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Abstract

Generalized Quasilinear Simulation

of Turbulent Channel Flow

by

Colleen B. Kellam

University of New Hampshire, September, 2019

Direct numerical simulation (DNS) of wall-bounded turbulent flows in physically relevant

parameter regimes remains infeasible in many cases of practical interest. Accordingly, this

work further establishes the generalized quasilinear (GQL) approximation, introduced by

Marston et al. (Phys. Rev. Lett., 116, 2016), as a robust, accurate, and efficient alternative

to existing simulation and modeling schemes by investigating its effectiveness as a tool for

simulating turbulent channel flow. The GQL reduction is achieved by separating the flow

variables into low and high modes via a spectral filter rather than by decomposition into a

strict mean and fluctuations, as for the quasilinear (QL) approximation, and then neglecting

certain nonlinear interactions a priori. The effectiveness of GQL over the more common

QL approximation scheme and the effect of varying the spectral cutoff on the flow dynamics

is explored in two distinct parameter regimes and assessed using a multitude of turbulence

statistics, including energy budgets. GQL is shown to be significantly more accurate than

QL relative to DNS, even when only a modest number of low modes (e.g., 3-5) is retained. A

primary conclusion of this work is that GQL accurately predicts the turbulence intensity and

xiv



Reynolds stress profiles, captures the energy distribution across the entire dynamic range of

scales, and recovers the characteristic dynamics and turbulence structure of wall-bounded

shear flows. A second significant finding is the emergence of a discontinuity in the GQL

energy spectra, which is conjectured to be attributable to the lack of modal instability in

the high-mode set. A preliminary linear stability analysis about the turbulent mean velocity

profile reveals a band of unstable low streamwise wavenumber modes, lending credence to

this conjecture and pointing to a more precise methodology. Moreover, the success of the

GQL approximation in quantitatively reproducing low-order turbulence statistics and in-

stantaneous flow structure affirms the importance of both linear mechanisms and spectrally

nonlocal energy transfers in fully-developed wall-turbulence.
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Chapter 1

Introduction

Wall-bounded turbulence is an active area of research that spans an array of scientific and

engineering disciplines. It is widely acknowledged that the dynamics of turbulent motion near

solid surfaces is largely responsible for the drag force on aircraft and ships, the distribution

of heat in the atmosphere, and the energy required to deliver oil through pipelines (Smits

and Marusic, 2013). A deeper understanding of the dynamics that underlie the generation

and sustenance of turbulence could have profound societal impact by enabling, for example,

significant reduction in fuel costs in the airline and shipping industries and greater accuracy

and more advanced warning in weather prediction.

Even after a century of research, however, analytical solutions to the partial differential

equations (PDEs) that govern turbulent flows have not been found, and despite tremen-

dous advances in computational hardware, direct numerical simulations of turbulent flows

in parameter regimes relevant in most engineering applications remain untenable. Conse-

quently, efficient simulation techniques either heavily rely on ad hoc modeling of unresolved

scales, fail to capture the instantaneous dynamics due to time-averaging, or both. These

challenges highlight the need for new computationally-efficient algorithms that employ ap-

proximation schemes that are broadly applicable to many different types of flows (i.e., are

robust) and that are capable of accurately recovering instantaneous dynamical information

while providing insight into the dominant physical processes.
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Figure 1.1: Methodologies for simulating turbulent flows, where ∆ represents the cutoff
between resolved and modeled scales and α is the streamwise wavenumber (Bakker, 2018).

1.1 Current turbulent flow modeling methodologies

Three prevailing methodologies for simulating turbulent flow are direct numerical simu-

lation (DNS), large eddy simulation (LES), and Reynolds averaged Navier-Stokes (RANS)

simulation (see Figure 1.1), where the requirement for modeling the unresolved scales ranges

from none in DNS to extensive in RANS. DNS offers an “exact” numerical solution to the gov-

erning PDEs, but because the entire dynamic range of scales is resolved, the computational

cost is prohibitive in parameter regimes of physical relevance. RANS is more computation-

ally feasible, but due to the time-averaging, information about the instantaneous dynamics

is lost. Moreover, the use of ad hoc models to represent the unresolved dynamics requires

extensive tuning and generally lacks robustness.

The generalized quasilinear (GQL) approximation is explored in this work as a potential
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INSTANTANEOUS STATISTICAL
DYNAMICS DYNAMICS

TRUTH Navier-Stokes Equations (NL) Cumulant Hierarchy (DSS)
APPROX Quasilinear (QL) CE2 (S3T)

Generalized Quasilinear (GQL) GCE2

Table 1.1: Relation between instantaneous and statistical dynamical formulations.

alternative to LES. Like LES, GQL employs a decomposition into resolved and modeled

scales, but uses a markedly different modeling scheme for the unresolved scales. To close

the equations, LES relies on the addition of an ad hoc model that presumes information

about the effect of the unresolved scales on the resolved large-scale eddies. In contrast, GQL

employs a linearization of the Navier-Stokes (NS) equations to solve for the small scales

by neglecting certain nonlinear interactions a priori. Equivalently, GQL removes dynamics

defined by the governing PDEs while LES adds dynamics not defined by those PDEs. More-

over, circumstantial evidence suggests that, currently, GQL is as computationally efficient

as LES while having the capability of being both more robust and more accurate.

A further motive for studying the GQL algorithm is that, once validated, it can be

used as the basis for direct statistical simulations (DSS). DSS is being used increasingly

in geophysical and astrophysical applications, as the vast range of scales in these flows

makes instantaneous methods computationally intractable. In particular, if the statistics

of a system are the quantities of primary interest, computational savings can be accrued

by solving directly for these statistics rather than by generating and then averaging large

data sets. The DSS methods referenced subsequently are shown with their instantaneous

counterparts in Table 1.1.

The second-order cumulant expansion (CE2) introduced by Marston et al. (2008) uses

the quasilinear (QL) approximation as a closure: a linearized PDE is used to solve for the

small-scale statistics. CE2 is also called stochastic structural stability theory (S3T) by Farrell

and Ioannou (2003; 2007), but here the nomenclature CE2 will be used. Although CE2 is
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able to recover accurate statistics in turbulent flows close to equilibrium, the CE2 algorithm

fails to recover important first- and second-order statistics for systems far from equilibrium

(Marston et al., 2016). For such flows, a higher-order cumulant truncation or, alternatively,

a more accurate second-order closure model is required. Since the GQL approximation can

be closed exactly at second order and is shown in this and other recent works to be capable

of more accurately reproducing second-order statistics than QL-based schemes, it can be

used to develop a more robust DSS formulation, introduced by Tobias and Marston (2017)

as the generalized cumulant expansion of second order (GCE2). The use of GQL as the basis

for a statistical closure is one means of improving the computational efficiency of turbulence

simulations.

1.2 Energy transfer and self-sustaining processes in wall-bounded

turbulent shear flows

To gain physical insight into the QL and GQL approximations, it is first helpful to

understand two crucial phenomena in turbulent wall flows: inter-scale energy transfer and

the self-sustaining process (SSP).

Inter-scale energy transfer

A defining characteristic of turbulent flow is the presence of energy-containing eddies ex-

hibiting a range of length scales spanning several orders of magnitude, interacting with each

other, continuously changing in time, and giving the appearance of random, chaotic motion

(Cushman-Roisin, 2018; Smits and Marusic, 2013). The mechanism that underlies the trans-

fer of energy among these eddies is associated with the nonlinear term in the PDEs governing

these flows. A fundamental understanding of this energy transfer process is important for a

deeper understanding of turbulence (Domaradzki and Rogallo, 1990).

In classic isotropic turbulence, kinetic energy generally is injected at scales near the largest

4



length scale of the flow. Energy is then passed down to the smallest scales via nonlinear

interactions, where the energy is dissipated into heat. This well-known “energy cascade”,

introduced by Richardson (1920) and quantified by Kolmogorov (1941), is one manifestation

of the interplay between inertial and viscous forces (Cho et al., 2018). The source of energy

in shear flows is the gradient of the mean velocity, and the mechanism by which energy is

fed into the turbulent cascade is the interaction between the mean velocity gradient and the

average momentum fluxes (Reynolds stresses) carried by the velocity fluctuations (Tennekes

and Lumley, 1972; Jiménez and Kawahara, 2013). In isotropic turbulence, the range of scales

over which the energy must cascade is independent of spatial direction. In wall-bounded shear

flows, however, the presence of solid surfaces confines the large energy-containing eddies and

the energy cascade becomes a function of distance from the wall (Jiménez and Kawahara,

2013). The anisotropic nature of wall-bounded turbulence thus leads to a phenomenologically

more complex mechanism governing energy transfer.

Wall-bounded flows, in particular, present a challenge to LES owing to the wall-normal

dependence of the flow scales. Near the wall, even the largest (local) scales are very small,

which requires very high temporal and spatial resolution. Insufficient resolution results in

the underestimation of the wall-shear stress in LES, which affects the accuracy of the entire

simulation (Reynolds, 2000). On the other hand, increasing the resolution to capture the

small-scale dynamics eliminates the computational savings inherent in LES. A further disad-

vantage of LES is the inability to capture the effects of energy transfer from the unresolved

scales to the resolved scales, or backscatter.

In this work, a distinction will be made between local and nonlocal energy transfer.

Energy transfer is defined relative to two particular scales of motion. If the two scales of

motion are similar, the energy transfer is considered to be local. If the two scales of motion

are dissimilar, the energy transfer is nonlocal. The isotropic energy cascade described in this

section is an example of local energy transfer, in that energy from a given scale is lost to a

neighboring smaller scale (Domaradzki et al., 1994). Nonlocal energy transfer occurs when
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energy is transferred between non-neighboring scales.

The two approximations investigated in this work, viz. QL and GQL, employ different

restrictions on the way in which the scales are permitted to interact nonlinearly (and, hence,

exchange energy), and will be explained in detail in subsequent sections.

Self-sustaining process

Another defining characteristic of turbulent flows is that they are self-sustaining, The

near-wall region in wall-bounded turbulent flows is characterized by large gradients of the

flow variables and high momentum transport, and is dominated by streaks of high and low

streamwise velocity and associated streamwise vortical structures (Jiménez and Kawahara,

2013). Since the discovery in these flows regions of streamwise-averaged spanwise-varying

streamwise velocity, or streaks, by Kline et al. (1967), strong evidence has been accumulated

suggesting that the streaks and quasi-streamwise vortices play a vital role in the sustenance

of turbulence. Figure 1.2 shows an example of this streaky flow in a horizontal plane near

the wall as computed from a DNS of turbulent channel flow. Moreover, Jiménez and Pinelli

(1999) showed a single streak and a single pair of quasi-streamwise vortices are able to

reproduce with some success the statistics of the full flow.

As is well known, the fundamental challenge to the application of the classical hydro-

dynamic stability approach to wall-bounded turbulent flows is that the laminar state either

completely lacks exponentially-growing linear eigenmodes or is weakly unstable (i.e., with

growth rates inversely proportional to the Reynolds number), despite the experimental ev-

idence suggesting strong/rapid instability (Waleffe, 1997). In contrast, the self-sustaining

process (SSP) approach pioneered by Waleffe (1997) seeks to understand the mechanisms

and processes by which turbulence is sustained. His SSP theory was motivated in part by the

work of Jiménez and Moin (1991) in which a continuation technique is used, but rather than

tracking fixed points, the turbulent solution is tracked instead. This procedure confirmed

that the nonlinear interactions of growing eigenmodes arrising not from an instability of the

6



Figure 1.2: Streamwise velocity in the plane parallel to the walls in the near-wall region of
turbulent channel flow.

laminar state but rather from the streaks does indeed feed back onto (and, hence, sustain)

the streamwise rolls.

More specifically, the self-sustaining process introduced by Waleffe (1997) is an extension

of the mean-flow/first-harmonic theory by Benney (1984) and hairpin vortical studies by

Acarlar and Smith (1987). In this process, the spanwise-wall-normal rolls elongated in the

streamwise direction redistribute the mean shear to create streaks that are unstable through

an instability of inflectional type, and the nonlinear self-interaction of the 3D perturbation

that results from the instability directly feeds back onto the rolls, thus completing a feedback

loop. The self-sustaining process of Waleffe (1997) provides a compelling framework for

understanding the underlying instability maintaining turbulence in wall-bounded shear flows

using a mechanistic approach. It should also be noted that similar conclusions have been

drawn analytically using an asymptotic approach, termed vortex-wave interaction (VWI)

theory. Specifically, Hall and Smith (1991) and Hall and Sherwin (2010) demonstrate that

the interaction between longitudinal vortices and an accompanying Rayleigh instability mode

results in a finite-amplitude equilibrium (i.e., self-sustaining) state. Crucially, in VWI and

its extension by Chini et al. (2017), the Rayleigh mode satisfies a linearized equation about

the streamwise-mean streaky flow. Moreover, these asymptotic theories show that a single
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streamwise-varying mode can sustain the nonlinear state; in this sense, these theories provide

the basis for a minimal model of turbulence.

Like VWI and SSP theories, the (generalized) quasilinear approximation exploits the

notion that the streak instability plays a central role in wall turbulence, in that the governing

equations are linearized about the streamwise-invariant streaks. Stated another way, instead

of decomposing into a time-averaged mean flow and fluctuations about the time-averaged

mean, as is the standard practice in Reynolds averaging, the Navier-Stokes equations are

linearized about the streamwise-averaged mean. The analytical details of this linearization

will be provided in subsequent chapters, but both the motivation for and merit of this choice

derive from the physical essence of the SSP of Waleffe (1997) and are further substantiated

by the analytical results of Hall and Smith (1991), Hall and Sherwin (2010), and Chini et al.

(2017).

1.3 Generalized quasilinear (GQL) approximation

Development of quasilinear (QL) theory

The generalized quasilinear approximation (GQL) is an extension of the quasilinear (QL)

approximation, which is rooted in the early derivation of analytical theories for turbulent

interactions and the interactions between waves and mean flows (Marston et al., 2016).

Quasilinear theory was first introduced by Stuart (1958), when he hypothesized that the

dominant non-linear interaction in a turbulent flow is between the suitably-defined mean

flow and the first harmonic component of the disturbance (i.e., the fluctuation about the

mean). By ignoring higher-order terms, a method for approximating the dynamics can be

developed (Stuart, 1958). In the same era, Herring (1963) utilized closely related concepts

in the development of mean field theory for turbulent convection. Under the quasilinear

approximation, each flow field generally is decomposed into a suitable spatial mean plus a

fluctuation component, and fluctuation/fluctuation nonlinearities are retained only where
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they feed back upon the mean fields. One crucial physical consequence is that energy cannot

scatter among the fluctuations, which severs the energy cascade described in Section 1.2.

The QL approximation has proven useful in the development of a direct statistical sim-

ulation (DSS) approach for scenarios in which the flow statistics of a system are of greater

interest than instantaneous dynamics (Tobias et al., 2011). This is often the case for as-

trophysical and atmospheric phenomena, for which a DNS is computationally untenable in

parameter regimes of interest and LES (or other sub-grid) models require extensive ad hoc

modeling (Tobias et al., 2011). Another QL theory is known as the restricted nonlinear

(RNL) model, in which fluctuation-fluctuation interactions either are neglected or stochasti-

cally parameterized and only a small band of fluctuation modes is retained. RNL has been

shown to sustain turbulence with a modest number of fluctuation modes and even when

only a single fluctuation mode is retained, as first demonstrated by Thomas et al. (2014,

2015) in Couette flow and later by Farrell et al. (2016) in Poiseuille flow, and as earlier

anticipated by the VWI theory of Hall and Smith (1991) and Hall and Sherwin (2010) and

the asympotitcally-reduced model of Beaume et al. (2015). If fluctuation-fluctuation in-

teractions are neglected (rather than stochastically parameterized) and a single fluctuation

mode is retained, the nomenclature “constrained RNL” model is used, which is identical to

the single-mode quasilinear (SMQL) approximation referred to in this work. An additional,

“band-limited” RNL model was introduced by Bretheim et al. (2018), whereby an optimal

set of non-zero streamwise wavenumbers are retained. This specialized “sideband truncation”

yields a computationally-efficient numerical scheme, a concept that can also be explored in

GQL (Boyd, 2001).

While investigators using the QL approximation have been able to recover large-scale

dynamics of the system and see improvement in efficiency over DNS, the suppression of

energy scatter among the fluctuation modes leads to significant inaccuracies in first- and

second-order statistics, which becomes more evident the further the system is driven from

equilibrium (Marston et al., 2016). Numerous investigators have shown that in wall-bounded
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shear flows, QL over-predicts homogenization, or mixing, in the core and inaccurately recov-

ers the Reynolds stresses (Thomas et al., 2014; Farrell et al., 2016; Tobias and Marston, 2017;

Bretheim et al., 2018). As a result, the dynamics and structure of the flow are fundamentally

altered by the QL approximation.

Development of the generalized quasilinear (GQL) algorithm

The GQL approximation, first introduced by Marston et al. (2016), was developed to

improve upon the accuracy of QL simulations relative to full direct numerical simulations.

The GQL reduction is achieved by separating the flow variables into low and high modes via

a spectral filter rather than by decomposition into a strict mean and fluctuations. Nonlinear

coupling among the high modes is retained only where this coupling projects onto the dy-

namics of the low modes, which are allowed to undergo fully nonlinear interactions. Because

spectrally non-local energy scatter is permitted, there is improved recovery of small-scale

dynamics and overall energy distribution in the system. Further, GQL can retain an user-

specified number of low-mode interactions, allowing for a systematic way to investigate the

behavior of nonlinear interactions.

The GQL approximation has been employed previously in the investigation of several

systems. In the first study, Marston et al. (2016) used GQL to simulate two-dimensional

driven turbulence on a spherical surface and on a ‘β-plane’, the latter being a paradigmatic

problem for understanding the formation of jets in the atmosphere and oceans and in plane-

tary and interstellar gas bodies. Relative to the fully nonlinear simulations, GQL was shown

to better reproduce (particularly second-order) statistics and instantaneous dynamics than

QL, even when just a single additional mode is included in the set of large scales. Next,

Child et al. (2016) examined GQL in the context of the axisymmetric (two-dimensional) he-

lical magnetorotational instability (HMRI), which is thought to be a key mechanism in the

formation of stars and black holes. Although the dynamics of this system are quite different

from zonal jets, investigators again found that GQL performed significantly better than QL
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in reproducing the statistics of the HMRI, even when a modest number of large-scale modes

is retained. Another outcome is the formulation of a new DSS method based on the GQL ap-

proximation, which promises to yield better statistical results in systems where CE2 has been

shown to be inadequate. Motivated in part by the possibility of implementing such a second-

order closure method for DSS, Tobias and Marston (2017) investigated the effectiveness of

GQL in simulating three-dimensional rotating Couette flow. Non-rotating Couette flow is

a canonical problem in the class of wall-bounded shear flows, and is dynamically distinct

from the systems previously explored using the GQL approximation. In three dimensions,

Couette flow turbulence (whether rotating or not) is anisotropic in the horizontal directions

and exhibits a forward energy cascade, characteristics that were absent in the 2D models

previously explored. Tobias and Marston (2017) employed the GQL approximation in both

horizontal directions, and concluded that the GQL approximation, even with only a few

(< 5) large-scale modes, is significantly more effective at reproducing first- and second-order

statistics relative to a QL approximation in one or both translationally invariant directions.

Although this conclusion accords with that of other investigators, it is especially interesting

considering the presence of the forward energy cascade (Tobias and Marston, 2017). Finally,

Tobias et al. (2018) investigated GQL in a class of convective systems in which the driving

of the velocity is effected by buoyancy and other dynamical fields rather than via imposed

small-scale forcing or through the boundaries. Using the Busse annulus model, it was again

demonstrated that GQL (even with a modest number of low modes retained) significantly

outperformed QL in reproducing the dynamics of the flow.

The present work seeks to further validate GQL as an effective methodology for recover-

ing the statistics and instantaneous dynamics of turbulent flows. To complement previous

investigations focusing on astrophysical and geophysical systems, this work explores the ef-

fectiveness of the GQL approximation in turbulent channel (i.e., plane Poiseuille) flow, a

paradigm problem for engineering turbulence. As for other turbulent systems, GQL can

also be used to probe the behavior of the nonlinear interactions in wall-bounded shear flows.
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Crucially, however, unlike rotating Couette flow, turbulent channel flow is only weakly (vis-

cously) linearly unstable.

1.4 Objectives

The overarching aim of this work is to continue to develop the relatively new GQL

methodology as an alternative to existing methods of simulating turbulent flows. To ac-

complish this goal, the GQL approximation will be used in the simulation of 3D turbulent

channel flow, thereby broadening scope of applicability of GQL to engineering flows. This

primary aim will be met by pursuing three broad objectives:

Accuracy and robustness of GQL in turbulent channel flow

To assess accuracy and robustness of the GQL approximation, GQL simulations at various

truncations are compared to QL simulations and to DNS in two parameter regimes for

a range of low/high mode partitions in the streamwise direction. A host of metrics are

used to determine how well GQL recovers the statistics and instantaneous dynamics of the

flow relative to the fully nonlinear (NL) simulation (i.e., to DNS). The primary analysis is

performed in the highest Reynolds number regime simulated using GQL to date, while the

second parameter regime is at a lower Reynolds number in an extended horizontal domain.

Insight into nonlinear energy transfer between scales

The algorithm used for simulating GQL accepts the desired truncation (i.e., partition

between low and high streamwise modes) as an user input. The various truncations of

GQL simulations are chosen to enable systematic investigation of the effect of allowing

or prohibiting certain nonlinear interactions in the low modes. The impact of the GQL

approximation on the flow is explored by comparing turbulence metrics with those obtained

from fully nonlinear simulations and by both physical-space and spectral nonlinear energy

12



transfers. This approach yields insight into how energy and momentum are transferred by

turbulent motions in inhomogeneous anisotropic flows.

Computational efficiency of GQL

There is ample scope to explore ways to reduce the computational cost of GQL simula-

tions, thereby improving efficiency while not sacrificing accuracy. Although these approaches

are not explored in depth in this work, sufficient evidence is acquired to suggest this new

methodology is accurate, leaving the door open for future studies aiming to increase effi-

ciency. Accordingly, preliminary computational efficiency data are collected for simulations

performed and included as an appendix.

1.5 Outline of dissertation

This section outlines the organization of the dissertation.

In Chapter 2, the initial-boundary value problem for channel flow used in this inves-

tigation is formulated, along with definitions of the non-dimensionalization, physical and

Fourier representations of the equations of motion and energy equations, and notation used

throughout. This chapter is also intended to provide necessary background knowledge on

wall-bounded shear flows and to define and outline the turbulence metrics used to examine

the accuracy of the GQL algorithm. This includes first- and second-order statistics and

methods for characterizing the structure and topology of the flow.

In Chapter 3, the derivations of the algorithms employed in this work are presented. In

Section 3.1, the derivation of the QL approximation and the development of an algorithm

for a minimum model of QL, the single mode quasilinear (SMQL) reduction, is presented. In

this algorithm, which is implemented in MATLAB, the three-dimensional problem is reduced

to a “2 + ε”-dimensional system by retaining only a single streamwise fluctuation mode. In

Section 3.2, the derivation of the GQL reduction is presented. The algorithm, written in

Python and using the Dedalus spectral framework for solving partial differential equations
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developed by Burns et al. (2019), operates in four modalities: SMQL, QL, GQL, and NL.

In Chapter 4, the results and analysis of GQL simulations in the high(er) Reynolds

number parameter regime are presented. A number of metrics are used to quantify the

effectiveness of the GQL algorithm, including the mean velocity and mean velocity gradient

profiles, instantaneous and fluctuating velocity fields, enstrophy, Reynolds stress profiles,

turbulent structures and coherent patterns of the turbulent flow field, and physical and

spectral energy analysis. It is conclusively shown that the GQL simulations are better able to

recover the first- and second-order statistics of the fully nonlinear solution. Furthermore, the

necessary number of large-scale modes retained to achieve such agreement is modest (< 3). In

particular, GQL simulations are remarkably accurate in reproducing the turbulence intensity

and Reynolds stress profiles, which specifically addresses the primary shortcomings of the

QL approximation. A major finding is the identification of a discontinuity in the spanwise-

averaged streamwise energy spectra, which will be discussed in detail in a subsequent chapter.

In accord with the overarching objective, select simulations are performed at a lower

Reynolds number but in an extended spatial domain to determine the difference, if any,

in the effectiveness of GQL. The resulting analysis is summarized in Chapter 5. First,

SMQL simulations are performed using both the MATLAB- and Python-based algorithms

and the first-order statistics are compared to the fully nonlinear simulation. In this way,

the algorithm written in MATLAB provides an external validation of the Dedalus code, at

least for first-order statistics. Then, a subset of the turbulence metrics used in the higher

Reynolds number regime are utilized to assess the effectiveness of select GQL simulations

in this distinct, lower Reynolds number parameter regime. Again, GQL demonstrates the

ability to accurately recover flow statistics and instantaneous dynamics, even when only

three low modes are retained.

Finally, the spectral energy discontinuity observed in the GQL simulations is explored

in Chapter 6. It is conjectured that the discontinuity is a consequence of modal instabilities

being entirely contained in the low-mode set. To test the conjecture, hydrodynamic stability
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theory is employed to determine the stability of the long-time and horizontal mean turbulent

flow. A band of unstable modes at Reτ = 200 is identified by numerically solving a modified

Orr-Sommerfield stability problem in which an anisotropic eddy viscosity model introduced

by Sen and Veeravali (2000) is used. Although this result lends credence to the conjecture,

quantitative prediction of the band of unstable streamwise modes is sensitive to the precise

form of the eddy viscosity model chosen, suggesting a more careful stability analysis of the

(two-dimensional) time- and streamwise-averaged streak flow ultimately may be necessary.
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Chapter 2

Problem Formulation and Background

In this chapter, the equations and boundary conditions governing channel flow, the

paradigm problem used exclusively in this work, are specified. Background material on

wall-bounded shear flows is also provided, which may be skimmed by a well-informed reader

without loss of understanding of the later chapters. Since the primary objective is to vali-

date the GQL approximation, important turbulence metrics appropriate for channel flow are

introduced.

2.1 Description of channel flow

2.1.1 Governing equations

Channel flow, or plane Poiseuille flow, is a pressure-driven flow between two parallel

stationary plates, as shown in Figure 2.1. The x coordinate is aligned with the streamwise

direction, y with the spanwise direction, and z with the wall-normal direction. The size of the

channel is [Lx, Ly, Lz], where Lz = 2h and h is the channel half-height. For an incompressible

Newtonian fluid, the governing PDEs are the incompressible (3D) Navier-Stokes equations:

∂tu+ u · ∇u = −1

ρ
∇p+ ν∇2u+ F (2.1)

∇ · u = 0 (2.2)
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Figure 2.1: Schematic of the channel flow geometry used throughout this work (Tsukahara
et al., 2005).

where u = (u, v, w) is the velocity field, p is the pressure distribution, F is the forcing due to

the mean pressure gradient applied in the streamwise direction, ρ is the (constant) density,

and ν is the (constant) kinematic viscosity.

Equations (2.1) and (2.2) are subject to no-slip/no penetration boundary conditions

u = (u, v, w) = (0, 0, 0) at z = ±h (2.3)

In this work, the mean pressure gradient that drives the flow is taken to be constant,

which fixes the (mean) streamwise velocity gradient at the wall. Thus F = [−1
ρ
d〈p〉
dx
, 0, 0].

Averages are indicated by the use of angled brackets and the type of averaging is specified

by a subscript (e.g., 〈·〉x,t) or redefined explicitly. The use of angled brackets without a

subscript indicates a generic averaging operation, to be later specified.

2.1.2 Non-dimensionalization

The system of equations described by Equations (2.1) to (2.3) is rendered dimensionless

using the channel half-height, h, and the characteristic time scale h/
√
Gh, where G = −1

ρ
d〈p〉
dx

is the term associated with the constant pressure gradient driving the flow in the streamwise

direction. The friction Reynolds number is therefore defined as Reτ = uτh
ν
, where uτ =

√
Gh

is the friction velocity; i.e., the square-root of the ratio of the mean wall shear stress to the
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density.

The governing PDEs therefore can be expressed as

∂tu+ u · ∇u = −∇p+
1

Reτ
∇2u− 1x̂ (2.4)

∇ · u = 0 (2.5)

where all variables and parameters in Equations (2.4) and (2.5) and henceforth are dimension-

less. The dimensionless size of the channel is [Lx, Ly, 2] and the nondimensional boundary

conditions become

u = (u, v, w) = (0, 0, 0) at z = ±1 (2.6)

Periodicity of all fields is imposed in x and y, with spatial periods Lx and Ly, respectively.

2.2 Wall regions and scaling

The dependence of the dynamic range of scales on distance from the wall leads to the

division of the flow into specific regions, shown in Figure 2.2 for high Reynolds number

(Reτ = 104). Very close to the wall, viscosity is important, and viscous stresses are large

compared to Reynolds stresses. The viscous scales obtained using dimensional analysis are

defined as

uτ =

√
τw
ρ

friction velocity (2.7)

δν ,

√
ρ

τw
=

ν

uτ
viscous length scale (2.8)

Reτ ,
uτh

ν
friction Reynolds number (2.9)

x+ ,
x

δν
inner (or wall) units (2.10)

where the dimensional wall shear stress, τw, is defined as

τw = ρν
d〈u〉
dz

∣∣∣∣
z+=0

(2.11)
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Figure 2.2: Wall regions in channel flow at high Reynolds number (Reτ = 104) (Pope, 2000;
Khamlaj, 2018).

Based on this scaling, the friction Reynolds number and the Reynolds number associated

with the centerline velocity are related by ReCL = Re2
τ . It should also be noted that

in Figure 2.2 and for purposes of data analysis, the wall-normal coordinate z+ measures

distance, in viscous units, from the top wall (i.e., z+ = (1 − z)/δν). All references to

z+ use this convention but other viscous lengths indicated by the + are in accord with

Equation (2.10).

An accurate approximation of the equations of motion should be able to reproduce the

properties in each region, as explored in depth in later chapters. Here, the defining charac-

teristics of each region are briefly reviewed and related to the metrics used in the analysis

where applicable.

The inner layer is characterized by the presence of spanwise-varying streaks of streamwise

velocity and by counter-rotating, streamwise vortical structures (Jiménez and Kawahara,

2013). The boundary conditions described by Equation (2.6) require two-component flow in

horizontal planes (i.e., u and v are nonzero and z−dependent) very close to the wall (z+ < 1)
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Pope (2000). Away from the wall, viscous stresses are negligible and the turbulent core of

the channel is characterized by large energy-containing eddies of the size O(h) (Jiménez and

Kawahara, 2013). The appropriate scaling in this region is based on the channel half-height,

h, and the friction velocity, uτ . When the Reynolds number is sufficiently large, there is a

region between the inner and outer layer that is far enough from the wall for viscous stress to

be negligible but where the total (mean plus turbulent) shear stress is constant. In this log-

law region, the mean velocity is proportional to the natural logarithm of the distance from the

wall scaled in wall units Pope (2000). The emergence of the log-layer can be demonstrated

in a number of ways using turbulence metrics and provides another quantitative way to show

the accuracy of the approximation technique described in this work.

2.3 Physical and spectral representations of the governing PDEs

2.3.1 Reynolds decomposition

Since turbulent flows are spatio-temporally chaotic, the flow frequently is decomposed

into a suitable mean of the velocity and pressure fields and fluctuations about the mean.

In this section, the averaging notation 〈·〉 represents a generic mean, to be specified subse-

quently.

Let the velocity field be decomposed as u = U + u′, where U = 〈u〉 is the generic

mean and the prime notation denotes the fluctuations about the mean. The pressure field

is expressed similarly. Substituting the decomposed velocity and pressure fields into Equa-

tion (2.4) and following the rules of projection (or ensemble rules of averaging), yields evo-

lution equations for the mean and the fluctuations about the mean:

∂tU +U · ∇U − 1x̂+∇P − 1

Re
∇2U = −〈u′ ·∇u′〉 (2.12)

∂tu
′ +U · ∇u′ + u′ · ∇U +∇p′ − 1

Re
∇2u′ = −(u′ · ∇u′ − 〈u′ ·∇u′〉) (2.13)

The term on the right-hand side of Equation (2.12) is the gradient of the so-called
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Reynolds stresses, which is of primary importance in understanding the dynamics of tur-

bulence. Reynolds stresses are also responsible for the “closure problem” in turbulence: the

mean equations of motion are not closed strictly in terms of mean fields, thus necessitating

the use of methods for obtaining the unknown information (e.g., Reynolds stresses). The

desire to employ systematic approximation schemes is one of the motivations for developing

the GQL algorithm. Equations (2.12) and (2.13) will be used in Chapter 3 to illustrate the

application of the quasilinear (QL) and generalized quasilinear (GQL) approximations.

2.3.2 Turbulent kinetic energy equation

The mechanism by which energy is transferred between the different scales of motion to

generate and maintain turbulence is of particular interest in this work. Turbulent kinetic

energy (per unit mass), k, is defined as

k =
1

2
〈u′iu′i〉 (2.14)

where the summation convention is assumed.

An evolution equation for the mean and turbulent kinetic energy can be derived by

forming the inner product of Equation (2.4) with u and employing the velocity and pressure

decomposition described in Section 2.3.1. For channel flow, the evolution of the turbulent

kinetic energy is associated with the fluctuation equation:

∂k

∂t
+ 〈u〉 · ∇k = −〈u′w′〉∂〈u〉

∂z︸ ︷︷ ︸
1

− 1

2

∂

∂z
〈wu · u〉︸ ︷︷ ︸

2

− 1

ρ

∂

∂z
〈w′p′〉︸ ︷︷ ︸
3

+ ν
∂2k

∂z2︸ ︷︷ ︸
4

− 2ν〈sijsij〉︸ ︷︷ ︸
5

(2.15)

where horizontal homogeneity with respect to the averaging operation 〈·〉 has been assumed

and the fluctuating rate of strain tensor sij is defined as

sij =
1

2

(
∂u′i
∂xj
−
∂u′j
∂xi

)
(2.16)
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Figure 2.3: Turbulent kinetic energy budget from a DNS of turbulent channel flow at Reτ =
200 in the (nondimensional) spatial domain [2π, π, 2] (adapted from Figure 7.18 of Pope
(2000)). Note that the pressure transport term is not shown.

The kinetic energy equation is also shown graphically in Figure 2.3. The terms on the

right hand side of Equation (2.15) are associated with the following physical processes, as

described by Pope (2000):

Term 1: Production (or generation) rate of turbulent kinetic energy, P , which is the

result of the vertical Reynolds shear stress acting on the mean velocity gradient, the source

term in channel flow. Thus, P represents the rate at which kinetic energy is transferred from

the mean flow to the turbulent eddies. Peak production occurs in the buffer layer at z+ ≈ 12,

the location where viscous stress and Reynolds shear stress are approximately equal.

Term 2: Turbulent transport (or turbulent advection), T , arises from the nonlinearity

of the governing differential equations and transports energy among the different scales (to

the wall and to the log-region). Since the GQL approximation restricts certain nonlinear

interactions by construction, turbulent transport is of significant interest in this work.

Term 3: Pressure transport. Near the location of peak production, turbulent production
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exceeds dissipation, the (small) excess power being carried by the pressure transport.

Term 4: Viscous diffusion, which transports energy towards the wall.

Term 5: Viscous dissipation of turbulent kinetic energy, 2ν〈sijsij〉. The viscous dissipa-

tion term in this equation is often represented by the pseudo-dissipation, ε̃, which is related

to the true dissipation by the relation

ε̃ = 2ν〈sijsij〉 − ν
∂2〈u′iu′j〉
∂xi∂xj

(2.17)

However, the second term in Equation (2.17) is usually small so it will be assumed ε̃ =

2ν〈sijsij〉. Viscous dissipation is balanced, on average, by viscous diffusion at the wall.

2.3.3 Spectral-space representation of governing equations

One objective of this work is to gain insight into the nonlinear interactions under the

generalized quasilinear approximation. The systematic construction of the GQL algorithm

lends itself to examining the effect of restricting particular nonlinear interactions on the

process by which energy is transferred locally and non-locally between the large scale motions

and the small scale motions. Although the governing equations as written in Equation (2.4)

fully describe the dynamics of the flow, they do not provide detailed information about the

process by which energy is transferred among the dynamic range of scales, or which of the

eddies are involved in the transfer. Employing a Fourier decomposition of the velocity field

in the horizontal (streamwise and spanwise) directions facilitates deductions regarding the

contributions made by motions of different lateral scales (identified by the different horizontal

wavenumbers) to the dynamics of the flow (Domaradzki et al., 1994).

Another compelling reason to use Fourier methods is related to numerical accuracy. In

contrast to finite difference methods, which use local, usually low-order, approximations of

functions, a spectral method is a global approximation that makes use of high-order polyno-

mials or Fourier series. The two distinct advantages of global methods are the improvement

in accuracy and the reduction of numerical (artificial) dissipation in the numerical method.
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These advantages are particularly important when simulating turbulent flows. Artificial dis-

sipation from the numerical model can easily swamp the physical dissipation, which would

significantly affect the accuracy of the simulation (Trefethen, 2000). A more accurate dis-

cretization also allows for a coarser numerical grid, which significantly reduces computational

time. The spectral method used predominantly in this work (through the Dedalus software)

is a first-order generalized tau method (Burns et al., 2019).

Recall from Section 2.1 the turbulent channel with domain [Lx × Ly × Lz]. The flow is

statistically homogeneous in the streamwise (x) and spanwise (y) directions, which permits a

Fourier representation with Nx and Ny modes on a uniformly spaced horizontal grid with grid

spacings ∆x = Lx/Nx and ∆y = Ly/Ny and periodic boundary conditions in those directions

(Pope, 2000). In the wall-normal (z) direction, the flow is not statistically homogeneous

and physical boundary conditions are required. Accordingly, in this non-periodic direction,

Chebyshev polynomials are used, and the grid spacing is non-uniform with finer grid spacing

near the boundaries, ideal for capturing the dynamics of the smallest scales. The non-

uniform blue grid on the right side of Figure 2.2 illustrates the effect of such a grid. The

state variables can then be represented as truncated Fourier series, where, for example, the

velocity field is

u(x, t) =

Nx/2∑
kx=−Nx

2
+1

Ny/2∑
ky=−Ny

2
+1

û(kx, ky, z, t)e
i 2πkx
Lx

x+i
2πky
Ly

y (2.18)

The real streamwise and spanwise wavenumbers are defined as α = 2πkx/Lx and β =

2πky/Ly respectively. The integer-valued mode numbers kx and ky are constrained by an

even number of discrete grid points Nx and Ny.

A more compact notation is to express the wavenumbers in vector form, where κ =

(α, β). It follows that |κ| =
√
α2 + β2, and the magnitudes of the lowest wavenumber in the

streamwise and spanwise directions, α0 = 2π/Lx and β0 = 2π/Ly, are associated with the

largest possible scale permitted by the geometry of the problem.
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The evolution equation for the velocity û(κ, z, t) in wavenumber space is

∂tû(κ, z, t) = N̂ (κ, z, t) +
1

Reτ

(
∂2

∂z2
− |κ|2

)
û(κ, z, t) + F̂ (κ, z, t) (2.19)

where F̂ is the Fourier transform of the forcing F = [−1, 0, 0] due to the mean pressure

gradient applied in the streamwise direction, and N̂ is the Fourier transform of the sum of

the advection and pressure terms.

The analog for a state variable q in wavenumber space, q(κ, z), for κ = 0 is a plane-

averaged mean 〈q〉x,y(z) in physical space; thus, the zero mode is associated with the mean,

while the non-zero modes are associated with the turbulent fluctuations (Domaradzki et al.,

1994). Therefore, Equation (2.19) is equivalent to the evolution equation for the mean veloc-

ity, Equation (2.12), for κ = 0, and the evolution of the velocity fluctuations, Equation (2.13),

for κ 6= 0.

The turbulent kinetic energy balance can also be represented in wavenumber space. The

energy amplitude is defined by E(κ, z) = 1
2
û(κ, z)û∗(κ, z), where the asterisk (∗) denotes

the complex conjugate. It follows that

∂tE(κ, z) = <
[
û∗(κ, z)F̂ (κ, z)

]
+ <

[
û∗(κ, z)N̂ (κ, z)

]
+

1

Reτ

∂2

∂z2
E(κ, z)

− 2

Reτ
|κ|2E(κ, z)− 1

Reτ

(
∂

∂z
û(κ, z)

)(
∂

∂z
û∗(κ, z)

)
(2.20)

where < indicates the real part of a complex quantity and time dependence of the flow

fields are assumed. The five terms on the right hand side of Equation (2.20) (from left to

right) represent production, nonlinear energy transfer (including pressure transport), energy

redistribution by the viscous stresses, and viscous dissipation. Equation (2.20) is therefore

equivalent to Equation (2.15).

2.4 Turbulence metrics

Since the primary objective of this work is to determine the effectiveness of the GQL

approximation, this section provides a brief overview of the metrics used to compare the
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(a) (b)

Figure 2.4: (a) Turbulent mean versus laminar mean velocity profiles and (b) mean velocity
gradient profile in a channel.

results obtained under the various approximation schemes discussed in Chapter 1 to the

results of the fully nonlinear simulations.

Mean velocity profiles

Figure 2.4a shows a streamwise velocity profile in a fully-developed laminar channel flow

and the corresponding time-averaged streamwise velocity profile in fully-developed turbulent

channel flow. Recall that for prescribed, constant pressure gradient, the velocity gradient

at the wall is fixed. Figure 2.4b shows the corresponding mean velocity gradient profile

(alternatively called the mean shear profile).

Reynolds stresses

Reynolds stresses, introduced briefly in Section 2.3.1, originate from the quadratic non-

linearity in Equation (2.4) following Reynolds decomposition and averaging, and physically

represent the transfer of momentum by the fluctuating velocity field, coupling the mean flow

to the turbulence (Pope, 2000; Davidson, 2015). Since the QL and GQL algorithms neglect

certain nonlinear interactions, it is of primary importance to determine how the approximate
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Reynolds stress profiles differ from those in the fully nonlinear case. This analysis will serve

as one good indicator of the accuracy of the model and can also provide insight into the

effect of neglecting particular nonlinear interactions.

It is convenient to express the tensorial Reynolds stresses as components in Cartesian

notation. Equating u′1 = u′, u′2 = v′, and u′3 = w′, the Reynolds stress tensor can be

expressed as

〈u′iu′j〉 =


〈u′2〉 〈u′v′〉 〈u′w′〉
〈v′u′〉 〈v′2〉 〈v′w′〉
〈w′u′〉 〈w′v′〉 〈w′2〉

 (2.21)

The turbulent kinetic energy from Equation (2.15) is defined as half the trace of the

Reynolds stress tensor. The normal Reynolds stresses, the wall-normal component of the

shear stress, 〈u′w′〉, and the turbulent kinetic energy have been well-characterized in turbu-

lent channel flow and are shown graphically for the inner layer in Figure 2.5 as a function

of wall units. Note the wall-normal location of peak amplitude and relative difference in

magnitude for each of the Reynolds stress components shown, as well as the rate at which

each increases from zero.

Turbulent velocity fluctuations

The strength of a turbulent flow is commonly quantified by computing the root-mean-

square (rms) of the velocity fluctuations, given by

(u′rms, v
′
rms, w

′
rms) =

(√
〈u′2〉,

√
〈v′2〉,

√
〈w′2〉

)
(2.22)

By definition, Equation (2.22) gives the standard deviation of each fluctuating velocity com-

ponent. In channel flow, u′+rms has a distinct peak at z+ = 15, and reaches a local minimum

at the centerline, as shown in Figure 2.6.
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Figure 2.5: Reynolds stress profiles extracted from a DNS of turbulent channel flow at
Reτ = 200 in the (nondimensional) spatial domain [2π, π, 2].

Anisotropy

As briefly discussed in Chapter 1, turbulence in wall-bounded shear flows is anisotropic

and inhomogeneous. An effective way to characterize the anisotropy of turbulent channel

flow is by way of the Lumley triangle. Recall for a stress tensor, the diagonal components

represent the normal stresses, while the off-diagonal components are the shear stresses. The

shear stresses are related to the shear deformation of a parcel of fluid, but the values are

dependent on the coordinate system. In contrast, tensor invariants (scalars), or eigenvalues

of the stress tensor, do not depend on the coordinate system. Using the invariants of the

Reynolds stress tensor, every realizable Reynolds stress state (i.e., having non-negative and

non-complex eigenvalues) corresponds to a location on the Lumley triangle (Pope, 2000).

Expressing the Reynolds stress tensor, defined previously by Equation (2.21), as a sum

of symmetric and antisymmetric parts, and normalizing by the turbulent kinetic energy
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Figure 2.6: Root-mean-square of the streamwise velocity fluctuation taken from DNS data
of turbulent channel flow at Reτ = 200.

k = 1
2
〈u′iu′i〉, the normalized Reynolds stress stress anisotropy tensor bij is defined as

bij =
〈u′iu′j〉
〈u′`u′`〉

− 1

3
δij =

aij
2k

(2.23)

where aij is the antisymmetric part of the Reynolds stress tensor. From linear algebra, the

three principal invariants of B are therefore

I1 = bii = tr(B) (2.24)

I2 =
1

2

[
(bii)

2 − b2
ii

]
=

1

2

[
(tr(B))2 − tr(B2)

]
(2.25)

I3 =
1

6
(bii)

3 − 1

2
biib

2
jj +

1

3
b3
ii = det(B) (2.26)

Since the Reynolds stress anisotropy tensor is antisymmetric, tr(B) = 0, thus Equa-

tion (2.24) always restricts I1 = 0. Therefore, the state of anisotropy can be completely

characterized by two invariants. Though I2 and I3 can be used, it is convenient to define the

two independent invariants, η and ξ, as

6η2 = −2I2 = b2
ii (2.27)

6ξ3 = 3I3 = b3
ii (2.28)

Equation (2.27) and Equation (2.28) define the coordinate axes (ξ, η) of the Lumley
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Figure 2.7: Lumley triangle with data from DNS of channel flow, where the color map
indicates distance from the wall in inner units (adapted from Figure 11.1 in Pope (2000)).

triangle using the Reynolds stress tensor. It should be noted that a similar figure can be

made by plotting I2 and I3 instead of ξ and η, which merely results in different boundaries

of the triangle. The special states of the Reynolds stress tensor are unchanged, but it can

be more difficult to ascertain how close the data is to these boundaries.

The vertical axis η measures the degree of anisotropy, starting with fully isotropic at

the origin. Data from a DNS of channel flow generated in this study is shown on the

Lumley triangle in Figure 2.7. Due to no-slip boundary conditions, continuity requires that

∂v′/∂z = 0 at each wall. Through Taylor series expansion of the fluctuating velocity, it can

be shown that, near the wall, there exists two-component flow (Pope, 2000). Away from the

wall but still in the near-wall region, the flow is dominated by streaks which can be modeled

as one-component flow. For high enough Reynolds number, there is a region of constant

anisotropy in the log-law region, and near the center of the channel, the flow tends to be

more isotropic. Therefore, a good approximation method should be able to reproduce these

characteristic features in the appropriate regions of the flow.
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Strain and vorticity fields

Though still not completely understood, the relationship between the structure of the

turbulent strain field and the vorticity field plays a central role in deciphering how dissipation

is distributed spatially in the flow and in modeling vortex stretching (Davidson, 2015).

Pioneered by Chong et al. (1990) and Cantwell (1993), the construction of a joint probability

density function (pdf) of the invariants of the velocity gradient tensor provides statistical

information about the local dynamics and topology of a turbulent flow, particularly the

interplay between the strain and vorticity fields (Khashehchi et al., 2009). It follows from

the same methodology used to construct the invariants of the Reynolds stress tensor that

the invariants of the total velocity gradient tensor, Lij, are

P = Lii = Tr(L) (2.29)

Q = −1

2
LijLij = −1

2
Tr(L2) (2.30)

R = −1

3
LijLjkLki = −1

3
Tr(L3) (2.31)

For incompressible flows, continuity requires P = 0. Written in terms of the symmetric

and anti-symmetric parts of the total velocity gradient tensor, Sij and Wij respectively, the

second and third invariants are

Q =
1

4
ω2 − 1

2
SijSji (2.32)

R = −1

3
(SijSjkSki +

3

4
ωiωjSij) (2.33)

where energy dissipation rate, ε = 2νSijSij, measures the magnitude of Sij, 1
2
ωiωi measures

the magnitude of Aij, and ω is the vorticity field.

The Q-R invariants are well-studied in a variety of turbulent flows yielding some univer-

sal features, including the characteristic “teardrop” shape of the joint pdf. Broadly, large

negative values of Q correspond to regions of high strain and low vorticity, while large posi-

tive values of Q indicate regions where vorticity is dominant and strain is weak (Davidson,
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2015). While the finer details are not in the scope of this work, the Q-R invariants will be

used to gauge the effectiveness of the GQL approximation in recovering certain statistical

aspects of the dynamics and topology of fully turbulent flow.
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Chapter 3

Algorithms Employed

In this chapter, the analytical details of the quasilinear and generalized quasilinear ap-

proximation of the Navier-Stokes equations and the associated numerical methods used to

implement the two algorithms central to this work are described. The first algorithm, written

in MATLAB, solves the single-mode quasilinear equations only, while the second algorithm,

written in Python and utilizing the Dedalus spectral framework (Burns et al., 2019), can

operate in four modalities: SMQL, QL, GQL, and fully nonlinear (NL).

3.1 Single-mode quasilinear algorithm

The QL approximation is a well-established theory in which nonlinear fluctuation/fluc-

tuation interactions are retained only when they feed back onto the mean dynamics. As a

step toward the development of a GQL algorithm for turbulent channel flow, a QL algorithm

was developed in MATLAB with the specific intent of reducing the fully 3D problem to a

“2 + ε”-dimensional simulation by retaining only a single streamwise fluctuation mode. The

results obtained from the SMQL algorithm developed in MATLAB also provide an external

validation for a SMQL simulation performed using the Python code.
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3.1.1 System of equations

Recall from Chapter 2 the dimensionless equations governing plane Poiseuille flow are
∂tu+ u · ∇u = −∇p+ 1

Reτ
∇2u− 1x̂

∇ · u = 0

u = (u, v, w) = (0, 0, 0) at z = ±1

(3.1)

To derive the SMQL algorithm, the first step (as for QL) is to decompose the state variables

into a suitable mean and a fluctuation about the mean. In the self-sustaining process de-

scribed by Waleffe (1997), the instability of the streamwise streaks plays an integral role in

the sustenance of turbulence. It is therefore reasonable to linearize the governing equations

about the streamwise-averaged streaks, implying the state variables are decomposed into a

streamwise (x) mean and fluctuation about the mean, such that

U(y, z, t) := 〈u(x, y, z, t)〉x P (y, z, t) := 〈p(x, y, z, t)〉x (3.2)

u(x, y, z, t) = U(y, z, t) + u′(x, y, z, t) (3.3)

p(x, y, z, t) = P (y, z, t) + p′(x, y, z, t) (3.4)

where, accordingly, the prime notation here denotes the fluctuations about the x-mean.

Substituting into Equation (3.1) and parsing into mean and fluctuation components yields

∂tU +U · ∇U − 1x̂+∇P − 1

Reτ
∇2U = −〈u′ · ∇u′〉x (3.5)

∂tu
′ +U · ∇u′ + u′ · ∇U +∇p′ − 1

Reτ
∇2u′ = −(u′ · ∇u′ − 〈u′ · ∇u′〉x) (3.6)

The QL approximation is obtained by keeping only the fluctuation-fluctuation interac-

tions that feed back onto the mean. Neglecting the right-hand side of Equation (3.6) and

rearranging results in

∂tu
′ +U · ∇u′ + u′ · ∇U = −∇p′ + 1

Reτ
∇2u′ (3.7)

The QL system described by Equations (3.5) and (3.7) is identical to the RNL model
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used by Farrell et al. (2016).

It proves convenient to eliminate the pressure gradient from Equations (3.5) and (3.7).

Since the mean velocity is independent of x, a streamfunction-vorticity formulation can be

employed to eliminate the mean pressure gradient from Equation (3.5), yielding

∂tΩ− ∂zΨ∂yΩ + ∂yΨ∂zΩ =
1

Re
∇2
⊥Ω− ∂y(〈u′ ·∇w′〉x) + ∂z(〈u′ ·∇v′〉x) (3.8a)

∇2Ψ = Ω V = −∂zΨ W = ∂yΨ (3.8b)

where Ω is the mean x-vorticity component and Ψ is the mean streamfunction. The fluctu-

ating pressure is eliminated by employing the normal-velocity/normal-vorticity method in-

troduced by Kim et al. (1987), in which the fluctuating momentum and continuity equations

are reformulated into a fourth-order equation for the normal velocity, w′, and a second-order

equation for the normal component of the fluctuating vorticity, g′. This results in the system

∂t∇2w′ = n′w +
1

Reτ
∇4w′ (3.9a)

∂tg
′ = n′g +

1

Reτ
∇2g′ (3.9b)

0 = f ′ + ∂zw
′ (3.9c)

where

f ′ = ∂xu
′ + ∂yv

′

g′ = ∂xv
′ − ∂yu′

n′w = ∂z(∂xN1 + ∂yN2)− (∂2
x + ∂2

y)N3

n′g = ∂xN2 − ∂yN1
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N1, N2, N3 represent the advection terms in Equation (3.7):

N1 = ū∂xu
′ + v̄∂yu

′ + v′∂yū+ w̄∂zu
′ + w′∂zū

N2 = ū∂xv
′ + v̄∂yv

′ + v′∂yv̄ + w̄∂zv
′ + w′∂zv̄

N3 = ū∂xw
′ + v̄∂yw

′ + v′∂yw̄ + w̄∂zw
′ + w′∂zw̄

3.1.2 Numerical method

The system of equations made up of Equations (3.5), (3.8) and (3.9) with boundary con-

ditions Equation (3.1) can be solved using a pseudo-spectral method for the spatial deriva-

tives. Specifically, a Fourier series expansion is employed in the streamwise and spanwise

directions, and a Chebyshev polynomial expansion is utilized in the wall-normal direction

(Trefethen, 2000). Thus, the mean and fluctuating velocity fields can be approximated using

the truncated Fourier expansions

U(y, z, t) =

Nx/2∑
kx=−Nx

2
+1

Û(ky, z, t)e
i
2πky
Ly

y (3.10)

u′(x, y, z, t)) =

Nx/2∑
kx=−Nx

2
+1

Ny/2∑
ky=−Ny

2
+1

û′(kx, ky, z, t)e
i 2πkx
Lx

x+i
2πky
Ly

y (3.11)

where kx and ky are the streamwise and spanwise mode numbers respectively. In the QL ap-

proximation, U represents the mean flow components (i.e., associated only with the kx = 0

mode number). Pressure is similarly defined. The code is advanced in time using a semi-

implicit scheme (Crank-Nicolson for the linear terms and second-order Adams-Bashforth for

the nonlinear terms). An influence matrix method is used to enforce the boundary conditions

associated with Equations (3.8) and (3.9a). The SMQL algorithm is realized by retaining

only a single (non-zero) streamwise Fourier component, which is chosen based on the length

of the streamwise domain Lx. This reduction to a “2+ε”-dimensional simulation dramatically
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reduces the computational cost while still sustaining nonlinear dynamics (Bretheim et al.,

2018).

3.2 GQL algorithm

While SMQL and other variations (constrained RNL, RNL, and QL, where a discrete

spectrum of streamwise fluctuation modes is retained) have been shown to qualitatively

recover low-order statistics of the turbulent dynamics, the suppression of energy scatter

among fluctuation modes can lead to inaccuracies in the fine-scale structure of the flow and

even in the long-time and horizontally-averaged mean velocity profile (Marston et al., 2016;

Tobias and Marston, 2017). The GQL approximation addresses the severe restriction on

the allowable small-scale energy scatter by permitting fully nonlinear interactions among

modes with non-zero streamwise wavenumber. Crucially, even when a single additional low

mode is retained, spectrally non-local energy transfers among the fluctuation (i.e., high)

modes are enabled, yielding improved recovery of the small-scale flow structure. To this end,

a more robust coding language and a more efficient solver proved necessary. Accordingly,

the algorithm developed in this section has the capability of operating in four modalities,

viz., SMQL, QL, GQL, and fully nonlinear (NL), facilitating a comparative study of these

approaches.

3.2.1 System of equations

In the SMQL/QL algorithm, the state variables are decomposed into a strict streamwise

mean and fluctuations about the mean. To generalize this decomposition, the velocity vector

and pressure are decomposed instead into large-scale and small-scale components, such that

u = u` + uh (3.12)

where ` and h represent the “low” and “high” wavenumber modes respectively. Low-wavenumber

modes are associated with large-scale motions and high-wavenumber modes are associated
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with small-scale motions. Physically, under the GQL reduction, the large-scale motions are

permitted to interact nonlinearly, while the dynamics of the small-scale motions is deter-

mined by linearization about the large-scale motions.

A Fourier series representation is again used for u` and uh,

u`(x, y, z, t) =
Λx∑

kx=−Λx

Λy∑
ky=−Λy

û(kx, ky, z, t)e
i 2πkx
Lx

x+i
2πky
Ly

y (3.13)

uh = u− u` (3.14)

where Λx and Λy are the spectral cutoff mode numbers that separate the low and high

modes in the indicated spatial direction. It is possible to perform GQL in both homogeneous

directions, as demonstrated by Tobias and Marston (2017). In this work, however, only the

nonlinear interactions in the streamwise (x) direction were restricted, allowing fully nonlinear

interactions in the spanwise (y) direction for all cases. The separation in wave-vector space

is shown schematically in Figure 3.1a. It is important to note that the imposition of a

spectral cutoff does not eliminate modes; rather it simply restricts nonlinear interactions.

This distinction should be a recalled when assessing the computational efficiency of the

simulation.

Substituting the modal decomposition into Equation (2.4) and projecting onto low and

high modes yields, respectively,

[u`]t = L(u`) +N`(uh,uh) +N`(u`,u`) +N`(u`,uh) +N`(uh,u`) (3.15)

[uh]t = L(uh) +Nh(u`,uh) +Nh(uh,u`) +Nh(uh,uh) +Nh(u`,u`) (3.16)

where L is a linear vector differential operator and N is an operator that contains the

nonlinear interactions in the governing PDE.

The GQL approximation is realized by retaining only specific nonlinear interactions a

priori. In Equation (3.15), only the nonlinear interactions between low modes and low modes

and high modes and high modes that result in low modes are retained. In Equation (3.16),

the nonlinear interactions between the low modes and high modes that result in high modes
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(a) (b)

Figure 3.1: (a) Separation in wave-vector space of modes into “low” and “high” components
employed in this work and (b) the set of retained triadic interactions in the GQL approxi-
mation (Tobias and Marston, 2017).

are retained. The retained nonlinear interactions are shown schematically in Figure 3.1b.

All other nonlinear interactions are neglected. It is emphasized here that, as is also the case

with QL, the nonlinear interactions retained in the GQL algorithm obey the conservation

laws of the original PDE (Marston et al., 2016). The GQL approximation is expressed as

∂tu` = L(u`) +N`(uh,uh) +N`(u`,u`) (3.17)

∂tuh = L(uh) +Nh(u`,uh) +Nh(uh,u`) (3.18)

If the spectral cutoff Λx = 0 (i.e., the only low mode retained is kx = 0), the last two

nonlinear interactions in Equation (3.15) and the last nonlinear interaction in Equation (3.16)

are identically zero, and the quasilinear approximation described in Section 3.1 is recovered

exactly. For Λx equal to the highest wavenumber (i.e., retained in a DNS), the fully nonlinear

dynamics are recovered. Thus the GQL approximation effects a homotopy between QL and

DNS.

3.2.2 Numerical method

The GQL system of equations described by Equations (3.17) and (3.18) has been coded

in Python and solved using the Dedalus spectral framework for numerically simulating PDEs

(Burns et al., 2019). Dedalus is an open-source spectral solver written in Python that simply

requires the user to define a spectral domain, input systems of equations and boundary con-
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ditions in plain text, and select a numerical solver from a database. Here, a pseudo-spectral

(Fourier-Fourier-Chebyshev) method is used for the spatial derivatives and a third-order

semi-implicit backward difference formula (SBDF3) is used to advance in time. Dedalus also

allows for an adaptive timestep, which is used in all simulations. Simulations are performed

on Premise, one of the University of New Hampshire’s high performance computing clusters.

3.3 Resolution and parameter selection

In wall-bounded shear flows, the dynamics of the near-wall region is most sensitive to

grid resolution. In general, the grid resolution used for channel flow DNS must meet the

following conditions, as outlined by Ghiasi et al. (2018):

1. The first point (nearest the wall) is located within z+ < 1.

2. There are at least 10 points within z+ < 10.

A competing concern is that the smaller grid size near the wall associated with the

staggered grid necessitates a smaller time step, which can be computationally expensive.

Ghiasi et al. (2018) compared results of two simulations performed on grids with 11 and 5

grid points within z+ < 10 in a turbulent channel flow using a Chebyshev distribution of

points in the wall-normal direction. In both cases, the mean velocity profile is predicted

accurately, but the second case (5 grid points) under-predicts the streamwise turbulence

intensity. The investigators concluded that the second general condition is required to be

satisfied for accurate prediction of flow statistics. This criterion is followed to determine

whether the resolution chosen for the GQL simulations is adequate.

A guiding principle in determining a parameter regime for the GQL simulations involved

choosing a sufficiently high Reynolds number to sustain turbulence beyond the transitional

regime while enabling fully nonlinear simulations to be performed at reasonable computa-

tional cost for comparison. The domain size was then chosen to minimize computational

cost yet sustaining turbulence. The initial resolution in the wall-normal direction met the
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Trial Nx x Ny x Nz [Lx, Ly, Lz] Reτ

1 84 x 84 x 108
2 96 x 96 x 108 [2π, π, 2] 200
3 96 x 96 x 128
4 96 x 96 x 144

Table 3.1: Selection of GQL simulation parameter regime.

requirements proposed by Ghiasi et al. (2018). Through trial and error, an initial parameter

regime in which the fully nonlinear case sustained turbulence was achieved at a reasonable

computational cost. Fixing the Reynolds number and domain size, several different grid

resolutions were explored, as listed in Table 3.1.

Studying the wall-normal dependence of the statistics of the turbulent velocity gradient

fields in wall-bounded flow has been shown to yield quantitative justification for choosing a

particular grid resolution, as first discussed by Hamlington et al. (2012). Using this method-

ology, the vertical profiles of the energy dissipation rate were compared at all resolutions.

The energy dissipation rate, ε, is a measure of the magnitude of the symmetric strain

rate tensor, Sij (see Section 2.4). The variation of the energy dissipation rate with distance

from the wall can be seen by plotting the average (in time and the horizontal plane) of the

dimensionless energy dissipation rate, as a function of the wall-normal coordinate,

εavg(z) = 〈ε(x, t)〉A,t =
2

Reτ
〈SijSij〉A,t (3.19)

where A is the area of the x-y plane.

The average energy dissipation rate, εavg, for all four resolutions is shown in Figure 3.2.

The curves collapse throughout most of the channel, with slight deviations in the viscous

layer, specifically near z+ ≈ 20. Based on the conclusions of Hamlington et al. (2012), the

results indicate that any of the selected resolutions would yield accurate first-order statistics.

Ultimately, the resolution yielding the most constant average energy dissipation rate near

z+ ≈ 20, i.e., 96 x 96 x 144, was chosen because of the better agreement with the dissipation

term in the turbulent kinetic energy budget (see Figure 2.3).
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Figure 3.2: Average energy dissipation rate, εavg, for the different grid resolutions listed in
Table 3.1.

To more quantitatively examine the adequacy of the grid resolution, the value of the

spectral coefficients having the highest mode number (kx = Nx/2, ky = ±Ny/2, and Nz)

for each component of the velocity field, u, v, and w, was determined. Although the ideal

truncation error is machine precision, there does not appear to be a consensus in the literature

on the maximum error allowed for a direct numerical simulation to be considered “well-

resolved”. Anecdotal evidence suggests modal amplitudes on the order 10−4 to 10−6 for

the Fourier directions and 10−6 to 10−9 for the Chebyshev direction yields a well-resolved

simulation for the purposes of this work. Analysis of the high Reynolds number regime

explored in this work indicates the maximum truncation of the Fourier coefficients is on

the order of 10−4 for the streamwise and wall-normal velocity components and 10−5 for

the spanwise velocity component. A similar analysis of the low Reynolds number regime

selected in this study reveals the maximum truncation of the Fourier coefficients is on the

order of 10−3 for all three velocity components. For the high Reynolds number regime, the
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maximum truncation of the Chebyshev coefficients has an amplitude on the order 10−6 for

the streamwise and spanwise velocities and 10−7 for the wall-normal velocity. For the low

Reynolds number regime, the maximum truncation of the Chebyshev coefficients has an

amplitude on the order 10−9 for the streamwise and spanwise velocities and 10−10 for the

wall-normal velocity. These results suggest the fully nonlinear simulations for both Reynolds

number regimes are adequately, albeit marginally, resolved for the purposes of the analysis in

this work, but could be improved by increasing the resolution in all three spatial directions.

This further refinement of the grids has not yet been performed owing to time constraints

and computational hardware restrictions, but will be a consideration for future work.
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Chapter 4

GQL Simulations at High Reynolds Number

In this chapter, the accuracy of GQL simulations for various values of Λx is evaluated by

computing metrics introduced in Chapter 2 and performing head-to-head comparisons with

QL and the fully nonlinear simulation for the same set of parameters. It will be demonstrated

that GQL, even with a modest spectral cutoff (Λx ≤ 3), is able to more accurately reproduce

the statistics and dynamics of a fully nonlinear turbulent channel flow than is QL.

4.1 Parameter regime and data collection

To establish the accuracy of the GQL approximation, the system parameters were chosen

so that a self-sustaining turbulent flow regime could be attained and the fully nonlinear

dynamics could be feasibly simulated for comparison. Table 4.1 lists the parameters used

for all simulations. In total, eight simulations were run: one QL, one NL, and six GQL

simulations for various values of Λx. The fully nonlinear simulation was initialized with the

parabolic Poiseuille velocity profile with random perturbations to trigger turbulence and

then run to a statistically steady state. All GQL simulations and the QL simulation were

initialized from the NL statistically steady state and run for at least 350 non-dimensional time

units. Data is saved every 0.5 non-dimensional time units for all simulations and averaged for

purposes of analysis over the last 200 non-dimensional time units, yielding 400 “snapshots”

for each simulation. In this section, the mean is defined as the time and horizontal spatial

average. A mean quantity will be denoted with capital letters (e.g., 〈u〉x,y,t = U(z)) and
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Cases [Lx, Ly, Lz] Nx x Ny x Nz Reτ

Λx = 0 QL
Λx = 2 GQL2
Λx = 3 GQL3
Λx = 8 GQL8
Λx = 10 GQL10 [2π, π, 2] 96 x 96 x 144 200
Λx = 15 GQL15
Λx = 20 GQL20
Λx = 48 NL

Table 4.1: GQL simulation parameters.

prime notation again indicates the fluctuations about the mean. Note that, in many cases,

quantities were not averaged in the streamwise direction because the data was obtained from

vertical plane snapshots at x = 0, indicated by 〈·〉y,t. The data obtained in the vertical (y-z)

plane was more temporally resolved than the data for the entire channel by a factor of 20,

and therefore was deemed to provide a better statistical representation of these quantities.

4.2 Results and analysis

Mean velocity and mean shear

In turbulent channel flow, the mean profile is the result of a redistribution of vorticity,

which forms a region of weak shear in the core and matching regions of strong shear near the

walls (Tobias and Marston, 2017; Waleffe et al., 1993). A comparison of the mean velocity

and mean shear profiles under the QL and GQL approximations relative to those of the NL

simulation is one indication of the model’s ability to capture the nonlinear dynamics of the

flow. The streamwise mean velocity profile, U(z), and the mean velocity gradient, dU
dz
, for

each simulation identified in Table 4.1 were computed and are plotted in Figure 4.1 as func-

tions of wall-normal distance. The parabolic Poiseuille profile is also included for reference.

The line styles used to distinguish the different simulations will be consistent throughout,

with the results from the NL simulation always represented by a thick dashed black line,

the QL simulation represented by a dashed-dotted blue line, and the GQL simulations rep-
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(a) (b)

(c) (d)

Figure 4.1: Streamwise mean velocity profiles (a) with laminar Poiseuille profile and turbu-
lent mean profiles highlighted by the gray shaded region, (b) blow-up of turbulent streamwise
mean velocity profiles, (c) the inner-normalized mean on a semi-log plot, and (d) the mean
velocity gradient for all simulations. The color coding shown in the legend above this figure
is consistently used throughout this work.

resented by the colors shown in the legend above Figure 4.1.

Figure 4.1a provides visual confirmation that all simulations are in the turbulent regime,

indicated by the gray region. Zooming in on the turbulent mean profiles in Figure 4.1b, the

QL approximation is demonstrably the least effective at reproducing the NL mean profile,

while the GQL profiles are quantitatively more accurate in shape and magnitude, even at
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a modest cutoff Λx. The GQL simulations, while showing good agreement with the NL

mean shear profiles, do have varying degrees of accuracy in recovering the NL mean velocity

profile. It is interesting, as noted by Child et al. (2016), that the improvement in accuracy

of GQL3 over QL is significant, but increasing Λx further yields diminishing returns in the

approach to the fully nonlinear first-order statistics. Both observations are consistent with

the conclusions of prior investigators who employed GQL in two-dimensional and three-

dimensional simulations of other flows and flow regimes (Marston et al., 2016; Child et al.,

2016; Tobias and Marston, 2017).

The disparity between the mean profiles is more clearly seen in Figure 4.1c, where the

mean and wall-distance are inner-normalized and compared on a semi-log plot. QL over-

predicts the mean velocity in the NL log region and is drag-reduced, while all GQL simu-

lations are slightly drag increased. Figure 4.1d demonstrates that the mean shear profiles

obtained from the GQL simulations are in good agreement with the NL velocity gradient

profile, while the QL simulation over-predicts the mixing in the core and, as a result, under-

estimates the shear in the core. This result is significant, as the mean shear is the energy

source for the turbulence.

A more careful analysis of the mean velocity profiles provides information about the

important dynamics of the log region. The log region of the flow is perhaps best identified

using the indicator function, z+dU+/dz+, which is shown for all simulations in Figure 4.2.

The value of the indicator function in the region between the peak of the Reynolds stress

(z+ ≈ 30) to the outer edge of the inertial layer (z ≈ 0.2Reτ , z+ ≈ 40) corresponds to

the slope of the log region, defined as 1/κ = 2.5, where κ = 0.4 is the well-established von

Kármán constant and is independent of Reynolds number. Indeed, the indicator function

for NL exhibits a slope of approximately 2.5. Crucially, the indicator function for the GQL

simulations also indicates the presence of a log layer, although the value of κ varies as a

function of the spectral cutoff Λx. In contrast, the indicator function for the QL simulation

results does not identify a log layer, an observation in apparent conflict with the conclusions
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Figure 4.2: Indicator function. A log layer is clearly evident in all GQL profiles, as for the
NL profile, but not in the QL simulation.

reached by Farrell et al. (2016) for channel flow at Reτ = 940. In this work, the absence

of log-layer dynamics for the QL simulation is supported by other metrics reported later in

this section, in particular the anisotropy analysis. It is significant that all GQL simulations,

even those that retain a small number of low modes, recover the log-layer dynamics of the

flow, while QL does not.

Instantaneous velocity fields

One advantage of using the GQL approximation rather than a statistical closure is that

information about the instantaneous flow fields may be extracted. In Figure 4.3, the instan-

taneous streamwise velocity field for QL, GQL3, GQL8, and NL (from top to bottom) is

shown in the horizontal (x-y) plane z+ = 10 (left column), i.e., near the upper wall, and

at z = 0.1 (right column), i.e., near the centerline, at one instant in time in the statisti-

cally steady regime. The characteristic streaky structures that form in the near-wall region

can be seen in all simulations, while the fine-scale structure present in the NL simulation is
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clearly evident even in the GQL3 and GQL8 simulations. By contrast, the QL simulation

captures certain large-scale structure of the turbulent pattern but lacks the fine-scale stream-

wise structure present in NL. Additionally, the QL approximation yields larger streamwise

velocities than NL. Near the centerline, all simulations reasonably recover the dynamics of

NL, though here, too, the QL approximation overestimates the magnitude of the streamwise

velocity.

The instantaneous streamwise velocity u in the transverse (y-z) half plane at x = 0, shown

in Figure 4.4, exhibits fine-scale structures near the wall in all simulations. Even the QL

simulation is able to reproduce some defined structure in the spanwise plane, which can be

attributed in part to the allowed mode coupling in the spanwise (y) direction. Nevertheless,

the QL approximation again overestimates the magnitude of the streamwise velocity.

To more clearly probe the turbulence structure, it is helpful to partition the velocity

field into the mean and fluctuating components. The fluctuating streamwise velocity is

computed by subtracting off the long-time and horizontal mean, u′ = u− 〈u〉t,x,y, where the

time averaging is performed over the statistically steady realizations defined in Section 4.1.

The instantaneous fluctuating streamwise velocity field in the horizontal plane is shown in

Figure 4.5 and, again, it is evident that the fine-scale structure in the near-wall region is

better reproduced by the GQL simulations. In Figure 4.6, the addition of the instantaneous

spanwise-wall-normal velocity (v′, w′) quiver plot overlay shows the perturbation structure

in the wall-normal/spanwise plane. With the effects of the mean flow removed, the wavy

streaks evident in the horizontal plane and the more complex roll dynamics in the vertical

plane of NL are seen to be better captured by the GQL simulations.

Finally, the streak component of the streamwise mean velocity, Us = U − 〈U〉y, is shown

in Figure 4.7 at one instant in time with an overlay of the corresponding streamwise-averaged

spanwise/wall-normal velocities (V,W ). The rolls and streaks can be seen more clearly by

time-averaging Us (and the associated spanwise/wall-normal velocities), shown in Figure 4.8.
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Λx = 0 (QL) Λx = 0 (QL)

Λx = 3 (GQL3) Λx = 3 (GQL3)

Λx = 8 (GQL8) Λx = 8 (GQL8)

Λx = 48 (NL) Λx = 48 (NL)

Near Wall (z+ = 10) Near Centerline (z = 0.1)

Figure 4.3: Instantaneous streamwise velocity in the horizontal (x-y) plane at z+ = 10 (left
column) and near-centerline at z = 0.1 (right column) for various Λx.
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Λx = 0 (QL)

Λx = 3 (GQL3)

Λx = 8 (GQL8)

Λx = 48 (NL)

Figure 4.4: Instantaneous streamwise velocity in the vertical (y-z) plane at x = 0 for various
Λx.
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Λx = 0 (QL) Λx = 0 (QL)

Λx = 3 (GQL3) Λx = 3 (GQL3)

Λx = 8 (GQL8) Λx = 8 (GQL8)

Λx = 48 (NL) Λx = 48 (NL)

Near Wall (z+ = 10) Near Centerline (z = 0.1)

Figure 4.5: Instantaneous fluctuating streamwise velocity in the horizontal (x-y) plane at
z+ = 10 (left) and near-centerline at z = 0.1 (right) for various Λx.
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Λx = 0 (QL)

Λx = 3 (GQL3)

Λx = 8 (GQL8)

Λx = 48 (NL)

Figure 4.6: Instantaneous fluctuating streamwise velocity in the vertical (y-z) plane at x = 0
with (v′,w′) overlay for various Λx.
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Λx = 0 (QL)

Λx = 3 (GQL3)

Λx = 8 (GQL8)

Λx = 48 (NL)

Figure 4.7: Instantaneous streak component in the vertical (y-z) plane at x = 0 with (V ,W )
overlay for various Λx.
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Λx = 0 (QL)

Λx = 3 (GQL3)

Λx = 8 (GQL8)

Λx = 48 (NL)

Figure 4.8: Time-averaged streak component in the vertical (y-z) plane at x = 0 with
(〈V 〉t,〈W 〉t) overlay for various Λx.
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Streak spacing

It is clear from the instantaneous images that the near-wall region is dominated by low-

and high-speed streaks. To further quantify how well the GQL approximation can recover

the structure of the flow, a quantitative measure of the spanwise streak-spacing is obtained.

Based on a multitude of physical experiments, the characteristic spacing between the streaks

near the wall is on average ∆y+ ≈ 100, independently of Reynolds number (Pope, 2000).

Here, the streak spacing is quantified using a two-point spanwise correlation of the streamwise

fluctuating velocity u′, defined as

Ru′u′(∆y, z1, z2) =
1

LxLy

∫ Lx

0

∫ Ly

0

u′(x, y, z1)u′(x, y + ∆y, z2) dx dy (4.1)

where ∆y is the distance between the two spanwise points and, in this computation, only

one horizontal plane is used (i.e., z1 = z2).

In Figure 4.9, the two-point spanwise correlation at z+ = 10 of select GQL simulations

is compared with that of QL and NL. The distance ∆y has been scaled in wall units, and

the correlation function Ru′u′ has been normalized by the root-mean-square (rms) of the

streamwise fluctuating velocity and time-averaged over the statistically steady data. By

construction, Ru′u′(∆y
+ = 0) = 1, corresponding to perfect correlation. The first minimum

of Ru′u′ indicates the location of a streak with opposite-signed velocity (i.e., negative cor-

relation). Ru′u′ crosses zero again for NL and all GQL simulations at ∆y+ ≈ 110, which is

in accord with the general consensus of expected streak spacing of 100 wall units (Aghdam

and Ricco, 2016; Jiménez and Kawahara, 2013). The spanwise streak spacing for the QL

simulation is larger, which accords with the coarse streak pattern evident in Figure 4.5.

Enstrophy

The energy input from the pressure gradient driving the flow is balanced on volume aver-

age by the viscous dissipation, which can be related to the volume integral of the magnitude
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Figure 4.9: Time-averaged two-point spanwise correlation of streamwise velocity fluctuations
obtained from select simulations for various Λx.

of the vorticity squared: ∫
εdV =

1

Re

∫
|∇× u|2 dV (4.2)

where ε is the dissipation rate and ∇× u = ω is the total vorticity (Tobias and Marston,

2017). The volume-integrated enstrophy is given by the integral on the right-hand side of

Equation (4.2). The enstrophy of the system, which thus is proportional to the dissipation

rate, can be used as another means to determine the effectiveness of the GQL approximation.

The enstrophy can be readily computed for each simulation from the corresponding velocity

field data, and the resulting enstrophy from the QL and GQL simulations compared to the

fully nonlinear result to quantify the effectiveness of the approximations.

The volume integral from Equation (4.2) is computed by averaging in the horizontal

(x-y) plane, then integrating over the wall-normal (z) direction. The resulting values of
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Simulation QL GQL2 GQL3 GQL8 GQL10 GQL15 GQL20 NL

Enstrophy 34.2 29.6 30.7 30.2 30.2 32.9 31.9 31.7

Table 4.2: Enstrophy
∫
V
ω2dV for all Reτ = 200 simulations from Table 4.1.

the enstrophy for all simulations are shown in Table 4.2. The QL simulation significantly

overestimates the enstrophy relative to the NL result, while the GQL simulations, even at

modest Λx, better reproduce the true enstrophy of the flow. Another feature revealed by this

comparison is the non-monotonic variation in the enstrophy as more nonlinear interactions

are permitted among the low modes in the GQL simulations. These results and trends are

in agreement with those reported in Figure 4.1 in the previous section.

Vortical structure

It is well-established that in highly turbulent flows, there exist regions of large vorticity,

ω, organized in thin tube-like structures. The three-dimensional rendering of the magnitude

of these vortex tubes is shown in Figure 4.10 for QL, GQL3, and NL, created using Mayavi

(Ramachandran and Varoquaux, 2011). The fine-scale structure and the random alignment

of the vortex tubes are clearly seen in the NL and GQL3 data, while the vortex tubes seen

in the QL simulation lack the fine-scale structure present in the NL case and are aligned

primarily in the streamwise direction.

Turbulent fluctuating velocities

To quantify the strength of the turbulence, the root-mean-square (rms) of the fluctuating

velocities for all simulations was computed, as defined by Equation (2.22).

The rms streamwise fluctuating velocity profile is shown as a function of both inner (wall-

normal) units, z+ = z/uτ (Figure 4.11a), and outer (wall-normal) units z/h (Figure 4.11b),

while the spanwise and wall-normal fluctuating velocities are shown as functions of inner

wall-normal units (Figures 4.11c and 4.11d, respectively). In all figures, the rms velocity

components are normalized by uτ .
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Λx = 0 (QL)

Λx = 3 (GQL3)

Λx = 48 (NL)

Figure 4.10: Isosurfaces of the enstrophy in QL, GQL3, and NL.

59



(a) (b)

(c) (d)

Figure 4.11: Root-mean-square fluctuating velocity components for various Λx. (a) u′rms in
inner normalized and (b) outer normalized units, (c) v′rms and (d) w′rms. The legend in (c)
applies to all four subplots.
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Remarkably, all GQL simulations accurately predict each of the three rms velocity com-

ponents relative to the fully nonlinear simulation. The QL simulation significantly over-

predicts u′rms throughout the entire channel, and under-predicts v′rms and w′rms near the wall

and overestimates them in the core. Thus, GQL, even with a few low modes retained, is

more capable of predicting the profiles of turbulence intensity.

Reynolds stresses

The components of the Reynolds stress tensor and the turbulent kinetic energy, as defined

by Equations (2.15) and (2.21), were computed for simulations using various values of Λx

and are shown in a variety of ways.

First, select Reynolds stress profiles are shown as a function of inner normalized distance

from the wall in Figure 4.12. QL significantly overestimates the streamwise fluctuating

Reynolds stress and turbulent kinetic energy, while the GQL results are in closer agreement

with those of the NL simulation (Figures 4.12a and 4.12d). More significantly, QL under-

predicts the Reynolds shear stress near the wall, as evident in Figure 4.12c, which indicates

the influence of the viscous effects extends farther from the wall relative to the fully nonlinear

simulation. The attenuation of the Reynolds stress in the QL simulation effectively redefines

the dynamics in the various regions of the flow, delaying streak breakdown and encroaching

on the log region, which is the reason why QL fails to recover the log region dynamics. The

GQL simulations, on the other hand, tend to slightly over-predict Reynolds shear stress near

the wall, implying some elements of the fully nonlinear dynamics are missing, albeit to a

lesser extent. Also, the accuracy of the GQL simulations, as compared to the NL simulation,

is again seen to vary non-monotonically with increasing Λx.

The total stress budget for each simulation is plotted in Figure 4.13. Note that the

location of peak production, i.e., where the viscous stress and Reynolds shear stress are

equal, is shifted away from the wall in the QL simulation relative to NL, providing further

evidence for the delay of streak breakdown.
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(a) (b)

(c) (d)

Figure 4.12: Select Reynolds stress profiles and turbulent kinetic energy profile for all simu-
lations, where (a) 〈u′+2〉y,t, (b) 〈w′+2〉y,t, (c) 〈u′+w′+〉y,t, and (d) 〈k+2〉y,t. The legend in (b)
applies to all four subplots.
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Figure 4.13: Reynolds shear stress and mean viscous stress profiles.

Characterization of Reynolds stress anisotropy

Recovering the anisotropic characteristics of the flow is critical to the success of the GQL

algorithm. Recall from the discussion in Chapter 2 the Lumley triangle is an useful tool to

characterize the anisotropy of the flow.

In Figure 4.14, the Reynolds stress invariants are plotted on the Lumley triangle for the

QL, GQL3, and NL simulations. An immediate observation in comparing the QL data to

the NL data is that all (ξ, η) pairs are shifted toward the 1-component region of the trian-

gle, providing further evidence that the QL dynamics exhibit a delay in streak breakdown,

and predict a flow dominated by streaks farther from the wall than is realized in the NL

simulation. The distinctive cluster of constant η points in the log-law region is conspicu-

ously absent (as predicted by the indicator function in Figure 4.2), as are the 2-component

near-wall (z+ < 1) points. Remarkably, the near-wall and log-law region contributions are
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Figure 4.14: Direct comparison of Reynolds stress invariants on the Lumley triangle for QL,
GQL3, and NL.

recovered by retaining a modest number of nonlinear low modes, as evident in the GQL3

simulation. The Lumley triangle provides compelling evidence that the physical structure

of turbulence in the channel, and thus the flow dynamics, are better recovered by the GQL

methodology.

Q-R invariants

Another way to visualize the kinematic features of turbulent channel flow is via the

invariants of the velocity gradient tensor, as described in Chapter 2. Figure 4.15 shows

Q-R plots for the QL, GQL3, and NL simulations. To create these plots, a joint pdf was

constructed from one instantaneous snapshot of the velocity gradient tensor at a wall-normal

location in the near-wall region using the Seaborn data visualization library written in Python

(Waskom et al.). To include more data points for more reliable statistics, the joint pdf

includes two adjacent horizontal planes (z+ = 8.612 and z+ = 9.924).
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Λx = 0 (QL) Λx = 3 (GQL3)

Λx = 48 (NL)

Figure 4.15: Joint pdf of the Q-R invariants at z+ = 8.612 and z+ = 9.924 for QL, GQL3,
and NL.
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The QL simulation exhibits very small values of Q and R, and fails to recover the char-

acteristic teardrop shape of the pdf, which corresponds physically to low strain resulting in

one-dimensional flow. In stark contrast, the topology of the flow in GQL3 is qualitatively

similar to that of NL; in particular, the characteristic shape of the NL pdf, is captured.

Energy in physical space

Energy is a critically important quantity in the study of turbulence and its transfer

underlies many of the mechanisms in the transition to and sustenance of turbulence. Of

particular interest in assessing the accuracy of the approximation methods is the budget of

turbulent kinetic energy and the distribution of the streamwise fluctuating kinetic energy

among the dynamic range of scales.

The budget of turbulent kinetic energy can be analyzed in both physical space and

wavenumber space, but in this section the analysis will focus on an evaluation in physical

space. The terms of the turbulent kinetic energy budget defined in Equation (2.15) have

been computed for QL, GQL3, GQL8, and NL simulations, and are shown in Figure 4.16.

The residuals, i.e., the differences between the terms in the QL and GQL energy budgets

and those in the NL budget, are shown in Figure 4.17.

Again, QL fails to accurately recover important aspects of the fully nonlinear dynamics.

Notably, the turbulent kinetic energy peak production in QL is shifted significantly away

from the wall, which is also observed in the total stress budget shown in Figure 4.13, while

peak production is shifted slightly towards the wall in GQL.

Another significant difference between the QL and GQL simulations is evident in the

vertical profile of turbulent advection, also known as nonlinear transfer, as this mechanism

arises from the nonlinear term in the governing PDEs. QL over-predicts turbulent advection

towards the wall as well as away from the core. In contrast, GQL slightly under-predicts

the turbulent advection toward the wall and slightly over-predicts the nonlinear advection

away from the core. These deviations are, of course, a direct consequence of the omission of
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Figure 4.16: Turbulent kinetic energy budget for select simulations. Note that the pressure
transport term is not shown.

certain nonlinear interactions in the QL and GQL simulations, and hence are of particular

interest in understanding the dynamics recovered (and not recovered) by the various approx-

imation methods. Clearly, the nonlinear interactions permitted by the various (even modest)

truncations of GQL enable key aspects of the turbulence energetics across the channel to be

more accurately captured than is possible with the QL approximation.

Energy in wavenumber space

To better understand the effect of the QL and GQL approximations on the nonlinear

transfer term and the overall energy of the system, it is instructive to analyze these quantities

in wavenumber space as a function of the dynamic range of scales.

The turbulent kinetic energy balance in wavenumber space was derived in Chapter 2

and is represented by Equation (2.20). The nonlinear transfer of energy is described by the

second term on the right hand side of Equation (2.20), written separately here:
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Figure 4.17: Residuals of the components of the turbulent kinetic energy budget for select
simulations (see Figure 4.16).

T (κ, z) = <
[
û∗(κ, z)N̂ (κ, z)

]
(4.3)

The analysis of the nonlinear transfer term that follows is outlined by Domaradzki et al.

(1994). The total nonlinear energy transfer in a horizontal plane at a particular instant in

time was obtained by summing over all wavenumbers κ for fixed z. The total plane-averaged

energy transfer, TI(z), is then plotted in Figure 4.18 and compared with the contribution

from the mean (i.e., κ = 0) and the contribution from the fluctuations about the mean (i.e.,

κ 6= 0) for the QL, GQL3, and NL simulations. In all three cases, the largest contribution

to nonlinear energy transfer is from the mean, where energy is extracted from the core

and transferred to the near-wall region. In QL, the magnitude of the energy transferred
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Λx = 0 (QL)

Λx = 3 (GQL3)

Λx = 48 (NL)

Figure 4.18: Total horizontal plane-averaged nonlinear energy transfer, the contribution
from the mean (κ = 0 mode), and contribution from the fluctuations (κ 6= 0 modes) for QL,
GQL3, and NL.
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away from the core is larger relative to NL, which again reinforces the observation that

QL over-predicts the mixing in the core. GQL better predicts the energy transfer away

from the core, but does slightly overestimate the energy transfer towards the walls through

nonlinear interactions involving the mean and the fluctuations. These observations are in

concert with those made regarding the turbulent advection term in physical space. As noted

previously, GQL necessarily omits certain dynamics due to the (albeit less severe) restriction

of the energy cascade, which can be seen more readily in a spectral analysis of the nonlinear

energy transfer terms specifically. Indeed, this methodology enables many other avenues of

exploration, including, e.g., computing the nonlinear energy transfer contribution associated

with specific bands of modes, that may illuminate aspects of the dynamics associated with

nonlinear energy transfer retained (and neglected) in the various GQL approximations.

Another method of assessing the accuracy of the various simulations is through an anal-

ysis of the two-dimensional energy spectra. The two-dimensional energy spectra for the

fluctuating streamwise velocity u′ in the horizontal plane z+ = 10 is obtained by comput-

ing the two-dimensional discrete Fourier transform of the fluctuating streamwise velocity u′,

exploiting the discrete Parseval relation in two dimensions, and time averaging the energy

spectra over the statistically-steady regime for each simulation:

E(kx, ky, z) =
1

2NxNy

û(kx, ky, z)û
∗(kx, ky, z) (4.4)

In Figure 4.19, the two-dimensional spectra for the fluctuating streamwise velocity near

the wall (z+ = 10) is shown. The color field represents the turbulent kinetic energy on a

base 10 logarithmic scale as a function of streamwise and spanwise wavenumbers. The white

region indicates energy below the established minimum threshold indicated by the color

bar. Immediately apparent in the QL simulation is the restriction in the streamwise cascade

of energy to small scales and the large energy magnitudes relative to NL. The magnitude

and distribution of energy in the GQL simulation with just three low modes constitutes

a dramatic improvement over QL. Interestingly, in the GQL8 energy spectrum, there is a
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distinctive discontinuity along kx = 8, which is more apparent in the one-dimensional energy

spectra as a function of kx.

To obtain a better sense of how energy is distributed among the different scales in each of

the horizontal directions, the one-dimensional energy spectra of u′ is computed by following

the same procedure as for the 2D spectra except using the one-dimensional discrete Fourier

transform with appropriate normalization. In each case, the energy spectra is averaged

appropriately to show a 1D profile.

As evident in Figure 4.20a, the streamwise-averaged streamwise kinetic energy as a func-

tion of the spanwise wavenumber obtained from each of the GQL simulations shows excellent

agreement with the corresponding NL spectrum. As expected, the QL simulation is quanti-

tatively shown to retain too much energy in the large scales and dissipates too severely in the

small scales, owing to the suppression of energy scatter among streamwise (x) Fourier modes.

In Figure 4.20b, showing spanwise-averaged streamwise kinetic energy as a function of the

streamwise wavenumber, the discontinuity observed in GQL8 in Figure 4.19 is seen more

clearly in all simulations for Λx ≥ 8. Upon closer inspection, a discontinuity exists for all

GQL simulations at precisely the streamwise spectral cutoff, Λx, the wavenumber at which

the equations governing the large and small scales switch. For Λx ≤ 3, the discontinuity is

seen only in the slope, but as Λx increases, there is a discontinuity in the energy itself, the

magnitude of which increases with increasing Λx until all high modes are strongly damped.

The origin of this phenomenon is explored in greater detail in Chapter 6.
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Λx = 0 (QL) Λx = 3 (GQL3)

Λx = 8 (GQL8) Λx = 48 (NL)

Figure 4.19: Two-dimensional energy spectra for streamwise velocity fluctuations in the
horizontal plane z+ = 10 for select GQL simulations.
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(a)

(b)

Figure 4.20: (a) Time and streamwise-averaged streamwise kinetic energy 〈Eu′〉x,t as a func-
tion of ky and (b) time and spanwise-averaged streamwise kinetic energy 〈Eu′〉y,t as a function
of kx.
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Chapter 5

GQL Simulations at Low Reynolds Number

In accord with the goal of developing a robust algorithm, a suite of simulations is per-

formed in a lower Reynolds number parameter regime. To ensure the sustenance of non-

trivial dynamics, a spatially-extended horizontal domain is used for these simulations.

5.1 Code validation/minimum model

In this section, the single mode quasilinear (SMQL) algorithm is explored. Of particular

interest is the versatility of the Python/Dedalus algorithm, which can operate in SMQL,

QL, GQL, and NL modalities. Here, the code is tested for its SMQL capability by directly

comparing the results to the SMQL code written in MATLAB, introduced in Section 3.1.

Since the MATLAB code uses a different numerical algorithm and was coded independently,

this comparison provides a good external validation. The SMQL data results are then

compared to results from a modest GQL simulation and other related results in the literature.

Recall from Chapter 3 that the single mode quasilinear (SMQL) approximation is one

in which the fluctuation-fluctuation interactions are neglected unless they feed back onto

the mean and only a single streamwise fluctuation mode is retained. While there are more

sophisticated choices, the retained fluctuation mode here is selected based on the streamwise

dimension of the channel to simplify the coding.

For purposes of validation, a SMQL simulation is run using each algorithm in the param-

eter regime shown in Table 5.1. Note that the domain is spatially-extended in the horizontal
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Figure 5.1: Comparison of mean velocity profiles obtained using SMQL (Dedalus) and SMQL
(MATLAB), QL (Dedalus), and NL (Dedalus).

relative to the simulations performed at larger Reτ . The fundamental wavenumber α0 (i.e.,

the first streamwise Fourier mode of the fluctuation field) is retained in each case, which

corresponds to α = 2πkx/Lx = 1/8, where the mode number kx = 1. The SMQL simu-

lations are initialized using the random-noise perturbations of the laminar solution. Both

simulations are run to a statistically steady turbulent state with a dimensionless simulation

time of t = 210, enabling a direct comparison between the two algorithms as well as with

the fully nonlinear solution.

[Lx, Ly, Lz] Nx x Ny x Nz Reτ

[16π, 8π, 2] 3 x 96 x 144 100

Table 5.1: SMQL simulation parameters.

The mean velocity profiles in Figure 5.1 show turbulence is sustained in each of the three

cases. A team of researchers working on the restricted nonlinear (RNL) model have also

been able to sustain turbulence in a channel using a single fluctuation mode, albeit at a

much higher Reynolds number (Farrell et al., 2016; Bretheim et al., 2018). The mean veloc-
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Figure 5.2: Comparison of mean velocity profiles obtained by using SMQL but retaining
various harmonics of the fundamental wavenumber compared to QL and NL.

ity profiles for the SMQL simulations are nearly indistinguishable, which demonstrates the

versatility of the Dedalus/Python code and provides an independent check on that software,

at least for first-order statistics. As the focus of this simulation is on validating the SMQL

code, no further analysis is presented. However, the verification that a minimum model for

QL sustains turbulence gives further credence to the significance of the instability of the

streamwise streaks in the self-sustaining process theory of Waleffe (1997), and vortex-wave

interaction theory of Hall and Smith (1991), Hall and Sherwin (2010) and its extension by

Chini et al. (2017).

It is also worth noting that the SMQL algorithm does not outperform the QL approxi-

mation in terms of accurately reproducing the mean velocity profile compared to the fully

nonlinear case, but this conclusion is dependent on the choice of the retained streamwise

fluctuation mode. Although all of the harmonics in NL are included in QL in principle,

Bretheim et al. (2018) demonstrated that retaining a particular harmonic and suppressing

the remaining set actually could improve the accuracy of the SMQL model while also re-
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ducing computational cost. To demonstrate this point, additional SMQL simulations were

performed using different harmonics of the fundamental wavenumber. Indeed, Figure 5.2

demonstrates accuracy does depend on the choice of the streamwise Fourier mode retained.

Bretheim et al. (2018) further suggested that selectively retaining (and neglecting) specific

harmonics using a technique called “band-limiting” could further improve accuracy while still

preserving the improvement in computational efficiency. While identifying the best choice

for the set of retained streamwise Fourier modes remains a challenge, this idea also could

be applied to GQL using a similar strategy termed “sideband truncation” by Boyd (2001).

Applied to GQL, a specific subset of high (i.e., linearized) streamwise Fourier modes would

be retained and all other high modes neglected, which would yield a significant increase in

computational efficiency relative to existing GQL algorithms. The challenge in adapting this

strategy to GQL, however, is not only to properly determine the energy containing modes,

but also to ensure that the additional restriction is performed in a manner compatible with

energy conservation.

5.2 Low Reynolds number turbulence

Cases [Lx, Ly, Lz] Nx x Ny x Nz Reτ ReCL

Λx = 0 (QL)
Λx = 3 (GQL3) [16π, 8π, 2] 144 x 144 x 144 100 10,000
Λx = 15 (GQL15)
Λx = 72 (NL)

Table 5.2: Low Reynolds number regime parameters.

At Reτ = 100, and again choosing Lx = 16π and Ly = 8π (Table 5.2), QL, GQL3,

and NL simulations each sustain turbulence. Each simulation is initialized from a previous

simulation with the same Λx in a statistically steady state and re-scaled in order to improve

resolution and reduce computational time. The data from the last 200 nondimensional time

units from each simulation are used in the analysis that follows. As in the previous section,

the mean is defined as the time and horizontal spatial average.
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(a) (b)

Figure 5.3: (a) Mean streamwise velocity profile and (b) the mean velocity gradient for
simulations at Reτ = 100.

The mean streamwise velocity and mean velocity gradient profiles are shown in Figure 5.3.

As in the high Reynolds number regime, GQL outperforms QL in reproducing first-order

statistics, and QL over-predicts the mixing in the core and overestimates the shear near

the walls. Interestingly, GQL slightly overestimates the magnitude of the mean velocity

in the lower Reynolds number regime, whereas the various GQL simulations consistently

underestimate the magnitude of the mean velocity in the high Reynolds number regime.

Figure 5.4 shows a comparison of the instantaneous streamwise velocity and instantaneous

streamwise velocity fluctuations obtained from the QL, select GQL, and the NL simulations.

The QL simulation is dominated by streaky one-component flow near the wall, while the

banding patterns characteristic of low Reynolds number flows seen in the NL simulation are

reproduced by GQL3.

The root-mean-square velocity fluctuation profiles in Figure 5.5 and select Reynolds stress

profiles in Figure 5.6 again demonstrate that GQL better recovers the fundamental physics

of the flow than does QL. These results also suggest that the improvement in accuracy of

GQL over QL in the lower Reynolds number regime is less dramatic for modest spectral
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Λx = 0 (QL) Λx = 0 (QL)

Λx = 3 (GQL3) Λx = 3 (GQL3)

Λx = 72 (NL) Λx = 72 (NL)

Figure 5.4: Instantaneous streamwise velocity (left column) and instantaneous streamwise
velocity fluctuations (right column) for select simulations at Reτ = 100 at z+ = 10 (near
wall location).
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(a) (b)

(c) (d)

Figure 5.5: Root-mean-square fluctuating velocity components for various Λx at Reτ = 100.
(a) u′rms in inner normalized and (b) outer normalized units, (c) v′rms and (d) w′rms. Legend
in (c) applies to all four subplots.
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(a) (b)

(c) (d)

Figure 5.6: Select Reynolds stress profiles and turbulent kinetic energy profile for all simu-
lations, where (a): 〈u′+2〉y,t, (b): 〈w′+2〉y,t, (c): 〈u′+w′+〉y,t, and (d): 〈k+2〉y,t. Legend in (b)
applies to all four subplots.
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Figure 5.7: Time- and spanwise-averaged streamwise kinetic energy 〈Eu′〉y,t as a function of
kx for select simulations at Reτ = 100.

cutoff values, but a more comprehensive analysis for intermediate values of Λx is warranted.

Finally, the time- and spanwise-averaged streamwise kinetic energy spectra, shown in

Figure 5.7, are qualitatively similar to those realized at higher Reynolds number. In par-

ticular, a discontinuity is present in the select GQL simulations shown, although notably

the GQL15 simulation does not exhibit strongly damped high modes as is the case in the

Reτ = 200 regime.
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Chapter 6

Spectral Energy Discontinuity in GQL

When examining the energy spectra at Reτ = 200 for various truncations of GQL, a

discontinuity is evident in the one-dimensional spanwise-averaged energy spectra of u′ at

the spectral cutoff Λx. For Λx ≤ 3, the discontinuity exists only in the slope of the energy

spectra, but as the spectral cutoff is increased, a discontinuity exists in the energy itself.

For Λx ≥ 15 the energy spectra drops to machine precision at the spectral cutoff and the

high modes are strongly damped. The discontinuity in the slope of the energy spectra at

the spectral cutoff of the GQL simulations is expected, given that the large and small scales

are governed by different differential equations. The discontinuity in the energy itself is

investigated in this chapter.

6.1 The role of streak instability

The spectral energy discontinuity observed in Figure 6.1 has been documented, although

not analyzed in detail, by other investigators in both RNL and GQL. The strong damping of

high modes in the QL simulation is also evident in the RNL simulations of channel flow at

much higher Reynolds number performed by Farrell et al. (2016). Although in that work the

amplitude of the different Fourier modes are plotted as functions of time, the highest modes

are strongly damped and it could be argued that other modes kx > 12 are strongly damped

in the long-time limit. Moreover, the spectral energy discontinuity observed in GQL8 and

GQL10 was also noted by Child et al. (2016) in their GQL simulation of the HMRI at
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Figure 6.1: Spectral energy discontinuity in GQL simulations of channel flow at Reτ = 200
(see Chapter 4)

a modest spectral cutoff of Λ = 20 (of 600 total Fourier modes used). Interestingly, the

discontinuity is seen in the energy spectra for the velocity as well as the magnetic field.

Stability theory provides a heuristic framework for understanding the fate of high modes

in GQL simulations. Specifically, the mechanism that enables the growth and sustenance of

a given high mode is a generalized instability of the mean flow to the fluctuations, where for

GQL, the “mean” includes all of the low modes and the “fluctuations” are the high modes.

Recall from Chapter 3 the spectral representation of the equations of motion for the GQL

approximation:

∂tu` = L(u`) +N`(uh,uh) +N`(u`,u`) (6.1)

∂tuh = L(uh) +Nh(u`,uh) +Nh(uh,u`) (6.2)

Given this notion of instability versus non-local energy scatter, a preliminary explanation

of the spectral energy discontinuity is that for modest spectral cutoffs (Λx ≤ 3 for the

simulations performed in this work), unstable modes are contained in both the low- and
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Figure 6.2: Graphic to supplement preliminary explanation of energy discontinuity exhibited
by GQL simulations in Figure 6.1.

high-mode sets, allowing for the growth and sustenance of turbulence through an instability

of the mean streaky flow to the fluctuations. As the spectral cutoff increases, however, the

band of unstable modes is eventually confined to the low modes, dramatically reducing the

efficiency of spectrally non-local energy transfers among different high modes and resulting

in strongly damped high modes.

The explanation given above is presented graphically in Figure 6.2. Assume, for example,

kx = 12 is the highest mode unstable to the kx = 0 mode (the mean) and let Λx > 6. Then

kx = 6 is always considered a low mode. For 6 < Λx < 12, the resulting nonlinear interaction

between the low mode kx = 6 and the high mode kx = 12 generates a high mode kx = 18,

which is a nonlinear interaction permitted in the GQL approximation. However, if Λx > 12,

kx = 12 is a low mode, and the interaction between a low mode and a low mode that creates

a high mode is not permitted in the GQL approximation. Indeed, in this study, for Λx > 15,

the energy drops to machine precision and GQL20 acts like an implicit LES simulation or

an under-resolved DNS. For 8 ≤ Λx < 15, the energy recovers past the spectral cutoff,

suggesting a mode unstable to the zero mode is contained in the high mode set.

85



To assess this conjecture, determination of the precise scales that exhibit linear instabili-

ties in the fully nonlinear flow and quantification of the rates of (spectrally non-local) energy

scattering among the high modes is necessary. Investigating streak instabilities suggests

the need for stability analysis about a fully two-dimensional (and possibly time-dependent)

streak flow; a simpler alternative is explored in the next section.

6.2 Hydrodynamic stability theory

The stability of laminar plane Poiseuille flow has been extensively studied by finding

solutions to the Orr-Sommerfeld eigenvalue equation (Orr, 1907; Sommerfeld, 1908). The

wall-normal (z) velocity fluctuation is assumed to be proportional to the real part of a

streamwise-varying wave-like disturbance of the form

w′ ∝ ŵ(z)eiαxeσt (6.3)

where the wavenumber α = 2π/λx, with λx the x-wavelength of the disturbance, is assumed

to be a positive real number, and σ = σr + iσi is the complex growth rate. Linearizing

the Navier-Stokes equations about the laminar solution, u = 〈u〉x,z,t(z), and reducing the

problem to two dimensions via Squire’s theorem, the result is the well-known Orr-Sommerfeld

equation

Re

[
(iαu+ σ)

(
d2ŵ

dz
− α2ŵ

)
− iαd

2u

dz
ŵ

]
− d4ŵ

dz
+ 2α2d

2ŵ

dz
+ α4ŵ = 0 (6.4)

ŵ(±1) = ŵ′(±1) = 0 (6.5)

In the eigenproblem, σr > 0 is a linearly unstable eigenvalue, which permits the amplitude

of the wall-normal velocity fluctuation to grow exponentially in time (Orszag, 1971).

For turbulent flows, however, this classical hydrodynamic stability theory has not yielded

especially promising results. Malkus (1956) suggested that extending the Orr-Sommerfeld

equation to turbulent flows by linearizing about the turbulent mean (rather than the lami-

nar) velocity profile would result in marginally stable or neutrally stable modes at the flow
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Reynolds number, but this proposal was eventually disproved by Reynolds and Tiederman

(1967). Reynolds and Hussain (1972) developed a model that replaced the molecular viscos-

ity in the Orr-Sommerfeld equation with additional terms that depend on a prescribed eddy

viscosity and its derivatives, but this modification did not result in unstable modes either.

Finally, Sen and Veeravali (2000) proposed an eddy viscosity model that could account for

the anisotropy of the dynamics as a function of the distance from the wall that did yield a

band of unstable modes. All of these various approaches are explored in this section, if only

to motivate a more systematic approach.

For all computations, the Orr-Sommerfeld eigenproblem is solved using the eigenvalue

problem solver native to Dedalus. The solver requires the user to enter only the governing

PDE and boundary conditions, the range of wavenumbers to be analyzed, and a specified

number of eigenvalues to return for each wavenumber. For each wavenumber, a sparse solver

algorithm is employed, which yields the eigenvalues near a specified target eigenvalue, σT .

Since the objective is to identify the threshold streamwise wavenumber separating growing

and decaying modes, σT is set to zero and the typical number of eigenvalues returned for

each α is N = 120. Dedalus then returns the maximum growth rate, σr, for each value of α.

Classic Orr-Sommerfeld analysis

In the classical Orr-Sommerfeld problem specified by Equation (6.4), the flow is linearized

about the steady state (i.e., laminar) solution, where u = (1−z2) and d2u
dz

= 2. For centerline

velocity Reynolds number ReCL = 5776, there is a single marginal mode with streamwise

wavenumber α = 1.02. This result was replicated using the stability analysis coded in

Dedalus, as shown in Figure 6.3a.

Turbulent mean

To begin the linear stability analysis for the parameter regime in Chapter 4, the laminar

solution u in Equation (6.4) was replaced by the time- and horizontally-averaged turbulent
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(a) (b)

Figure 6.3: Growth rate curves for (a) classic Orr-Sommerfeld stability problem at Re = 5776
and (b) Orr-Sommerfeld stability problem at Reτ = 200 linearized about the turbulent mean.

mean velocity profile extracted from the fully nonlinear simulation at Reτ = 200. Not

unexpectedly, (based on the work of Reynolds and Tiederman (1967)), Figure 6.3b confirms

that all modes are damped at the flow Reynolds number.

Eddy viscosity model

The next step was to reproduce the results of the eddy viscosity model developed by

Sen and Veeravali (2000), which accounts for the characteristic anisotropy of wall-bounded

turbulence. In this model, the Orr-Sommerfeld equation is modified with an additional set

of terms:

Reτ
[
(iαu+ σ)

(
ŵ′′ − α2ŵ

)
− iαu′′ŵ

]
−
[
ŵ′′′′ − 2α2ŵ′′ + α4ŵ

]
(6.6)

−
[
E(ŵ′′′′ − 2α2ŵ′′ + α4ŵ) + 2E ′(ŵ′′′ − α2ŵ′) + E ′′(ŵ′′ − α2ŵ)

]
−λE

[
−2iαŵ′′′ + 2iα3ŵ′

]
− 2iαŵ′ [λE ′′ + 2λ′E ′ + λ′′E] = 0

where the primes indicate differentiation with respect to z. The first line of Equation (6.6)

is the classic Orr-Sommerfeld equation. The second line includes all terms in an isotropic

88



eddy viscosity model, where E is the normalized eddy viscosity. The third line involves the

anisotropy parameter λ and its derivatives.

The normalized eddy viscosity E and the anisotropy parameter λ are defined as

λ = C(k/εd)
du

dz
(6.7)

E =
ε

ν
=
−1

ν

〈uiuj〉
du/dz

(6.8)

where k is the turbulent kinetic energy, εd is the dissipation rate of turbulent kinetic energy,

and C is a constant. Sen and Veeravali (2000) employ the following analytical expressions

to model the eddy viscosity and the anisotropy parameter:

E(z) =
1

2

[
1 + κ2Re2

τ/9(2z − z2)2(3− 4z + 2z2)2(1− exp(−zReτ/A+))2
] 1

2 − 1

2
(6.9)

λ(z) = 10

[
3/10 +

(
1− 3/10

2

)(
1− erf

(
z − 0.5

0.25

))]
(6.10)

where κ = 0.4 is the von Kármán constant and A+ = 27 is the Van Dreist constant.

The eigenvalue problem was solved over a half-channel with the anti-symmetry boundary

conditions at the centerline

ŵ(z = 0) = 0; ŵ′(z = 0) = 0 (6.11)

ŵ′(z = 1) = 0; ŵ′′′(z = 1) = 0 (6.12)

where here z = 0 is the bottom of the channel and z = 1 is the centerline. The notation and

wall coordinate system is slightly different than used in Equation (6.4) to accord with that

of Sen and Veeravali (2000). When λ = 0 all modes should be damped, as discussed by Sen

and Veeravali (2000); see Figure 6.4a.

Results obtained using the fully modified Orr-Sommerfeld equation are shown in Fig-

ure 6.4b, which reveals a band of unstable modes. This result directly supports the notion

that a sufficiently high spectral cutoff results in all unstable modes being included in the

low-mode set. Of course, this conclusion should be viewed with caution: the ad hoc model-
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(a) (b)

Figure 6.4: (a) Orr-Sommerfeld stability problem atReτ = 200 linearized about the turbulent
mean with isotropic eddy viscosity and (b) fully-modified Orr-Sommerfeld stability problem
of Sen and Veeravali (2000) at Reτ = 200 exhibiting a band of unstable modes.

ing used to specify the eddy viscosity and the anisotropy terms make the results suggestive

at best. Indeed, the use of other expressions for λ as defined in Sen and Veeravali (2000)

either yields strongly damped modes or a band of unstable modes that includes the entire

streamwise wavenumber spectrum.

A more precise approach is to test the linear stability of the time- and streamwise-

averaged streaky flow using either a spatial Floquet analysis or a forward/adjoint time-

stepping scheme. This approach also has a clearer link to the self-sustaining process of

Waleffe (1997). Although such an analysis has been left for future work, the results shown

in Figure 6.4b do support the conjecture that the discontinuity in the energy spectrum may

be attributable to a lack of instability in the high mode set.
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Chapter 7

Conclusion

The purpose of this work was to further establish the generalized quasilinear (GQL)

approximation as a robust, accurate, and computationally efficient alternative to existing

methods of numerically simulating turbulent flow by investigating its effectiveness in 3D

turbulent channel flow. Although the GQL approximation has been applied to other turbu-

lent systems, this study constitutes the first engineering flow to be explored and only the

second application of GQL in three dimensions. Additionally, channel flow is only weakly

linearly unstable in the inviscid limit, in contrast to all other flows simulated using GQL to

date. Finally, Reτ = 200 is the highest Reynolds number parameter regime explored using

GQL in any system. In this chapter, the primary areas of investigation, significant findings,

and open questions relating to those outcomes are reviewed.

Accuracy of GQL turbulent channel flow simulations

The GQL algorithm developed and used in this work is capable of operating in four

modalities, ranging from extreme truncation (single-mode QL, i.e., SMQL) to full DNS.

GQL simulations with varying values of the streamwise spectral cutoff Λx were performed

in two parameter regimes: Reτ = 100 with the nondimensional domain [16π, 8π, 2], and

Reτ = 200, with the nondimensional domain [2π, π, 2]. In both regimes, sustained turbulence

was achieved. As both QL and GQL employ a linearization about the streamwise-averaged

mean, in contrast to other methodologies, these results lend further credibility to the role of
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streak instabilities in the self-sustaining process (SSP) of Waleffe (1997). However, the GQL

simulations, even those with a modest number of low modes retained (Λx ≤ 3), significantly

outperformed QL in reproducing the first-and second-order turbulence statistics, and accu-

rately captured the small-scale instantaneous dynamics and characteristic structure of the

flow.

To quantify the accuracy of the GQL approximation, a variety of turbulence metrics was

used. This quantitative study also illuminated the role of the nonlinear interactions that are

retained (or neglected) depending on the spectral cutoff Λx. The QL approximation, due to

the severe restriction of nonlinear-nonlinear interactions among the non-mean modes, does

not accurately predict the energy distribution in the system, underestimates Reynolds shear

stress near the wall, and over-predicts mixing in the core. As a consequence, the influence

of the viscous forces extends farther from the wall which encroaches on other regions of the

flow and fundamentally alters the flow dynamics. Specifically, two-component flow is not

recovered very near the wall, there is a delay in streak breakdown, resulting in the persistence

of predominantly one-component streaky flow too far from the wall, and no evidence of log

region dynamics is observed.

In contrast, the GQL simulations, even with a modest number of low modes retained,

is significantly better at predicting the energy distribution across the dynamic range of

scales and outperforms QL in every metric considered in both Reynolds number parameter

regimes studied in this work. Perhaps the most impressive results are the comparisons of

the turbulence intensity profiles (Figure 4.11) and Reynolds stress profiles (Figure 4.12) at

Reτ = 200, in which the GQL profiles are shown to be in remarkably good agreement with

NL and experimental results, while the QL profiles show significant deviations. The GQL

simulations have also been shown to reproduce the characteristic dynamics of wall-bounded

shear flows, including two-component flow very close to the wall, no evidence of delayed

streak breakdown, and the emergence of the log layer.

Although GQL has been shown to reproduce instantaneous features and turbulence statis-
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tics better than QL, the improvement in accuracy is non-monotonic at Reτ = 200 and yields

diminishing returns as Λx is increased further, an observation also made by other investiga-

tors for different flows (Child et al., 2016; Tobias and Marston, 2017). In the low Reynolds

number regime, the improvement in accuracy is less pronounced for modest values of the

spectral cutoff. Given the objectives of this study, the analysis only considered a subset

of the possible values for Λx. A more complete examination of GQL in channel flow (i.e.,

at all possible values of Λx) in both parameter regimes may yield additional insights into

the effect of inhibiting particular nonlinear interactions among the large scales. Owing to

time constraints, the analysis of the behavior of the nonlinear energy transfers was limited,

though promising. Using a spectral approach introduced by Domaradzki et al. (1994), the

nonlinear energy transfer can be isolated and an estimate of the nonlinear energy transfer

between two fixed wavenumber bands can be determined. The aforementioned concepts can

facilitate the targeted analysis of local and non-local nonlinear energy transfer in the flow.

This methodology can (and should) be utilized to more fully investigate the physical effect

of restricting specific nonlinear interactions in the GQL simulations and can potentially shed

light on the non-monotonicity of the accuracy of GQL.

Spectral energy discontinuity at high GQL truncations

One of the most significant findings in this work was the identification and subsequent

analysis of a discontinuity in the streamwise fluctuating velocity energy spectrum at Reτ =

200 (see Figure 4.20). For Λx ≤ 3, the discontinuity exists in the slope of the energy spectra,

but as Λx is increased, the discontinuity is seen in the energy itself at precisely the spectral

cutoff. For Λx ≥ 15 (given the data available in this study), the energy drops to machine

precision at Λx and negligible energy exists in the high modes. The discontinuity is also

observed at Reτ = 100 in this work (see Figure 5.7). Interestingly, this phenomenon was

captured by Child et al. (2016) in their analysis of the helical magnetorotational instability

(HMRI) and is (implicitly) evident in a restricted nonlinear (RNL) simulation for plane

93



Poiseuille flow at Reτ = 940 by Farrell et al. (2016).

One explanation for the spectral energy discontinuity is that for the given parameter

values, the instability in the streaks is present only in modes with mode numbers less than

15. Therefore, for Λx ≥ 15, all flow instabilities are contained in the low modes, and the high

modes, which cannot scatter energy directly among themselves, become strongly damped.

Confirmation requires a precise knowledge of which scales exhibit linear instabilities in the

fully nonlinear flow and quantification of the rates of (spectrally non-local) energy scattering

among the high modes. Using the governing equations for GQL and stability theory as

a guide, a high mode in GQL can grow and be sustained through an instability of the

“mean” (i.e., low-mode) flow to that high mode. This mechanism was investigated using

hydrodynamic stability theory. Despite the mixed success in producing meaningful results

in turbulent flows, this approach was deemed to be the simplest first step in exploring the

issue of stability in the context of fully NL simulations. Several analyses were performed

using the Orr-Sommerfeld equation: first, by linearizing about the turbulent time-averaged

mean (as opposed to the laminar solution in the classic analysis); secondly, by modifying

the Orr-Sommerfeld equation with the addition of an eddy viscosity; and by additionally

incorporating anisotropic eddy diffusion (Orszag, 1971; Sen and Veeravali, 2000). Linear

stability analysis using the Orr-Sommerfeld equation as modified by Sen and Veeravali (2000)

yielded a band of unstable modes for the high Reynolds number regime, confirming the

plausibility of the conjectured mechanism. Nevertheless, the reliability of this result may be

questioned given the extensive ad hoc modeling of the parameters and inconsistent results

obtained if other models are used. Ultimately, these efforts strongly suggest an alternative

methodology: linearizing about the 2D streaks as opposed to the 1D time-averaged and

horizontally-averaged mean velocity profile, and solving the resulting eigenvalue problem

using either spatial Floquet theory or a forward-adjoint time-stepping algorithm. Both

methods are non-trivial to derive and implement, and so were not pursued in this work, but

constitute a natural next step in the continuation of this research.
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Computational efficiency of GQL

Computational efficiency is a primary consideration in the simulation of turbulent flows.

Although not analyzed in great detail, computational efficiency data for all simulations was

collected and is included as Appendix A. An intriguing and, indeed, puzzling observation is

that certain GQL simulations were significantly faster (in terms of wall-clock time) than NL

and even QL simulations. This finding seems counter-intuitive because the GQL algorithm

used in this work does not eliminate modes, requiring the inversion of large matrices at every

time step regardless of the value set for Λx. The precise reason for the efficiency of GQL3

over NL and QL has not yet been determined and should be pursued in future studies.

One potential improvement of the GQL algorithm considered in the course of this work

is based on the concept of “band-limiting” introduced by Bretheim et al. (2018) for QL.

In employing “sideband truncation” in GQL, the spectral cutoff Λx still establishes the low

modes permitted to interact nonlinearly, but an additional restriction is made on the high

modes whereby only a select band of fluctuation modes is retained. All other high modes are

neglected or artificially damped. Sideband truncation may provide marked improvement in

efficiency, but further study is needed to identify the appropriate band of fluctuation modes

to retain and to ensure energy is conserved in the inviscid limit.
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Appendix A

Computational Efficiency of GQL Algorithm

Although the primary focus of this work is to demonstrate the accuracy of the GQL

approximation in turbulent channel flow, the computational time for each simulation was

recorded and is presented in this section. An additional efficiency investigation is presented

at a lower Reynolds number regime for comparison. Each simulation was performed in

parallel on 24 processors with a process mesh size of [6 x 4].

Cases Time Steps Avg ∆t (non-dim) Wall Time (D-H:M)

Λx = 0 (QL) 3582600 5.5560e−4 6-19:11
Λx = 2 (GQL) 4100800 4.8770e−4 5-15:19
Λx = 3 (GQL) 4533000 4.4675e−4 5-04:31
Λx = 8 (GQL) 6190200 3.2339e−4 7-03:13
Λx = 10 (GQL) 6499300 3.0820e−4 7-15:31
Λx = 15 (GQL) 6830400 2.9374e−4 15-16:24
Λx = 20 (GQL) 6849300 2.9323e−4 15-21:36
Λx = 48 (NL) 6547000 3.0750e−4 15-18:57

Table A.1: Efficiency of simulations at Reτ = 200 in statistically steady state, where ∆t has
been averaged over last 200 nondimensional time units of the simulation.

Cases Time Steps Avg ∆t (non-dim) Wall Time (D-H:M)

Λx = 0 (QL) 746700 2.6780e−3 2-11:29
Λx = 3 (GQL) 1203300 1.6636e−3 1-09:26
Λx = 48 (NL) 2922400 6.8687e−4 13-23:17

Table A.2: Efficiency of simulations at Reτ = 100, where ∆t has been averaged over last 200
nondimensional time units of the simulation.
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Figure A.1: Wall-clock time of all simulations (in hours) for Reτ = 200 (blue) and Reτ = 100
(red).
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