrong group were confined to either of the group factors (site 

or month), but never both (site and month). A recursive feature extraction was 

performed as part of the initial classifier evaluation, thus by selectively removing 

features and comparing the change in model performance, we identified the ASVs most 

relevant to model training, and therefore identified the features most important to 

discriminating among groups (Figure 14). We found that the majority of features 
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important to model accuracy belong to just three orders: Diptera (122), Lepidoptera 

(41), and Araneae (22) comprised the majority of the 237 features identified by the 

classifier. Diptera—in particular craneflies, mosquitoes, and chironomids—are not only 

among the most consistently detected and highly abundant prey items in our samples 

(Figure 10), but they also had the greatest variability in those measures for site and 

month classes (Figure S18). 

 

We also trained a separate classifier to distinguish samples by month only, and found 

that fewer features were required to train an even more accurate model (128 ASVs 

compared to 237 in site and month classifier; overall accuracy = 0.91 compared to 0.89 

in site and month classifier; see Figure S19). Each classifier (month only, and site and 

month) identified the same features relevant to model accuracy: all 128 ASVs identified 

by the month classifier as important were among the 237 identified in the site and month 

classifier. Moreover, the most relevant classifier features—defined here as the 75th 

percentile with respect to model importance—were highly similar, with 30 of 32 ASVs 

shared among the two classifiers. Interestingly, while most of these important ASVs 

were dipteran, the individual ASVs with the highest individual importance values were 

non-dipteran arthropods (Figure S20). Given the high overlap in feature selections 

between the two models it is therefore unsurprising that dipteran taxa were identified as 

the most variably consumed group of taxa, while a few select psocodean and 

hemipteran taxa are important foraging targets exclusively in September (Figure S21). 

However, a few of the previously important dipteran ASVs were no longer identified by 

the month-only classifier. In these instances it appears that bats were actively foraging 
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these taxa repeatedly across all collection months, but differed in sampling abundances 

between sites (Figure S22).  

 

Overall we find that Indiana bats utilize a diverse foraging strategy spanning many 

arthropod orders, although our molecular tools suggest that Diptera are by far the most 

frequently targeted prey items. Similar taxa are typically identified among the two sites, 

and variability underlying feature detection was often driven by month of collection 

rather than collection site. However, there are a few instances in which a frequently 

observed ASV is not easily attributed to a particular sampling month, and such cases 

generally indicate a particular taxon is foraged upon throughout the entire summer (e.g. 

ASV-3, a cranefly of the genus Rhipidia). A series of animations that plot the changes in 

ASV abundance and detections were created to help visualize the differences observed 

for both the site and month and month-only classifiers. These animations clarify the 

dramatic turnover in detections and sequence abundances observed for many Diptera, 

while also highlighting a few other dynamic changes for other arthropod orders: 

https://github.com/devonorourke/mysosoup/blob/master/docs/animation_analyses.md. 

 

 

DISCUSSION 

 

Our molecular approach to studying Indiana bat diet confirmed earlier morphological 

guano analyses for this bat species: many arthropod orders including Coleoptera, 

Diptera, and Lepidoptera were repeatedly detected. However, we observed diptera taxa 
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as the largest proportion of fecal content, while most of the prior morphological studies 

suggest Indiana bat guano consists of beetle and moth taxa (see Figure 1 in Sparks et 

al. 44 for review). This disparity was exhibited also in a recent survey conducted in 

Shawnee National Forest—just 20 miles east of our location—that suggested Indiana 

bats consume largely moths and beetles 46. While it is probable that these differences 

are partly due to prey availability, it is also quite likely that our broader understanding of 

Indiana bat prey consumption is influenced by the analytical tools applied. We found 

that applying a molecular technique provides greater taxonomic specificity of diet 

components, and also expands the richness reported by classic morphological 

analyses. Moreover, while the list of prey targets may be long, the conventional 

description of the Indiana bat as a generalist insectivore—a term repeatedly applied to 

many North American Myotis—is worth reconsidering in light of these molecular diet 

profiles. Specifically, the relative proportions of sequences detected in guano suggest a 

far more targeted set of prey, principally focused on an array of Diptera and a genus of 

spider, Eustala. Therefore, while these molecular tools have confirmed and expanded 

our understanding of Indiana bat diets, translating these data into actionable 

management practices is invariably shaped by whether or not the relative abundances 

of sequences are considered in the analysis.  

 

The largest fraction of sequence counts were classified as dipteran and aranean, and 

this disparity over other detected arthropod orders likely reflects a combination of 

availability and biomass rather than an artefact of experimental design. As reviewed by 

Deagle et al. 26, incorporating abundance information into fecal analyses is challenging 
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for several reasons, including different digestion rates of arthropod prey or DNA 

extraction biases. Observed differences in sequencing depths can also be impacted by 

the particular molecular tools applied. For example, in silico analyses 31 and empirical 

tests 32,37 suggest that primer choice can influence observed taxonomic diversity, as can 

the various choices of sequencing platform and depth of coverage 37. The primers we 

employed in this experiment were previously tested using biological mock communities 

and indicated only minor bias among particular arthropod orders (see Figure 1 in Jusino 

et al. 32). Interestingly, these biases lead to marginally greater coleopteran and 

lepidopteran sequences rather than Diptera, making it unlikely that our frequently 

detected spider and fly sequences are a result of preferential template binding. 

Moreover, we found that most arthropod orders in this dataset generate ASVs with 

similar distributions of sequence counts (Figure S17)—the distinction is that there are 

fewer unique ASVs detected among non-dipteran orders. In fact, if we consider the five 

most deeply sequenced ASVs in every sample, we find at least one non-dipteran or 

non-aranean ASV among 66% of all samples. Thus, it does not appear that the 

relatively larger fraction of fly and spider taxa is due to any particular molecular bias. 

 

We found that the inclusion of sequence counts often reframed our subsequent 

interpretations of diversity. For example, observed richness varied by month, yet 

abundance-weighted estimates suggest that few taxa contribute to the overall species 

diversity in a sample, and there is little variability in the proportion of dominant taxa 

across site or month groups (Table S22, Figure 11). The majority of highly abundant 

ASVs were classified as dipteran, though a few taxa in other orders were also frequently 
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detected and generated highly abundant sequences (Table S21). Likewise, our 

interpretation of community composition was influenced by abundance information: 

variation in community composition is more strongly attributed to collection month for 

abundance-unweighted than weighted measures (Figure 12, Tables S26-30). Through 

the lens of occurrence data, the Indiana bat appears to be a generalist insectivore 

consuming a changing menu of arthropods throughout the summer season as has been 

previously reported, yet abundance-data portrays a voracious predator largely targeting 

aquatic invertebrate prey based on seasonal availability.  

 

Among all ASVs detected in our experiment, the Random Forest models identified only 

a fraction of the taxa as being important for classifying samples to month (Figure S21) 

or site and month (Figure 14) groups. Interestingly, these changes in detections and 

abundances for particular ASVs often matched the expected life histories of the specific 

taxa. For example, we detected leafhopper (ASV-7 and ASV-12) and barklice (ASV-14) 

ASVs largely in September, and these hemipteran and psocodean populations are 

known to build through the season and emerge as adults on the wing in large cohorts 

later in the summer (M. Jeffords, pers. comm). Indeed, the strongest signals attributed 

to individual ASVs were among non-dipteran taxa, despite the majority of the diet 

consisting of flies (Figure S20). In particular, the classifiers repeatedly identified 

dipteran species as important for discriminating samples by month (Figure S21) or by 

site and month (Figure S14). However, other dipterans were not selected by the 

classifier, likely because their frequencies were consistently high among all group 

classes. For example, Culex erraticus, among the most frequently detected mosquitoes 
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is often observed in July and September, while Aedes vexans is generally detected in 

June. However, other taxa including many craneflies in the genera Erioptera and 

Rhipidia were frequently observed in every month at each site. Because our study did 

not conduct insect trapping at the time of guano collection it is unclear whether 

differences in monthly variability of some taxa (and a pronounced lack of variability in 

others) is due to selective foraging or prey availability. Future foraging studies will 

benefit from pairing traps with molecular data to better understand the relationships of 

particular prey availability and observed diet. 

 

Interpreting the dietary preferences of these bats in either a presence-absence or 

abundance-based context would ultimately provide similar support for the ongoing 

recovery plans for the Indiana bat in the Cypress Creek National Wildlife Refuge to 

protect forested wetlands as critical habitat for foraging (in particular, see Chapter 4 of 

the Cypress Creek National Wildlife Refuge Habitat Management Plan 43). 

Nevertheless, characterizing these bats as generalist predators in a presence-absence 

framework may overestimate their dietary resilience. Our alpha and beta diversity 

comparisons suggest that many low abundance and rare sequence variants support this 

perception of a generalist behavior. An abundance-weighted analysis of their dietary 

contents point to a greater dependence on a subset of aquatic insects. Therefore, future 

management efforts may need to focus specifically on mechanisms to conserve habitats 

critical to those prey taxa. Fortunately such language already exists within the broader 

Cypress Creek National Wildlife Refuge management plan to protect waterfowl, 

however what is good for the duck may not be best for the bat. For example, it is 
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unclear whether the prescribed water level manipulations in the upstream channels 

leading into wetland habitats adjacent to bat roosts will reduce the availability of 

dipteran prey should stream flow velocity be altered.  

 

Much of existing bat conservation policy focuses on identifying and conserving winter 

hibernacula and summer maternity roosts. For the Indiana bat specifically, there has yet 

to be a framework defining mechanisms to understand the particular resources 

essential for foraging habitats. We found that the molecular techniques applied herein 

achieved a far greater taxonomic resolution of bat diets than previous morphological 

estimates, and do so in a rapid and cost-effective manner. Our data suggest that bat 

foraging strategies include both temporal and spatial variation, thus future studies are 

best served to include both variables in collection regimes. Our bioinformatic and 

molecular workflows are easily adapted for any other insectivorous bat species, and 

guano is cheap and easily obtained once roosts are identified. The current limitations 

towards a more contextual understanding of particular foraging behaviors for many 

threatened or endangered bats remains a human one, and we advocate more extensive 

investigations using these molecular methods to craft better informed, site-specific 

conservation management plans.  
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TABLES 

 

 
Table 1. Dietary breadth of Indiana bats. We detected 14 distinct arthropod orders in at least 10% of all 
285 guano samples sequenced. Our molecular and bioinformatic techniques were both sensitive and 
specific, resulting in classifying over 83% of all unique sequence variants (ASVs) to at least Genus. At 
least one sequence variant was classified from the orders Diptera, Lepidoptera, Araneae, Hemiptera, or 
Coleoptera in the majority of samples. The number of uniquely named family, genus, and species 
sequence variants is greatest among Lepidoptera, however among all ASVs detected the Diptera 
contained more than double the number of unique (ASVs) as the next order (Lepidoptera). Indiana Bats 
may be eating more uniquely named moths, but the greatest sequence diversity of COI amplicons 
detected in guano samples were decidedly dipteran. 
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FIGURES 

 

 

 
 
Figure 10. Comparing diets using detections or sequence abundances. Perspectives of bat dietary 
diversity are influenced by inclusion of relative abundances of sequences detected. (A) In a presence-
absence context, there is a substantial variety of arthropod taxa detected among samples grouped by 
collection months (x axis) and sites (vertical facets: Egner, “EN”; Hickory Bottoms, “HB”). The heatmap 
gradient represents the fraction of samples per site and month group containing at least one ASV 
classified to the particular arthropod order represented (y axis). For example, the majority of samples at 
both EN and HB sites contain at least one psocodean ASV in September but not in June. Likewise, 
most  samples in each group contain detections for ASVs classified as Araneae, Coleoptera, Diptera, 
Hemiptera, and Lepidoptera. (B) When data is represented in terms of relative abundances of reads 
instead of occurrence, the overall fraction of reads for any particular group is dominated by dipteran-
classified ASVs for all groups. Dipteran sequence diversity is highest among all orders (Table 1), yet the 
per-sample variability in Dipteran ASVs is no different than many of the other highly sequenced non-
Dipteran taxa (Figure S4), suggesting that the marked difference in detections and abundances is due to 
foraging habits rather than a molecular biases. 
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Figure 11 – Diversity estimates using Hill Numbers. Observed richness (A) diversity estimates are 
greater than abundance-weighted estimates using Shannon’s entropy (B) or Simpson’s index (C), 
indicating that richness is driven by low abundance sequence variants. Pairwise differences between 
sampling site or season are indicated by different letters at the top of each boxplot, with abbreviations 
used to indicate Egner (EN) and Hickory Bottoms (HB) locations. 
 
 
 



 93 

 
 
 
Figure 12 – Beta diversity estimates of Indiana bat samples. Perspectives of community composition of 
bat diet can be shaped by including abundance and phylogenetic information. Five measures of distance 
estimates differed based upon how rarefied abundance information or phylogenetic information was used. 
Principal coordinates analysis (PCoA) from each distance estimate was ordinated with samples 
distinguished by collection month and site (Egner, “EN”; Hickory Bottoms, “HB”). Unweighted 
phylogenetic and unweighted abundance (A), unweighted phylogenetic and weighted abundance (B-C), 
or weighted phylogenetic and unweighted abundance (D) had little variation explained by the first two 
principal components, while the phylogenetic and abundance weighted distance estimate (E) contained 
nearly twice the variation. Both unweighted abundance measures (A,D) partition samples by distinct 
months, but not by distinct sites, though these distinctions become less apparent as abundance 
information is increasingly weighted in distance estimates for non phylogenetic (B, C) and phylogenetic 
(E) measures. Collectively we find that rare and low abundant taxa are likely inflating community 
composition differences between samples. 
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Figure 13 – Random Forest classifier performance. A Random Forest model was trained to identify the 
features (i.e. ASVs) relevant to classifying a guano sample to a particular collection site (Egner, “EN”; 
Hickory Bottoms, “HB) and month group. We trained the model using 80% of the dataset, then tested the 
model accuracy by classifying the remaining 20% of samples. This confusion matrix demonstrates that 
the model was highly successful at matching the predicted group with the true group for most samples. 
The recursive feature extraction performed in this process identified few features (less than 10% of all 
ASVs detected in the study) as important for model accuracy, and the majority of these were dipteran. 
Accuracy ratio = overall accuracy / baseline accuracy (the accuracy that would be achieved by assigning 
all samples to the most common class).  
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Figure 14 – ASVs important to identify Site and Month differences using Random Forest classifier. Several 
dipteran taxa and other non-dipteran ASVs vary in terms of relative detections (x axis) or abundances (y axis) 
per site and month group. The particular ASVs identified as important to a Random Forest model discriminating 
samples according to site and group classes are denoted by closed circles, while all other ASVs in the study 
are signified by square brackets. Labels indicate the genus name for those highly detected ASVs in a particular 
group. Some features are highly abundant and frequently detected in all groups (e.g. ASV-1), yet these 
proportions vary enough for differences to be meaningful for the decision tree to discriminate among site and 
month classes. For example, with ASV-1, we see a decrease in read abundance at the Egner site, but a slight 
increase at Hickory Bottoms between June and July. Other groups tend to have monthly changes in abundance 
or detections that follow similar patterns for each site, but the magnitude of these differences are what help the 
model discriminate among site and month. For example, ASV-4 tends to increase in abundance and detections 
from June into July and September at both sites, however, the total number of detections and read abundances 
are generally larger for Hickory Bottoms than Egner. While these bat guano samples are dominated by dipteran 
ASV sequences, many of these features are distinct by site and month groups, indicating that bats are foraging 
from a shifting menu throughout space and time, consisting largely of aquatic invertebrates.  
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CHAPTER III 

 

 

Eating locally: molecular diet analyses of New Hampshire bats reveal spatial and 
temporal variation in prey consumption 

 

 

ABSTRACT 

Insectivorous bats are voracious consumers of a diverse array of arthropod prey. 

Previous morphological analyses of arthropods in North American bat diets suggest that 

while these insectivorous bats may be considered generalists collectively, particular 

arthropod preferences can strongly vary depending on the specific foraging 

environment. Yet, taxonomic resolution in these studies has frequently been limited to 

the order-level, limiting our understanding of diversity within diets. Molecular 

metabarcoding provides a more taxonomically refined assessment of diet than 

morphological analyses and can often determine common or distinct prey items at the 

species level. Of the few molecular analyses of North American bat diets, substantial 

variation was reported between sites and across seasons and years. However, 

analyzing compositions between seasons may be too broad a time period to capture the 

extent of local variability in prey consumption, and it is unclear whether the yearly 

compositional changes previously observed at a single site are likely to occur across a 

larger area. We assessed the spatial and temporal variability in bat diets in New 

Hampshire, USA by sampling across 20 sites at biweekly intervals over 2 years to 

provide a comprehensive evaluation of the propensity for local foraging. Coleoptera, 
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Diptera, and Lepidoptera were the most prevalent of the 12 arthropod orders detected, 

although their particular compositions varied among locations and dates. Few taxa were 

consistently detected at most locations between sites, seasons, and years, indicating 

that while some prey items are repeatedly consumed, the majority of the dietary breadth 

of bats is ephemeral and site specific. A few of these commonly consumed taxa were 

known turf and forests pests, demonstrating that these bats are providing ecosystem 

services throughout the state. Richness and composition of prey varied across space 

and time in distinctly local fashions suggesting that these bats are flexible foragers 

adept at consuming the locally available resources. 

 

 
INTRODUCTION 

North American insectivorous bats have highly flexible foraging strategies. Dietary 

analyses indicate consumption of a broad assortment of prey 3, yet the composition of 

prey contents reported appears particularly sensitive to temporal or spatial factors 

among little brown (Myotis lucifugus) 57,58 and big brown (Eptesicus fuscus) 59,169 bats. 

Similar patterns of temporal variability of arthropods in bat diets occur in their European 

relatives 76,123,146. It is thus unsurprising that many of the factors associated with 

intraspecies variation in little brown bat diets—a species with extensive historical 

records—are connected with either location or time. These factors include variation in 

prey abundance 170, bat age 171, landscape features 172, and ambient temperature 173. 

Heterogeneity in sampling location or date can alter the community composition of prey 

available and therefore observed, suggesting that a sampling design that surveyed 
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multiple populations simultaneously and repeatedly throughout the foraging season 

would provide a more comprehensive understanding of the niche breadth of a species.  

 

The techniques used to describe diets also play a fundamental role in how we 

characterize the foraging habits of a species. Historically, morphological analyses have 

described bat diets at order-level compositions as some ratio of Coleoptera, Diptera, 

Lepidoptera, with smaller fractions of Trichoptera and Ephemeroptera and a few other 

taxa. For example, these methods indicate that North American bats like E. fuscus are 

beetle specialists 174, while Myotis spp. more frequently consume flies and moths 

12,175,176. More recent studies using molecular methods support some of the historically 

observed order-level diet findings—E. fuscus still love beetles 59,177 (but not as much in 

southern desert communities 25), and M. lucifugus continue to forage on flies and moths 

57,58. Although not without their own biases (see Nielsen et al. 13 for a review of various 

diet tracing techniques, and Alberdi et al. 15 for molecular metabarcoding specifically), 

molecular analyses generally provide higher resolution for detecting prey items relative 

to morphological techniques, and can reveal a much broader palate than previously 

described 18. Rather than a small menu consisting of a few arthropod orders, molecular 

studies of insectivorous bats routinely describe hundreds of unique sequence variants 

detected with varying frequencies across numerous orders. In light of the superior 

taxonomic resolution that molecular metabarcoding provides, historical assessments 

may have significantly underestimated the niche and dietary breadth of the bat species 

described.  
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Extinction likelihood may be related to dietary diversity among insectivorous bats 178, 

thus the detailed information provided by metabarcoding may be of particular 

importance for North American bat species that have been devastated by White-Nose 

Syndrome 48,134,135,179. Fortunately there are some areas where regional stabilization 

has been reported 50,51, and diet information can provide an opportunity to more fully 

characterize the local habitat resources required by these populations. Indeed, federal 

guidelines 52–54 and population models 55,56 alike suggest that management efforts are 

critical to preventing future extinction even among seemingly stable populations. 

However, molecular diet information is scant for a few of the species impacted by 

White-Nose Syndrome and entirely absent for others. At the same time, insect 

populations have recently exhibited dramatic declines worldwide 180–182, and 

anthropogenic factors such as water 183 and land 184 use, as well as pesticide 

application 185,186 can reduce insect availability and therefore affect aerial insectivores 

such as bats.  

 

Among the few multi-year molecular diet analyses of North American bats, local 

compositional variability was observed both within and between seasons at the same 

location in little brown 57,58 and big brown 59 bats. Because these multi-year 

assessments were conducted at a single site for each species, more data are needed to 

determine whether bats in other locations will display similarly diverse foraging patterns 

across sampling years, or if diets will be relatively consistent from year over year. 

Additionally, temporal variability was assessed in just three time intervals for both 

studies, reflecting phases of pregnancy (May to mid-June), lactation (mid-June to mid-
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July), and post-lactation (mid-July to September) where energetic and dietary changes 

are known to vary 187–189. Nevertheless, these relatively long sampling windows may 

smooth otherwise more volatile patterns in the prey consumed and may bias against the 

particularly ephemeral taxa with limited adult lifespans.  

 

We were therefore motivated to build on these foundational studies and completed a 

two-year sampling regime that targeted multiple sites across southern and central New 

Hampshire, USA. Guano from primarily little brown bats was passively collected weekly 

at 20 locations in 2015 and 2016, seven of which were sampled in both years (although 

only three of these sites had at least 2 months of overlapping sampling periods). Our 

study had three main objectives: first, assess the dietary breadth of these bats across 

all of our locations; second, compare the extent with which bat diets vary along temporal 

and spatial gradients; and third, identify what, if any taxa consumed by these bats were 

pest species. We discuss how guano sampling can be used to simultaneously deepen 

our understanding of the dietary flexibility of a species, inform conservation efforts by 

identifying the foraging habitats, and identify potential forest or agricultural pests in an 

area. 

 

METHODS 

 

Sample Collection 

Individual guano pellets were passively collected at sites throughout New Hampshire 

(Figure 15) beginning June 2015. We relied on citizen scientists to assist with collecting 

samples at 19 of the 20 sites. These locations consisted of a mix of forest and 
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agricultural landscapes typical of the region. We obtained data at a nature center (HOL), 

a forest research station (FOX), conservation lands (BRN, MAP, MAS, WLD), and 

privately-owned homes (all other sites) from colonies occupying structures such as 

attics, barns, garages, and bat houses. Volunteers were provided with supplies 

(forceps, dust masks, nitrile gloves, ethanol wipes, plastic sheets), and were instructed 

to collect 10 fresh guano samples by transferring individual pellets into the pre-filled 

microcentrifuge tubes containing 1 mL storage buffer (3.5M ammonium sulfate, 16.7 

mM sodium citrate, 13.3 mM EDTA, pH 5.2). Plastic sheets were replaced weekly to 

avoid cross contamination over the season, and samples were shipped in batches back 

to our lab approximately every month. Samples were then stored at -80 °C until DNA 

extraction. 

 

Mock Community 

In addition to sequencing bat guano, we included a biological mock sample with each 

library to assist in sequence quality control following Jusino et al. (2019), whereby DNA 

extracted from voucher arthropod specimen was amplified using ANML primers. PCR 

products were cloned into plasmid vectors and Sanger sequenced to match specimen 

taxonomy with sequence identity. Taxonomic identities were initially assigned by a 

trained entomologist’s visual identification. More exclusive taxonomic levels that could 

not be distinguished by the taxonomists were added by manually aligning full length COI 

Sanger sequence data to NCBI’s nt database. Sequences were required to have at 

least 98% identity and 92% coverage to be named to the species level. Any instance in 

which multiple best hits were available resulted in removing the species classification 
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(this occurred in just one instance). In addition, we removed a single instance in which a 

mock sample had a single best hit as "Sp. 1ES" despite being unambiguous because 

other references in our database and on NCBI suggested there are other "Sp." names 

that did not clearly identify this record as a single species. 

 

Metabarcoding 

DNA was extracted from individual guano pellets using 96-well plate format of the 

Qiagen DNEasy PowerSoil Kit (Qiagen, Hilden, Germany) following manufacturer 

guidelines. Samples were eluted with 60 µL of elution buffer and up to eight extraction 

blanks were included per 96-well plate.  

 

Arthropod COI gene fragments were targeted for amplification using primers detailed in 

Justino et al. 32. We modified the original primer sequences to preserve the COI-specific 

regions, but integrated linker, pad, adapter, and barcode sequences into the oligo 

following Kozich et al. 88. The construct below illustrates these modifications: underlined 

portions indicate the Illumina primer, the square brackets indicate the 8mer barcode, 

and the bold section indicates the COI-specific portion: 

 

ANMLxF:  

5’-AATGATACGGCGACCACCGAGATCTACAC[ATCGTACG]TATGGTAATTCGGGTCAACAAATCATAAAGATATTGG-3’ 

ANMLxR:  

5’-CAAGCAGAAGACGGCATACGAGAT[AACTCTCG]AGTCAGTCAGCCGGWACTAATCAATTTCCAAATCC-3’ 
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A complete list of all primer pairs used is available: 

https://raw.githubusercontent.com/devonorourke/nhguano/master/docs/primer_pairs.txt. 

 

We used 25 µL reactions with 10 µL of extracted DNA, 1 µL each of 10 mM forward and 

reverse primer pairs, and 13 µL of AccuStart II PCR SuperMix (Quanta BioSciences, 

Gaithersburg, MD, USA). Mock community samples were amplified using a distinct 

primer pair that was not used on any guano samples for any libraries in this study. 

Furthermore, mock samples were amplified in a separate reaction from guano samples 

to avoid any potential cross contamination. For the mock samples, 1 µL of template 

DNA (10 ng/uL) with 9 µL of nuclease free water was used in lieu of 10 µL of guano 

extract. Reaction conditions consisted of an initial 2 min denaturation at 95 °C, followed 

by 30 cycles of 20 s at 95 °C, 15 s at 50 °C, and 60 s at 72 °C and finally a 10 min 

extension at 72 °C.  

 

PCR products were quantified using a PicoGreen assay (Invitrogen, Carlsbad, CA, 

USA) with a Tecan plate reader using excitation and emission wavelengths of 480 nm 

and 520 nm, respectively (Tecan Group, Männedorf, Switzerland). Samples were 

pooled in approximately equimolar ratios; because there were hundreds of samples 

pooled in a single library, the exact expected equimolar volumes were rounded to the 

nearest bin (bin sizes set at 0.5, 0.75, 1.0, 1.25, 1.5, 2.0, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 

9.5, 10, 15, or 20 µL). Extraction blanks or guano samples with detectable DNA that 

exceeded the maximum pool bin volume were included at a fixed volume of 20 µL. The 
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initial pool volume was reduced with a vacuum concentrator to approximately 2 mL and 

was cleaned with a QIAquick PCR purification kit (Qiagen, Hilden, Germany); libraries 

were eluted in 30 µL elution buffer. Libraries were quantified with a Qubit High 

Sensitivity assay (Thermo Fisher Scientific, Waltham, MA, USA) and fragment sizes 

were analyzed using TapeStation D1000 ScreenTape (Agilent Technologies, Santa 

Clara, CA, USA). A single mock community sample was included in eight of the nine 

libraries sequenced.  

 

Three libraries containing samples from 2015 were sequenced at the University of New 

Hampshire on an Illumina (Illumina, San Diego, CA, USA) HiSeq platform using v2 

chemistry with 500 cycles of 2x250 bp paired-end read lengths. Six libraries containing 

samples collected in 2016 were sequenced on a MiSeq machine at TGen North using 

v3 chemistry with 600 cycles of 2x300 bp paired-end reads. Raw sequence reads are 

available through NCBI: see BioProjects PRJNA518082 and PRJNA560640 

 (e.g. https://www.ncbi.nlm.nih.gov/bioproject/ PRJNA560640).  

 

 

Sequence processing 

Raw demultiplexed sequences were trimmed using Cutadapt v-2.3 89. We imported 

trimmed paired-end reads into a QIIME 2 environment 62 and used the ‘qiime demux 

summarize’ function to visualize per-base quality scores. Libraries consisted of similarly 

hiqh quality profiles for both forward and reverse reads, except the tail of each read 

diminished in quality because our amplicons were shorter than the length of the Illumina 
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reads. We used DADA2 v1.10.0 71 to denoise and join paired end data with the QIIME 2 

q2-dada2 function ‘qiime dada2 denoise-paired’, resulting in a particular set of 

representative amplicon sequence variants (ASVs) for each library. These library-

specific sequences and ASV tables were merged into a single dataset. Complete details 

regarding sequencing processing steps are described at the GitHub repo for this 

project: https://github.com/devonorourke/nhguano/blob/master/docs/sequence_processing.md.  

 

Sequence quality control and bat host identification 

We included non-template controls (NTCs) and positive controls (a biological mock 

community) in each library and performed a contamination reduction to account for 

potential reagent contamination or platform cross talk. A portion of this workflow 

included classifying the sequence variants detected in the DADA2-pipeline using 

VSEARCH 85 alignment to a custom host database including bat species known to 

occupy the study area (principally New Hampshire, but also other states in New 

England and New York; detailed below). This purpose was two-fold: first, to remove any 

host or suspected chimeric sequences with host DNA from subsequent diet analyses; 

and second, because we passively collected samples below roosts were interested in 

determining whether the previous visual surveys of bats matched the molecular 

classifications. However, because few bat sequences were detected with this method, 

we classified the same dataset with a broader COI database using two different 

methods: VSEARCH and a Naive Bayes classifier available as a QIIME plugin 87. These 

two approaches assigned the little brown bat to 595 of the 596 samples with bat-

classified sequence variants (just one sample contained a different North American bat, 
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Lasiurus borealis). Furthermore, one M. lucifugus ASV was among the most abundant, 

generating approximately 5% of all sequences among the nine libraries in our study. 

Visual surveys conducted in 2010 at a few of the sampling sites detected a mix of little 

brown and big brown bat species inhabiting these sites, and the proportion of little 

brown sequences was disproportionate to some of the sites, despite a relatively even 

sampling intensity at other sites where few or no little brown sequence data were 

detected. Therefore, we proceeded with our analyses but acknowledge that other bat 

species may have contributed a small portion of these samples at certain sites. Our 

molecular data, combined with our own visual surveys, suggest that our diet analyses 

are exclusively from little brown bats at the following locations: ALS, CHI, CNB, EPS, 

FOX, HOL, PEN, WLD. Other sites with robust sampling intensity—particularly BRN, 

MAP, MTV, and HOP—that lack conclusive molecular information may contain fecal 

samples from other bat species, most likely the big brown bat, although none of our 

sequence information identified this species. We documented the sequence quality 

control steps in a separate document: 

https://github.com/devonorourke/nhguano/blob/master/docs/decontam_workflow.md. 

In addition, we provide information regarding the COI database designs as well for host: 

https://github.com/devonorourke/nhguano/blob/master/docs/hostCOI_database_design.md.  

We also include information for the broad COI database: 

https://github.com/devonorourke/nhguano/blob/master/docs/broadCOI_database_design.md. 

 

Diversity estimates 

Mock and negative control samples were removed from the original merged dataset and 

the remaining bat guano samples were then used as input into a pair of QIIME 2 
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functions to determine an appropriate sampling depth for normalization. We generated a 

summary table with ‘qiime feature-table summarize’ and calculated bootstrapped 

estimates of richness per sample across a range of sampling depths from 500 to 5000 

reads with the ‘qiime diversity alpha-rarefaction’ function. Samples were then rarefied to 

our selected sampling depth of 1000 reads, a depth that retained as many samples with 

as much sequence diversity as possible. Among these remaining samples, we grouped 

collection periods into 14-day windows and retained only those samples where there 

were at least two samples at a given site and window group. Following rarefying and 

site filtering, 18 of 20 sites had sufficient sampling depth and breadth for further analysis 

(data from ROL and GRN were discarded) and retained a median of 5 samples per site 

per window for remaining sites. 

 

All diversity estimates were performed with QIIME 2. The remaining rarefied samples 

were used to calculate richness, Shannon’s entropy, and Faith’s phylogenetic diversity 

190. Analysis of variance for each diversity measure were conducted and a post hoc 

Tukey summary was performed with R v-3.5.3 93 using RStudio v-1.2.1335 191. We next 

calculated differences in community composition for nine sites from 2016 that were the 

most consistently sampled locations using weighted and unweighted metrics (Dice-

Sorensen, Bray-Curtis, unweighted Unifrac, weighted Unifrac. We tested group 

significance of site and window (collection period) main effects in R using the Vegan 

‘adonis’ function. Principal coordinates analysis was conducted for each distance 

estimate. The rooted tree used in the weighted-phylogenetic diversity measures was 

calculated using the QIIME 2 implementation of Fast Tree 192 and MAFFT 193, while 
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Unifrac was used for phylogenetically-weighted distance estimates 115,155–158. Additional 

documentation for the QIIME functions executed in these diversity analyses are 

available: https://github.com/devonorourke/nhguano/blob/master/docs/diversity_analyses.md. 

A custom R script was used in statistical analyses and to create visualizations: 

https://github.com/devonorourke/nhguano/blob/master/scripts/r_scripts/NH_diversity.R.  

This same script was also used to compare the abundances of sequence variants 

among sites sampled in both years. Statistical analyses for all diversity measures are 

included in a single directory: 

https://github.com/devonorourke/nhguano/tree/master/data/stats.  

 

Pest Analysis 

To identify whether the taxa classified in our dataset were considered forest or 

agricultural pests, we cross referenced lists maintained by the United States Forest 

Service (USFS) and the United States Department of Agriculture (USDA). We used a 

custom R script to perform the comparisons, which were restricted to first identifying 

how many sequence variants were exact species matches, then expanding the search 

to identify instances in which common genera were shared. This was done because 

there were instances in which the USDA did listed taxa as ambiguous species (e.g. 

Malacosoma sp.) thus even if we classified our taxa to a species level, an exact match 

was not possible. See the custom script for details: 

https://github.com/devonorourke/nhguano/blob/master/scripts/r_scripts/pest_work.R. 

 

Additional software 
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Note that additional software within the QIIME environment such as Pandas 159  and 

BIOM 160 were used, as was a suite of R libraries including ape 163, decontam 194, 

formattable 167, qiime2R 94, geofacet 195, gganimate 161, ggmap 196, ggpubr 105, ggrepel 

106, htmltools 197, lubridate 198, phyloseq 97, qiime2R 94, reshape2 96, scales 109, tidyverse 

95, vegan 98, webshot 199. 

 

 

RESULTS 

 

Dietary breadth  

In collaboration with citizen scientists at 20 New Hampshire locations (Figure 15), we 

passively collected nearly 2,500 bat guano samples each summer, from June to August 

2015, and April to October 2016. We analyzed sequence data for over 900 of these 

samples at 18 sites (Table S31) that contained at least 1000 arthropod-classified reads. 

The final dataset includes 12 arthropod orders identified in at least 1% of samples, 

although the largest fraction of sequence and taxonomic diversity was observed among 

just three orders: Coleoptera, Diptera, and Lepidoptera (Table 2). Beetles, flies, and 

moths accounted for over 87% of sequences and 78% of sequence variants among 

these 12 arthropod orders. Among all bat fecal samples we observed many distinct 

genera within Coleoptera (25), Diptera (25), and Lepidoptera (26) orders, while we 

detected fewer genera in other orders like Ephemeroptera (7), Trichoptera (5), or 

Hemiptera (4) (Table S32). Importantly, most of the taxa that were consistently 

prevalent in diets throughout each season were beetle, fly, and moth taxa, indicating 
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that bats are foraging on a diverse assortment of many genera within these three orders 

at most sites and most times. Overall, the extensive diversity of prey consumed by 

these bats—particularly among beetle, fly, and moth taxa—is neither limited to a few 

locations or moments in the season. 

 

Diversity estimates 

While we observed thousands of distinct sequence variants assigned to one of 12 

arthropod orders, individual samples generally contained relatively few observed 

sequence variants (median=14, mean=20.2, SD±22.5). Among the top half of the most 

heavily sampled sites in 2016 (n=9) elevated richness was infrequently detected at 

different time intervals at different sites (Figure 16). Species richness differed 

significantly by site (F(8,451) = 8.496, MSE = 2191.0, p < 0.001) and collection date 

(F(15,451) = 5.083, MSE = 1310.8, p < 0.001) as well as the interaction term (F(54,451) = 

1.525, MSE = 393.2, p = 0.0126). Overall, most had similar levels of richness 

throughout their sampling periods, and a Tukey’s post hoc test suggested that 

significant differences (adjusted for multiple comparisons) were attributed to just three of 

the nine sites tested: CNB, MAP, and PEN (Figure S34). Each of these three sites had 

higher richness at distinct sampling weeks compared to other sites, suggesting that prey 

availability is likely site specific.  

 

We also compared within-sample diversity between sites using measures that include 

abundance (Shannon’s entropy) and phylogenetic (Faith’s PD) information (Figure 

S23). Shannon’s diversity differed significantly by site (F(8,451) = 7.125, MSE = 6.893, p 
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< 0.001) and collection date (F(15,451) = 3.053, MSE = 2.954, p < 0.001) as well as the 

interaction term (F(54,451) = 1.486, MSE = 1.438, p = 0.0179). Most pairwise differences 

in Shannon’s diversity between sites were not significant at the p < 0.05 significance 

level (Figure S35). Faith’s PD differed significantly by site (F(8,451) = 7.125, MSE = 

6.893, p < 0.001) and collection date (F(15,451) = 3.053, MSE = 2.954, p < 0.001) as well 

as the interaction term (F(54,451) = 1.486, MSE = 1.438, p = 0.0179). Unlike Shannon’s or 

observed diversity estimates, half (18 of 36) of the pairwise comparisons for Faith’s PD 

estimates were significant at the p < 0.05 alpha level (Figure S36). 

 

Notably, inferences using abundances based on sequence counts may be complicated 

by the large proportion of sequences attributed to just one or two ASVs per sample 

(Figure S24). Even among ASVs repeatedly sequenced in many samples, we found a 

bimodal distribution of proportions of reads per sample (Figure S25). Sampling guano 

from single pellets can result in some instances of relatively high diversity, though it 

appears that most samples contain only a minor fraction of the overall richness of the 

entire dataset, and that distributions of sequence counts are often highly uneven. 

 

Our repeated sampling efforts also provided an opportunity to examine variation in prey 

composition among sites and years. Among sites surveyed in both 2015 and 2016, the 

most prevalent ASVs in any single year were also detected in both years, while ASVs 

detected only in either 2015 or 2016 only were detected in no more than four samples in 

a year (Figure S26). Many ASVs detected in both years are beetles (e.g. ASV’s 1 and 5 

are present in each of the six locations both years). Other arthropods were repeatedly 
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observed at particular sites with varying detection frequencies. For example, 

trichopteran ASVs classified as Phryganea sayi were identified in 18 samples in one 

location (HOP), 7 samples at another (MTV), but only in three or fewer samples at six 

other locations.  

 

We observed substantial variation among arthropod orders across sites and sampling 

windows whether we treated these data as relative abundances of sequences (Figure 

S27) or by transforming sequences into a presence-absence context and evaluating the 

proportions of order-level detections (Figure 17). Among all samples, beetle, moth, and 

fly taxa were generally prevalent, however the particular proportions of these and other 

arthropod orders varied in distinct ways among collection sites and dates. For example, 

sequences may have largely been from beetles in most samples at a site for both years 

(e.g. MAP), or contained a more diverse mixture of order-level compositions between 

years (e.g. FOX) (Figure 17). Some sites may have contained a larger fraction of an 

order not widely detected among other sites. For instance, samples from Holderness 

(HOL) in 2016 repeatedly contain a larger fraction of Ephemeroptera than most other 

sites. However, the relatively larger fraction of mayflies are more frequent earlier in the 

season at HOL, in contrast to the larger proportion increasing towards mid-summer in 

Cornish (COR). There is less seasonal variability within a given site and year when 

treating data as proportions of detections (Figure 17) rather than abundances (Figure 

S27), but order-level compositions among locations are distinct for both analyses, and 

highlight a trend of site-specific foraging patterns. Whether data are viewed in terms of 

abundances of or detections of arthropod orders, bats foraging in New Hampshire 
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landscapes consume a diverse diet in distinctly local fashions that change throughout 

the season. 

 

While order-level comparisons reveal broad dietary patterns, they lack the resolution to 

detect if the same taxa within an order are repeatedly consumed spatially and 

temporally. We tested whether the community composition of ASVs varied among the 

nine most intensively sampled locations in 2016, and found significant main effects for 

site (R2 = 0.09, p ≤ 0.001) and sampling date (R2 = 0.01, p = 0.002), as well as their 

interaction (R2 = 0.05, p ≤ 0.001) using weighted Unifrac distance estimates. We found 

similar significant main effect and interaction patterns among the three other metrics 

tested (Table S33), although weighted Unifrac explained a larger proportion of variation 

on the first two principal components axes (45.5%) than Dice-Sorensen (14.5%), Bray-

Curtis (20.1%), or unweighted Unifrac (17.7%) estimates (Figure S28). These distance 

measures collectively suggest that there is no simple association explaining diet 

composition across spatial or temporal dimensions. Nevertheless, the relatively larger 

proportion of variation captured by the weighted Unifrac measure suggests that both 

sequence variant abundance and evolutionary relationships are important factors 

associated with shared sampling date and locations. Indeed, the resulting biplot 

ordination using the weighted Unifrac distances suggest that some particular sampling 

periods and locations are associated with particular taxa (Figure 18). For instance, a 

pair of Ephemeroptera species (ASV-15, Stenonema femoratum; ASV-17, Hexagenia 

limbata) are strongly associated with spring and summer samples in Holderness (HOL) 

and Penacook (PEN), two locations that border large water bodies (Squam Lake and 
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the Merrimack River, respectively). However, other samples with strong associations to 

particular ASVs did not share any obvious pattern of site specificity or sampling date. 

For example, scarab beetles of the genus Phyllophaga (ASVs 2, 7, 11) are prevalent 

among samples spanning multiple locations and dates. Overall, this major finding of 

variability in diet across space and time is observed in both order-level and ASV 

perspectives, though a molecular approach indicates an even greater variability 

because of instances in which distinct taxa within a common order are consumed 

between distinct sites or locations.  

 

Pest detections 

Despite the extensive diversity among bats, a common theme emerged across locations 

and dates: bats consistently foraged on some pest species. In fact, the most abundant 

groups of arthropods detected in this study were known turf and forest beetle pests: the 

Asiatic garden beetle, Maladera castanea, and white grubs of the genus Phyllophaga 

(Table 3). While M. castanea (325 samples) and Phyllophaga spp. (469 samples) were 

repeatedly detected in this study, there were few total pest species detected overall, 

and all other pests detections were rare—typically less than 1% of all samples. In 

addition, all were known to exist in the Northeast, though several had not been recorded 

in New Hampshire specifically, according to records available through the Insect and 

Arachnid Collections at the University of New Hampshire 200. We broadened our search 

parameters to include those genera observed in our dataset that matched the genera 

listed as pests by the USFS and USDA: these need not be exact species matches, and 

only those instances where exact species matches exist are denoted in the table. Many 
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of the taxa observed in bat diets that matched to some pest genera were unable to be 

classified to species-level (these are labeled in the table as ‘Ambiguous’), illustrating 

one of the challenges in using short amplicon sequences. While smaller fragments are 

less likely to be degraded, there are fewer base pairs to discriminate among closely 

related taxa. In some cases, it may be evident that this ambiguous classification is not a 

large concern. For example, while there are five known species in the Coleotechnites 

genus in New Hampshire, the significant forest pest, Coleotechnites milleri, is not one of 

them, and the host tree does not exist on the east coast. However, in other cases such 

as with the genus Dendroctonus it is not clear whether this ambiguous sequence is 

derived from one of the three endemic bark beetles, or if it represents a more 

concerning species such as D. mexicanus. Collectively, these results demonstrate bats 

providing ecosystem services across New Hampshire, and illustrate that guano 

sampling may be an important tool for detecting both expected and unknown forest and 

agricultural pests.  

 

 

DISCUSSION 

 

Our study reaffirmed that bats in New Hampshire are foraging predominantly on 

beetles, flies, and moths described in earlier studies using morphological analyses 

176,189. However, our molecular approach illustrates that bats consume hundreds of 

unique species from at least 12 orders of insects and spiders, indicating a more 

expansive niche-breadth than previously understood (Table 2). Metabarcoding 
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techniques can reveal previously unrecognized taxa 18,20, and indeed we identified taxa 

among Blattodea, Psocodea, and Megaloptera that were not identified using 

morphological approaches, despite many of the species commonly occurring in New 

Hampshire. For example, cockroaches such as Periplaneta fuliginosa and Parcoblatta 

pennsylvanica, or fishflies such as Chauliodes pectinicornis, are endemic to the state 

and were frequently detected in our guano analyses. Our molecular approach provides 

strong evidence that these insectivorous bats are capable of consuming a highly diverse 

assortment of prey.   

 

Bat diets are not only diverse, but our longitudinal, multi-site analysis suggests that the 

particular composition of prey varies depending on when and where a sample is 

collected, consistent with earlier studies by Clare 57-59. A detection-based perspective of 

order-level compositions suggested that bats in most sites are consuming some 

proportion of flies and beetles for most sampling periods, but the particular proportions 

could vary distinctly among different sites across sampling weeks (Figure 17). For 

example, while samples from a site in east Canterbury (CNB) in 2016 shifted from flies 

to beetles in early to mid-summer, another site just 12 km west (PEN) contained a 

larger proportion of beetle detections than flies over the same period. Among the sites 

in 2016 that demonstrated a reduction in beetle detections towards late-summer and 

fall, we observed increased detections for other orders such as flies, caddisflies, moths, 

barklice, and true bugs, but the particular proportions among taxa differed among sites 

and sampling periods.  
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Compositional differences are further complicated by the fact that bat diets comprise a 

mixture of common and rare taxa. Some genera of prey are detected in most sites and 

in most sampling periods, and while many of these genera are beetles, some taxa in 

other orders are also quite common (Table S32). Because we lacked information about 

prey availability, it is unclear if the increased frequency of particular genera reflect 

dietary preferences or are simply more abundant among collection locations and dates. 

For examples of studies measuring prey availability, see Vesterinen et al. 123 and 

Agosta et al. 174, where they found particular arthropod preferences for individual bat 

species. Nevertheless, some insects have relatively limited adult lifespans, and we 

suspect that the changes in detection frequencies for some taxa may reflect 

opportunistic foraging. For instance, mayflies such as Hexagenia limbata, Stenonema 

femoratum, and Stenacron interpunctatum are known to emerge in swarms as adults, 

and we detect these species in multiple samples in late spring at some locations (e.g. 

PEN and HOL), in early summer at others (e.g. HOL and CNB), and in late summer and 

fall at other locations (e.g. ALS, HOP). We observed that bat diets contain some shared 

components—most samples will have some fraction of beetles, flies, and moths 

detected—but their particular compositions appear to be locally and seasonally 

sensitive, consistent with what has been previously reported for little brown 57,58 and big 

brown 59 bats. 

 

Greater diversity occurred within and among samples at the level of individual ASVs as 

compared to arthropod orders. There were hundreds of potential species consumed by 

bats throughout the entire study, for instance (Table 2). However, most samples 
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generally contained only a small fraction of these ASVs—mean ASVs per sample 

among sites ranged from a median of 7 to 32 ASVs (Figure 16). The low observed 

species richness per sample relative to the larger pool of ASVs detected throughout the 

entire study may be attributed to the fact that we chose to sequence individual pellets 

rather than bulk samples. Nevertheless, these richness values are similar to earlier 

studies of little brown 58 and big brown 59 diets that used a bulk sampling approach, as 

well as other North American insectivore richness values sampling from individual bats 

25.  

 

We also evaluated alpha diversity using Shannon’s entropy and Faith’s PD to compare 

observed richness to other measures that include abundance and phylogenetic 

information. The highly uneven distribution of sequence counts among ASVs likely 

contributed to the increased variability in observed richness estimates among samples 

compared to Shannon’s entropy. Interestingly, the observed richness was not 

necessarily indicative of dietary complexity as measured by Faith’s PD values-a metric 

that incorporates sequence identities when evaluating the distinctiveness of the 

community of ASVs within a sample. For example, multiple samples from west 

Canterbury contained more than 30 ASVs in several sampling windows, yet the same 

samples generally had low Faith’s PD values, because nearly all of these sequence 

variants were some type of beetle (Figure 17). In other sites, relatively low richness 

values were observed, but these samples contained some of the more evolutionarily 

diverse assortment of prey, such as in Holderness, where the few ASVs per sample 

observed consisted of a complex mix of mayflies, beetles, spiders, flies, moths, and 
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other orders. In other locations the trajectories of per-sample richness matched changes 

in Faith’s PD values (e.g. FOX).  

 

An ASV-level analysis can reveal changes in intrasample diversity at a fine scale that 

order-level summaries may otherwise obscure. Diversity, as measured by any of the 

metrics we explored, change across season, though the particular trajectories of these 

changes can vary among locations. 

 

We found limited evidence for ASV compositions to reflect strong spatial or temporal 

associations. We focused on the most frequently sampled sites in 2016 and found that 

the main effects of site and sampling dates, as well as their interaction component, were 

significant for every distance estimate calculated (Table S33), though the effect sizes 

were generally small: residual R2 for each metric was ≥ 0.85. These small differences 

reflect a challenge analyzing differences among samples using ASVs versus a more 

inclusive taxonomic ranks like arthropod order: while ASVs can elucidate differences 

between samples that are identical at an order level, just 28% of the ASVs we detected 

were present in more than one sample, and only 33% of ASVs were detected in multiple 

samples. The result is a very sparse matrix where most samples have few shared 

ASVs. Subsequent ordinations of distance matrices following principal components 

analysis illustrated that group differences are greatest among samples collected 

towards the beginning or end of the sampling season (Figure S28). Additionally, we 

found that including sequence abundances and phylogenetic information captured the 

more variation among the first two principal components than analyses using neither or 
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just one of the two information types, indicating that while ASV-level analyses can 

exacerbate differences among samples compared to order-level comparisons. Using 

information about abundances and evolutionary relatedness may prove helpful when 

evaluating compositional data. For example, the biplot created using distances 

calculated from a weighted Unifrac metric illustrated that some of the most repeatedly 

detected taxa need not be associated to a particular site or date (Figure 18). 

Nevertheless, despite the most variation being captured by the weighted Unifrac 

distance metric, further research is needed to better understand how to relate biomass 

of prey in bat guano to the observed sequencing output—feeding studies as well as 

biological mock experiments are two such experimental approaches that will prove 

informative.  

 

In fact, incorporating quantitative analyses in animal diets remains an area of ongoing 

debate, as many potential steps in a typical workflow have been shown to affect the 

relationship between proportions of biomass to the observed sequence counts in a 

sample 19,20,26. However, development of novel arthropod COI primer sequences 32 have 

improved upon previously suspected biases 31, reducing the likelihood that differences 

in sequence counts are a result of preferential annealing. In fact, we found little 

evidence of taxonomic bias using the primers developed by Jusino et al. 32. Multiple 

orders have the capacity to generate abundant reads for individual ASVs (Figure S24-

S25), and while many of the most highly amplified and frequently detected ASVs were 

beetles, flies, and moths, 10 of 12 orders have at least one ASV among the 95th 

percentile of per-ASV abundance (~5100 sequences per ASV). Additionally, among the 



 121 

most highly sequenced samples (the most abundant sample in three independent 

weeks per site), the most abundant ASV within a given sample could be from one of 

seven orders. Therefore, while we were more likely to detect a highly abundant beetle, 

fly, or moth sequence, this likely had more to do with prey consumption than primer 

bias.  

 

Interestingly, a few of the most prevalent ASVs were pests. Bats are known to provide 

ecosystem services 204, and insectivorous bats can provide significant economic 

benefits 205 as consumers of pests in a variety of agricultural and forested environments 

32,169,206,207. We sampled in sites throughout New Hampshire that encompassed a mix of 

land cover types including beech/oak forests, deciduous and evergreen mixed forests, 

agricultural lands, and water bodies 208. Two pests we observed repeatedly: the Asiatic 

garden beetle (325 samples detected) and a genus of white pine grubs (429 samples). 

These are known turf and forests pests, respectively, but are of limited concern and 

both were known to exist in New Hampshire (Table 3). Other exact pest species 

matches were generally rare and included a mix of agricultural pests such as forest tent 

caterpillar (22 samples) and forest pests like the White-spotted pine sawyer (23 

samples). Nevertheless, while we did not observe a large number of pest species, we 

are likely underestimating the number of pests these bats consumed because 

identifying exact pest matches is impeded by the procedure used to classify the ASVs. 

Many ASVs could be classified only to genus or family level because multiple best 

alignment references contained disparate taxonomic identities. As a result, only their 

shared information was retained and the remaining ambiguous portion was unclassified 
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(see the ‘Ambiguous’ species detected in Table 3). Thus, there are likely pests that 

happen to share sufficient sequence homology to closely related non pests that make 

identifying particular pest species unlikely using these molecular techniques. Finally, 

while few overall species matches were obtained, we obtained a more diverse list by 

expanding the search to include common genus-level matches for known pests. It is 

uncertain if bats would consume the non-native species of their endemic relatives, but 

assuming they share similar life histories, it appears likely given the flexible foraging 

capacity exhibited by these bats. Because of the ease with which guano is collected and 

the relatively inexpensive manner that sequence data can be obtained, molecular 

analyses can be used to provide both a broad characterization of the species diet and 

act as an initial screen for potential pests of concern.   

 

Collecting guano each week at multiple sites was necessary to examine the extent of 

local variation in bat foraging patterns, yet it would not have been possible without 

collaborating with many dedicated citizen scientists. There is a paucity of molecular diet 

information for most North American bats (and indeed, bats globally), and connecting 

interested volunteers with researchers can rapidly expand our basic understanding of 

what prey these bats are consuming at the local level. These partnerships may be 

essential because bats often occupy private landscapes. For example, the majority 

(73%) of forested land in New Hampshire is owned privately 209, thus a study interested 

in using bat guano to broadly surveil forest pests is likely going to require the 

cooperation with its citizens. Our partnerships with volunteers resulted in the discovery 

of highly flexible foraging patterns in the little brown bat in New Hampshire. This is a 
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positive sign for these populations that have survived white-nose syndrome and may be 

on the road to recovery. Molecular diet analyses can provide valuable information to 

rapidly monitor the health of these and other bat populations, particularly as we gather 

data on how their diets may be changing over time. 
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TABLES 
 
 

 

 
  
Table 2.  Dietary breadth of New Hampshire bats. Consumed prey among 2015 and 2016 samples 
collected from New Hampshire bats includes 12 distinct arthropod orders present in at least 1% of 
samples. Coleoptera, Diptera, and Lepidoptera orders contained the greatest proportion of taxonomic 
diversity, while Trichoptera, Ephemeroptera, Hemiptera, and Aranae orders each had more than twenty 
species detected. While megalopteran taxa contained many ASVs, these sequence variants were nearly 
completely classified to just three species, indicating that while this order is frequently sampled by bats, 
the same few species of fishflies are repeatedly targeted. 
   



 125 

 
Order Genus Samples Sites Species detected 
Coleoptera Phyllophaga 469 18 P. anxia+ (213), crassissima (1), drakii+ (12), fervida (1), 

fosteri+ (4), foxii (1), hirsuta (257), hirticula+ (29), ilicis (1), 
marginalis+ (10), tristis+ (28), Ambiguous (390) 

Coleoptera Maladera 325 18 M. castanea+ (325) 
Coleoptera Monochamus 45 12 M. scutellatus+ (23), Ambiguous (22) 
Lepidoptera Malacosoma 28 13 M. americanum+ (1), disstria+ (22), Ambiguous (5) 
Lepidoptera Epinotia 27 12 E. criddleana (5), medioviridana+ (1), nisella+ (1), 

solicitana+ (12), transmissana+ (3), Ambiguous (7) 
Lepidoptera Synanthedon 24 10 S. acerni+ (24) 
Lepidoptera Acleris 21 10 A. chalybeana+ (1), logiana+ (2), maccana (1), 

schalleriana+ (2), semipurpurana+ (3), Ambiguous (12) 
Lepidoptera Coleotechnites 19 8 C. atrupictella+ (3), piceaella+ (4), Ambiguous (15) 
Coleoptera Dendroctonus 18 9 D. terebrans (1), Ambiguous (17) 
Lepidoptera Choristoneura 14 10 C. conflictana+* (1), fractivittana+ (1), rosaceana+ (2), 

Ambiguous (10) 
Lepidoptera Coleophora 14 4 Ambiguous (14) 
Hemiptera Aphrophora 12 8 A. canadensis (8), cribrata+ (4), parallela+ (1), Ambiguous 

(10) 
 
 
Table 3. Pest genera detected in bat guano. Sequence variants classified to genera that matched those 
listed by the US Forest Service or US Department of Agriculture are shown below. Exact species matches 
are highlighted in bold, and species endemic to New Hampshire are denoted (+). The most prevalent pest 
genera, Phyllophaga, is listed by the US Forest Service as a complex group, thus no single species is 
highlighted. Species-level classification is limited with this particular COI gene fragment, as many genera 
have more Ambiguous than named species. Numbers of samples detected for each species listed in 
parentheses. Insect pest surveillance with bat guano casts a wide taxonomic net, but additional target-
specific markers are needed for species-level resolution. 
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FIGURES 
 
 

 
 
 
Figure 15. Locations for each of the 20 collection sites. Sampling years (shape and color) and number 
of samples collected each year (point size) are indicated at each geographic position. Guano was 
collected from bats inhabiting barns, garages, or bat houses. While many sites were within 1 km of some 
water body, three locations were directly abutting ponds or lakes: (HOL), (WLD), and (MAS). Site codes 
represent the following New Hampshire towns: ALS, Alsted; BRN, Brown Lane, Hollis; CHI, Chichester; 
CNA, Canterbury; CNB, Canterbury; COR, Cornish; EPS, Epsom; FOX, Fox State Forest, Hillsborough; 
GIL, Gilsum; GRN, Greenfield; HOL, Squam Science Center, Holderness; HOP, Hopkinton, MAP, Maple 
Hill, Hollis; MAS, Massabesic Audubon Center, Auburn; MTV, Mont Vernon; PEN, Penacook; ROL, 
Rollinsford; SWZ, Swanzey; WLD, Willard Pond, Antrim; WLT, Wilton. 
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Figure 16. Observed richness per sample among select 2016 NH sites. Most samples have relatively 
low richness, though some sites contain instances with elevated richness. These can occur at distinct 
sampling periods among sites, likely indicating a local opportunity of increase prey availability. 
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Figure 17. Relative proportions of arthropod COI shown for each site and year across sampling 
windows. Sampling windows (vertical bars) are grouped in 14-day intervals; facet labels indicate sampling 
site and year. Read abundances are transformed into binary detections, and proportions are calculated 
as the number of sequence variants detected within an order relative to the total number of detections of 
all orders across samples in shared site and sampling window groups. Overall patterns suggest distinctly 
local diet foraging patterns: among 2016 sites, samples can be a balance of beetles, flies, and moths 
(e.g. FOX) or predominantly beetle (e.g. MAP or CNA). While the overall proportion of beetle detections in 
2016 samples are reduced into late-summer and fall, distinct orders replace beetle taxa at different sites: 
FOX is replaced largely with flies, CNB has more moths, while CHI has more complex mix of true 
bugs, caddisflies, and barklice. 
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Figure 18. Principal coordinates analysis biplot using weighted Unifrac. The PCoA biplot shows the 
relationship of arthropod COI sequence composition for the dates in which selected 2016 samples were 
collected (color) at each location (abbreviated text). These nine sites examined were among the most 
intensively sampled 2016 locations with the most consistent overlap in sampling windows. The black 
arrows indicate the relative magnitude of species scores (i.e. individual ASVs); the inset figure denotes 
the particular sequence variant and its assigned arthropod Order. Samples collected in early spring in 
Holderness (HOL) for example, are most clearly associated with particular mayfly species. While the first 
principal component explains a large fraction of variation of the data, a PERMANOVA test of main effects 
for location (r = 0.09, P ≤ 0.005), date (r ≤ 0.01, P ≤ 0.005), and their interaction (r = 0.09, P ≤ 0.005) 
suggest that the diets are extremely variable throughout the season, even among sites in relatively close 
(< 10 km) proximity.  
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APPENDIX 
 
 

SUPPLEMENTARY TABLES 
 
 
 

Site Town                                  Samples 
ALS  Alstead, NH      120 
BRN Brown Lane, Hollis, NH    178 
CHI Chichester, NH        92 
CNB Canterbury, NH       162 
EPS Epsom, NH        85 
FAR Fairfield, ME       52 
FOX Fox State Forest, Hillsborough, NH   177 
GIL Gilsum, NH        44 
HOL Holderness, NH      165 
HOP Hopkinton, NH      182 
MAP Maple Hill, Hollis, NH     209 
MAS Massabseic Lake, Auburn, NH    85 
MTV Mont Vernon, NH       91 
PEN Penacook, NH        47 
ROL Rollinsford, NH       13 
 
 
Table S1. Guano samples collected per location. Guano samples were passively collected from 15 sites 
in New Hampshire (14) and Maine (1) in 2016. The following table includes the site abbreviation used in 
Figure S1, the town name where samples were collected, and the number of samples sequenced from 
each site. 
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Table S2. Summary of per-library or per-Pipeline overlaps in shared ASVs. Shared ASVs within a library 
(orange, left to right) reflect those sequences common across all filtering pipelines. Shared ASVs within a 
pipeline (blue, top to bottom) reflect sequences common across all mock community samples/libraries. 
Tables are grouped by vertical faceting reflecting filtering parameters: “Basic” represents default 
parameters for each filtering method; “Standard” requires a sample to have > 5000 reads, and an OTU to 
be present in > 1 sample; “Extra” includes “Standard” filters in addition to subtracting a fixed number of 
reads from all observations. Horizontal faceting describes how detected sequence variants in a mock 
sample aligned to expected mock community reference sequences: “Exact” are 100% identity matches; 
“Partial” are 97-99.9% identical; “Miss” are less than 97% identical to a reference. 
DADA2 and Deblur identify between 22 to 23 (of 24 possible) “Exact” sequences, while VSEARCH 
identifies fewer, whether or not additional filtering is applied. The remaining 1 or 2 expected ASV 
sequences are detected as “Partial” matches in every sequencing pipeline, regardless of filtering strategy. 
“Miss” ASVs are much more abundant in a VSEARCH AND Deblur than DADA2 for “basic” and 
“standard” filtering parameters. Among denoising “Miss” ASVs, no sequence occurs in multiple libraries, 
suggesting these ASVs are a sequencing artifact and not a product of wet-bench contamination. 
 
 
 
 
 
 
 
 
           DADA2    Deblur    Vsearch 
basic     12,793    22,733     16,064 
standard   4,744     5,402      8,505 
extra      4,353     3,913      2,740 
 
Table S3. Number of variants observed per filtering parameter and program. Distinct sequence variants 
(ASVs for DADA2 and Deblur, OTUs for VSEARCH) are reduced with additional filtering parameters. 
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 Comparison                            Z         P.unadj      P.adj  . 
deblur-basic - vsearch-extra    3.926   0   0.002 
vsearch-basic - vsearch-extra    3.961   0   0.003 
dada2-extra - deblur-basic    -2.979   0.003  0.026 
dada2-extra - vsearch-basic   -3.014   0.003  0.031 
deblur-basic - deblur-extra    2.576   0.01   0.06 
deblur-extra - vsearch-basic   -2.611   0.009  0.065 
dada2-basic - vsearch-extra    2.156   0.031  0.124 
vsearch-basic - vsearch-standard   1.98   0.048  0.132 
deblur-basic - vsearch-standard    1.945   0.052  0.133 
deblur-basic - deblur-standard    2.173   0.03   0.134 
dada2-standard - vsearch-extra    1.91   0.056  0.135 
deblur-standard - vsearch-basic   -2.208   0.027  0.14 
vsearch-extra - vsearch-standard  -1.98   0.048  0.143 
dada2-standard - deblur-basic   -2.015   0.044  0.144 
dada2-standard - vsearch-basic   -2.05   0.04   0.145 
deblur-standard - vsearch-extra    1.753   0.08   0.159 
dada2-basic - vsearch-basic   -1.805   0.071  0.16 
dada2-basic - deblur-basic    -1.77   0.077  0.162 
deblur-extra - vsearch-extra    1.349   0.177  0.336 
dada2-basic - dada2-extra     1.209   0.227  0.408 
dada2-extra - vsearch-standard   -1.034   0.301  0.516 
dada2-extra - vsearch-extra    0.946   0.344  0.538 
dada2-extra - dada2-standard   -0.964   0.335  0.548 
dada2-basic - deblur-extra     0.806   0.42   0.605 
dada2-extra - deblur-standard   -0.806   0.42   0.63 
deblur-extra - vsearch-standard   -0.631   0.528  0.731 
dada2-standard - deblur-extra    0.561   0.575  0.767 
dada2-extra - deblur-extra    -0.403   0.687  0.824 
dada2-basic - deblur-standard    0.403   0.687  0.853 
deblur-extra - deblur-standard   -0.403   0.687  0.883 
deblur-standard - vsearch-standard  -0.228   0.82   0.922 
dada2-standard - deblur-standard   0.158   0.875  0.926 
dada2-basic - dada2-standard    0.245   0.806  0.936 
dada2-basic - vsearch-standard    0.175   0.861  0.939 
dada2-standard - vsearch-standard  -0.07   0.944  0.971 
deblur-basic - vsearch-basic   -0.035   0.972  0.972 
 
 
Table S4. Dunn’s test for Hill Number 0 estimates using mock data. Dunn’s post hoc test for pairwise 
differences in diversity estimates of rarefied mock data among filtering method and filtering parameter 
levels for Hill Number q=0. Pairwise comparisons were considered significant if the Benjamini-Hochberg 
adjusted p value (P.adj) was < 0.05. 
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 Comparison                            Z         P.unadj      P.adj  . 
deblur-basic - vsearch-extra   3.926   0   0.003 
deblur-basic - vsearch-standard   3.691   0   0.004 
deblur-basic - vsearch-basic   3.154   0.002  0.014 
dada2-basic - vsearch-extra   3.222   0.001  0.015 
dada2-standard - vsearch-extra   2.953   0.003  0.019 
dada2-basic - vsearch-standard   2.987   0.003  0.02 
dada2-extra - vsearch-extra   2.718   0.007  0.03 
dada2-standard - vsearch-standard  2.718   0.007  0.034 
dada2-basic - vsearch-basic   2.45    0.014  0.051 
dada2-extra - vsearch-standard   2.483   0.013  0.052 
dada2-standard - vsearch-basic   2.181   0.029  0.095 
deblur-basic - deblur-extra   2.114   0.035  0.104 
deblur-basic - deblur-standard   2.047   0.041  0.113 
dada2-extra - vsearch-basic   1.946   0.052  0.133 
deblur-standard - vsearch-extra   1.879   0.06   0.145 
deblur-extra - vsearch-extra   1.812   0.07   0.157 
deblur-standard - vsearch-standard  1.644   0.1   0.212 
deblur-extra - vsearch-standard   1.577   0.115  0.229 
dada2-basic - deblur-extra    1.409   0.159  0.301 
dada2-basic - deblur-standard   1.342   0.179  0.323 
dada2-extra - deblur-basic       -1.208   0.227  0.389 
dada2-standard - deblur-extra   1.141   0.254  0.415 
deblur-standard - vsearch-basic   1.107   0.268  0.42 
dada2-standard - deblur-standard  1.074   0.283  0.424 
deblur-extra - vsearch-basic   1.04    0.298  0.429 
dada2-standard - deblur-basic      -0.973   0.33   0.458 
dada2-extra - deblur-extra    0.906   0.365  0.487 
dada2-extra - deblur-standard   0.839   0.402  0.516 
vsearch-basic - vsearch-extra   0.772   0.44   0.546 
dada2-basic - deblur-basic       -0.705   0.481  0.577 
vsearch-basic - vsearch-standard  0.537   0.591  0.687 
dada2-basic - dada2-extra    0.503   0.615  0.692 
dada2-extra - dada2-standard      -0.235   0.814  0.838 
dada2-basic - dada2-standard   0.268   0.788  0.86 
vsearch-extra - vsearch-standard     -0.235   0.814  0.862 
deblur-extra - deblur-standard      -0.067   0.946  0.946 
 
 
Table S5. Pairwise Dunn’s test for Hill Number 1 estimates using mock data. Dunn’s post hoc test for 
pairwise differences in diversity estimates of rarefied mock data among filtering method and filtering 
parameter levels for Hill Number q=1. Pairwise comparisons were considered significant if the Benjamini-
Hochberg adjusted p value (P.adj) was < 0.05. 
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Comparison                            Z             P.unadj      P.adj   
dada2-extra - vsearch-standard   2.852   0.004  0.026 
dada2-basic - vsearch-standard   2.886   0.004  0.028 
dada2-standard - vsearch-standard  2.953   0.003  0.028 
dada2-extra - vsearch-basic   2.618   0.009  0.032 
dada2-basic - vsearch-basic   2.651   0.008  0.032 
dada2-standard - vsearch-basic   2.718   0.007  0.034 
dada2-extra - vsearch-extra   2.987   0.003  0.034 
deblur-basic - vsearch-extra   2.651   0.008  0.036 
deblur-basic - vsearch-standard   2.517   0.012  0.039 
dada2-basic - vsearch-extra   3.02    0.003  0.045 
deblur-basic - vsearch-basic   2.282   0.022  0.067 
dada2-standard - vsearch-extra   3.087   0.002  0.073 
deblur-extra - vsearch-extra   1.879   0.06   0.155 
deblur-standard - vsearch-extra   1.879   0.06   0.167 
deblur-extra - vsearch-standard   1.745   0.081  0.182 
deblur-standard - vsearch-standard  1.745   0.081  0.194 
deblur-extra - vsearch-basic   1.51    0.131  0.262 
deblur-standard - vsearch-basic   1.51    0.131  0.277 
dada2-extra - deblur-extra    1.107   0.268  0.402 
dada2-standard - deblur-extra   1.208   0.227  0.409 
dada2-basic - deblur-extra    1.141   0.254  0.415 
dada2-extra - deblur-standard   1.107   0.268  0.42 
dada2-standard - deblur-standard  1.208   0.227  0.43 
dada2-basic - deblur-standard   1.141   0.254  0.435 
deblur-basic - deblur-extra   0.772   0.44   0.61 
deblur-basic - deblur-standard   0.772   0.44   0.634 
dada2-standard - deblur-basic   0.436   0.663  0.884 
dada2-basic - deblur-basic    0.369   0.712  0.884 
dada2-extra - deblur-basic    0.336   0.737  0.885 
vsearch-basic - vsearch-extra   0.369   0.712  0.915 
vsearch-basic - vsearch-standard  0.235   0.814  0.946 
dada2-basic - dada2-extra    0.034   0.973  1 
dada2-basic - dada2-standard      -0.067   0.946  1 
dada2-extra - dada2-standard      -0.101   0.92   1 
deblur-extra - deblur-standard   0    1   1 
vsearch-extra - vsearch-standard     -0.134   0.893  1 
 
 
 
Table S6. Dunn’s post hoc test for pairwise differences in diversity estimates of rarefied mock data 
among filtering method and filtering parameter levels for Hill Number q=2. Pairwise comparisons were 
considered significant if the Benjamini-Hochberg adjusted p value (P.adj) was < 0.05. 
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 Comparison                            Z         P.unadj      P.adj  . 
vsearch-basic - vsearch-extra    23.509   0   0 
deblur-basic - vsearch-extra    22.688   0   0 
dada2-basic - vsearch-extra    22.049   0   0 
vsearch-extra - vsearch-standard      -21.384   0   0 
deblur-extra - vsearch-basic   -17.697   0   0 
deblur-standard - vsearch-extra    17.634   0   0 
dada2-standard - vsearch-extra    17.459   0   0 
deblur-basic - deblur-extra    17.053   0   0 
dada2-basic - deblur-extra     16.281   0   0 
deblur-extra - vsearch-standard   -15.633   0   0 
dada2-extra - vsearch-basic   -12.722   0   0 
dada2-extra - deblur-basic    -12.178   0   0 
deblur-extra - deblur-standard   -12.156   0   0 
dada2-standard - deblur-extra    11.842   0   0 
dada2-basic - dada2-extra     11.274   0   0 
dada2-extra - vsearch-extra    10.667   0   0 
dada2-extra - vsearch-standard   -10.609   0   0 
dada2-extra - deblur-standard   -7.185   0   0 
dada2-extra - dada2-standard   -6.744   0   0 
dada2-standard - vsearch-basic   -5.961   0   0 
dada2-standard - deblur-basic   -5.585   0   0 
dada2-extra - deblur-extra     5.248   0   0 
deblur-standard - vsearch-basic   -5.201   0   0 
deblur-extra - vsearch-extra   5.145   0   0 
deblur-basic - deblur-standard    4.855   0   0 
dada2-basic - dada2-standard    4.514   0   0 
dada2-standard - vsearch-standard  -3.845   0   0 
dada2-basic - deblur-standard    3.79   0   0 
deblur-standard - vsearch-standard  -3.137   0.002  0.002 
vsearch-basic - vsearch-standard   2.125   0.034  0.04 
deblur-basic - vsearch-standard    1.844   0.065  0.076 
dada2-basic - vsearch-basic   -1.45   0.147  0.165 
dada2-basic - deblur-basic    -1.186   0.235  0.257 
dada2-basic - vsearch-standard    0.674   0.5   0.53 
dada2-standard - deblur-standard  -0.609   0.543  0.558 
deblur-basic - vsearch-basic   -0.227   0.821  0.821 
 
 

Table S7. Dunn’s post hoc test for pairwise differences in diversity estimates of rarefied bat guano data 
among filtering method and filtering parameter levels for Hill Number q=0. Pairwise comparisons were 
considered significant if the Benjamini-Hochberg adjusted p value (P.adj) was < 0.05. 
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 Comparison                            Z         P.unadj    P.adj  . 
dada2-basic - vsearch-extra   10.833   0   0 
dada2-standard - vsearch-extra   9.322   0   0 
dada2-basic - deblur-extra    8.619   0   0 
dada2-basic - vsearch-standard   8.18    0   0 
dada2-extra - vsearch-extra   7.75    0   0 
dada2-basic - vsearch-basic   7.766   0   0 
dada2-basic - deblur-standard   7.356   0   0 
dada2-standard - deblur-extra   7.158   0   0 
dada2-standard - vsearch-standard  6.674   0   0 
dada2-standard - vsearch-basic   6.261   0   0 
dada2-basic - deblur-basic    6.143   0   0 
dada2-standard - deblur-standard  5.898   0   0 
dada2-extra - deblur-extra    5.635   0   0 
dada2-extra - vsearch-standard   5.104   0   0 
dada2-standard - deblur-basic   4.683   0   0 
dada2-extra - vsearch-basic   4.691   0   0 
deblur-basic - vsearch-extra   4.441   0   0 
dada2-extra - deblur-standard   4.375   0   0 
deblur-standard - vsearch-extra   3.186   0.001  0.003 
dada2-extra - deblur-basic    3.157   0.002  0.003 
vsearch-basic - vsearch-extra   3.098   0.002  0.003 
dada2-basic - dada2-extra    3.023   0.003  0.004 
vsearch-extra - vsearch-standard     -2.681   0.007  0.011 
deblur-basic - deblur-extra   2.453   0.014  0.021 
deblur-extra - vsearch-extra   1.91    0.056  0.081 
deblur-basic - vsearch-standard   1.832   0.067  0.093 
dada2-extra - dada2-standard         -1.548   0.122  0.162 
dada2-basic - dada2-standard   1.473   0.141  0.181 
deblur-basic - vsearch-basic   1.426   0.154  0.191 
deblur-extra - deblur-standard       -1.24    0.215  0.258 
deblur-basic - deblur-standard   1.21    0.226  0.263 
deblur-extra - vsearch-basic         -1.096   0.273  0.307 
deblur-extra - vsearch-standard      -0.691   0.489  0.534 
deblur-standard - vsearch-standard  0.585   0.559  0.592 
vsearch-basic - vsearch-standard  0.418   0.676  0.696 
deblur-standard - vsearch-basic   0.18    0.857  0.857 
 
 

Table S8. Dunn’s post hoc test for pairwise differences in diversity estimates of rarefied bat guano data 
among filtering method and filtering parameter levels for Hill Number q=1. Pairwise comparisons were 
considered significant if the Benjamini-Hochberg adjusted p value (P.adj) was < 0.05. 
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 Comparison                            Z         P.unadj    P.adj  . 
dada2-basic - vsearch-extra   8.286   0   0 
dada2-standard - vsearch-extra   7.175   0   0 
dada2-basic - vsearch-standard   6.923   0   0 
dada2-basic - vsearch-basic   6.666   0   0 
dada2-basic - deblur-extra    6.56    0   0 
dada2-extra - vsearch-extra   6.177   0   0 
dada2-basic - deblur-standard   5.974   0   0 
dada2-standard - vsearch-standard  5.813   0   0 
dada2-standard - vsearch-basic   5.557   0   0 
dada2-standard - deblur-extra   5.487   0   0 
dada2-basic - deblur-basic    5.15    0   0 
dada2-standard - deblur-standard  4.901   0   0 
dada2-extra - vsearch-standard   4.815   0   0 
dada2-extra - vsearch-basic   4.558   0   0 
dada2-extra - deblur-extra    4.52    0   0 
dada2-standard - deblur-basic   4.075   0   0 
dada2-extra - deblur-standard   3.934   0   0 
dada2-extra - deblur-basic    3.105   0.002  0.004 
deblur-basic - vsearch-extra   2.948   0.003  0.006 
deblur-standard - vsearch-extra   2.091   0.037  0.066 
dada2-basic - dada2-extra    2.063   0.039  0.067 
vsearch-basic - vsearch-extra   1.646   0.1   0.163 
deblur-basic - vsearch-standard   1.6    0.109  0.171 
deblur-extra - vsearch-extra   1.493   0.135  0.203 
vsearch-extra - vsearch-standard     -1.387   0.166  0.229 
deblur-basic - deblur-extra   1.408   0.159  0.229 
deblur-basic - vsearch-basic   1.348   0.178  0.237 
dada2-basic - dada2-standard   1.082   0.279  0.359 
dada2-extra - dada2-standard         -0.98    0.327  0.406 
deblur-basic - deblur-standard   0.827   0.408  0.49 
deblur-standard - vsearch-standard  0.747   0.455  0.529 
deblur-extra - deblur-standard       -0.58    0.562  0.633 
deblur-standard - vsearch-basic   0.495   0.621  0.677 
vsearch-basic - vsearch-standard  0.26    0.795  0.842 
deblur-extra - vsearch-standard   0.149   0.881  0.906 
deblur-extra - vsearch-basic         -0.102   0.918  0.918 
 
 
Table S9. Dunn’s post hoc test for pairwise differences in diversity estimates of rarefied bat guano data 
among filtering method and filtering parameter levels for Hill Number q=2. Pairwise comparisons were 
considered significant if the Benjamini-Hochberg adjusted p value (P.adj) was < 0.05. 
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TestGroup    Df    SumsOfSqs    MeanSqs    F.Model     R2    Pr..F. 
Method    2        0.049      0.024  1.973   0.08  0.011 
Filt     2        0.067      0.033  2.704   0.11  0.001 
Method:Filt   4   0.162      0.041  3.276   0.26  0.001 
Residuals    27   0.334      0.012     NA   0.55     NA 
Total    35   0.612         NA     NA   1.00     NA 
 
Table S10. Permutational Multivariate Analysis of Variance Using Distance Matrices (ADONIS) of mock 
community samples by filtering method (Method) and filtering parameter (Filt). Distances measured using 
Dice-Sorensen index. Samples rarefied to 5000 sequences. 
 
 
 

 
             Df    SumsOfSqs    MeanSqs    F.Model     R2    Pr..F. 
Method        2        0.135      0.067      0.588   0.03     0.656 
Filt          2        0.699      0.349      3.050   0.17     0.04 
Method:Filt   4        0.229      0.057      0.501   0.06     0.848 
Residuals    27        3.092      0.115         NA   0.74        NA 
Total        35        4.154         NA         NA   1.00        NA 
 
Table S11. Permutational Multivariate Analysis of Variance Using Distance Matrices (ADONIS) of mock 
community samples by filtering method (Method) and filtering parameter (Filt). Distances measured using 
Bray-Curtis index. Samples rarefied to 5000 sequences. 
 
 
 
 

 
TestGroup    Df    SumsOfSqs    MeanSqs    F.Model     R2    Pr..F. 
Method        2        0.015  0.007      1.133   0.06     0.387 
Filt          2        0.039  0.020      3.054   0.16     0.036 
Method:Filt   4        0.024  0.006      0.927   0.09     0.516 
Residuals    27        0.173  0.006         NA   0.69        NA 
Total        35        0.251     NA         NA   1.00        NA 
 
Table S12. Permutational Multivariate Analysis of Variance Using Distance Matrices (ADONIS) of mock 
community samples by filtering method (Method) and filtering parameter (Filt). Distances measured using 
Morisita-Horn index. Samples rarefied to 5000 sequences. 
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TestGroup    Df    SumsOfSqs    MeanSqs    F.Model     R2    Pr..F. 
Method        2        0.391      0.196      0.543   0.00     1 
Filt          2        1.140      0.570      1.582   0.00     0.006 
MonthStart    3       43.392     14.464     40.159   0.14     0.001 
Method:Filt   4        0.602      0.151      0.418   0.00     1 
Residuals   710      255.721      0.360         NA   0.85        NA 
Total       721      301.246         NA         NA   1.00        NA 
 
Table S13. Permutational Multivariate Analysis of Variance Using Distance Matrices (ADONIS) of select 
guano samples collected from single location (Fox State Forest, Hillsborough NH) between April through 
October 2016 by denoising method (Method), filtering parameter (Filt), and date of sample collection 
(MonthStart). Distances measured using Dice-Sorensen index. Samples rarefied to 5000 sequences. 
 
 

 
 
 
TestGroup    Df    SumsOfSqs    MeanSqs    F.Model     R2    Pr..F. 
Method        2        0.097      0.049      0.114   0.00     1 
Filt          2        0.548      0.274      0.643   0.00     0.99 
MonthStart    3       28.147      9.382     22.013   0.08     0.001 
Method:Filt   4        0.116      0.029      0.068   0.00     1 
Residuals   710      302.618      0.426         NA   0.91        NA 
Total       721      331.526         NA         NA   1.00        NA 
 
Table S14. Permutational Multivariate Analysis of Variance Using Distance Matrices (ADONIS) of select 
guano samples collected from single location (Fox State Forest, Hillsborough NH) between April through 
October 2016 by denoising method (Method), filtering parameter (Filt), and date of sample collection 
(MonthStart). Distances measured using Bray-Curtis index. Samples rarefied to 5000 sequences. 
 

 
 
 
 
TestGroup    Df    SumsOfSqs    MeanSqs    F.Model     R2    Pr..F. 
Method        2        0.058     0.029       0.069   0.00     1 
Filt          2        0.340     0.170       0.404   0.00     1 
MonthStart    3       29.465     9.822      23.325   0.09     0.001 
Method:Filt   4        0.090     0.023       0.054   0.00     1 
Residuals   710      298.961     0.421          NA   0.91        NA 
Total       721      328.915        NA          NA   1.00        NA 
 
Table S15. Permutational Multivariate Analysis of Variance Using Distance Matrices (ADONIS) of select 
guano samples collected from single location (Fox State Forest, Hillsborough NH) between April through 
October 2016 by denoising method (Method), filtering parameter (Filt), and date of sample collection 
(MonthStart). Distances measured using Morisita-Horn index. Samples rarefied to 5000 sequences. 
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Database Species Genus  Family Order  Class 
tidybug 138,012 27,434 2,023  112  17 
Palmer 76,493 20,148 1,492  96  16 
Porter 82,874 21,937 1,773  111  17 
 
Table S16. Number of unique arthropod taxa within each of the three COI databases. Reference records 
with shared sequences but distinct taxonomies were collapsed to least common ancestral taxa prior to 
dereplication and subsequent counts. While both Palmer and tidybug databases were derived from 
BOLD, timing of database design and filtering strategies lead to different number of unique records. 
 
 

 
Database Species Genus  Family Order  Class 
Palmer 551,862  862,610 1,196,305 1,565,669 1,565,808 
Porter 504,274  513,656   515,385   515,736   515,774 
tidybug 946,309   1,311,216 1,836,852 1,840,258 1,841,305 
 
Table S17. Number of unique arthropod sequences within each of the three COI databases. The Porter 
database design stipulates that only records with known Species names are retained, while tidybug 
database design required at least Family-rank information to be present. Thus the Porter database retains 
fewer records at higher taxonomic ranks.  
 
 

 
Database Species Genus  Family Order  Class 
Palmer 1,013,969 703,221 369,526   162    23 
Porter    11,506   2,124     395    44     6 
tidybug   895,637 530,730   5,094 1,688   641 
 
Table S18. Taxonomic missingness among COI databases. Number of records that are missing 
taxonomic information at a particular rank among retained arthropod sequences in each of the three COI 
databases. Because the Porter design required Species-rank information for inclusion in database 
construction, few records are lacking information at Species level, while many records in the Palmer and 
tidybug datasets do not include Species or Genus-rank information.  
 
 
 
 
Classifier  Class    Order    Family    Genus    Species 
blast   8,348    8,346    8,053     7,059 4,911 
vsearch  8,201    8,199    7,986     7,046    4,930 
nbayes     12,921   10,864    8,830     8,092    5,687 
sintax 12,245   10,360    9,119     7,687    4,663 
Bold        8,781    7,392    5,748     5,497 3,074  
 
Table S19. Common taxonomic names assigned among classifiers. Number of bat guano ASVs 
assigned taxonomic information at Class through Species rank for each classifier. A total of 13,407 ASVs 
were included in the guano dataset for potential classification 
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Arthropod Order    Samples detected 
Diptera            275 
Lepidoptera        262 
Araneae            253 
Hemiptera          196 
Coleoptera         168 
Hymenoptera        119 
Psocodea           104 
Trichoptera         90 
Neuroptera          56 
Ephemeroptera       43 
Trombidiformes      36 
Blattodea           27 
Orthoptera          22 
Isopoda             16 
Odonata              6 
Mesostigmata         4 
Poduromorpha         2 
Entomobryomorpha     1 
Mecoptera            1 
Sarcoptiformes       1 
Strepsiptera         1 
 
 
 
Table S20. Breadth and detection frequency of arthropod Orders. More than half of all 285 bat guano 
samples contained at least one detection of a sequence variant (ASV) classified to Dipteran, 
Lepidopteran, Aranean, Hempiteran, or Coleopteran taxa. These and other frequently observed taxa such 
as Hymenoptera, Psocodea, and Trichoptera are among the expected arthropods previously described in 
morphological studies. It’s unclear whether the infrequently observed taxa represent non-dietary 
components due to our passive sampling regime, gleaning behavior, or are instead rarely foraged. For 
example, a Springtail species (Entomobryomorpha) was identified in just a single sample and generated 
thousands of sequences, but these flightless arthropods are unlikely to be consumed by a bat and instead 
represent a non-target detection as a consequence of our passive collection regime. However, other taxa 
like Orthoptera and Blattodea may represent actively foraged, yet perhaps less seasonally available 
targets: 24 of 28 Blattodea samples were observed in June, while only 1 in 23 Orthopteran samples were 
detected in that same month. It’s most likely that various mite ASVs (Sarcoptiformes, Mesostigmata, and 
Trombidiformes) detected are a product of either the bats directly gleaning parasitic mites or consuming 
an arthropod that is itself infected.  
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Table S21. Core sequence variant detection and sequence counts. Only a small fraction of all ASVs 
detected (2,575 ASVs in total) are repeatedly observed. We detected just 25 ASVs in at least 20% of 
samples (shown below), and 63 ASVs in at least 10% of samples. The majority of these frequently 
detected ASVs are classified as Dipteran; only Dipteran or Aranean taxa are identified in 30% or 50% of 
samples. The total sequencing depth (SeqCounts) represents the sum of the rarefied counts per ASV, the 
highest of which was classified as an unknown Eustala spider (ASV-1). The unambiguous classification 
information is provided for each sequence variant observed, though not all Species or Genus names were 
assigned to these highly detected ASVs. Multiple ASVs were frequently assigned to repeatedly detected 
ASVs—often with Species names—indicating population genetic variation likely exists for this marker 
gene in many taxa. 
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Table S22. Summary of alpha diversity estimates for collection Site and Month groups. Three Hill 
Numbers were used to estimate species diversity (i.e. unique ASVs) per sample. The mean (meanQ) and 
standard deviation (sdQ) reported for each Site (Egner, “EN”; Hickory Bottoms, “HB”) and Month reflect 
classic alpha diversity measures that are normalized to a common scale: q=0 represents observed 
richness, q=1 Shannon’s entropy, and q=2 Simpson’s 1-D index. Estimates that increasingly weight 
relative abundance information result lower species diversity, indicating that rare variants are dominating 
the observed richness per sample.   
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Comparison                Z       P.unadj   P.adj 
July-EN - September-HB       3.524    0.000      0.003 
June-EN - September-HB       3.634    0.000      0.004 
June-HB - September-HB       3.004    0.003      0.013 
June-EN - September-EN       2.727    0.006      0.019 
July-HB - September-HB       2.807    0.005      0.019 
July-EN - September-EN       2.586    0.010      0.024 
June-HB - September-EN       2.020    0.043      0.093 
July-HB - September-EN       1.843    0.065      0.123 
July-HB - June-EN           -0.980    0.327      0.491 
June-EN - June-HB            0.883    0.377      0.514 
September-EN - September-HB  0.993    0.321      0.534 
July-EN - July-HB            0.773    0.439      0.549 
July-EN - June-HB            0.668    0.504      0.582 
July-EN - June-EN           -0.232    0.817      0.875 
July-HB - June-HB           -0.128    0.898      0.898 
 
Table S23. Dunn’s Test for observed richness (Hill q=0). Pairwise comparisons for each Site+Month 
group (Comparison) includes a Benjamini Hochberg-adjusted p-value (P.adj). Most comparisons for Hill 
Number diversity equivalent to observed richness (q=0) for June or July to September between and within 
Sites are significant (P.adj < 0.05) while comparisons between June to July, or for September or not. 
These data suggest that Month, but not Site, contributes to the variability in observed richness among our 
samples.  
  
 
 
 
 
 
Comparison                Z      P.unadj  P.adj 
July-HB - September-EN      2.953  0.003      0.047 
July-HB - September-HB      2.454  0.014      0.106 
July-HB - June-HB            1.758  0.079      0.236 
July-HB - June-EN            1.963  0.05      0.248 
July-EN - September-EN       1.779  0.075      0.282 
June-HB - September-EN       1.305  0.192      0.411 
July-EN - July-HB           -1.162  0.245      0.46 
July-EN - September-HB       1.313  0.189      0.473 
June-HB - September-HB       0.833  0.405      0.552 
July-EN - June-EN            0.834  0.404      0.606 
June-EN - September-EN       0.888  0.375      0.625 
September-EN - September-HB -0.422  0.673      0.721 
July-EN - June-HB            0.544  0.586      0.733 
June-EN - June-HB            -0.34  0.734      0.734 
June-EN - September-HB        0.458  0.647      0.747 
 
Table S24. Dunn’s Test for Shannon entropy (Hill q=1).  Pairwise comparisons for each Site+Month 
group (Comparison) includes a Benjamini Hochberg-adjusted p-value (P.adj). Most comparisons for Hill 
Number diversity equivalent to Shannon’s entropy (q=1) are not significant. These data indicate that when 
abundance information is incorporated in a diversity analysis, we observe little difference in these 
estimates of the ‘commonly abundant’ taxa.  
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Comparison                Z       P.unadj   P.adj 
July-HB - September-EN       3.102    0.002      0.029 
July-HB - June-EN            2.386    0.017      0.128 
July-HB - September-HB       2.225    0.026      0.131 
July-HB - June-HB            1.901    0.057      0.215 
July-EN - July-HB           -1.678    0.093      0.280 
July-EN - September-EN       1.419    0.156      0.390 
June-HB - September-EN       1.318    0.187      0.402 
July-EN - September-HB       0.590    0.555      0.694 
June-EN - September-EN       0.613    0.540      0.736 
June-HB - September-HB       0.461    0.645      0.744 
July-EN - June-EN            0.760    0.447      0.745 
June-EN - June-HB           -0.638    0.523      0.785 
September-EN - September-HB -0.792    0.428      0.803 
July-EN - June-HB            0.155    0.876      0.876 
June-EN - September-HB      -0.170    0.865      0.927 
 
Table S25. Dunn’s Test for Simpson’s 1-D index (Hill q=2). Pairwise comparisons for each Site+Month 
group (Comparison) includes a Benjamini Hochberg-adjusted p-value (P.adj). Most comparisons for Hill 
Number diversity equivalent to Simpson’s 1-D index (q=2) are not significant. As with Table S5, these 
data indicate that when abundance information is incorporated in a diversity analysis, we observe little 
difference in these estimates of the ‘commonly abundant’ taxa. 
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            Df  SumsOfSqs   MeanSqs   F.Model         R2 Pr..F. 
Month        2   9.067236 4.5336181 12.800823 0.08233079  0.001 
Site         1   2.481712 2.4817123  7.007198 0.02253403  0.001 
Month:Site   2   2.603807 1.3019036  3.675969 0.02364265  0.001 
Residuals  271  95.979024 0.3541661        NA 0.87149254     NA 
Total      276 110.131780        NA        NA 1.00000000     NA 
Table S26. ADONIS for Dice-Sorensen distance metric. 
 

            Df  SumsOfSqs   MeanSqs  F.Model         R2 Pr..F. 
Month        2   6.626122 3.3130611 8.231117 0.05446043  0.001 
Site         1   2.192721 2.1927207 5.447693 0.01802208  0.001 
Month:Site   2   3.771026 1.8855130 4.684453 0.03099425  0.001 
Residuals  271 109.078701 0.4025044       NA 0.89652324     NA 
Total      276 121.668570        NA       NA 1.00000000     NA 
Table S27. ADONIS for Bray-Curtis distance metric. 
 

            Df  SumsOfSqs  MeanSqs  F.Model         R2 Pr..F. 
Month        2   6.831555 3.415778 8.633658 0.05642219  0.001 
Site         1   2.373880 2.373880 6.000177 0.01960601  0.001 
Month:Site   2   4.656704 2.328352 5.885101 0.03845998  0.001 
Residuals  271 107.217095 0.395635       NA 0.88551183     NA 
Total      276 121.079234       NA       NA 1.00000000     NA 
Table S28. ADONIS for Morisita-Horn distance metric. 
 
 
 
            Df SumsOfSqs   MeanSqs   F.Model         R2 Pr..F. 
Month        2  6.567287 3.2836436 12.978074 0.08389806  0.001 
Site         1  1.490458 1.4904579  5.890795 0.01904082  0.001 
Month:Site   2  1.652255 0.8261277  3.265137 0.02110781  0.001 
Residuals  271 68.566987 0.2530147        NA 0.87595332     NA 
Total      276 78.276988        NA        NA 1.00000000     NA 
Table S29. ADONIS for unweighted Unifrac distance metric. 
 

            Df  SumsOfSqs    MeanSqs   F.Model         R2 Pr..F. 
Month        2  0.9022023 0.45110115 10.204535 0.06570457  0.001 
Site         1  0.2611661 0.26116611  5.907940 0.01901991  0.001 
Month:Site   2  0.5880148 0.29400739  6.650856 0.04282328  0.001 
Residuals  271 11.9798121 0.04420595        NA 0.87245224     NA 
Total      276 13.7311953         NA        NA 1.00000000     NA 
Table S30. ADONIS for weighted Unifrac distance metric. 
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Table 31. Summary of data collected and analyzed for each site and year. Individual guano pellets 
were collected (largely by volunteers) at 20 different sites: 11 of these sites were sampled in 2015, while 
16 sites were collected in 2016. Among these sites, 7 were sampled across both years (BRN, COR, FOX, 
GIL, HOP, MAP, MAS). Passive collection methods generated thousands of samples (SamplesCollected) 
but only about half of these typically produced sufficient sequence throughput (SamplesAnalyzed). After 
filtering for minimum read abundance per sample and removing sampling windows (two-week spans) with 
only a single sample per Site, there were typically fewer surveyed sampling periods 
(SamplingWindowsSurveyed) per site that what was analyzed (SamplingWindowsAnalyzed). 
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Table S32. Summary of most frequently detected arthropod genera. Multiple genera of beetles and flies 
are repeatedly detected at most sites for most time periods, though some particular moth, caddisfly, and a 
fishfly genera are also widely detected throughout the New Hampshire locations sampled. Samples were 
grouped in 14-day increments (CollectionWindows); a taxon detected in the same Collection Window 
across both years was counted individually. Not only are bats capable of foraging a diverse assortment of 
multiple orders, but they appear to be continually consuming a broad collection of arthropods throughout 
the foraging season across a range of New Hampshire habitats. 
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Dice-Sorensen 
Terms       Df    SumsOfSqs   MeanSqs    F.Model      R2          Pr(>F) 
Site  8 16.758 2.095  5.039  0.0691 0.001 
Window 1 3.1244 3.124  7.516  0.0129 0.001 
Site:Window 8 10.137 1.267  3.048  0.0418 0.001 
Residuals 511 212.419 0.416    0.876  
Total  528 242.438     1  
 
 
 
Bray-Curtis 
Terms       Df    SumsOfSqs   MeanSqs    F.Model      R2          Pr(>F) 
Site  8 14.500 1.812  4.227  0.059  0.001 
Window 1 2.195  2.195  5.120  0.009  0.001 
Site:Window 8 10.981 1.373  3.201  0.044  0.001 
Residuals 511 219.097 0.429    0.888  
Total  528 246.773     1  
 
 
 
Unweighted Unifrac 
Terms       Df    SumsOfSqs   MeanSqs    F.Model      R2          Pr(>F) 
Site  8 13.869 1.734  5.929  0.080  0.001 
Window 1 2.139  2.139  7.314  0.012  0.001 
Site:Window 8 8.039  1.005  3.436  0.046  0.001 
Residuals 511 149.427 0.292    0.861  
Total  528 173.473     1   
 
 
 
Weighted Unifrac 
Terms       Df    SumsOfSqs   MeanSqs    F.Model      R2          Pr(>F) 
Site  8 4.87  0.609  6.671  0.088  0.001  
Window 1 0.446  0.446  4.885  0.008  0.002 
Site:Window 8 2.996  0.374  4.101  0.055  0.001 
Residuals 511 46.658 0.091    0.849   
Total  528 54.973     1  
 
 
Table S33. PERMANOVA summaries for site and location main effects. Testing for main effects for site 
and sampling location (Window) and their interaction was conducted using the Adonis function in Vegan 
on distance estimates from four metrics: Dice-Sorensen (unweighted abundance, unweighted 
phylogenetic), Bray-Curtis (weighted abundance, unweighted phylogenetic),  unweighted Unifrac 
(unweighted abundance, weighted phylogenetic), and weighted Unifrac (weighted abundance, weighted 
phylogenetic). Main effects for site and window, as well as their interaction, were significant for all 
distance estimates tested. A greater proportion of variation is explained by these main effects when 
incorporating abundance and/or phylogenetic information. 
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diff  lwr  upr  p.adj Pairs 
14.67  6.75  22.598 0 MAP-FOX 
-15.29 -23.69 -6.881 0 MTV-MAP 
14.55  6.472  22.628 0 MAP-HOL 
14.75  5.859  23.642 0 MAP-HOP 
11  0.975  21.03  0.019 PEN-MTV 
10.39  0.762  20.019 0.023 PEN-FOX 
10.27  0.511  20.023 0.031 PEN-HOL 
-10.52 -20.628 -0.405 0.034 MTV-CNB 
-9.9  -19.621 -0.189 0.042 FOX-CNB 
10.47  0.028  20.906 0.049 PEN-HOP 
-9.34  -18.692 0.01  0.05 MTV-BRN 
-9.78  -19.623 0.061  0.053 HOL-CNB 
-8.73  -17.652 0.192  0.061 FOX-BRN 
-8.61  -17.665 0.453  0.078 HOL-BRN 
-9.98  -20.501 0.539  0.078 HOP-CNB 
-8.81  -18.598 0.985  0.117 HOP-BRN 
-8.27  -18.56 2.022  0.232 MTV-CNA 
-7.66  -17.561 2.245  0.281 FOX-CNA 
-7.53  -17.56 2.492  0.319 HOL-CNA 
-7.73  -18.427 2.959  0.372 HOP-CNA 
7.02  -3.178 17.21  0.444 MAP-CNA 
5.94  -3.3  15.188 0.541 MAP-BRN 
4.77  -5.243 14.782 0.862 MAP-CNB 
-4.28  -14.211 5.644  0.917 PEN-MAP 
2.73  -8.836 14.302 0.998 PEN-CNA 
2.25  -9.395 13.889 1 CNB-CNA 
1.66  -9.08  12.402 1 PEN-BRN 
1.18  -9.645 11.995 1 CNB-BRN 
-1.07  -12.06 9.916  1 CNA-BRN 
-0.74  -8.935 7.465  1 MTV-HOL 
-0.61  -8.66  7.437  1 MTV-FOX 
-0.54  -9.538 8.468  1 MTV-HOP 
0.49  -10.924 11.895 1 PEN-CNB 
-0.2  -8.899 8.499  1 HOP-HOL 
0.12  -7.583 7.831  1 HOL-FOX 
-0.08  -8.633 8.48  1 HOP-FOX 
 
 
Table S34 – Tukey’s pairwise comparison of observed richness by site. 
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diff  lwr  upr  p.adj Pairs 
0.89  0.407  1.378  0 MAP-FOX 
-0.78  -1.293 -0.263 0 MTV-MAP 
0.73  0.186  1.275  0.001 MAP-HOP 
-0.73  -1.274 -0.181 0.001 FOX-BRN 
-0.74  -1.331 -0.141 0.004 FOX-CNB 
0.71  0.125  1.304  0.006 PEN-FOX 
-0.61  -1.186 -0.04  0.026 MTV-BRN 
-0.62  -1.227 -0.014 0.041 FOX-CNA 
-0.62  -1.241 -0.002 0.048 MTV-CNB 
0.6  -0.014 1.214  0.061 PEN-MTV 
0.46  -0.011 0.933  0.062 HOL-FOX 
-0.57  -1.165 0.034  0.083 HOP-BRN 
-0.57  -1.218 0.07  0.125 HOP-CNB 
0.43  -0.063 0.926  0.144 MAP-HOL 
0.55  -0.087 1.192  0.153 PEN-HOP 
-0.51  -1.136 0.124  0.234 MTV-CNA 
-0.46  -1.113 0.197  0.42 HOP-CNA 
-0.35  -0.849 0.156  0.441 MTV-HOL 
-0.3  -0.832 0.234  0.716 HOP-HOL 
-0.27  -0.821 0.288  0.857 HOL-BRN 
-0.28  -0.878 0.328  0.889 HOL-CNB 
0.27  -0.352 0.897  0.912 MAP-CNA 
0.25  -0.344 0.851  0.924 PEN-HOL 
0.16  -0.362 0.686  0.989 HOP-FOX 
-0.18  -0.786 0.43  0.992 PEN-MAP 
0.17  -0.401 0.731  0.992 MAP-BRN 
-0.16  -0.773 0.455  0.997 HOL-CNA 
0.16  -0.457 0.77  0.997 MAP-CNB 
0.11  -0.379 0.607  0.998 MTV-FOX 
0.12  -0.597 0.829  1 CNB-CNA 
-0.11  -0.78  0.566  1 CNA-BRN 
0.09  -0.614 0.803  1 PEN-CNA 
-0.05  -0.599 0.504  1 MTV-HOP 
-0.02  -0.72  0.677  1 PEN-CNB 
-0.01  -0.671 0.645  1 PEN-BRN 
0.01  -0.654 0.671  1 CNB-BRN 
 
Table S35 – Tukey’s pairwise comparison of Shannon’s entropy (diversity) by site. 
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diff lwr    upr p.adj Pairs 
-1.01 -1.449   -0.572 0 MAP-CNB 
1.06 0.589    1.537 0 CNB-BRN 
-0.74 -1.093   -0.385 0 MAP-HOL 
1.04 0.534    1.554 0 CNB-CNA 
0.79 0.395    1.188 0 HOL-BRN 
0.77 0.333    1.211 0 HOL-CNA 
0.72 0.285    1.155 0 PEN-MAP 
0.77 0.302    1.243 0 PEN-BRN 
0.6 0.228    0.964 0 MTV-MAP 
0.65 0.239    1.058 0 MTV-BRN 
0.75 0.247    1.26 0 PEN-CNA 
-0.68 -1.145   -0.223 0 HOP-CNB 
-0.63 -1.055   -0.204 0 FOX-CNB 
0.63 0.178    1.08 0.001 MTV-CNA 
0.43 0.043    0.824 0.017 FOX-BRN 
-0.38 -0.728   -0.034 0.019 MAP-FOX 
-0.41 -0.793   -0.031 0.023 HOP-HOL 
0.36 0.02    0.695 0.028 HOL-FOX 
0.41 -0.019   0.848 0.074 FOX-CNA 
-0.42 -0.858   0.028 0.086 MTV-CNB 
0.38 -0.05    0.808 0.132 HOP-BRN 
0.39 -0.064   0.851 0.157 PEN-HOP 
-0.33 -0.716   0.063 0.183 MAP-HOP 
0.34 -0.083   0.761 0.232 PEN-FOX 
0.36 -0.108   0.828 0.288 HOP-CNA 
0.27 -0.125   0.663 0.456 MTV-HOP 
-0.27 -0.703   0.159 0.569 HOL-CNB 
0.21 -0.138   0.567 0.616 MTV-FOX 
-0.29 -0.79    0.209 0.673 PEN-CNB 
-0.14 -0.502   0.216 0.946 MTV-HOL 
0.12 -0.315   0.563 0.994 PEN-MTV 
-0.05 -0.429   0.32 1 HOP-FOX 
0.05 -0.352   0.457 1 MAP-BRN 
0.03 -0.413   0.48 1 MAP-CNA 
-0.02 -0.446   0.408 1 PEN-HOL 
0.02 -0.462   0.5 1 CNA-BRN 
 
Table S36 – Tukey’s pairwise comparison of Faith’s phylogenetic diversity by site. 
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Dice Sorensen: COR, HOL, and PEN sites in 2016 
Terms       Df    SumsOfSqs   MeanSqs    F.Model      R2          Pr(>F) 
Site  2 7.016  3.508  9.107  0.109   0.001 
Window 1 2.015  2.015  5.231  0.031   0.001 
Site:Window 2 1.912  0.956  2.482  0.030   0.001 
Residuals 139 53.540 0.385    0.830            
Total  144 64.483     1.000  
 

Dice Sorensen: MAP and BRN sites in 2016 
Terms       Df    SumsOfSqs   MeanSqs    F.Model      R2          Pr(>F) 
Site  1 0.479  0.479  1.231  0.010  0.172 
Window 1 2.871  2.871  7.383  0.057  0.001 
Site:Window 1 0.725  0.725  1.863  0.015  0.020 
Residuals 118 45.895 0.389    0.918            
Total  121 49.970     1.000 
 
Table S37 - PERMANOVA testing for selected sites. Main effects for site and sampling location 
(Window) and their interaction were calculated using the Adonis function in Vegan with a Dice-Sorensen 
distance estimate. Selected sites consist of 2016 samples collected among shared landscape features. 
(A) Cornish (COR), Holderness (HOL), and Penacook (PEN) are roosts with close proximity to large 
water bodies (Connecticut River, Squam Lake, and Merrimack River, respectively). 
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SUPPLEMENTARY FIGURES 
 
 
 

 
 
 
 
Figure S1. Locations for New England guano sampling. Guano samples included in this project 
constitute a subset of a broader project that included collections from 21 locations across New Hampshire 
and Maine in 2015 and 2016. The samples used in this study were from sites collected in 2016 in towns 
listed in Table S1, and shown in the map of New Hampshire below. Samples collected from Fairfield ME 
are not shown in this map. 
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Figure S2. Per-library throughput among denoising programs. The proportion of filtered sequences 
varies by filtering method for both guano and mock community samples. Each point in the left facet 
(“guano”) represents fraction of all guano samples retained following processing with one of the three 
pipelines. The right facet (“mock”) points describe only a single data point of the individual mock sample 
sequenced for each library. Deblur retains fewer sequences per library than DADA2 or VSEARCH. 
 
 

 
 
Figure S3. Total and fraction of expected reads in mock samples. Total (left plot) and Fraction (right 
plot) of expected reads in each mock community sample is influenced by Denoising pipeline (vertical 
facets). Exact matches reflect 100% alignment identity between ASV detected in mock community and a 
known mock sequence, partial match reflects between 97-99.9% identity, and miss represents an ASV 
with less than 97% identity to known mock sequences. All queries must span at least 97% of the 
reference target. While filtering parameters (horizontal facets) reduce the number of “miss” or “partial” 
detections (see Figure 2), the proportion of “partial” or “miss” reads is very low relative to the expected 
read abundances regardless of filtering strategy. However, the fraction of “partial” reads in VSEARCH is 
proportionally larger than in either denoising pipeline, indicating that the read correction strategies of the 
denoisers reduces the abundance and number of observed spurious sequence variants. 
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Figure S4. Read abundances per ASV for each library of bat guano data. DADA2 retains more 
sequence variants with larger abundances than Deblur or VSEARCH for default outputs and “standard” 
filter in each of the four libraries sequenced. Subtracting a fixed integer of reads from all ASVs with the 
“extra” filtering parameter discards many low-abundance ASVs from Deblur and VSEARCH datasets, 
resulting in distributions of read abundances that are more similar to those in DADA2. 
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Figure S5. Bat guano data generates a sparse matrix of ASVs among samples. Points represent 
sequence variants detected among all four libraries of guano data, suggesting the vast majority of ASVs 
are detected in few samples and generate relatively few sequences. In particular, note how the 
application of the “standard” and “extra” filters tend to reduce the number of samples an ASV is detected 
(x axis). These filters are dropping low abundance samples and ASVs, reducing the number of times a 
particular sequence variant is detected, resulting in a horizontal shift left of data points within a given 
denoising method (vertical facet). 
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Figure S6. Accumulation curves of mock samples that are not rarefied. Interpolated (solid line) and 
extrapolated (dashed line) diversity estimates are shown for each mock sample relative to expected 
diversity (dotted line) for each denoising method (vertical facets) and filtering parameter (horizontal 
facets). Estimated diversity shown in (A) is calculated using Hill Number q=0, while estimates in (B) are 
calculated using Hill Number q=2. Note that the number of observed ASVs is more than twice as large 
compared to rarefied data (Figure 4). While DADA2 has fewer unexpected sequence variants compared 
to Deblur or VSEARCH, because all the unexpected ASVs are of low abundance these differences are 
negligible among diversity estimates that incorporate abundance information.  
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Figure S7. Diversity estimates for unrarefied bat guano. Denoising methods are compared within each 
subplot according to the respective Hill value (vertical facet) and filtering parameter (horizontal facet). 
Sequence diversity is reduced with increasing Hill number. Applying additional filtering parameters 
increases diversity estimates at a Hill a value of 0 (equivalent to observed OTUs) because rare ASVs are 
dropped and samples with low numbers of sequences are discarded from analysis. Diversity estimates for 
for q=1 and q=2 are reduced compared to q=0 estimates, indicating that relatively few distinct sequences 
encompass the majority of the sequence information in a given sample. 
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Figure S8. Ordination of distances calculated by Dice-Sorensen index using NMDS for select guano 
data for each combination of denoising method and filtering parameter. Samples (points) are colored 
according to the month they were collected. 
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Figure S9. Ordination of distances calculated by Bray-Curtis index using NMDS for select guano data 
for each combination of denoising method and filtering parameter. Samples (points) are colored 
according to the month they were collected. 
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Figure S10. Ordination of distances calculated by Morisita-Horn index using NMDS for select guano 
data for each combination of denoising method and filtering parameter. Samples (points) are colored 
according to the month they were collected. 
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Figure S11. Unique and shared taxa among three databases. Vertical bars indicate the number of 
shared taxa among databases (points connected in matrix)  or those that are unique to a single database 
(unconnected points in matrix). Horizontal bars indicate the total number of taxa in a database. Taxa are 
represented at three levels: (A) references with distinct Species, (B) references with distinct Genus, (C), 
references with distinct Family. While all three databases share the greatest number of shared Genera 
and Family taxa, our tidybug database contains more distinct Species than what is shared among all 
datasets.  
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Figure S12. Effect of clustering on taxonomic diversity by arthropod order. Clustering the tidybug 
database results in non-uniform reduction of sequence diversity and taxonomic diversity among top 
abundant arthropod Orders. Some references contain all taxonomic information (red), while other records 
are missing Species name (orange), Species and Genus names (light blue), or Species, Genus, and 
Family information. (A) The total number of unique arthropod COI sequences are most abundant for 
Dipteran Order among the the dereplicated dataset (clust 100%), but additional clustering results in fewer 
overall Dipteran sequences relative to Lepidopteran records. (B) The fraction of Clustering results in non-
uniform reduction of information content among top abundant arthropod Order sequence records. Though 
clustering uniformly reduces information content, some Orders (ex. Ephemeroptera) retain a greater 
fraction of information after clustering than others (ex. Diptera, Psocodea), while others are relatively 
unchanged (ex. Hemiptera, Hymenoptera). 
 
 
  



 178 

 
 
Figure S13. Number of ASVs assigned taxonomic information at Class through Species rank among 
classifiers for guano data. The kmer-based classifiers Naive Bayes and SINTAX assign more ASVs 
taxonomic identities than alignment based VSEARCH and BLAST classifiers. 
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Figure S14. Map of Cypress Creek National Wildlife Refuge. The Cypress Creek National Wildlife 
Refuge (orange boundary line) is situated in southern Illinois and consists of 35,320 acres of wetland, 
forested, and grassland habitats. Among the actively managed units within the CCNWR, the Cache River 
Unit comprises just 1,136 acres of riparian wetland and forests essential to Indiana Bat foraging and 
roosting. Guano collections were focused in an area just east of Ullin, IL, denoted as a yellow point in the 
figure with the orange arrow.   
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Figure S15. Artificial Roost locations at Cypress Creek NWR. Eight artificial roost structures (green 
dots) were installed in 2014 in areas where limited or no roosting habitat was previously detected. 
Emergence surveys, mist netting, and acoustic monitoring in 2016 confirmed presence of Indiana Bat use 
of each structure. Note that while roost sites are within CCNWR boundaries, the landscape is a mix of 
protected wetland and forested landscapes fragmented amongst privately owned agricultural areas. Our 
data suggest the bats are frequently foraging aquatic invertebrates, thus protection strategies will require 
not only conserving suitable roosting habitat, but likely also a renewed focus on the stream systems these 
artificial roosts were near.  
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Figure S16 Sequence depths per ASV classified as bat. Bat sequence information indicates guano is 
largely from Indiana Bats. Our COI sequence data consisted of both arthropod and non-arthropod 
sequences, and among these were some variants classified to one of three bat species: Myotis lucifugus 
(Little Brown Bat), Myotis sodalis (Indiana bat), and Nycticeius humeralis (Evening Bat). The majority of 
guano DNA amplified generated some bat sequence COI data (184 of 279 samples), though the vast 
majority of these samples were classified as Indiana Bat (177 samples). Instances of non-sodalis 
detections generally contained very few total reads (y axis) and were often found in samples in which M. 
sodalis DNA was also detected. In the plot below, points represent samples, with colors “multiple” (brown 
dot) and “single” (green dot) indicating whether or not a sample contained bat COI sequences classified 
to one or more species. We were no more likely to collect these low-abundant non-sodalis COI bat 
sequences whether or not the DNA was extracted from single guano pellets (“single” facet, top) or from a 
batch of guano pooled into a single extraction (“pool”, bottom facet), nor were the pools more likely to 
contain multiple bat species per sample. It is therefore likely that non-sodalis bats were transiently 
occupying these roosts, and that our passive guano sampling regime permitted the infrequent cross 
contamination of multiple bat species. 
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Figure S17. Distribution of sequence counts among frequently detected ASVs. Primers are not biased 
towards Dipteran sequences. Per-sample rarefied sequence counts of (points) vary among many of the 
most frequently detected Dipteran (“Diptera”, left facet) and non-Dipteran (“nonDiptera”, right facet) ASVs. 
We would predict a proportionally larger number of sequences per sample among Dipteran ASV than 
non-Dipteran ASV if primers preferentially amplified Dipteran taxa, but we observe ASVs that generate 
highly abundant amplicons within a given sample among many arthropod Orders.  
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Figure S18. Dipteran ASV abundances and detections per site and month. The fraction of rarefied 
reads (y axis) and fraction of samples (x axis) for a particular Dipteran-classified ASV often change by 
Month and/or Site. In the plot below, a Random Forest model identified specific ASVs as important to 
classifying samples by Site and Month (solid points, labeled on the right of each plot). Some of these 
ASV’s have high abundances and detections in both Sites, but the direction of those changes differ by 
Month of collection (e.g. ASV-3 is more frequently detected and generates the most reads in Egner 
collections in June, while the same ASV is more abundant and detected in July for Hickory Bottom 
Samples). Other ASV’s generate similar trends in detections per Month, but have distinct magnitudes with 
respect to read abundances (e.g. ASV2 was identified in 12 samples at Egner and 17 samples at Hickory 
Bottoms sites in July, yet Egner samples collectively generated 37,047 sequences compared to just 1,126 
in Hickory Bottoms). However, a few ASVs not identified by the classifier had similarly high fractions of 
detections or abundances as ASVs identified in the model, yet these were typically constant across 
Months (ex. ASV-23). Collectively, these data suggest that the bats are repeatedly targeting Dipteran 
taxa, yet many of the specific targets are changing with the summer season.  
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Figure S19. Random forest classifier accuracy by Month.  A Random Forest model was trained to 
identify the features (ASVs) relevant to classifying a guano sample to a particular collection Month (June, 
July, or September). We trained the model using 80% of the dataset, then tested the model accuracy by 
classifying the remaining 20% of samples. This confusion matrix demonstrates that the model was highly 
successful at matching the predicted group with the true group for most samples. Fewer features were 
required for model training for this Month-only classifier than the Site and Month classifier (128 ASVs vs. 
237 ASVs) but the same subset of ASVs were identified in both sites, and the majority of these were 
Dipteran. Thus while these bat guano samples contain largely Dipteran sequence data, many of the 
Dipteran-classified ASVs have substantial changes in abundances and detections by Month, indicating 
that bats are particularly variable in their summer fly foraging habits. 
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Figure S20. Important ASVs to Random Classifier model by Month. More fly ASVs vary temporally 
than any other arthropod order, but the individual ASVs most sensitive to temporal variation are non-
dipteran orders. Among the 75th percentile of ASV importance to a random forest classifier trained to 
discriminate sample composition by month of collection, most of these ASVs are dipteran, though three 
other orders (Hemiptera, Lepidoptera, and Psocodea) contain the highest individual ASV importance 
values, an indication of the strongest temporal signal in the model. 
  

 
  
Figure S21. Per Month ASV abundance and detections. What’s for dinner depends on the Month, but 
most likely, it’s a fly. The fraction of rarefied reads per Month (y axis) and fraction of samples per Month (x 
axis) varies for some ASVs but not others. Some ASVs were identified as important to a Random Forest 
model trained to classify samples by collection Month (circles), though other ASVs were highly abundant 
throughout the entire collection season and therefore not relevant to the model (squares). Hemipteran 
and Psocodean taxa are highly abundant in September, suggestive of bats opportunistically foraging on 
particular non-Dipteran taxa that emerge on the wing as adults in the latter summer. However the majority 
of variable monthly prey is detected among the Dipteran taxa. For example, despite summer-long 
detections of mosquitoes, different Genera are more abundant in early months (e.g. Aedes;  ASV-10) 
than in later months (e.g. Culex; ASV-18, ASV-20). 
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Figure S22. Dipteran ASVs relevant to Random Forest classifier. The fraction of rarefied reads per Month (y axis) 
and fraction of samples per Month (x axis) varies for some Dipteran ASVs but not others. This plot represents the 
Dipteran-specific subset of data described in Figure S7. ASVs identified as important to a Random Forest model 
classifying samples by Month (circles, labels at right of plot), and ASVs not important to the model (squares, labels at 
left of plot) are largely similar to those features that were relevant to a separate supervised learning model that was 
classifying samples by Site and Month. However, some of the most frequently detected/abundant taxa are no longer 
important to the Month-only classifier (but were previously relevant to the Site and Month classifier). For examples, 
ASV-3 and ASV-5 and are foraged repeatedly by the bats, but these taxa were more frequently foraged at one site 
than another; these site differences were relevant to the earlier classifier but are not here. These taxa highlight the 
distinction between "important" to classifier versus "important" to the bat; clearly these ASVs are relevant prey 
targets. 
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Figure S23. Alpha diversity estimates of select 2016 New Hampshire sites. Intra sample diversity using 
abundance (Shannon’s entropy) and phylogenetic (Faith’s PD) information. Samples were selected from 
2016 locations with the greatest sampling intensity. Samples are binned in 14-day windows per site. (A) 
Shannon’s entropy values indicate that most samples have relatively low information, indicating that few 
sequence variants are commonly observed in a sample (i.e. most sequence variants are low abundance), 
particularly at the earliest and latest parts of the sampling season. (B) Instances of elevated Faith’s PD 
values are observed asynchronously among sampling windows across sites, indicating a collection of 
sequence variants with more diverse evolutionary backgrounds.  
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Figure S24. Proportions of sequences per ASV per sample. Highly abundant samples from each site 
are shown (the most abundant sample in three independent weeks was selected for each site). The most 
abundant ASV in a sample can arise from many different arthropod orders, indicating that a broad range 
of taxonomic sequences can be highly amplified by our molecular workflow, however, even the most 
deeply sequenced samples tend to have highly uneven abundances per ASV. Abundance-based metrics 
may overemphasize the importance of a single dietary component in similarity estimates, while binary 
measures may instead bias towards rare sequence variants.  
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Figure S25. Distributions of sequence abundances per select ASVs. Among the top 5 most prevalent 
ASVs in each order (minimum 10 samples), the proportion of sequences that ASV comprises in a single 
sample has a broad distribution from negligible to nearly representing the entirety of the sample. These 
data suggest that primer bias is insufficient to explain why some orders are more prevalent in our data 
than others. Rather, a complex combination of biomass, digestion rate, and prey preference are all likely 
to explain why some orders are more frequently detected and generate larger fractions of sequence 
counts. Note that rarefied data produces similar distributions (not shown). 
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Figure 26. Detection frequency of ASVs in both or single year per site. Among sites surveyed in both 
years, the most prevalent ASVs are detected in both years (green points, “shared”), while ASVs detected 
only in one year or the other (distinct) are detected in no more than four samples in that one year. Many 
ASVs detected in both years are Coleopteran (e.g. ASV’s 1 and 5 are present in each of the six locations 
both years), although some non-beetles are also repeatedly observed at particular sites with varying 
detection frequencies. For example, trichopteran ASVs classified as Phryganea sayi were identified in 18 
samples in one location (HOP), 7 samples at another (MTV), but only in three or fewer samples at six 
other locations 
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Figure 27. Relative abundances of arthropod COI per site per week per year. Sampling windows 
(vertical bars) are grouped in 14-day intervals; facet labels indicate sampling site and year. Ordinal 
proportions are more extreme with respect to proportions of individual taxa than what is observed in a 
presence-absence detection context (see Figure 2), but similar patterns of largely beetle, moth, and 
dipteran mixtures with distinctly local compositional changes are observed with both detection-based or 
abundance-based approaches. 
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Figure S28. Principal correspondence analysis of dietary composition for select 2016 New Hampshire 
locations using weighted and unweighted dissimilarity measures. Addition of abundance (Bray-Curtis) or 
phylogenetic (unweighted Unifrac) information increase the proportion of variation explained in the first 
two principal components compared to Dice-Sorensen (unweighted for both abundance and phylogenetic 
information). Combining both components (weighted Unifrac) captures the greatest proportion of 
variation, particularly for the first principal component axis (PC1). Samples in each ordination suggest that 
variation in composition is least prevalent in mid summer, while differences among samples are most 
apparent in spring or fall. 
 
 
 


