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ABSTRACT 

LONG-TERM FOREST GROWTH AND DECADAL SOIL CHEMISTRY CHANGE 

ACROSS THE WHITE MOUNTAIN NATIONAL FOREST 

by Olivia L. Fraser 

University of New Hampshire 

Forest ecosystems are subject to a variety of stressors including human land use, air pollution and climate 

change. A challenge for detecting temporal change, however, is disentangling heterogeneity at multiple 

spatial scales. Therefore, we need a better understanding of the mechanisms influencing forest growth and 

soil formation, how to improve existing long-term sample designs, and quantify variability at multiple 

spatial scales. Identifying the areal extent of bedrock outcrops and shallow soils has important 

implications in understanding the spatial dynamics of surrounding vegetation, stream chemistry gradients, 

and soil properties. Manual methods of delineating bedrock outcrops and associated shallow soil are still 

commonly employed in the northeastern US and retain numerous limitations associated with the geometry 

of polygon units. Chapter 2 objectives were to assess the accuracy of visually interpreted high-resolution 

relief maps for locating bedrock outcrops and associated shallow soil as well as automate the delineation 

soil using predictive analytics. Visual interpretation of lidar-derived 1 m shaded relief maps at Hubbard 

Brook Experimental Forest resulted in a 92% accuracy in distinguishing the presence of bedrock outcrops 

and shallow soil. A generalized additive model had 88.1% overall accuracy using independent validation 

data and 90.1% overall accuracy predicting bedrock outcrops-shallow soil presence and absence in a 

second validation watershed 16 km northwest. Chapter 3 objectives were to predict the asymptotic range 

of stand relative density and biomass as well as explore the influence of topographic metrics as proxies 

for site quality. Predicting the asymptotic range of stand relative density and biomass has important 

implications on silvicultural practices and understanding forest carbon pools in late successional forests 
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across northeastern US. In addition, quantifying the influence of site quality on carrying capacity in a 

mixed species forest is a long-standing challenge and has not been thoroughly tested with long-term 

longitudinal data. Logistic and Chapman-Richards growth functions were fitted to eight decades of 

Bartlett Experimental Forest, New Hampshire inventory measurements from 1931-32, 1939-40, 1991-92, 

2001-03, and 2015-17 as nonlinear mixed effects models. The variability associated with the plot-level 

random effects suggested broad differences in structure among the plots could be accounted for with 

topographic metrics. The variance components of predicted stand relative density and biomass asymptotes 

in this study influenced by a topographic covariate highlighted the importance of incorporating landscape-

soil-water dynamics when characterizing stand dynamics and growth. Finally, Chapter 4 objectives were 

to investigate overall change in soil chemistry of mid-elevation, northern hardwood Spodosols across the 

White Mountain National Forest, calculate the variance components at multiple spatial scales, and stratify 

sampling sites by dominant hydrologic pathways to determine if groundwater influenced soils were more 

responsive to acidification recovery processes compared to soils developed vertically via unsaturated 

flow. Forty permanent plots were sampled across the White Mountain National Forest (WMNF), USA in 

2001-02 and resampled in 2014. Paired t-tests detected significant increases in carbon and base cations 

and a decrease in Al in the Oa horizon while base cations decreased and Al increased in some mineral 

horizons. Additionally, within-site variability was comparable to overall variability across the WMNF. 

When study sites were stratified into hydrologic groups, we found a strong signal of increasing carbon 

and base cation concentrations from 2001-02 to 2014 for the Oa horizon, suggesting that soils influenced 

by shallow groundwater contributions from upslope were more responsive to acidification recovery than 

soils influenced only by vertical percolation. The combined approach to hydrologic stratification and 

estimating variance components simultaneously at the landscape and within-plot scales is crucial for 

calculating sample size needed to detect temporal change. 



14 

CHAPTER I 

GENERAL INTRODUCTION 

1.1 INTRODUCTION 

This dissertation integrates forest ecology, soil science, and remote sensing methods to 

investigate the spatiotemporal relationships between forest growth and soil properties. The 

effects of 20th century acid deposition, land use, and climate change, have led to changes in soil 

chemistry with potentially long-term effects on soil productivity. These factors, and a lack of 

long-term research exploring the full breadth of various soil properties’ impact on stand 

dynamics, have limited the adaption of silvicultural practices and management to rates of 

change. It is crucial to mitigate the negative impacts of forest management on soils most 

susceptible to change and decrease the severity of long-term impacts of anthropogenic influences 

in northeastern US. 

Northern Forest ecosystems, along with forests elsewhere in the world, have been or are being 

impacted by land use change, forest harvesting, acid deposition, atmospheric CO2 enrichment, 

and climate variability and change. These changes, in turn, have interacted with climatic 

variability and other stressors leading to reduced tree growth, episodic mortality (Long et al., 

2009), and nutrient depletion from soils (Lawrence et al., 2012). This rapidly changing 

environment has highlighted the need for more site-specific, landscape scale forest ecosystem 

monitoring over short time scales (Bailey et al., 2005). Although impacts have been most 

obvious for nutrition-sensitive species such as red spruce (DeHayes et al., 1999) and sugar maple 
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(Bal et al., 2015), the effects are likely to be pervasive and persistent (Lawrence et al., 2015). 

Overall forest monitoring should quantify rates of change for both tree growth parameters and 

soil properties to best inform management practices. Therefore, this dissertation investigated 

spatiotemporal relationships between forest growth and soil properties as well as quantified rates 

of soil chemistry change. 

1.1.1 Forest soil 

Soils are the foundation of a forest ecosystem. Chemical properties of soils are often used as 

indicators of essential forest functions (Schoenholtz et al., 2000) and base cations, such as 

calcuim, can be used to assess forest ecosystem changes over time (Cronan and Grigal, 1995). 

Long-term productivity of forests depends on total amounts of available nutrients in an 

ecosystem (Federer et al., 1989); therefore, quantifying rates of soil change is an important 

component to assessing the health of forest ecosystems. Schaetzl and Thompson (2015) defined 

soil as the naturally occurring, three-dimensional body of organic or lithic material that has been 

altered by biological, chemical, and/or physical agents. Soil profile descriptions occurring at the 

pedon scale (1 – 10 m) are the standard for characterizing the vertical sequence of genetic soil 

horizons and the primary tool for classifying and mapping soils (Buol et al., 2011). The 

characteristics of a soil profile that are commonly described include texture, consistence, 

structure, color, coarse fragments, roots, and boundary (Schoeneberger, 2012). The US Soil 

Taxonomy system classifies soils into 12 soil orders based on dominant chemical, physical, and 

biological properties (Soil Survey Staff, 2014). 

The five soil forming factors are parent material, climate, time, topography, and organisms 

(Jenny, 1941). The physical and chemical weathering of rocks and minerals at or near the Earth’s 
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surface is a fundamental step in soil formation (Buol et al., 2011). Physical weathering causes 

rocks to fracture and creates additional surface area and pore space where chemical reactions can 

increase. Secondary minerals are formed from chemical weathering of primary minerals (Wilde, 

1958) that first occurs at the exterior of surfaces of mineral particles where physical weathering 

increases surface area (Nezat et al., 2004). In addition, plants and their microbiota primarily 

contribute to the weathering by production of organic acids. Finally, parent material is important 

source of base cations and soils developed on glacial till could have different rates of weathering 

(Bailey et al., 1992). For example, Nezat et al. (2008) described the relationship between easily 

weathered calcium (Ca) in parent materials and exchangeable Ca in soil across northeastern 

United States. 

1.1.2 Podzolization 

Most of the Spodosols in North America formed on glacial till in cold humid climates and exist 

in various stages of development in the Great Lake States and northeastern United States 

(Hunckler and Schaetzl, 1997). Many of the soils in the forested areas of Vermont, New 

Hampshire, and Maine are classified as Spodosols (Figure 1.1; FAO, 2003) using the US 

Taxonomy criteria (FAO, 2003; Soil Survey Staff, 2014). The name “podzol” is from the 

Russion words “pod” and “zola” which means “under” and “ash” based on the elluvial (E) 

horizon created by organic (fluvic) acids leached from the O horizon (Lundström et al., 2000). 

The Spodosol classification criteria requires spodic materials to have a low pH, high organic 

carbon content, and dark spodic horizons and must have reddish or dark red colors (Soil Survey 

Staff, 2014), however these criteria can vary among other taxonomic systems (Lundström et al., 

2000; Sauer et al., 2007). Spodic horizons have two subhorizon designations that include ‘h’ 
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and/or ‘s’ (Soil Survey Staff, 2014; Bourgault et al., 2015). Illuvial sesquioxides include ‘s’ (e.g., 

Bhs, Bs) and illuvial humus include ‘h’ (e.g., Bh). Color is an important component of a soil 

profile description and the color of a Bhs horizon is both dark from humus and red from 

sesquioxides. A Bh horizon is dark from humus only and a Bs horizon is red and bright from 

sesquioxides only. 

Figure 1.1: Areal extent of Spodosols in eastern North America (modified from FAO, 2003). 

The process in which organic carbon, Fe, Al, are translocated in soil water from upper profile in 

the soil surface to the illuvial (B) horizon is defined as podzolization (Schaetzl, 2002). The space 

from the forest floor surface to the base of the B horizon is defined as the solum. Rates of 

podzolization are considerably different from place to place depending on parent material, soil 

age, water-soil dynamics, environmental factors, and past vegetative dynamics (Barrett and 

Schaetzl, 1998; Sommer et al., 2000). Soil processes that promote aluminum iron, and organic 

matter mobilization and translocation to deeper soil depths are common pathways for 

podzolization (Nauman et al., 2015). Depths of E horizons have been found deeper in forest 
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floors with increasing amounts of decaying wood in either coniferous or deciduous forests 

(Lundström et al., 2000). Soil forming processes operate at different spatial scales from the 

pedon to landscape scale, therefore it is important to consider the dominant processes of soil 

formation across spatial and temporal scales classifying soils. 

1.1.3 Acid deposition 

The human influences on sulfur (S) and nitrogen oxides emissions have drastically impacted 

aquatic and terrestrial ecosystems in North America during the 20th century (Rice and Herman, 

2012). The acidification of the atmosphere primarily results from various industrial emissions 

and contributes to biological stress and degradation of ecosystem (Galloway, 1995). The Clean 

Air Act and Amendments of 1970 and 1990 in the United States resulted in a decrease of sulfur 

dioxide (SO2) and nitrogen oxides (NOx) emissions primarily from large industrial utilities 

(Driscoll et al., 2001). Despite the reduction in acidic deposition since the 1970s, more than 30 

years of atmospheric transport, including SO2, NOx, and nitrogen (N) accumulation, has 

significantly modified soil chemistry and biogeochemical processes (Galloway, 1995; Likens et 

al., 1996; Richter and Markewitz, 2001).  

Evaluating the recovery of soil properties in response to a reduction of acid deposition (DeHayes 

et al., 1999) is challenging and has led to numerous approaches to monitoring approaches. 

Repeated soil sampling is one method to detect change from acid deposition (Lawrence et al., 

2013). Bailey et al. (2005) reported decreases in soil pH, exchangeable Ca, and Mg over thirty 

years (1967-1997) of combined Oa/A horizons in unglaciated soils in northwestern PA. 

Lawrence et al. (2012) observed early indications of recovery from acid deposition, increased 

soil pH and decrease in exchangeable Al of O horizons, from red spruce sites positioned across 
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northeastern US. Finally, Lawrence et al. (2015) reported decreases of exchangeable Al in the O 

horizon and increases in pH from O and B horizons in data compiled across 27 sites in 

northeastern United States and eastern Canada. It is important to fully understand the both the 

dominant soil forming processes and anthropogenic stressors that shape the current condition of 

forest soils (Wilde, 1958). 

1.1.4 Forest soil monitoring 

Soil quality monitoring was developed as a means of evaluating soil condition to assess the 

susceptibility to environmental stressors and quantify rates of change (Neary et al., 2010). Soil 

monitoring efforts primarily initiated in Northern forests due to increased sulfur and nitrogen 

deposition (Driscoll et al., 2001) associated with the depletion of exchangeable nutrient cations 

in soil (Likens, 2013). Properties measured often include soil solution pH because of its 

influence on the solubility of elements and tree growth. Calcium and magnesium are also 

commonly measured because they are tightly cycled between organic horizons and tree growth 

(Clarholm and Skyllberg, 2013). 

Soil monitoring is also an essential component of informing land management decisions. 

However, additional sources of variability other than acid deposition, such as rates of 

depodzolization, contribute significant obstacles. Barrett and Schaetzl (1998) described the 

process of depodzolization under the removal of podzolization-promoting vegetation. Nauman et 

al. (2015) described how transition from conifer to deciduous forest can lose most of the organic 

carbon in spodosols within 100-300 years. The loss of an O and E horizon with a remnant Bs 

could be an indicator of past spruce influence. Prior to significant land use disturbance of the 

White Mountain National Forest, the areal extent of forest cover was significantly different 
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(Cogbill et al., 2002) and current soil properties can reveal insights in past forest composition 

changes. Finally, Gruba and Mulder (2015) illustrate the different effects cation exchange 

capacity and cation binding properties of soil organic between different tree species in acidic 

forest soils of southern Poland. Quantifying above- and below- ground relationships with soil 

production and nutrient fluxes will help adapt land management founded in a better 

understanding of the mechanisms causing change as a result of both soil formation and stressors. 

1.1.5 Hydropedology 

Water can influence soil formation along many pathways. The pathways in which water enters 

soil are affected by soil heterogeneity, saturation, texture, and the rates at which water enters the 

soil (Schaetzl and Thompson, 2015). The percolation of water through the soil profile can impact 

the rate of soil horizon formation and the rate of underlying parent material (Lin et al., 2005). 

Different measurements of slope (e.g., gradient, length) and slope elements (e.g., backslope, toe- 

slope) can be used as factors in determining the ways the water influences soil formation (Bailey 

et al., 2014). The study of hydropedology is an integrative approach for investigating these 

landscape-soil-water dynamics across (Lin et al., 2005). 

Spatial distribution patterns of podzols in landscapes are commonly explained based on vertical 

processes (Sauer et al., 2007). More recent evidence, however, supports podzolization caused by 

lateral hydrologic flowpaths (Sommer, 2006; Gannon et al., 2014). In addition, studies 

describing varying illuviation-elluviation ratios could be interpreted as a combination of vertical 

and lateral of podzolization (Bailey et al., 2014). Sommer et al. (2001) described how podzol 

morphology varied with landscape position and Bailey et al. (2014) partitioned podzols of a 

catchment into functional groups with similar soil-forming factors based on hillslope position 
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(Figure 1.2). This approach to partitioning soils into hydropedological units (HPUs) is based on 

the dominant hydrologic pattern influencing soil development and material transfer influenced 

by hillslope shape and position (Bailey et al., 2014). The areal extent of HPUs and the spatial 

variations of hydrological and pedological properties in a central New Hampshire watershed can 

be delineated using different topographic indices quantifying surficial features (Gillin et al., 

2015a).  

Figure 1.2: Conceptual model of hydropedologic units (HPUs) in relation to hillslope position 

(modified from Bailey et al., 2014) 

 

1.2 Light Detection And Ranging 

Lidar, Light Detection And Ranging, is an active remote sensing technology that directly 

measures the three-dimensional distribution of objects by taking the product of the speed of light 

and the time required for an emitted laser to travel to a target object (Lefsky et al., 2002; Lim et 

al., 2003). The capability of an active laser scanning system, to acquire three-dimensional 

measurements of forest structure, has been used to estimates of the quantity and distribution of 

forests since the 1980s (Arp and Tranarg, 1982). Previous studies using the lidar point cloud 

have estimated biomass, stem volume, stand height, and stand density using lidar (Næsset, 1997; 
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Means et al., 1999). Additionally, common morphometric products, such as slope, aspect, and 

curvature, can easily be produced from a digital elevation model (DEM) created using just the 

lidar ground returns, however accuracy can decrease under a dense forest canopy (Su and Bork, 

2006). Lidar has made it possible to generate high resolution digital elevation models (DEMs) to 

calculate topographic indices as a measure of the topographic control on the flow of water (Vaze 

et al., 2010). 

Both DEM accuracy and resolution can influence the quality of DEM-derived topographic 

metrics (Vaze et al., 2010). For example, watershed boundaries delineated from a high resolution 

lidar DEM and coarse resolution contour-derived DEMs are drastically different (Gillin et al., 

2015b). High resolution DEMs generated from airborne lidar use a variety of interpolation and 

filtering methods to separate ground and non-ground points (Guo et al., 2010) that also alter 

DEM-derived topographic metrics. Ashraf et al. (2012) reported the need to assess the suitability 

of existing algorithms for calculating slope in hydrological applications from lidar-derived DEM 

at different resolutions.  

The four topographic metrics used to account for soil variability and map the areal extent of 

HPUs at Hubbard Brook Experimental Forest, NH are topographic position index (TPI), 

topographic wetness index (TWId), upslope accumulated flow weighted by proximity to bedrock 

outcrops and shallow soil (UAAb), and euclidean distance from bedrock outcrops and associated 

shallow soil (EDb) (Gillin et al., 2015a). Topographic position index (TPI) is calculated using 

the difference between the elevation of each cell and the mean elevation for a neighborhood of 

cells in a moving circular window with a specified radius (commonly 100 m) centered on the 

target cell (Guisan et al., 1999). Topographic wetness index (TWId) (Beven and Kirkby, 1979) is 
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computed with the upslope accumulated area (UAA) using multiple triangular flow direction 

algorithm (Seibert and McGlynn, 2007) as the numerator and a 5 m analysis window for 

downslope index (Hjerdt et al., 2004) as the denominator. Both UAAb and EDb require the 

delineation of bedrock outcrops and associated shallow soil. The areal extent of bedrock outcrops 

and associated shallow soil in the northeastern US, however, are still delineated manually (Shi et 

al., 2009) and retains numerous limitations associated with geometry, scale, and boundaries of 

polygon units (Zhu et al., 2001). It is important to incorporate these landscape-soil-water 

dynamics when characterizing and predicting dominant processes of soil formation and possibly 

an important factor in understanding the influence of soil properties on above-ground forest 

growth.  

1.3 Stand dynamics and growth 

The spatial and temporal scales in which forest ecosystems are measured and monitored are an 

essential factor in understanding the various mechanisms that control forest growth. The changes 

in total volumes of all trees or parts of trees are defined as the method for determining stand 

growth (Oliver and Larson, 1996). Quantifying the feedback loop between individual tree growth 

and evaluating overall stand growth is critical for understanding forest development (Pretzsch, 

2009). An area’s potential for tree growth including soil and climate conditions is referred to as 

the site and site productivity refers to the estimate of the site potential to produce biomass 

(Skovsgaard and Vanclay, 2008).  

Site productivity is commonly estimated using stand age and height to define site quality 

(Pretzsch, 2009). The methods of assessing site productivity commonly develop site indices 

using height-age based relationships as an indicator of site quality (Burkhart and Tomé, 2012; 
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Bontemps and Bouriaud, 2014). However, this method of developing site index is commonly 

developed from single species and even aged stands (Skovsgaard and Vanclay, 2008). The use of 

these site indices in mixed species stands is challenging because the underlying assumptions of 

stand structure are not the same (Bontemps and Bouriaud, 2014). The challenge in developing an 

adequate index needs to minimize the amount of time measuring individual trees and site 

characteristics (Burkhart and Tomé, 2012). Another challenge is to develop an index for 

describing stand dynamics that can be applied at large enough scales to better understand 

relationships within forest ecosystems and develop meaningful management objectives 

(Pretzsch, 2009). Alternatively, other studies have focused on developing site index from soil 

properties. Hunter and Gibson (1984) showed that a height-age site index can be predicted by 

various soil properties (e.g., depth of A horizon) and soil chemistry in relatively young stands. 

McKenney and Pedlar (2003) reported jack pine height-age based site index was correlated with 

depth of mineral soil properties. 

1.3.1 Stand density 

Stand density is a measure of vegetation abundance and it is an expression of the degree of stem 

crowding within a stocked area as an attribute for assessing forest characteristics (Long, 1985). 

Stand density denotes a quantitative measurement of the stand, whereas stocking refers to the 

adequacy of a given stand density to meet a management object (Burkhart and Tomé, 2012). 

Maximum stand density, or carrying capacity, indicates the level at trees with less vigor die 

despite the growth of the remaining trees (Pretzsch and Biber, 2016). The number of trees per 

unit area, the respective tree sizes, and spatial distribution determine the extent of competition in 

a stand. Measure of stand density generally do not consider spatial distribution. For practical 
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purposes of forest management and growth and yield predication, measures of stand density 

strive to be 1) objective, 2) easily measured, 3) correlated with stand growth, yield, and 

mortality, and 4) independent of site quality (Long, 1985). 

Maximum stand density is commonly defined as the maximum density that can exist for a given 

mean tree size in a self-thinning population (Long, 1996). In density management, maximum 

stand density is used to establish the upper limits of stocking assuming that site conditions are 

optimal (Pretzsch and Biber, 2005). Relative density is commonly defined as the density of a 

stand compared to maximum density (Woodall et al., 2005) and a value of 1 implies maximum 

density (Ducey and Knapp, 2010). Reineke (1933) and many others have asserted that maximum 

stand density is independent of site quality. This assumption may have resulted from the need to 

develop a simple mathematical index that represents so many intricate events and processes 

(Zeide, 2005).  

Quantifying the influence of site quality on carrying capacity in a mixed species forest is a long-

standing challenge. Stand relative density indices are commonly used as a stand attribute in 

assessments of forest characteristics and presume trees with less vigor die as live tree density 

increases toward carrying capacity (Burkhart and Tomé, 2012). Therefore, site occupancy is 

affected by stand dynamics including species composition and structure (Pretzsch, 2009). Many 

methods have been explored for fitting maximum size-density relationships (Burkhart and Tomé, 

2012). Most notably, Reineke (1933) plotted number of trees per unit area over quadratic mean 

diameter on double logarithmic cross-section paper using data from fully stocked stands resulted 

in a straight-line relationship.  
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Although stand density was originally presumed to be independent of site quality, recent work 

supports the correlation between stand density and various environmental factors. Weiskittel et 

al. (2009) found that soil and climatic variables influenced the maximum density for red alder 

(Alnus rubra). Ducey et al. (2017) found that wood specific gravity interacts with precipitation in 

driving maximum density. Bravo-Oviedo et al. (2018) report that shade and drought tolerance 

contribute to the maximum density of a forest stand across a climatic gradient in Europe. Since 

the growth of a trees can be limited by the availability of light, water, nutrients, or even 

geometrical space (Rivoire and Moguedec, 2011), it is plausible that other site quality properties 

influence above ground carrying capacity or growth rate. The role of vertical or lateral 

hydrologic flow on the solum is well documented, however, the influence of soil-water 

interactions impacting stand density and forest growth is unexplored. 

1.4 RESEARCH QUESTIONS AND OBJECTIVES 

Therefore, the objectives of this dissertation were to 1) automate the delineation of bedrock 

outcrops and associated shallow soil; 2) investigate the relationship between topographic metrics 

as proxies for site quality with the predicted asymptote of stand relative density and biomass; and 

3) quantify rates of soil chemistry change in northern hardwood forests across the White

Mountain National Forest in New Hampshire and adjacent western Maine. 

Objective 1 was to explore various predictive modeling approaches to delineate the areal extent 

of bedrock outcrops and associated shallow soils at Hubbard Brook Experimental Forest. 

Identifying the areal extent of bedrock outcrops and shallow soils has important implications in 

understanding the spatial dynamics of surrounding vegetation, stream chemistry gradients, and 

various soil properties. Previous studies have explored automating the delineation of bedrock 
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outcrops using high‐resolution panoramic photographs and image classification techniques. 

However, image classification and topographic metrics are not universally applicable and the 

challenge to delineate bedrock outcrops with dense vegetation cover in the northeastern US 

remains. Therefore, the primary objectives were to assess the accuracy of visually interpreting 

high-resolution relief maps for locating bedrock outcrops and associated shallow soil as well as 

automate the delineation using predictive analytics. 

Objective 2 was to investigate various topographic metrics as proxies for site quality in relation 

to the asymptote of stand relative density and biomass. Although stand density was originally 

presumed to be independent of site quality, recent work supports the correlation between stand 

density and various environmental factors. The Bartlett Experimental Forest (BEF) is 

approximately 1,052 ha located in the White Mountain National Forest, with elevations ranging 

from 200 to 900 m. Permanent plots were established in 1921-32 and re-measured in 1939-40, 

1991-92, 2001-05, and 2015-17. Since the influence of site quality on stand density has not been 

thoroughly tested with long-term longitudinal data, the eight decades of inventory data were 

leveraged to explore the influence of site quality proxies on the asymptote of predicted stand 

relative density and biomass. 

Objective 3 was to quantify the rate of change in soil chemistry of low-mid elevation, upland till 

soils across the White Mountain National Forest (WMNF). This required a comparison of overall 

changes in soil chemistry from permanent long-term monitoring plots as well as calculating 

within-site variance. The second objective was to stratify sampling site by dominant hydrologic 

pathways to determine if groundwater influenced soils were more responsive to acidification 

recovery processes compared to soils developed vertically via unsaturated flow. 
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CHAPTER 2 

PREDICTIVE MODELING OF BEDROCK OUTCROPS AND SHALLOW SOIL AT 

HUBBARD BROOK EXPERIMENTAL FOREST, NEW HAMPSHIRE 

ABSTRACT 

Identifying the areal extent of bedrock outcrops and associated shallow soils has important 

implications in understanding spatial patterns in vegetation composition and productivity, stream 

chemistry gradients, and various soil properties. Few studies have automated the delineation of 

bedrock outcrops, and previous research has focused on methods of digital delineations in 

landscapes with rapidly eroding hillslopes and sparse vegetation. Manual methods of delineating 

bedrock outcrops and associated shallow soils are still commonly employed and are expensive to 

employ over broad areas and limited by geometry of polygon units. The overall objectives of this 

study were to assess the accuracy of visually interpreting high-resolution relief maps for locating 

bedrock outcrops and to automate these delineations using predictive analytics. Visual 

interpretation of lidar-derived 1 m shaded relief maps at Hubbard Brook Experimental Forest 

(HBEF) resulted in a 70% accuracy of interpreting deep soil locations and 92% accuracy in 

distinguishing bedrock outcrops and shallow soil. We explored four probabilistic classifications 

of multiple lidar-derived topographic metrics as predictive variables for bedrock outcrops and 

associated shallow soil presence. All four methods identified similar predictors, including slope 

and two topographic position indices with a 15 and 200 m circular analysis window respectively, 

for bedrock outcrops and associated shallow soils. Although all classifiers yielded very similar 
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results with little difference in interpretation, a generalized additive model had a slightly higher 

kappa value, indicating best accuracy in predicting the presence of bedrock outcrops and 

associated shallow soil, yielding 88.1% overall accuracy using independent validation data 

across the primary study area, and 90.1% overall accuracy in a second validation watershed. 

2.1 INTRODUCTION 

Bedrock is an underlying geological material in which soil forms (Jenny, 1941), whereas 

bedrock outcrops emerge at Earth’s surface. Weathering processes of bedrock outcrops near or at 

the surface are drastically different than bedrock covered with substantial amounts of regolith 

(Buol et al., 2011). Therefore, the presence and areal extent of bedrock outcrops and shallow soil 

in glaciated catchments has a key role in understanding the surrounding ecology, hydrology, and 

soil development. 

In the northeastern US, as in other regions, vegetation often reflects the physical and chemical 

conditions determined by dominant geomorphic processes. In this region, forest types near 

bedrock outcrops are commonly found to have successional stands of softwood greater than 

hardwood mixtures (Leak, 1982). In addition, areas dominated by bedrock outcrops limit deep 

percolation, forcing lateral hydrological movement of groundwater through the rooting zone 

(Gannon et al., 2014) controlling spatial patterns in carbon and metal sequestration in soil 

profiles (Sommer et al., 2001; Bailey et al., 2014; Bourgault et al., 2017). Distance from bedrock 

controlled-areas and proportion of bedrock outcrops in upslope drainage areas have been used to 

explain much of soil vertical and horizonal variability at a watershed scale (Gillin et al., 2015a). 

Finally, primary mineral dissolution and soil development near bedrock outcrops can explain the 
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spatial variation of headwater stream chemistry, setting regional background water quality 

characteristics (Bailey et al., in review). 

Light Detection And Ranging (lidar) digital-derived data provide a unique opportunity for 

bedrock and surficial geologic mapping where underlying geomorphic patterns are visible 

despite dense vegetation cover. Bedrock outcrops are easily distinguished by the rough 

topographic expression along exposed ridges of upper portions of slopes with convex curvature. 

A high-resolution digital elevation model (DEM) can be created from the lidar ground returns 

and represents Earth’s bare surface. Computational algorithms are often used to automate the 

extraction of various terrain features from lidar-DEMs (MacMillan et al., 2000; Drăguţ and 

Eisank, 2011). The resulting terrain features have been classified to predict a wide range of soil 

properties including hydrologic influences on soil formation using multinomial logistic 

regression in New Hampshire, US (Gillin et al., 2015a), historical extent of Spodosols using 

random forests in West Virginia, US  (Nauman et al., 2015), soil depth with generalized additive 

models in Idaho, US (Tesfa et al., 2009), and digital soil mapping using support vector machines 

in British Columbia, Canada (Heung et al., 2016). 

Extracting bedrock outcrop features, however, is especially challenging in landscapes where 

outcrops are scattered and in associated thin soils constituting a thin mantle over shallow 

bedrock, resulting in a topographically smooth signature rather than the common rough 

topographic expression of exposed outcrops. Since the areal extent of bedrock outcrops serves as 

a predictor of various biotic and abiotic properties, a few studies have explored automating the 

delineation of bedrock outcrops by leveraging the rough expression and slope associated with 

bedrock, using high‐resolution panoramic photographs (DiBiase et al., 2012), and image 
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classification techniques (Scarpone et al., 2017). Additionally, Milodowski et al. (2015) created a 

roughness metric by demonstrating that the local variability of surface normal vectors can be 

used as a topographic signature to identify rock exposure. However, image classification and 

topographic metrics are not universally applicable and the challenge to delineate bedrock 

outcrops with dense vegetation cover in the northeastern US remains. 

The first objective of this study was to assess the accuracy of visually interpreting high-

resolution DEM-derived metrics for locating bedrock outcrops and shallow soil. The second 

objective of this study was to automate the delineation of bedrock outcrops and shallow-to-

bedrock areas using predictive analytics with lidar terrain derivates as predictors. Finally, we 

evaluated predictive performance of four classifiers with two independent validation datasets 

from separate geographic locations. 

2.2 METHODS 

2.2.1 Study site 

Hubbard Brook Experimental Forest is within the southern White Mountains of central New 

Hampshire, USA (43°56′N, 71°45′W) with elevation ranging from 200 to 1,000 meters above 

sea level and comprising the catchment draining to third-order Hubbard Brook. The climate is 

humid continental with annual precipitation of 140 cm and a mean stream runoff of 90 cm (A.S. 

Bailey et al., 2003). Soils have 0.5 m average thickness to the base of the B horizon (Likens, 

2013). Northern hardwood forest dominates HBEF including Acer saccharum Marsh. (sugar 

maple), Betula alleghaniensis Britt. (yellow birch) and Fagus grandifolia Ehrh. (American 

beech) as dominant species in deeper soils. Shallow-to-bedrock soils are vegetated with conifer-
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dominated stands composed of Picea rubens Sarg. (red spruce), Abies balsamea (L.) Mill. 

(balsamfir), and Betula cordifolia Regel (mountain white birch). The forest was selectively 

harvested from 1880 to 1920, damaged by a hurricane in 1938, and is relatively mature, reaching 

a plateau in biomass accumulation in the 1980’s (Siccama et al., 2007). Bedrock in HBEF 

consists of mica schist and granulite of the Silurian Rangeley Formation and granitic rocks of the 

Devonian Kinsman pluton (Burton et al., 2000). Bedrock is poorly exposed, outcropping mostly 

along ridges and in some stream channels, and covered by a veneer of glacial drift ranging up to 

10 m or more in thickness. 

2.2.2 Sample design and visual interpretation 

The terrain data were collected using an MultiPulse lidar system in 2011 (UNH GRANIT). The 

laser returns were recorded at an altitude of 1,158.24 m above ground level using a 30% overlap, 

scan angle of 27°, a nominal pulse density of 3 pulses/m2 and a 9.25 cm vertical RMSE accuracy. 

The 1 m DEM was created from returns classified as representative of the ground. Shaded relief 

images from three illumination angles (45˚, 135˚, 345˚) were generated from the 1 m lidar-

derived DEM. The HBEF watershed boundary was buffered by 200 meters to ensure the full 

extent of ridges were considered. Bedrock-controlled areas were estimated to represent 40% of 

the study area using existing geologic maps (Burton et al., 2000). Therefore 2,000 points were 

randomly generated to capture 50 points per category as recommended for 2.5% sampling for 

accuracy assessment by Congalton and Plourde (2002) (Figure 2.1). All 2,000 points were then 

visually interpreted as bedrock outcrop or deep soil. Visual interpretation of bedrock-controlled 

regions were defined as areas exhibiting a rough topographic expression where the underlying 
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bedrock structure was notable. Each point was initially evaluated at 1:1,000-3,000 scale and then 

at a 1:6000 absolute scale to consider the context of the surrounding landscape.  

Figure 2.1: Shaded relief (315˚) of Hubbard Brook Experimental Forest (HBEF) buffered by 200 

meters and the 2,000 randomly generated points used for visual interpretation. The figure inset 

depicts the location of HBEF (43°56′N, 71°45′W) marked by a five-point star within the 

Northeastern USA. The solid black outlines indicate the three subset catchments selected for 

validation of shaded relief visual interpretations. 

Since manual delineation is still commonly used to delineate the presence of bedrock outcrops 

and associated shallow soil, we validated independent visual interpretations of the high-

resolution shaded relief maps. A subset of 325 points, within three catchment areas, were 

independently interpreted by two coauthors. One coauthor had with extensive field experience in 

the three subset catchments and the other did not have extensive field experience in the three 
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subset catchments. A total of 50 points were randomly selected from the 325 subset points for 

field verification.  

2.2.3 Topographic metrics 

A 1 m DEM was coarsened through mean cell aggregation to 5 m (Gillin et al., 2015b) and filled 

using an algorithm that maintains the downslope gradient (Wang and Liu, 2006). Slope (%) was 

calculated using the maximum slope algorithm (Travis et al., 1975). Trigonometric 

transformations were applied to scale aspect from -1 to 1 by combining aspect and slope 

according to Stage (1976). Topographic ruggedness index (TRI; Riley, 1999) was created with a 

3x3 neighborhood window. Several additional vector ruggedness metrics (VRM) were created 

using a 3x3 and 5x5 neighborhood window size. The Zevenbergen and Thorne (1987) method 

was used to generate planform (PLAN) and profile (PROF) curvature. Finally, multiple 

topographic position indices (TPI) (Guisan et al., 1999) were created with a moving circular-

window centered on a target cell using 10 m incremental sizes ranging from 5 to 250 m taking 

the difference between the elevation of each cell and mean elevation. A total of 11 topographic 

metrics were created from a 5 m DEM using RSAGA (Brenning et al., 2011) to serve as the 

predictor variables. RSAGA is a R package providing access to geoprocessing and terrain 

analysis functions of SAGA-GIS (Conrad et al., 2015). Pre-processing of the covariates was not 

needed since the topographic metrics explored did not exhibit multi-collinearity (Dormann et al., 

2012).  

2.2.4 Predictive modeling 
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First, a logistic regression was used to probabilistically model bedrock outcrops and shallow soil 

presence using independent topographic metrics. Logistic regression relates the probability of 

occurrence in a group to a set of predictor variables using the logit transformation (Kleinbaum et 

al., 2013). The outputs of logistic regression are expressed in probabilistic terms where values 

ranging from 0 to 1 indicate probability of occurrence, with higher values representing a higher 

probability. Second, we used a random forests classifier which is a hierarchical non-parametric 

approach that uses a combination of tree predictors and the results are based on the predictions 

from an ensemble of the individual trees (Breiman, 2001; Hastie et al., 2009). Each tree was 

trained from a randomized bootstrap sample of the entire training set and a subset of predictors 

randomly selected for the node-splitting rules.  

We also used a generalized additive model (GAM) which is a statistical approach that 

generalizes multiple regression by replacing linear combinations of the explanatory variables 

with combinations of nonparametric smoothing or fitting functions, estimated through a back-

fitting algorithms (Hastie and Tibshirani, 1990; Wood, 2004). GAM was primarily used due to 

flexible and smooth technique fitting either linear or non-linear predictors. Generalized cross 

validation criteria (GCV) was used for estimating the smoothing parameter. Finally, we used a 

support vector machine (SVM) approach using a linear kernel which deals with the binary 

classification (Hastie et al., 2009). SVM uses a hyperplane to separate the classes and predict the 

maximum margin of possibility between each class. In a binary classification, SVM detects the 

closest points between the two classes in feature space and assigns a margin based on the 

distance between the hyperplane and the points.  
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The caret package (Kuhn, 2008) was implemented in R (R Development Core Team) for all 

classifiers . The training data from the 2,000 visually interpreted points were partitioned into 5-

folds for cross validation and the error rates for each of the 5 cross-validation partitions were 

aggregated into a mean error rate with each classifier. The accuracy of predictions were validated 

using the independent HBEF and WAMMO soil databases (see Section 2.4 below). Finally, the 

predictions of all classifiers were evaluated with the independent data using a standard error 

matrix (Congalton, 1991), kappa statistic (Cohen, 1960), and the significance (p < 0.05) of a 

topographic metric as an independent variable. Receiver operating characteristic (ROC) curves 

were created using the pROC package in R (Robin et al., 2011) by predicting the probability of 

occurrence with each cell in addition to a binary response. The mean probability of occurrence 

was calculated for the predicted presence of bedrock outcrops and shallow soil for each 

classifier. 

2.2.5 Model validation 

Two independent validation datasets were used to evaluate the predictive performance of each 

classifier in two different geographic areas. First, 286 pedon descriptions were used from the 412 

total pedons in the HBEF soil database (Bailey, 2018) to evaluate each classifier prediction. The 

sample design for the independent HBEF validation database consists of pedons randomly 

sampled from the 431 permanent plots. The sample design consists of 15 N±S transects 500 m 

apart and an array of plots at 100 and 200 m distance intervals along each transect to create a 

geostatistical framework (Schwarz et al., 2001). The HBEF soil database includes descriptions 

from soil pits hand dug, approximately 0.75 x 0.5 m wide and 1.2 m deep, to sample the entire 

solum and the upper portion of the C horizon or bedrock, whichever comes first. Genetic 
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horizons were sampled and described  by Munsell color, texture, structure, moist consistence, 

presence of redoximorphic features, rooting density, and coarse fragment content 

(Schoeneberger, 2012).  

HBEF pedons descriptions were partitioned into by hydropedological classification (HPUs) 

representing the dominant hydrologic pathway influencing soil formation (Bailey et al., 2014) in 

order to evaluate presence or absence of bedrock outcrops. For example, Bhs podzols exhibit 

near instantaneous response to precipitation with a long recession period (Gannon et al., 2014). 

Vertical hydrologic development (typical podzol) was defined as profiles with morphology 

indicating a lack of watertable incursion in the solum (Gillin et al., 2015a). Lateral sites (Bh 

podzols) had morphology indicating regular water saturation throughout the solum while 

bimodal sites were intermediate with some evidence of watertable influence primarily in the 

lower portion of the solum (Gannon et al., 2014). Typical, bimodal, Bhs, and Bh podzols were 

coded as absence of bedrock outcrops and associated shallow woils. In contrast, pedons with 

thick Oa and E horizons and minimal B horizons overlying shallow bedrock with frequent 

response to precipitation were classified as O and E podzols, representative of bedrock outcrops. 

Figure 2 depicts representative soil profiles (plots HB035, HB051, HB125, and WS_F2) of O 

and E podzols from the HBEF database selected for validating presence of bedrock outcrop and 

shallow soil predictions. The ‘aqp’ package in R was used to create Figure 2.2 (Beaudette et al., 

2013). 
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Figure 2.2: Representative soil profiles (plots HB035, HB051, HB125, and WS3_F2) of O and E 

podzols from the HBEF database selected for validating presence of bedrock outcrop and 

shallow soil predictions.  

As another validation of the model, it was applied to the Wild Ammonoosuc watershed 

(WAMMO) 16.3 km northwest of HBEF and 181 pedon descriptions were used from the 

WAMMO database (U.S. Forest Service, NRM). The Wild Ammonoosuc watershed ranges in 

elevation from 350 to 1,350 m and contains 6,887 ha. In contrast to the HBEF soil database, the 

WAMMO pedon sampling design leveraged a stratified random approach based on the 

distribution of multiple lidar-derived topographic metrics across the watershed. This method of 

stratified random sampling on the WAMMO has been shown to reduce the overall prediction 

error since points are uniformly allocated over the feature space proportional to the distribution 

of the predictor (Hengl et al., 2003; Brus et al., 2011). The USDA Natural Resources 

Conservation Service (NRCS) described the WAMMO pedons using the same methods as HBEF 

(Schoeneberger, 2012). NRCS defined organic matter and bedrock-controlled soil as less than 50 

cm to lithic contact. An NRCS assignment of organic matter and bedrock-controlled (ORM and 
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BDR) parent material category to each pedon was used to code locations as presence of bedrock 

outcrops and all other categories designated as absence. All locations for pedons from HBEF and 

WAMMO were determined using a Trimble GPS unit equipped with a Trimble Hurricane 

Antenna. Continuously Operating Reference Station (CORS) data from the National Geodetic 

Survey and Trimble Pathfinder software were used to obtain approximately 1-2 m horizontal 

precision after differential corrections.  

2.3 RESULTS 

2.3.1 Validation of visual interpretation from shaded relief maps 

The independent observers who visually interpreted the 325 subset points had 91% agreement on 

bedrock outcrop and shallow soil locations. Areas with greatest disagreement typically occurred 

near a likely transition to deep soils or an isolated pocket of deep soil within an area surrounded 

by bedrock outcrops. Visual interpretation of shaded relief maps compared to the 51 field-

verified locations yielded a 70% accuracy of interpreting deep soils and 92% accuracy in 

distinguishing bedrock outcrops and shallow soil (BDS). Visual interpretations of BDS presence 

that were in fact deep soil pockets surrounded by bedrock outcrops were also the greatest source 

of error.  

2.3.2 Model predictions 

There was very little overall difference in model results based on kappa value. The logistic 

regression model using slope, TPI15 (TPI with a 15 m window) and TPI200 (TPI with a 200 m 

window), selected by 5-fold cross validation, resulted in kappa 0.49. LR had a 75.2% accuracy 

predicting the visually interpreted bedrock outcrops and 81.4% accuracy predicting deep soil 
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locations. The LR predictions had 59.6% accuracy predicting bedrock outcrops and shallow soil 

presence using HBEF pedon data and 84.1% accuracy predicting deep soil locations.  

The RF model resulted in kappa 0.50 with the same topographic metrics as LR. Prediction 

accuracy validated by the visually interpreted bedrock outcrops was 76.1% and 83.8% accuracy 

was achieved in predicting deep soil locations. In contrast, RF had 60.4% accuracy predicting 

bedrock outcrops and shallow soil presence using HBEF pedon data and 85.3 % accuracy 

predicting deep soil locations. The SVM model resulted in 0.51 kappa, also with the same 

topographic metrics, and a 61.0% accuracy predicted visually interpreted bedrock outcrops and 

shallow soil presence and 83.2% predicting absence. 

Figure 2.3: Receiver operating characteristic (ROC) curves illustrate the binary probabilistic 

performance of bedrock outcrops and shallow soil presence using multinomial logistic 

regression (MNLR), random (RF), generalized additive models (GAM), and support vector 

machines (SVM). 
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The receiver operating characteristic (ROC) curves highlight the similar accuracy results when 

comparing all four classifiers (Figure 2.3). However, the mean prediction probabilities for 

bedrock outcrops and shallow soil presence differed. The LR had a mean prediction probability 

of 0.62 for bedrock outcrops and shallow soil presence with a standard error (SE) of ±0.03 and 

RF had a mean prediction probability of 0.68 (±0.03 SE). GAM had a mean prediction 

probability of 0.72 for bedrock outcrops and shallow soil presence (±0.01 SE). Finally, SVM had 

a 0.61 mean prediction probability for bedrock outcrops and shallow soil presence (±0.03 SE). 

The area under the ROC curve were also very similar ranging from 0.85 to 0.86. 

Figure 2.4: Different views of GAM predictions (depicted in dark grey) across HBEF displaying 

independent validation data using a white circle to depict deep soil sample locations and a dark 

grey triangle for bedrock outcrop and shallow soil sample locations. 

The final GAM model variables, selected by 5-fold cross validation, also included slope, TPI15 

and TPI299, resulted in the highest kappa value (0.53) of all four classifiers. GAM had a 78.3% 

accuracy predicting the visually interpreted bedrock outcrops and 86.2% accuracy predicting 

deep soil locations. The GAM predictions had 63.6% accuracy predicting bedrock outcrops  



42 
 

presence using HBEF pedon data and 94.7% accuracy predicting deep soil locations with an 

overall accuracy of 88.1% (Figure 2.4). GAM applied to WAMMO had a 67.1% accuracy 

predicting bedrock outcrops, 95.7% accuracy predicting deep soil locations, and overall 90.4% 

accuracy (Supplemental Figure S2.1).  

The most notable differences in classifier predictions were based on ocular comparisons. For 

example, LR and RF model predictions resulted in heavily pixelated predictions. Numerous 

bedrock outcrops and shallow soil presence pixels were randomly scattered throughout deep soil 

predicted locations, regardless of the probabilities. SVM and GAM predictions, however, 

resulted in more discrete clusters of bedrock outcrops and shallow soil presence. Single pixel 

predictions of bedrock outcrops-shallow presence surrounded by deep soil locations were more 

often predicted correctly by SVM and GAM.  

The mean bottom depths of the two different classification methods from both independent 

validation data suggest overall agreement in identification of bedrock-controlled soil 

characteristics. O and E podzols at HBEF had a mean bottom depth of 33 (cm) and WAMMO 

pedon categorized as ORM or BDR had a mean bottom depth of 21 (cm). 

2.4 DISCUSSION 

Visual interpretation of terrain derivates is commonly used for mapping of bedrock geology and 

parent material (Haugerud et al., 2003; Belt and Paxton, 2005). Current bedrock geology and soil 

mapping efforts in northeastern US requires the manual delineation of bedrock-controlled areas 

using visual interpretation of lidar-derived hillshades (Shi et al., 2009) or derived from surficial 

geologic maps (McBratney et al., 2003). Since a large sample size is often required for rigorous 
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predictive modeling, it poses a common limitation in mapping soil, parent material, and geologic 

features (Hengl et al., 2003). Therefore, the visual interpretation of bedrock outcrops in this 

study allowed for a statistically valid sample size to be achieved with a high accuracy and 

agreement in identifying bedrock outcrops and shallow soil presence. The greatest source of 

error, in visual interpretation of lidar-derived hillshades, occurred in small pockets (< 15 m2) of 

topographically smooth deep soil along ridges surrounded by bedrock outcrops and shallow soil.  

Only a few studies have explored automating the delineation of bedrock outcrops. For example, 

Milodowski et al. (2015) created a computational algorithm for calculating a roughness metric 

and performed well predicting soil mantled bedrock on rapidly eroding hillslopes in California 

and Idaho, US. Scarpone et al. (2017) increased delineation accuracy from 48% of bedrock 

exposures in legacy land cover maps to 88% with the use of a random forest model using 17 

predictor variables. An independent dataset, created through photo interpretation and in situ 

ground truthing (Sandvoss et al., 2005), was used to validate model predictions in southern 

British Columbia, Canada. These studies, however, occur in rapidly eroding hillslopes or areas 

where vegetation is sparse enough to identify bedrock outcrops from photographs and common 

image processing techniques of aerial imagery are applicable (Grebby et al., 2011). 

Figure 2.5: Predicted bedrock outcrop-shallow soil presence in dark grey on a shaded relief 

map (315˚ illumination) of HBEF. Bedrock-controlled areas manually delineated are depicted by 

lighter grey polygons. Overall agreement on bedrock occurrence is high, however, predicted 

bedrock outcrop-shallow soils suggest higher presence of small pockets in the valley bottom and 

more scattered pockets of deep soil along the ridges. 
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USDA Natural Resources Conservation Service (NRCS) completed a comprehensive soil parent 

material map across Vermont and New Hampshire generalized from detailed soil surveys and 

manually delineated at a 1:10,000 scale using shaded relief maps (Figure 2.5). The parent 

material map was validated by selective field validation to delineate polygons and determine the 

location of parent material transitions. The NRCS manual delineation at HBEF had a bedrock 

outcrops and shallow soil presence accuracy of 56% and 52% accuracy at WAMMO using the 

same independent validation data in this study. In comparison, the predicted bedrock outcrops 

and shallow soil presence using the GAM model in this study resulted in 63.6% and 67.1% 

accuracy at HBEF and WAMMO respectively. There is overall agreement on the topographic 

expression of bedrock outcrops and shallow soil interpretation high-resolution shaded relief 

maps as well as categorizing pedon descriptions. However, the approach to manual delineate 

bedrock-controlled landscape retains numerous limitations associated with the geometry, 

boundary, and scale of polygon units (Zhu et al., 2001). The predictive modeling approach 

presented in this study drastically reduces the time needed to manually delineate bedrock-

controlled areas as well as increases accuracy. 
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The multiple radii for computing topographic position indices (TPI) in this study appears to 

address the challenges of topographic convexity exhibited by bedrock-controlled areas at 

multiple scales (Miller et al., 2015). It can be difficult to determine the radius of generating 

predictor variables at one specific scale, therefore, multiple window radii have the potential to 

produce results not limiting the scope of TPI as a predictor. Although the four classifiers in this 

study yielded very similar results, GAM had a slightly higher kappa value and ROC curves 

suggests slightly better overall binary probabilistic performance (Figure 2.3). Additive models 

accommodate a range of linear and smooth nonlinear effects of continuous covariates and the 

model process selects the most suitable covariate. In the case of bedrock outcrops, GAM results 

presented here highlight the nonlinear convexity of bedrock outcrops. The combination of these 

multi-scale covariates increases the complexity of the model to predict bedrock structure in the 

landscape. It is not surprising that in landscapes, such as the northeastern US with a high degree 

of topographic complexity, more than one neighborhood extent would be successful at 

characterizing pedogeomorphological processes at multiple scales. 

2.5. CONCLUSIONS 

Identifying the areal extent of bedrock outcrops and shallow soil in glaciated catchments has a 

key role in understanding the surrounding ecology, hydrology, and soil development. Extracting 

bedrock outcrop features, however, is especially challenging in landscapes where outcrops are 

scattered and in associated thin soils constituting a thin mantle over shallow bedrock. Manual 

methods of delineating bedrock outcrops and associated shallow soils are still commonly 

employed and are expensive to employ over broad areas and limited by geometry of polygon 

units. The overall objectives of this study were to assess the accuracy of visually interpreting 

high-resolution relief maps for locating bedrock outcrops and to automate these delineations 
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using predictive analytics. The four classifiers explored in this study yielded very similar results, 

however, a generalized additive model had a slightly higher kappa value and a 63.6% accuracy 

predicting the presence of bedrock outcrops and associated shallow soil. In comparison, manual 

delineation of the same study area had a 56% accuracy identifying the presence of bedrock 

outcrops and associated shallow soil. We were able to significantly improve the accuracy and 

efficiency of delineating bedrock outcrops and shallow soil presence. This study demonstrates a 

robust framework in which to interpret and model the multi-scale processes occurring within a 

landscape and likely transferable across central New Hampshire and adjacent western Maine.  
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CHAPTER 3 

EIGHT DECADES OF STAND DENSITY AND BIOMASS IN RELATION TO 

TOPOGRAPHIC METRICS AT BARTLETT EXPERIMENTAL FOREST, NEW 

HAMPSHIRE 

 

ABSTRACT 

Predicting the asymptotic range of stand relative density and biomass has important implications 

on silvicultural practices and understanding forest carbon pools in late successional forests across 

northeastern US. Additionally, quantifying the influence of site quality on carrying capacity in a 

mixed species forest is a long-standing challenge and has not been thoroughly tested with long-

term longitudinal data. The overall objectives of this study were to predict the asymptotic range 

of stand relative density and biomass as well as explore the influence of topographic metrics as 

proxies for site quality. Logistic and Chapman-Richards growth functions were fitted to eight 

decades of Bartlett Experimental Forest, New Hampshire inventory measurements from 1931-32, 

1939-40, 1991-92, 2001-03, and 2015-17 as nonlinear mixed effects models. The NLME model 

using a Chapman-Richards growth function and asymptote as the random effect had the lowest 

AIC value for both stand relative density and biomass. The variability associated with the plot-

level random effects suggested broad differences in structure among plots could be accounted for 

with topographic metric as a covariate. Both predicted asymptotes were highest on flat slopes (0-

10%), south-west facing aspects, and relatively well-drained soils. These results are consistent 
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with expectations since topography drives hydrologic influences on soil development and forests 

respond to abiotic factors such as incoming solar radiation and soil moisture. However, to our 

knowledge this represents the first successful effort to quantify these relationships using 

variables that are widely available at a landscape scale 

3.1 INTRODUCTION 

Quantifying the influence of site quality on carrying capacity in a mixed species forest is a long-

standing challenge. Relative indices are commonly used as a stand attribute in assessments of 

forest characteristics and presume trees with less vigor die as live tree density increases toward 

carrying capacity (Pretzsch, 2009). Therefore, site occupancy is affected by stand dynamics 

including species composition and structure. Many methods have been explored for fitting 

maximum size-density relationships (Burkhart and Tomé, 2012). Most notably, Reineke (1933) 

plotted number of trees per unit area over quadratic mean diameter on double logarithmic cross-

section paper using data from fully stocked stands resulted in a straight-line relationship. These 

methods of establishing representative data could influence determining drivers of maximum 

size-density relationships.  

In contrast to stand density, there are a number of variables, such as above-ground live biomass, 

which might be expected to change in stands over long time periods. Although Siccama et al. 

(2007) observed biomass plateau in northern hardwood forests at Hubbard Brook, New 

Hampshire, more recent studies suggest forests continue to accumulate biomass (Luyssaert et al., 

2008; Keeton et al., 2011). Therefore, it is unclear which biomass model reflects regional trends 

in the northeastern US. Since biomass is important for understanding carbon pools (Keith et al., 

2009), quantifying the late successional biomass trajectory of unmanipulated stands is crucial for 
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understanding the full range of management activities and, maybe, the potential for northeastern 

forests to serve as long-term offsetting sinks for greenhouse gas emissions. 

Although stand density was originally presumed to be independent of site quality, recent work 

supports the correlation between stand density and various environmental factors. Weiskittel et 

al. (2009) found that soil and climatic variables influenced the maximum density for red alder 

(Alnus rubra). Ducey et al. (2017) found that wood specific gravity interacts with precipitation in 

driving maximum density. Bravo-Oviedo et al. (2018) report that shade and drought tolerance 

contribute to the maximum density of a forest stand across a climatic gradient in Europe. Since 

the growth of a trees can be limited by the availability of light, water, nutrients, or even 

geometrical space (Rivoire and Moguedec, 2011), it is plausible that other site quality properties 

influences above ground carrying capacity or growth rate.  

Few studies have used long-term longitudinal data to explore the influence of site quality on 

carrying capacity. It is also difficult to collect sufficient site quality information and 

simultaneously quantify soil, hydrologic, and topographic properties. However, computational 

algorithms are often used to automate the extraction of numerous landscape features representing 

the site quality properties (e.g., elevation, slope, aspect) from digital elevation models (DEM), 

which are representative of Earth’s bare surface. The advancements of deriving DEMs from lidar 

(Gillin et al., 2015b), improvements on calculating terrain derivates (Sørensen and Seibert, 

2007), and applications of machine learning algorithms (Heung et al., 2016) have contributed to 

the evolution of mapping soil (Gillin et al., 2015a), water tables (Gannon et al., 2014), and 

bedrock-controlled landscapes (Fraser et al., 2019). Therefore, various topographic metrics 

derived from lidar can be used to accurately and efficiently serve as proxies for numerous site 
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quality properties. The influence of topographic metrics as proxies for site quality properties, 

such as the hydrologic influence on soil development, impacting stand relative density and 

biomass is unexplored. 

The first objective was to predict the asymptote of stand relative density and assess the plot-level 

variability using long-term longitudinal data. The second object to also investigate the predicted 

asymptote of biomass and whether there is variability or just net change. Finally, the third object 

was to explore topographic metrics as a proxy for more direct measurements of site quality to 

determine if there are influences on rate of growth and/or asymptote on stand relative density and 

biomass. 

3.2 METHODS 

3.2.1 Study site 

The study was conducted on the Bartlett Experimental Forest (BEF) (44°03’N, 71°17’W). which 

lies within the White Mountain National Forest in north central New Hampshire (Figure 3.1). 

The BEF is a 1,052 ha tract established in 1932 by the USDA Forest service. BEF is 

characterized as a secondary successional deciduous and coniferous forest type including 

northern hardwood [e.g. sugar maple (Acer saccharum Marsh), American beech (Fagus 

grandifolia Ehrh.), yellow birch (Betula alleghaniensis Britton)], red spruce-balsam fir (Picea 

rubens Sarg. – Abies balsamea (L.) Mill.), eastern hemlock (Tsuga candensis (L.) Carr.), and red 

oak-white pine (Quercus rubra L. - Pinus strobus L.). Soils are derived from granitic drift and 

tend to be coarse textured ranging from weathered shallow bedrock, outwash, compact basal till 

and slack-water sediments to slightly washed or heavily rinsed ablational tills (Leak, 1982). In 
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1931-32, approximately 450 (32 x 32 m) permanent plots, spaced approximately 200 by 100 m 

apart were established over the extent of the BEF. A total of 444 plots have been re-measured by 

2.54 cm diameter classes and species in 1939-40, 1991-92, 2001-03, and 2015-17 of all woody 

stems larger than 3.8 cm diameter at breast height (DBH). The BEF has a wide range and long 

history of active forest manipulation and this study was conducted with 130 of 159 

unmanipulated plots. A total of 20 plots had at least one inventory year missing and 9 plots 

exhibited drastic trends likely caused by measurement error. Stand age of unmanipulated plots 

range upwards of 150 years and characterized by natural forest disturbance regimes. Percent 

cover of conifers, northern hardwoods, and mixed species were calculated by grouping species 

into the three categories respectively based on the proportion of stand relative density by plot. 

Figure 3.1: Shaded relief map (315˚ illumination) of Bartlett Experimental Forest (BEF) and the 

location of the 130 unmanipulated permanent plots with stand age ranging upward of 150 years. 

The inset figure depicts the location of BEF (44°03’N, 71°17’W) marked by a five-point star 

within the northeastern US. 
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3.2.2 Statistical analysis 

We fit both stand relative density (RD) and biomass to growth function commonly reported as 

representative of forest growth (Pretzsch, 2009; Burkhart and Tomé, 2012) as nonlinear mixed 

effects models. First, logistic growth (Pearl and Reed, 1920) was calculated by 

𝑌 =
𝛼

1+𝑏 exp (−𝑐𝑋) 
                 [eq. 1] 

where 𝑦 is the response variable (RD or biomass), 𝛼 is the asymptote, 𝑏 is half asymptote, 𝑐 is 

scale, and 𝑋 is time. In addition, Chapman-Richards function (Richards, 1959; Chapman, 1961) 

was calculated by 

𝑌 =  𝛼 (1 − exp(−𝑏1𝑋))
𝑏2

                            [eq. 2] 

where 𝑌 is the response variable (RD or biomass), 𝑋 is time, 𝛼 is the asymptote, 𝑏1 is the rate, 

and 𝑏2 is the y-intercept. 

Ducey and Knapp (2010) was used to calculate stand relative density (eq. 3) because it 

accommodates a wide range of species compositions and diameter distributions. It also was 

developed to capture the complexity of underlying stand biology in mixed species forests in the 

northeastern US. Therefore, stand relative density was calculated by 

𝑅𝐷 =   ∑ (𝑏0𝑖 + 𝑏1𝑆𝐺𝑖) (
𝐷𝐵𝐻𝑖

25
)

1.6
                   [eq. 3] 
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where RD is stand relative density, 𝑆𝐺𝑖 is the mean specific gravity of trees in the stand, 𝑏0 and 

𝑏1 are coefficients 0.00015 and 0.00218, respectively, as specified by Ducey and Knapp (2010), 

𝐷𝐵𝐻 is diameter at breast height (cm) for all live trees ≥ 12.5 cm DBH, and the summation was 

taken over all trees in a hectare. 

Biomass was calculated using Chojnacky et al. (2014) coefficients, 𝛽0 and 𝛽1, because of the 

species updates to Jenkins et al. (2003) and the FIA approach could not be used since tree height 

measurements are not available for all inventory years. Therefore, biomass was calculated by 

𝐵𝑀 = 𝑒𝑥𝑝(𝛽0 + 𝛽1 ln 𝐷𝐵𝐻)    [eq. 4] 

where 𝐵𝑀 is total aboveground biomass (Mg ha-1) for all live trees ≥ 12.5 cm DBH, 𝑒𝑥𝑝 is the 

exponential function, and ln is log base e (2.718282).  

Nonlinear mixed effects (NLME) models, consisting of both fixed and random effects, were used 

to evaluate the variance of stand relative density and biomass asymptotes using the two nonlinear 

functions (Pinheiro and Bates, 2000). Random effects were specified by plot, as the grouping 

factor, within the mixed effects model framework to better understand overall variability 

compared to plot-level variability. A general expression for a nonlinear mixed effects model was 

specified as (e.g., Lindstrom and Bates, 1990; Pinheiro and Bates, 2000 p 282) 

𝑦𝑖𝑗 =  𝑓(𝑥𝑖𝑗 , 𝜆𝑗;   𝛽, 𝛼𝑗) + 𝜀𝑖𝑗          [eq. 3] 

where 𝑦𝑖𝑗 the response variable for observations of variable y from the 𝑖th plot at the 𝑗th 

measurement, 𝑓 is a nonlinear function of predictor variable and parameter vector governing 

within-plot, 𝑥𝑖𝑗 is the predictor variable for observation from the  𝑖th plot at the 𝑗th measurement, 
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𝜆𝑗 is the random-effect variable for 𝑗, β are the fixed effects parameters, 𝛼𝑗 are the random 

effects parameters, and 𝜀𝑖𝑗 is the error term.  

Each growth function was fitted as a mixed effects model in R (R Development Core Team) 

using the nlme package (Pinheiro and Bates, 2000) and used the default maximum likelihood 

estimation. The model fits were compared using Akaike information criterion (AIC; Akaike, 

1974). Models using either growth function, first examined the plot-level random effects with 

just 𝛼, the asymptote and then subsequent models with only one parameter as a random effect. 

Additional models were then explored using more than one random effect until model 

convergence could not be achieved. Repeated measures of forest growth typically exhibit both 

heteroscedasticity and autocorrelation (Gregoire, 1987). Therefore, we used a power function of 

the variance if the plot of the standardized residuals versus the fitted values showed within-

individual error variance was heterogeneous. 

3.2.3 Stand age 

In order to best fit growth functions to multiple measurements over time, stand age was 

determined to provide a point in time representative of origin. Stand origin was used to represent 

0 for both stand relative density and biomass and subsequent years were calculated by 

subtracting stand origin from each inventory year to provide a temporal scale. Although there is 

little information on the exact stand origin of permanent plots at BEF, a stand age map was 

created in 1929 delineating the areal extent of stands by 10, 30, 50, and 70-year age classes as 

well as a fifth “all-age” category. The map was digitized with a flatbed scanner and 

georeferenced using a 1st order polynomial (affine) transformation consisting of 4 control points 

(4.31 m RMSE). This resulted with 56 of the 130 plots with one of the three assigned even-age 
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classes, none of the plots were identified as 10 years, whereas 74 plots were described as “all-

age”. Four of the 56 plots were +/- 4.31 meters of differing boundary classes and reassigned with 

an “all-age” category. 

The younger 10 to 70-year age classes observed in 1929 were assumed to be identified correctly, 

however, we determined the “all-age” category represented multiple-age mixed species cohorts. 

Since the concept of a stratified cohort mixture did not exist in 1929 (Oliver and Larson, 1996), 

we concluded the 1929 observers were not identifying the “all-age” category as an alternative to 

uneven aged condition in older mixed species. Therefore, multinomial logistic regression was 

used to predict the stand age for the remaining 78 plots with an “all-age” class using the 1931 

basal area (BA) and the mean DBH of the top 10 largest trees per plot as explanatory variables. 

Multinomial logistic regression, with 5-fold cross validation, was completed using the caret 

package in R (Kuhn, 2008). Error was assumed to be +/- 20 years since the original breaks for 

"even-aged" stand classes were 20 years wide. The goal was to achieve an approximation of 

stand origin. In order to address the lack of precise stand age, the best fitting stand relative 

density and biomass models were compared using +/-100 years for stand age at 10-year 

increments.  

3.2.4 Topographic metrics 

Since topographic metrics have been shown to serve as proxies for various properties of site 

quality, particularly soil and hydrologic properties, additional models were fit using topographic 

metrics as covariates. Topographic metrics were created from lidar-derived DEMs using various 

computational algorithms to extract terrain features. The lidar data in this study was collected 

during leaf-off and snow-free conditions using an MutliPulse Laser Terrain Mapper and the laser 
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returns were recorded at an altitude of 1,158.24 m above ground. Additionally, laser returns were 

recorded using a 30% overlap, a scan angle of 27°, a nominal pulse density of 3 pulses/m2 and a 

9.25 cm vertical RMSE accuracy. A 1 m DEM was created from only ground returns (GRANIT), 

coarsened to 5 m through mean cell aggregation and filled using an algorithm that maintains the 

downslope gradient (Wang and Liu, 2006). A DEM resolution of 5 m was selected because it 

was shown to strongly correlate with ground water fluctuations and land survey measurements 

(Gillin et al., 2015b). 

Trigonometric transformations were applied to aspect for a -1 to 1 scale by combining aspect and 

slope according to Stage (1976). Slope was calculated using maximum slope algorithm (Travis et 

al., 1975), and both plan and profile curvature as well as a non-transformed aspect (˚) were 

calculated according to Zevenbergen and Thorne (1987). Topographic Ruggedness Index (TRI) 

was calculated by the sum difference of elevation between the subject cell and its neighbor cells 

(Riley, 1999). A topographic position index (TPI) was calculated using the difference between 

the elevation of each cell and the mean elevation for a neighborhood of cells in a 100 m moving 

circular window centered on the target cell (Guisan et al., 1999). Euclidean distance (m) from 

bedrock outcrops and associated shallow soil (EDb) was calculated using predictive modeling 

according to Fraser et al. (2019). Topographic wetness index (TWId) (Beven and Kirkby, 1979) 

was calculated with the upslope accumulated area (UAA) computed from a multiple triangular 

flow direction algorithm (Seibert and McGlynn, 2007) and a downslope index (Hjerdt et al., 

2004) with a 5 m analysis window. All topographic metrics were calculated in RSAGA 

(Brenning et al. 2011) using the mean within the square plot (0.1 ha) as well as the maximum 

TWId value within the plot. RSAGA is a R package providing access to geoprocessing and 

terrain analysis functions of SAGA-GIS (Conrad et al., 2015). 
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3.3 RESULTS 

3.3.1 Descriptive summary 

The summary of forest attributes all resulted in the smallest difference between 1991-92 and 

2001-03 except for biomass (Table 3.1). For example, basal area (BA) increased overall from 

21.81 in 1931-32 to 38.16 in 2015-17, but the smallest difference occurred between 1991-92 and 

2001-03. Quadratic mean diameter (QMD) behaved similarly, whereas stand relative density 

(RD) appeared to plateau between 2001-03 and 2015-17. Biomass, however, increased in 

relatively equal intervals between 1991-92 and 2001-03 as 2015-17.  

Table 3.1: Descriptive summaries (mean and standard deviation, SD) for 130 permanent 

unmanipulated plots of basal area (BA), quadratic mean diametric (QMD), stand relative density 

(RD), biomass (Mg ha-1), percent conifer (Con), northern hardwood (Nh) and mixed (Mix).  

Although the percent forest cover appeared to shift with an increase in conifer cover, the change 

was most notable in mixed species. The percent cover of northern hardwoods (Nh) remained 

relatively stable across the 130 permanent plots. Finally, multinomial logistic regression used to 

predict the stand age for the remaining 78 plots with an “all-age” class resulted in 16, 95, and 28 

plots within each 30, 50, and 70-year age classes, respectively (kappa 0.52). 

Year 

BA 

(SD) 

QMD 

(cm) (SD)

RD 

(SD) 

Biomass  

Mg ha-1 (SD) 

Con 

% 

Nh 

% 

Mix 

% 

1931-32 21.81 (8.02) 33.97 (6.31) 0.54 (0.18) 81.01 (46.86) 20.2 62.8 17.0 

1939-40 24.14 (8.09) 35.41 (6.30) 0.59 (0.17) 93.87 (53.38) 20.8 62.3 16.9 

1991-92 36.06 (8.89) 40.86 (5.27) 0.80 (0.15) 146.27 (51.03) 34.4 57.8 7.9 

2001-03 36.58 (9.43) 41.93 (5.25) 0.80 (0.17) 152.08 (54.04) 37.1 57.4 5.5 

2015-17 38.16 (10.08) 43.58 (5.52) 0.81 (0.17) 159.28 (57.60) 42.7 53.8 3.5 
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The mean elevation (m) of the 130 unmanipulated plots was 411.14 (Table 3.2), however the 

maximum elevation was 761.78 and a minimum of 225.95. The mean and standard deviation of 

aspect (˚) reflects a large number of plots on north-east facing slopes with a range of plots on 

varying degrees of steepness and roughness.  

Table 3.2: Descriptive summaries (mean and standard deviation) for 130 permanent 

unmanipulated plots of topographic metrics used as model covariates. 

 

 

 

 

 

 

The mean TWId and maximum TWId values showed a larger number of plots were between 6.45 

and 9.23 (Figure 3.2). Fewer plots were very dry (TWId < 6.0) or extremely saturated areas 

(TWId > 10.0). Although plan and profile curvature indicated most plots were located on 

relatively flat areas, the mean TPI revealed at a larger scale (100 m) slightly more plots were 

located on footslopes and toeslopes (negative TPI) rather than ridge and shoulder positions 

(positive TPI). 

 

Metric mean (SD) Reference 

DEM (m) 411.14 (160.96) Wang and Liu (2006) 

Aspect (˚) 123.85 (112.55) Zevenbergen and Thorne (1987) 

Aspect (sin) 0.15 (0.20) Stage (1976) 

Aspect (cos) 0.05 (0.16) Stage (1976) 

Slope (%) 0.28 (0.17) Travis et al. (1975) 

TRI 0.89 (0.40) Riley (1999) 

Plan -0.01 (0.07) Zevenbergen and Thorne (1987) 

Profile 0.00 (0.01) Zevenbergen and Thorne (1987) 

TPI (100 m) -0.39 (3.06) Guisan et al. (1999) 

EDb (m) 100.64 (104.89) Fraser et al. (2019) 

TWId 7.84 (1.39) Seibert and McGlynn (2007) 

TWId (max) 9.99 (2.50) Seibert and McGlynn (2007) 
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Figure 3.2: Elevation (m), aspect (˚), topographic wetness index (TWId), and Euclidean distance 

from bedrock outcrops (EDb), used as proxies for site quality in relation to 130 permanent 

unmanipulated plots at Bartlett Experimental Forest (BEF). 

 

3.3.2 Stand relative density 

The stand relative density model using a logistic function with the plot-level asymptote (𝛼) as the 

random coefficient had a lower AIC value (-1,335.5) than the models with either the b or c as the 

single parameter random effect (Table 3.3). The models did not exhibit temporal autocorrelation, 

however, the residuals showed some inconstant variance. The variance components associated 

with the plot-level random effects were slightly larger than those associated with the fixed 
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effects. The model using the logistic function with the lowest overall AIC value had two random 

effects, the asymptote and b, resulting in the lowest within-plot standard error (0.054) and RMSE 

(0.045). Neither model exhibited temporal autocorrelation nor inconstant variance. In addition, 

models could not converge with a power function of the variance and correlations between 

variance components did not approach 1.  

The stand relative density model using a Chapman-Richards function with the plot-level 

asymptote as the random coefficient also had a lower AIC value than other models with just one 

random effect, b or c (Table 3.3). The variance components associated with the plot-level 

random effects were also slightly larger than those associated with the fixed effects. The 

Chapman-Richards function resulted in the lowest AIC values with two parameter random 

effects, 𝛼 and b1. It was the only model convergence achieved using a Chapman-Richards 

function with two random coefficients, 𝛼 and b1. The inherent correlations between parameters 

in a Chapman-Richard model were evident as correlations between variance components (b1 and 

b2) consistently approached 1. The Chapman-Richards function resulted in a smaller AIC value 

(-1,734.6) than the model with the logistic function (Table 3.3). 

NLME models did not have a lower AIC value using a logistic function than Chapman-Richards 

even when stand age was recalculated +/- 100 years using 10-year increments for each model. 

The NLME models had significantly lower AIC values with a logistic growth function when 

stand origin was 10-30 years older, however still resulted in a higher AIC value than using a 

Chapmen-Richards function. Stand age would have to be an additional 60 years older than all the 

categories provided for a logistic growth function to have a lower AIC value than Chapman-

Richards. 



6
1
 

Table 3.3: Stand relative density (RD) and biomass (BM) model results for both logistic and Chapman-Richards functions with either 

one or two random effects. Standard error (SE) of fixed effects, standard deviation (SD) and residual of random effects, root mean 

square error (RMSE), and AIC values. 

Logistic 

Random effect 𝛼 (SE) b (SE) c (SE) random SD 2nd SD residual RMSE AIC 

RD  𝛼 0.80 (0.01) 43.51 (0.56) 13.82 (0.58) 0.141 - 0.083 0.076 -1335.5

RD  𝛼 0.81 (0.01) 47.35 (1.31) 10.41 (0.90) 11.263 - 0.120 0.113 -896.8

RD  𝛼 0.81 (0.01) 46.69 (0.96) 12.25 (1.11) 8.016 - 0.128 0.122 -845.5

RD  𝛼 & b 0.80 (0.01) 45.56 (0.96) 11.09 (0.44) 0.152 9.497 0.054 0.045 -1619.3

RD  𝛼 & c 0.80 (0.01) 47.22 (0.54) 10.94 (0.74) 0.148 6.435 0.068 0.058 -1394.4

BM  𝛼 152.95 (4.83) 49.77 (0.78) 17.66 (1.03) 53.475 - 23.100 21.190 7745.6 

BM b 267.46 (9.91) 107.85 (5.04) 43.77 (2.03) 35.949 - 29.113 26.782 8057.9 

BM  𝛼 & b 153.82 (4.48) 55.42 (1.19) 12.20 (0.67) 50.783 12.401 15.904 13.353 7491.0 

BM  𝛼 & c 151.45 (4.47) 51.46 (0.51) 14.95 (1.08) 50.145 8.031 20.125 17.743 7672.8 

Chapman-Richards 

Random effect 𝛼 b1 b2 random SD 2nd SD residual RMSE AIC 

RD  𝛼 0.82 (0.01) 0.04 (0.003) 3.41 (0.52) 0.145 - 0.079 0.073 -1386.8

RD b1 0.84 (0.01) 0.05 (0.006) 4.22 (1.23) 0.012 - 0.120 0.142 -938.2

RD  𝛼 & b1 0.83 (0.02) 0.05 (0.003) 4.06 (0.51) 0.168 0.011 0.049 0.042 -1734.6

BM  𝛼 165.09 (6.50) 0.03 (0.004) 2.26 (0.43) 57.645 - 21.895 20.074 7673.1 

BM  𝛼 & b1 168.85 (5.27) 0.03 (0.002) 3.32 (0.42) 49.444 0.013 14.320 13.908 7348.8 



6
2
 

Table 3.4: NLME results for both logistic and Chapman-Richards functions with either one or two random effects and one 

topographic metric as a covariate. Standard error (se), standard deviation (SD) of each random effect, residuals from the random 

effect, root mean square error (RMSE), and AIC values. 

Logistic 

Random effect(s) 𝛼 (SE) b (SE) c (SE) random SD 2nd SD residual RMSE AIC 

RD  𝛼 (aspect) 0.85 (0.01) 43.58 (0.58) 13.81 (0.58) 0.124 - 0.083 0.076 -1363.6

RD b (aspect) 0.81 (0.01) 45.94 (1.12) 12.31 (1.10) 7.914 - 0.129 0.122 -847.0

RD c (aspect) 0.81 (0.01) 46.78 (0.95) 10.67 (1.29) 8.353 - 0.127 0.121 -858.4

BM  𝛼 (TWId) 160.15 (5.87) 49.79 (0.78) 17.66 (1.03) 52.550 - 23.100 21.190 7743.2

BM  𝛼 (EDb) & b 143.65 (5.92) 55.81 (1.64) 12.21 (0.67) 49.550 12.391 15.903 13.357 7486.1

Chapman-Richards 

Random effect(s) 𝛼 b1 b2 random SD 2nd SD residual RSME AIC 

RD  𝛼 (aspect) 0.87 (0.02) 0.04 (0.003) 3.43 (0.52) 0.128 - 0.079 0.073 -1414.5

RD  𝛼 (aspect) & b1 0.91 (0.02) 0.04 (0.003) 3.82 (0.48) 0.136 0.010 0.049 0.042 -1789.0

BM  𝛼 (aspect) 172.98 (7.54) 0.03 (0.003) 2.26 (0.43) 53.440 - 21.895 20.078 7633.6 

BM  𝛼 (aspect) & b1 189.08 (7.04) 0.03 (0.002) 3.61 (0.41) 51.415 14.310 14.310 12.141 7349.6 
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The stand relative density model using a logistic function with aspect (sin) as a covariate and 

only one random effect did improve model fits for asymptote or b with AIC differences of 28.1 

and 12.9 respectively (Table 3.4). An approximate conditional F-test showed that aspect was 

significantly associated with the stand relative density asymptote (p < 0.0101). However, there 

was little improvement to the model and AIC value with just b as a random effect and any 

topographic covariate. Models with a logistic function, topographic covariate, and two random 

coefficients did not converge. The additional covariate using a Chapman-Richard function with 

either one or two random coefficients did, however, improved model fits by reducing AIC. The 

topographic metrics resulting in significant model improvements were aspect, distance from 

bedrock outcrops, and topographic wetness index (TWId). The model with the lowest AIC was 

using a Chapman-Richards function and used to predict stand relative density asymptote for each 

plot (Figure 3.3). 

Figure 3.3: A Chapman-Richards function fitted to stand relative density (RD) and biomass for 

all 130 plots using the parameters from the lowest AIC model.  
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3.3.3 Biomass 

Similar to stand relative density, both growth models of biomass with the plot-level asymptote as 

the random effect had lower AIC values than other models with one random effect, c or b (Table 

3.3). The biomass model using a logistic function with the lowest AIC value overall was the 

model convergence achieved with two random effects using 𝛼 and b. The biomass model using a 

Chapman-Richards function was overall a better fit, lowest AIC value, than the logistic growth 

function with just one random effect (7,673.09). Finally, the Chapman-Richards function 

resulted in the lowest AIC value with two parameter random effects, 𝛼 and b1 (7,348.75). 

Biomass models using a logistic function with TWId as a covariate slightly improved model fit 

with asymptote as the random coefficient (Table 3.4). Approximate conditional F-test also 

showed that TWId was significantly associated with the biomass asymptote (p < 0.0001). 

However, biomass models using a logistic function, either b or c as random effects, and a 

covariate did not converge. Biomass model using a logistic function with 𝛼 and b as random 

effects with EDb as a covariate had a small AIC difference of 4.9.  

The model using a Chapman-Richard function and an additional covariate with either one or two 

random effects had very similar AIC values (Table 3.4). The covariates that contributed overall 

to the most significant model improvements were aspect, distance from bedrock outcrops, and 

topographic wetness index (TWId). An approximate conditional F-test showed that EDb was 

significantly associated with the predicted biomass asymptote (p = 0.0081). The improvements 

were also notable with an additional covariate to both random effects model in the model with a 

Chapman-Richards function. The model using a Chapman-Richards function with the lowest 

AIC was used to predict the biomass asymptote for each plot (Figure 3.3). 
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3.4 DISCUSSION 

3.4.1 Stand relative density 

The asymptotic range of stand relative density is important to our understanding of stand 

dynamics. Few studies have collected the type of data which would provide evidence of long-

term stability in stand composition and structure. Model fitting results showed the inclusion of 

asymptote as a random effect greatly improved all models of stand relative density. The 

variability (0.141-0.152) associated with the plot-level random effects suggests broad differences 

in structure among the plots. Therefore, the nonlinear mixed models highlighted the need to 

account for between-plot variation of the stand relative density asymptote. Although, the 

measuring protocol at BEF does not allow for individual tree growth parameters and we cannot 

track individual tree mortality, we can determine at the whole-stand level if the asymptote 

approaches 1 and goes past it.  

This study also highlights the lack of BEF inventory measurements from stand origin to 

approximately 30 or 50 years. The results strongly suggested the best fitting model used a 

Chapman-Richards function and stand age would have to be an additional 60 years older in all 

1929-defined categories for a model using the logistic growth function to have a lower AIC 

value than a Chapman-Richards function. It is unlikely the 1929 observers misidentified a 90-

year old stand as 30 years or a 130-year old stand as 70 years. Additionally, the historical 

information regarding the BEF land use (Belcher, 1980) corroborates the 1929 stand age 

observations. We would gain a better understanding of growth between 30 and 50 years of stand 

age if BEF manipulated stand data are incorporated in the models. 
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Figure 3.4: The asymptote for stand relative density (RD) and biomass as predicted by the model 

with the lowest AIC value using a Chapman-Richards function for each plot.  

The influence of site quality on stand density has not been thoroughly tested with long-term 

longitudinal data. The results of a longitudinal analysis are consistent with those of static 

analyses of North American (Ducey et al., 2017) and European species in understanding 

environmental controls on stand relative density (Condés et al., 2017; Bravo-Oviedo et al., 

2018). The smaller standard deviation of stand relative density (0.124-0.128) with an addition of 

a topographic covariate strongly suggested site quality influences the asymptote. The model 

using a Chapman-Richards function with the lowest AIC value was used to predict stand relative 

density for each plot (Figure 3.4). Aspect was significantly correlated with the predicted stand 

relative density asymptote (p < 0.0101). The predicted stand relative density asymptote was 

highest on relatively flat slopes (0-10%) and south-west facing aspects. For stands on steep 

slopes, the additive slope variable in the transformation of aspect used in this study permits the 

model to account for increasing slopes on more favorable aspects. The predicted stand relative 

density asymptote was also highest on mean TWId and maximum TWId values ranging from 7 
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to 8, where the B-C soil interface is saturated approximately 30-50% throughout the year (Bailey 

et al., 2014; Gannon et al., 2014).  

These results are consistent with expectations since topography drives hydrologic flowpaths and 

forests respond to abiotic factors such as incoming solar radiation and soil moisture. The use of 

lidar-derived topographic metrics as proxies for site quality accounted for some plot-level 

variation and a better fitting model for each plot. The variance components of predicted stand 

relative density asymptote in this study using topographic covariate highlights the importance of 

incorporating landscape-soil-water dynamics when characterizing forest growth and stand 

dynamics. 

The large residual variability even with a topographic covariate suggests more variation could be 

accounted for using other abiotic and biotic factors. For example, the proportion of Nectria 

fungi-damaged (Nectria coccinea var. faginata) beech (Fagus grandifolia) basal area was 

reported much higher on unmanipulated stands at BEF than those managed with single-tree 

selection (Leak, 2006). Additionally, it warrants further investigation that a larger number of 

unmanipulated plots are representative of lower elevations and north-east facing slopes on 

relatively well-drained soil to better understand the full extent of site quality on the variability of 

the stand relative density asymptote. Additionally, a large percentage of bedrock-controlled areas 

are in the western portion of BEF and predominantly northeast to east facing slopes. Although, 

topography appears to be critical in determining the spatial and temporal variation of forest 

growth at BEF, including the spatial components of permanent plots should be explored in future 

models.  
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3.4.2 Biomass 

Our study also showed biomass models improved with the inclusion of asymptote as a random 

effect. The variability (53.48 - 57.645) associated with the plot-level random effects also 

suggests broad differences among the plots. Adding the random effect to the model using a 

Chapman-Richard function instead of a logistic function resulted in lower AIC value. The model 

with a topographic covariate that had a lower AIC values than a model without covariates, was 

the asymptote as the only random effect and slightly reduced plot-level variability. Aspect was 

also correlated with the predicted biomass asymptote (p < 0.0010). 

The results in this study were consistent with previous biomass observations. The mean predicted 

aboveground live biomass asymptote in this study from the model with the lowest AIC value was 

169 Mg ha-1 with a standard deviation of 49.44. The mean predicted aboveground live biomass 

asymptote in this study, from the model using a topographic covariate with a ΔAIC of 0.8, was 

189 Mg ha-1 with a standard deviation of 51. The 169 and 189 Mg ha-1 predicted asymptotes 

imply that about 2.5% of sites, based on standard deviation, should show an asymptote of 267 

and 290 Mg ha-1 respectively. Siccama et al. (2007) reported a plateau in mature northern 

hardwood stands of 209 Mg ha-1 on mostly south-facing slopes when stand age was estimately 

as 70 years at Hubbard Brook Experimental Forest, NH (Figure 3.5). The sites representative of 

BEF upper biomass asymptote limits, particularly those predicted with aspect as a covariate, are 

relatively consistent to Hubbard Brook EF observations of late successional forests on south-

facing slopes. In contrast, Keeton et al. (2011) reported a prolonged logarithmic trajectory in 

mature and old growth northern hardwood-conifer forests across the northeastern US and the late 

successional forests observations were within the range of BEF. The Keeton et al. (2001) 

observations were representative of a much larger stand age range because it was a 
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chronosequence study, rather than a longitudinal study. Therefore, the differences in the two 

predicted asymptote trajectories were most notable between 300 and 400 years. The reported 

logarithmic function, however, did not represent stands younger than 100 years in comparison to 

BEF observations.  

Figure 3.5: Biomass by stand age (years) as observed by Siccama et al. (2007) depicted in blue, 

Keeton et al. (2011) observations depicted in red, and BEF unmanipulated plot depicted in 

black. The red line represents the logarithmic function reported by Keeton et al. (2011) and the 

black line represents a Chapman-Richards function from this study. 

 

More recent studies have also reported similar biomass values, 194 Mg ha-1, in late successional 

forests in northern Maine (Gunn et al., 2014) and ranges from 188 to 240 Mg ha-1 in old growth 

northern hardwood and softwood stands from different locations across central New Hampshire 

(Hoover et al., 2012). The variability in predicted asymptotes from the unmanipulated plots at 

BEF appears to represent the wide range of stand-level and regional biomass. Similar to stand 

relative density, additional environmental covariates may account for more variation and a better 

understanding of biomass trajectories. It is crucial for forest management practices to better 
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understand biomass dynamics within late successional forests as it may cover a large portion of 

the northeastern, US (Gunn et al., 2014). Given the complexity of secondary forest succession, it 

may take an additional 50 years before climax species mix is attained (Leak and Smith, 1996) 

and an additional 100 years to disentangle biomass accumulation trajectories of current late 

successional stands. 

3.5 CONCLUSIONS 

Forest growth models are frequently used to predict and disentangle the effects of normal 

successional patterns, which are often changing simultaneously. We found significant 

relationship between proxies of site quality and the predicted asymptote for stand relative density 

and possibly biomass. This study has practical implications for understanding the asymptotic 

range of stand relative density and biomass within individual plots and how it varies across all 

plots at BEF. Aspect, proximity to bedrock outcrops, and topographic wetness were found to be 

significant predictors in reducing within-plot variation of stand relative density. Landform, 

hydrologic regimes, soil characteristics and expected climax species must be considered in the 

management guide. These results highlight the complexity of species interactions and 

interactions among these factors as to which resources become more efficiently used and stand 

age requires further research.  
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CHAPTER 4 

DECADAL CHANGE IN SOIL CHEMISTRY OF NORTHERN HARDWOOD FORESTS ON 

THE WHITE MOUNTAIN NATIONAL FOREST, NEW HAMPSHIRE, US 

Chapter 4 was published as a research article in  

Soil Science Society of America Journal on 012/19/2018. 

ABSTRACT 

Soils are subject to a variety of stressors including human land use, air pollution and climate 

change. A challenge for detecting temporal change is disentangling heterogeneity at multiple 

spatial scales. Forty permanent plots were sampled across the White Mountain National Forest 

(WMNF), USA in 2001-02 and resampled in 2014. Paired t-tests detected significant increases in 

carbon and base cations concentrations and a decrease in Al in the Oa horizon while base cations 

decreased and Al increased in some mineral horizons. A subset of six plots were intensively 

resampled in 2015. Pooled variances were calculated using all the six intensively-sampled plots 

from 2014-15. Within-site variability was comparable to overall variability across the WMNF. 

When study sites were stratified into hydrologic groups, we found a strong signal in the Oa 

horizon of increasing carbon and base cation concentrations from 2001-02 to 2014, suggesting 

that soils influenced by shallow groundwater contributions from upslope may be more 

responsive to acidification recovery than soils influenced only by vertical percolation. The initial 

study design did not consider the role of hydrologic pathways in susceptibility of soils to 
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temporal change and did not include enough plots in each hydrologic group to maximize the 

power of this stratification approach. However, these results illustrate the potential for 

hydrologic stratification to improve change detection and interpretation in forest soil monitoring 

programs. The combined approach to hydrologic stratification and estimating variance 

components simultaneously at the landscape and within-plot scales is crucial for calculating 

sample size needed to detect temporal change. 

4.1 INTRODUCTION 

Soils are the foundation of healthy, productive forests and their associated terrestrial and aquatic 

ecosystems. Long-term productivity of forests depends on amounts of available nutrients and 

quantifying change over time is an important component to assessing the overall health of forest 

ecosystems (Federer et al., 1989). Soil monitoring was developed as a means of evaluating soil 

condition, assessing susceptibility to environmental stressors, and informing land management 

practices (Mangold, 2000; Neary et al., 2010; Lawrence et al., 2013). Chemical properties of 

soils are monitored as indicators of essential forest functions to evaluate overall soil productivity 

(Cronan and Grigal, 1995; Schoenholtz et al., 2000; Richter and Markewitz, 2001). However, 

temporal change detection is challenging since soil chemistry is highly variable spatially and 

typically requires a large number of samples to achieve statistical significance (Johnson et al., 

1990; Conant et al., 2003). 

Soil monitoring efforts in the Northeastern US were primarily initiated due to suspected impacts 

of acid deposition (Driscoll et al., 2001; Likens, 2013). Studies monitoring soil chemistry change 

spanning between ~1967-2000, a period straddling peak atmospheric acid deposition, typically 

found significant decreases in Ca and significant increases in Al in the organic horizon and upper 
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mineral horizons (Bailey et al., 2005; Warby et al., 2009; Bedison and Johnson, 2010). However, 

during approximately the same time frame, Yanai et al. (1999) reported no significant change in 

the forest floor due to high spatial variance of Ca and Mg and a loss of 1.4% yr−1 would have 

been detectable. A more recent regional compilation of resampling efforts at 27 sites across the 

Northeast, comparing samples collected in the 1980s to 1990s with samples collected in the late 

2000s, a period of strongly declining atmospheric acid deposition, reported signs of recovery, 

with modest decreases of exchangeable Al in the O and upper B horizon (Lawrence et al., 2015). 

However base saturation continued to decrease in the B horizon of some sites suggesting 

ongoing acidification. Overall soil resampling studies have varied drastically in design and few 

studies have investigated sampling size and study design needed to detect change across a 

landscape scale. Nor have there been many attempts to stratify sites by properties that could 

reduce spatial soil variation. 

A primary challenge for soil monitoring is to disentangle heterogeneity at multiple spatial scales 

so variation occurring over space is not confounded with change across time. It is crucial for a 

monitoring protocol to account for the high variance of soil chemistry at multiple spatial scales 

when calculating sample size (Muukkonen et al., 2009). Often, the number of samples are 

determined from a site-specific perspective, which is then used as a reference for future 

monitoring. Previous studies have suggested sample design considerations for site-specific 

change detection of forest floor horizons as well as watershed scale forest floor and mineral 

horizon sample size (Johnson et al., 1990; Mäkipää et al., 2008). There are no long-term studies 

at a landscape-scale that monitored soil by leveraging a stratified sampling design based on 

hillslope position or other local factors driving soil formation processes to reduce the influence 

of horizontal and vertical variability of soil chemistry for the purposes of change detection.   
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Identifying site characteristics that may influence susceptibility of soil chemistry change due to 

acid rain or other perturbations may increase the sensitivity of monitoring programs. In the 

Northeastern US where Spodosols are a dominant soil order, podzolization contributes to the 

high-variance of soil chemistry, with eluvial and illuvial processes having greatly different 

expression at both the profile and hillslope scale (Bailey et al., 2014). At the profile scale, 

podzolization promotes translocation of soluble organic compounds, complexed with aluminum 

and iron, from shallow to deeper portions of soil profiles (De Coninck, 1980; Schaetzl and 

Harris, 2011). In addition, the dominant hydrologic pathway through a soil profile can either 

vertically drive leaching processes via unsaturated flow at the pedon scale, or laterally influence 

the leaching process, particularly in areas where shallow groundwater is flowing within the 

solum, connecting pedons at the hillslope scale (Lundström et al., 2000; Sommer et al., 2000; 

Gannon et al., 2014). Sites that are developed by vertical hydrologic flow may be more 

susceptible to leaching processes as buffering from atmospheric deposition and mineral 

weathering is limited to inputs at the pedon scale. On the other hand, sites that are developed 

laterally under the influence of shallow groundwater, have pedons influenced by solute inputs 

from upslope, with potential buffering from chemical cycling processes from a larger area than 

the pedon itself (Clarholm and Skyllberg, 2013). Thus these sites are potentially less susceptible 

to depletion processes and more responsive to recovery processes. Incorporating site 

characteristics to estimate the variance components simultaneously at the landscape scale, and at 

the profile-scale is crucial for calculating sample size and quantifying temporal rates of change 

when designing monitoring systems. 

National forests, covering approximately 190 million acres in the US, are mandated to protect the 

long term soil productivity by the National Forest Management Act (NFMA, 1976). The White 
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Mountain National Forest (WMNF) in New Hampshire and Maine established a decadal 

monitoring program to measure forest soil productivity (U.S. Forest Service, 2005) to fulfill the 

NFMA mandate. However, it is not known how sensitive the sampling design is to detect 

change. The first objective of this study was to investigate overall change in soil chemistry of 

mid-elevation, northern hardwood Spodosols across the White Mountain National Forest 

(WMNF) by resampling plots that were originally sampled in 2001-02. This included further 

investigating temporal change detection by simultaneously calculating the variance components 

within-plot using a subset of plots with more intensive sampling. The second objective was to 

stratify sampling sites by dominant hydrologic pathways to determine if groundwater influenced 

soils were more responsive to acidification recovery processes compared to soils developed 

vertically via unsaturated flow. 

4.2 METHODS 

4.2.1 Study site 

The White Mountain National Forest (WMNF) covers approximately 800,000 acres located in 

north-central New Hampshire and adjacent western Maine. Dominant vegetation types include 

northern hardwood, spruce-fir, and mixed-species forests. Annual precipitation averages 90-180 

cm and total annual snowfall ranges from 250-400 cm (McNab and Avers, 1994). The WMNF is 

a glacially scoured, irregular highland characterized by clusters of low, rounded and scattered 

mountains where the soils are typically less than 3 m deep, strongly acid, and consist of 

Haplorthods, Haplaquepts, and Dystrochrepts (McNab and Avers, 1994). Figure 4.1 depicts the 

forty permanent plot locations across the White Mountain National Forest (WMNF) established 

in 2001-02 to monitor soil productivity (U.S. Forest Service, 2005).  
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Figure 4.1: White Mountain National Forest (WMNF) location within the northeastern US and 

the forty permanent plot locations established in 2001-02 across the WMNF. Each general study 

area is indicated by a two letter abbreviation; numbers indicate the number of plots in each 

general area, which ranged from one to four. In 2014, plots were sampled at 2 m intervals along 

topographic contour (depicted with a triangle in the magnified plot inset). A subset of 6 plots, 

depicted with diamonds on the WMNF map, was randomly selected for additional intensive 

sampling in 2015. The additional pits were sampled 2 m on contour on each side of the 2014 pit 

and 2 m upslope and downslope (depicted with pentagons in the plot inset) for a total of four pits 

sampled in the intensive plots in 2015.  

Plot locations were selected to be representative of mid-elevation mature northern hardwoods 

(between 60 and 120 years of age), Spodosols developed in deep glacial till, and varying 

hillslope position (Supplemental Table S4.1). Topographic maps, aerial imagery, and Ecological 

Land Types (U.S. Forest Service, 2005) were used to initially to identify locations and ensure 
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plots were spatially distributed across the WMNF. The focus was on mid-elevation, mature 

northern hardwoods since this is the portion of the WMNF most actively managed for timber 

products where maintenance of site productivity directly informs the achievement of goals set 

out in the WMNF Forest Management Plan.  

4.2.2 Sample collection and analysis 

Once the plots were established, aspect was measured with a handheld compass in degrees 

relative to true north. Slope was measured in percent with a clinometer in both up and downslope 

directions 5 m from plot center. Soil pits were hand dug, approximately 0.75 x 0.5 m wide and 

1.2 m deep to sample the entire solum and the upper portion of the C horizon. In 2001-02, soil 

pits were hand dug at plot center; in 2014 plots were relocated and 37 plots were resampled. Of 

the 40 original plots, two plots could not be relocated in 2014 due to incorrect coordinates and 

one plot was resampled but classified as an Inceptisol rather than a Spodosol which was the 

focus of the study; these plots were excluded from the analysis presented here. In 2014 new pits 

were installed and sampled along the topographic contour from the plot center of the 2001-02 pit 

(Figure 4.1). A subset of 6 plots were selected for additional intensive sampling by stratifying all 

the plots based on exchangeable Al concentration. In each of the Oa, spodic (Bhs, Bh, Bs), and 

transitional (BC, CB) horizons, exchangeable Al concentration was classified as low, medium or 

high based on the entire range measured in that horizon. Two plots from each of the three 

categories were randomly selected for further sampling in 2015; additional pits were 2 m on 

topographic contour in both directions from the plot center of the 2001-02 pit and from the 2014 

pit, as well as 2 m upslope and downslope of the 2014 soil pit (Figure 4.1 magnified plot inset).  
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Genetic horizons were described and sampled by Munsell color, texture, structure, moist 

consistence, presence of redoximorphic features, rooting density, and coarse fragment content 

(Schoeneberger, 2012). Soil samples, consisting of approximately 2-3 liters of each horizon, 

were collected by the full height of the horizon and width of the pit. Volumetric coarse fragment 

(2 mm–75 mm) content was estimated visually on the pit face. Rooting density was described 

semi-quantitatively as few (<1), common (1 to 5) or many (≥5) fine and very fine roots (≤2 mm 

in diameter) per square centimeter. B horizon subdivisions were designated based on Munsell 

color based on criteria shown to distinguish spodic horizons influenced by shallow groundwater 

at the nearby Hubbard Brook Experimental Forest (Bailey et al., 2014). Bhs horizons had a 

Munsell hue of 7.5YR or redder and value and chroma ≤3. Bs horizons were a 7.5YR or redder 

hue and a value or chroma >3 and Bh horizons had a hue of 10YR and a value and chroma both 

<3 (Bourgault et al., 2015). 

All samples were air-dried, sieved to remove particles >2 mm, homogenized and split to generate 

a subsample for chemical analysis. Samples from 2001-02, 2014, and 2015 were measured for 

pH in 0.01 mol/L CaCl2 (Robarge and Fernandez, 1987). All archived 2001-02 samples, and new 

2014-15 samples were analyzed in 2016 for carbon and nitrogen on a CN elemental analyzer 

(CE-Elantech Thermo FlashEA 1112 Series NC Soil Analyzer) using pulverized subsamples. 

Soil standards obtained from the North American Proficiency Testing program were used to 

standardize the instrument. Exchangeable cations were also measured in 2016 on all samples 

from both time periods in an extract obtained from a mechanical vacuum extractor using 1 M 

NH4OAc buffered at pH 4.8. Cation concentrations were measured with an Agilent inductively 

coupled plasma spectrometer (Agilent Technologies 700 Series ICP-OES) at the US Forest 

Service laboratory in Durham, NH. Reference samples of Oa and Bs horizons from Vermont 
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were included in all analytical streams and yielded values of C, N, pH, and exchangeable cations 

comparable to the median values reported in an interlaboratory study (Ross et al., 2015). All 

profile descriptions and chemistry data will be published on the US Forest Natural Resource 

Manager (U.S. Forest Service, NRM). 

The 2001-02 exchangeable cation determinations (Al, Ca, Mg, Mn, Na, and K) were originally 

measured in 1 M NH4Cl extracts obtained by mechanical vacuum extraction (Blume, 1990). 30 

archived samples from 2001-02 were randomly selected and re-analyzed in 2017 using 1 M 

NH4Cl to determine if changes had occurred due to archiving or method differences. The re-

analysis was completed by the same laboratory that made the original measurements. Regression 

showed new analyses of the 2001-02 archived samples were highly correlated with original 

analyses. The Al, Ca, Mg, Mn, and K concentrations were less than 5% lower in recent 

measurements, though there was a high correlation (r2 = 0.86 for Al; 0.95 for Ca; 0.87 for Mg; 

0.97 for Mn, 0.94 for K). Na, however, had an intercept of 7.18 and a slope of 1.05 (r2 = 0.10). 

The high correlation of Al, Ca, Mg, Mn, and K suggests change was not detectable and change is 

smaller than the detection limit in archived samples. The consistently higher concentrations of 

Na may have resulted from the differences in the extracts and analytical noise on the ICP.  

4.2.3 Statistical analyses 

Differences among observers may have led to sampling more than one subhorizon in the first 

sampling year compared to one horizon in another sampling year. Therefore, genetic horizons 

were combined into general categories for comparison of results between sample years. Oa, 

spodic, transition, and C horizon categories were created to include all samples separated into 

subhorizons (e.g. Oa1 and Oa2). A general spodic horizon category combined all illuvial B 
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horizons, including Bhs, Bh, and Bs and the transition horizon category included BC and CB 

horizons. Temporal change in E horizons was not explored because E horizons were typically 

thin and discontinuous, and their low organic matter content makes them uniformly low in C and 

N content and extractable cations.  

Analytical results for individual genetic horizons were aggregated into a general horizon 

category by using a weighted average to determine overall exchangeable cations, pH, C and N 

concentration. The weighted average was calculated by multiplying the thickness, bulk density, 

and one minus the proportional coarse fragments to determine a unit area mass for every 

individual horizon within a general horizon. The individual horizon mass was then divided by 

the sum of all horizon masses in the general horizon, multiplied by a soil chemistry variable 

measured, and the sum of products used for the general horizon value. Bulk density was 

estimated by the relationship with organic matter reported by (Federer et al., 1993) and assuming 

organic matter is 50% carbon. Across all plots, average top and bottom depths (cm) and color 

were calculated by general horizon category for both sampling years. Munsell colors were 

averaged by converting colors to RGB color coordinates, averaged by general horizon category 

for the purposes of comparison, and then converted back to Munsell color to report averages by 

general horizon category using the ‘aqp’ package in R (Beaudette et al., 2013).  

Pairwise t-tests of mean top and bottom depths, color, pH, C, N, and log-transformed cation 

concentrations were used to compare years on a plot by plot basis for the first objective of this 

study when the horizon was present during both sample times. For example, Oa horizons were 

present in 25 plots during both sampling years, whereas spodic horizons were present in both 
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sampling years in all 37 plots. In addition, a Wilcoxon signed-rank test was used to compare 

years on a plot by plot basis on non-transformed cation concentrations.  

Pooled variance was calculated to determine within-plot spatial variability (eq 1). The pooled 

approach for calculating variance accounts for the lack of variance present from the first 

sampling time since variance cannot be calculated using one sample; at the second sampling 

time, the number of samples (5) is very small for obtaining a reliable estimate of the variance.  A 

pooled variance loses site-specific information about the variability, but provides a more reliable 

estimate of the variability that would be encountered under typical conditions. The pooled 

variance is calculated as: 

𝑠2 =  
1

(∑ 𝑛𝑗)−𝑛𝑖
∑(𝑥𝑖𝑗 − 𝑥�̅�)2 [eq 4.1] 

where 𝑥𝑖𝑗 is the ith pit of the jth site and 𝑥�̅� is the sample mean of the site. The total number of

pits sampled from both samplings is 𝑛𝑗 and 𝑛𝑖 represents the total number of subsampled sites.

The magnitude of change that could be accounted for based on sampling variability alone is then 

determined as the standard error of the difference between two sets of measurements, one based 

on a single pit and one based on multiple pits, with the sampling variance for a single pit 

estimated as the pooled variance, i.e.: 

𝑠𝛥 = √𝑠2 + 
𝑠2

𝑛𝑡2
[eq 4.2] 

where s  is the standard error of the estimated change, 𝑛𝑡2 is the number of pits sampled from

the second sampling time at the jth site. To evaluate the influence of variability on the sample 

size needed to detect plot-specific change, we used a power analysis approach. Required sample 
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sizes were calculated based on the pooled variances of the subset of 6 intensively sampled plots, 

with a power (i.e., probability of a statistically-significant change detection) of 0.8 and 

significance of 0.05 to detect plot-specific change and the observed magnitude of change found 

across all 37 plots. 

For the second objective, plots were partitioned into three groups, vertical, lateral, or bimodal, 

representing the dominant hydrologic pathway influencing soil formation. Vertical hydrologic 

development was defined as profiles with morphology indicating a lack of watertable incursion 

in the solum (Gannon et al., 2014). Lateral sites had morphology indicating regular water 

saturation throughout the solum (Sommer, 2006) while bimodal sites were intermediate with 

some evidence of watertable influence primarily in the lower portion of the solum (Bailey et al., 

2014). Figure 4.2 depicts representative soil profiles (plots GC2, GR3, and GC3) of vertical, 

lateral, and bimodal hydrologic regimes that influence soil horizon sequence.  

Topography, horizon sequences, and soil profile characteristics were all used to assign each plot 

to a hydrologic group (Bailey et al., 2014). A multivariate analysis of variance (MANOVA) was 

used to evaluate temporal change between 2014 and 2001-02 in C, N, pH, and exchangeable 

cation concentrations between hydrologic groups. To assess the influence of this stratification on 

change detection, an ANOVA power analysis was also completed to determine how many sites 

of each hydrologic group were necessary for detecting a significant difference (α = 0.05) with a 

power of 0.8. All analyses were completed using base packages in R (R Development Core 

Team). 
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Figure 4.2: Representative soil profiles (GC2, GR3, and GC3) from 2001-02 depicting the 

common horizon sequence associated with the dominant hydrologic pathway influencing a soil 

developed vertically, laterally, or bimodally. Plots were partitioned into three hydrologic groups 

based on topography, horizon sequences, and soil profile characteristics (Bailey et al., 2014). 

Laterally influenced profiles generally lacked an E horizon and a Bh horizon was the dominant 

illuvial horizon type. Bimodal profiles may have a thin E horizon and had a Bh horizon 

underneath a lighter colored Bhs and or Bs horizon. Brackets parallel to each soil profile 

indicate the subhorizons aggregated within spodic and transition categories for comparison. 

4.3 RESULTS 

4.3.1 Overall decadal soil change 
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There were no significant differences in sampling depths or color by general horizon between 

sampling years except for a slightly greater bottom depth of sampling of the C horizon in the 

original 2001-02 sampling years (Table 4.1).  

Table 4.1: Average top and bottom depths and color by sample year listed for each general 

horizon category (Oa, spodic, transition, and C). The number of plots with each general horizon 

category present in both sampling years indicated by n. The bottom depth of the C horizon is the 

depth observed, not necessarily the bottom of the horizon. Average colors were calculated by 

converting Munsell colors to RGB color coordinates, calculating the mean, and converting back 

to Munsell color. 

Mean carbon (C) and nitrogen (N) concentration (g kg -1), pH, and exchangeable cation 

concentration (cmolc kg-1) for each general horizon category (Oa, spodic, transition, and C) by 

sampling year are listed in Table 4.2.  Significant differences between sample years are in 

indicated in bold. The results from the paired t-tests found significant increases in C and N of the 

Oa horizons with approximately 30% higher C concentrations in 2014 than in 2001-02. A 

smaller but significant decrease in C concentration also occurred in the transition horizons.  

General 

horizon n Year 

Top 

(cm) 

Bottom 

(cm) 

Average 

Color 

Oa 25 2001-02 3.9 9.9 10YR 2/1 

2014 3.6 9.2 7.5YR 2/1 

Spodic 37 2001-02 13.4 48.2 7.5YR 3/3 

2014 14.9 54.6 7.5YR 3/3 

Transition 32 2001-02 47.8 84.0 10YR 4/5 

2014 51.5 87.1 10YR 4/4 

C 37 2001-02 80.2 115.7 2.5Y 5/3 

2014 82.7 102.1 2.5Y 4/3 
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Table 4.2: Average carbon (C) and nitrogen (N) concentration (g kg -1), pH, and exchangeable cation concentration (cmolc kg-1) for 

each general horizon category (Oa, spodic, transition, and C) by sampling year. Paired t-tests were performed to determine 

differences between sample years. Significance testing was conducted on log-transformed cation concentrations when residuals did 

not meet normality. Significant differences between sample years are indicated in bold. 

General 

horizon n Year C N pH Al Ca K Mg  Mn  Na 

——— g kg-1 —— ————————— cmolc kg-1 ——————— 

Oa 25 2001-02 33.4 1.6 3.12 5.00 9.69 0.75 1.77 0.47 0.09 

2014 42.6*** 2.0*** 3.21 3.47* 13.61* 1.07* 2.27* 0.46 0.08 

Spodic 37 2001-02 5.4 270 3.67 13.21 0.45 0.08 0.09 0.03 0.03 

2014 5.3 290 3.77 17.89*** 0.40** 0.07 0.08** 0.02 0.02*** 

Transition 32 2001-02 1.2 70 4.14 6.92 0.20 0.04 0.03 0.01 0.02 

2014 1.0** 60 4.22 8.79** 0.12** 0.03 0.02 0.00 0.02 

C 37 2001-02 0.6 30 4.30 3.22 0.14 0.03 0.03 0.01 0.02 

2014 0.6 30 4.34 6.67*** 0.21 0.03 0.07 0.01 0.02 

*Significant at the 0.05 probability level.

**Significant at the 0.01 probability level.

***Significant at the 0.001 probability level.
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There were no significant differences in pH at any depth, although the 37 soil profiles were 

consistent with chemical indicators of Spodosols by exhibiting increasing pH by depth (Table 4.2 

and Supplemental Figure S4.1). 

Paired t-tests on log-transformed cation concentrations found significant decreases in Al in Oa 

horizons and mean exchangeable Al was 1.5 times higher in 2001-02 than in 2014 within Oa 

horizons. Conversely, significant increases of Ca, K, and Mg occurred in the Oa horizon. 

Significant increases in Al occurred in spodic horizons and mean exchangeable Al was 

approximately 35% lower in 2001-02 than in 2014 within spodic horizons. Significant increases 

in Al below the Oa horizons were not coupled with any detectable change in pH (Supplemental 

Figure S4.1). Significant decreases in Ca, Mg, and Na concentrations were also detected in the 

spodic horizons. A significant increase of 27% in Al concentration was found in the transition 

horizons. Mean exchangeable Ca was approximately 1.6 times higher in 2001-02 then 2014 in 

the transition horizons. Finally, a significant increase in Al concentrations occurred in the C 

horizons. The non-parametric analyses yielded similar results and no difference in interpretation 

as the paired t-tests. 

4.3.2 Within-site pooled variance 

 We found that within-site variability was comparable to overall regional variability across the 

WMNF. Table 4.3 provides the standard deviation of concentrations of carbon (C), and 

exchangeable cations (Al, Ca, K, Mg, Mn, and Na) from 1 soil pit at each of the thirty-seven 

plots sampled in 2014 (“All 2014”) as well as standard deviation calculated from the pooled 

variances from 5 soils pits at each of the 6 intensively sampled plots sampled in 2014-15 

(“Subset 2014-15”).  
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Table 4. 3: Standard deviation of the concentrations of carbon (C), and exchangeable cations (Ca, K, Mg, Mn, and Na) from 1 soil pit 

at each of the thirty-seven plots sampled in 2014 (“All 2014”). Standard deviation calculated from the pooled variances of C, Ca, K, 

Mg, Mn, and Na from 5 soils pits at each of the 6 intensively sampled plots sampled in 2014-15 (“Subset 2014- 

15”).

General horizon Top† Bottom† C Al Ca K Mg Mn Na 

g kg-1 ————— cmolc kg-1 ————— 

Oa (All 2014) 3.6 9.2 0.06 1.54 0.90 0.59 0.59 1.26 0.30 

Oa (Subset 2014-15) 4.1 9.8 0.06 1.48 0.99 0.48 0.65 1.12 0.42 

Spodic (All 2014) 14.9 54.6 0.03 0.39 1.20 0.67 0.93 0.97 0.45 

Spodic (Subset 2014-15) 15.8 53.1 0.03 0.45 1.05 0.76 0.97 1.17 0.53 

Transition (All 2014) 51.5 87.1 0.01 0.40 1.14 0.77 1.14 0.75 0.60 

Transition (Subset 2014-15) 50.6 81.2 0.01 0.41 1.05 1.13 1.31 1.19 0.64 

† Average top and bottom depths (cm). 
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Overall, exchangeable Al concentrations exhibited the highest variance both at the within-plot 

scale and landscape-scale across general horizons compared to the other analytes. Figure 4.3 

depicts the exchangeable Al concentrations in each general horizon category from all 2001-02 

and 2014 pits as well as from the 6 subset intensively sampled plots with one soil pit from 2001-

02 compared to 5 soil pits sampled in 2014-15.  

Figure 4.3: Extractable Al concentrations (cmolc kg-1) in each general horizon category from all 

2001-02 (“All 2001-02) and 2014 (“All 2014”) plots. In addition, Al from the 6 subset plots with 

one soil pit from 2001-02 (“Subset 2001-02”) at each location and 5 soil pits sampled in 2014-

15 at each location (“Subset 2014-15”). The Subset 2001-02 values represents 1 soil pit at each 

of the 6 sites and Subset 2014-15 values represent 5 total soil pits from each of the 6 sites. The 

box represents the 25th and 75th quantiles, the whiskers represent the 5th and 95th quantiles, the 

median is marked by a straight line, and outliers are indicated by a solid dot. 
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Higher variance in Al was found across all 2014 plots in the Oa horizon then in the pooled 

variance from the 6 subset of intensively sampled plots. Conversely, higher variance in Ca was 

found in the 6 subset plots intensively sampled in 2014-15 then all 2014 plots in the Oa horizon. 

Lower variance in Al was found across all 2014 plots in the spodic and transition horizons then 

in the pooled variance from the 6 subset plots intensively sampled in 2014-15. However, higher 

variance in Ca was found across all 2014 plots in the spodic and transition horizons then in the 

pooled variance from the 6 subset plots intensively sampled in 2014-15. 

The number of plots needed to detect significant change (α = 0.05) and equal magnitude of 

observed change for overall significant differences was calculated using a power analysis. For 

example, 7 within-plot soil pits were required from both sampling periods to detect the same 

magnitude of significant change in C of the Oa horizons as was found across all 37 plots. The 

power analysis also showed 20 within-plot soil pits were required from both sampling years to 

detect both significant change and the observed magnitude of overall change found from all plots 

of Al in the spodic horizons. The results from this pooled variance approach showed that at least 

27 plot-specific samples from both sampling years across all horizons are necessary to detect 

significant change of the same magnitude as the overall change in Al observed at the WMNF 

scale. Similarly, at least 28 soil pits at one plot are needed from both sampling years across all 

horizons to detect significant temporal change in Ca. However, for analytes with higher 

variances, including K, Mg, and Mn, more pits at both a site-specific and landscape scale would 

be required in subsequent sampling years to detect change. 

4.3.3 Stratification by hydrologic groups 
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The 2001-02 and 2014 element concentration differences between sampling years for the 3 

dominant hydrologic groups influencing soil development, including vertical, lateral, or bimodal 

were calculated using MANOVA. There were 22 plots designated as developed vertically, 9 

developed laterally, and 6 developed bimodally. The MANOVA results within the Oa horizon 

were significantly different (p < 0.002) between groups with an F-value of 3.290 (Pillai-Bartlett 

test statistic). Only 25 sites had an Oa present from both sampling years in 2001-02 and 2014; 

within those sites that had an Oa present, 18 of those sites were developed vertically, 4 were 

developed laterally, and 3 sites were identified as bimodal. Significant differences between 

groups in the Oa horizon were found in C (g kg-1), Ca (cmolc kg-1), and Na with F-values of 4.15, 

2.70, and 15.6 respectively (Figure 4.4). There were no significant differences in the Oa horizon 

of N, pH, Al, K, Mg, and Mn (F-value < 2.00). 

Figure 4.4: Significant differences between 2001-02 and 2014 for the Oa horizon in C (g kg-1) 

and Ca, and Na concentrations (cmolc kg-1) by hydrologic group. Groups represent the dominant 

hydrologic flowpaths influencing soil development, including vertical, lateral, or bimodal. 
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Oa horizons at sites that developed laterally showed significant increases in exchangeable Ca by 

3.5 times from 2001-02 to 2014. Oa horizons at sites that developed vertically or bimodally 

showed a mean increase of approximately 1.3 times higher in 2014 than in 2001-02 or stayed 

approximately the same respectively. There were no significant differences of element 

concentrations in the other horizons (spodic, transition, and C) between hydrologic groups. 

Insignificant changes included increasing in Al and decreases in Ca in the spodic horizons at 

sites developed vertically, whereas Al in the spodic horizons decreased at sites developed 

laterally and Ca increased.  

ANOVA power analysis was completed to determine how many sites per hydrologic group were 

necessary for significant (α = 0.05) difference detection. For example, 14 was the smallest 

sample size per hydrologic group at the landscape-scale needed to detect significant change of C, 

Al, Ca, and Na in the Oa horizon. However, 20 was the smallest sample size per hydrologic 

group at the landscape-scale needed to detect a significant change of C, Al, Ca, and Na in the 

spodic and transition horizons. Sample sizes per dominant hydrologic group in the Oa horizon 

ranged from the 14-36, the fewest for Al, Ca, and Mg, and the most pH, Mn, and Na. Selecting 

the element with the largest sample size will enable detection of differences for the other 

elements. 

4.4 DISCUSSION 

4.4.1 Study design options for maximizing temporal change detection 

Differences between observers resampling a site as well as spatial variation in soils are common 

obstacles in detecting temporal change in soil chemistry (Lawrence et al., 2013). For example, 

sampling the Oa horizon deeper into the mineral horizon one sampling year than another 
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sampling period can result in lower concentrations of C, as observed in 2001-02 from this study. 

In addition, differences in the presence and thickness of genetic horizons, caused by small scale 

spatial variation, can inhibit detection of soil change over time. Therefore, ensuring sampling 

consistency, particularly depth, as well as methods for comparing differing horizon sequences 

are essential for comparing measurements between time periods. Previous soil resampling 

studies have implemented various protocols to ensure consistency. For example, Bailey et al. 

(2005) used a combined Oa/A and the horizon sample straddling specific depths, e.g. the 50 cm 

and 100 cm depths for comparing two sampling periods. Bedison and Johnson (2010) pooled 

previous sampling measures into appropriate depth intervals based on the most recent sampling 

intervals. Our study also leveraged a pooled horizon approach by aggregating subhorizons into a 

general genetic horizon category. Any differences in horizon depths or colors that might have 

occurred between sampling years were not great enough to be detected with the study methods. 

Spatial variability in these measures can be much greater than expected from temporal changes 

over a decade, results suggested that sampling was done consistently to minimize those effects 

and that spatial variability was well addressed with these methods.  

Another challenge in this study arose from the paired re-sampling design, which could not 

account for within-plot variability from one soil pit per site over two sampling time periods. It is 

often anticipated that magnitude of soil variability increases with the size of the study area. 

However, we found that within-site variability was comparable to overall regional variability 

across the WMNF. The pooled variance approach to estimate the magnitude of change necessary 

to detect plot-specific change equal to overall significant change loses site-specific information 

about within site variability, but provides a more reliable estimate of the change over time at the 

WMNF scale. Therefore, our study suggests the magnitude of change across the WMNF was 
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greater than potential differences between observers, sampling depth, and within-plot spatial 

variability. Confining the boundaries of this study based on physiographic characteristics was 

important for limiting spatial variability and likely more difficult to address beyond the White 

Mountain region.  

4.4.2 Temporal change on the WMNF compared to other studies 

Declines in acidic deposition across Europe and North America (Lehmann et al., 2005; Greaver 

et al., 2012) have led to signs of chemical recovery of soils from acidification (Lawrence et al., 

2015; Berger et al., 2016). Lawrence et al. (2012) also reported significant Al decreases in the Oa 

horizon at two sites on the WMNF where red spruce was a major species in the canopy, and a 

significant Ca decrease in upper B horizon at one of the two sites. In addition, Lawrence et al. 

(2015) reported overall decreases of exchangeable Al in the O horizon as early indications of 

recovery while decreases in base saturation of mineral horizons continued at some sites. Changes 

in Al and Ca within the deeper parts of the profile (transition and C horizon) have not been 

previously reported since past research commonly focused on O and upper B horizons. The 

overall decrease in Al and increase in Ca within the Oa horizons across the WMNF are 

consistent with indications of recovery, but were coupled with continued acidification in the 

spodic and transition horizons as indicated by increases in exchangeable Al concentrations in 

deeper portions of the soil profile. 

The results from this study indicate vertical mobilization of exchangeable Al from the upper 

forest floor into the rooting zone of trees which has long-term implications on forest health. 

Recovery from acid deposition in soil chemistry would be expected to result in decreases in Al 

and increases in Ca of the mineral horizons. Subsequent sampling periods, as this study 
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continues at an approximately decadal resampling scale into the future, may reveal a longer term 

temporal trajectory of increased Al and mobilization deeper into the soil profile and perhaps an 

eventual decrease as excess Al accumulated over the acid deposition period is flushed from the 

soil system. It is unlikely the observed decadal change is caused by natural soil development 

since podzolization occurs over a much larger time-scale. The significant results in the Oa 

horizon from soil resampling are more consistent with reports suggesting indications of recovery. 

4.4.3 Hydrologic gradients for stratifying soil monitoring 

Partitioning sample sites by the dominant hydrologic pathway influencing soil formation may 

help reduce landscape-scale soil chemistry heterogeneity and potentially increase sensitivity of 

change detection associated with specific horizons. Sites developed by vertical hydrologic flow 

were more susceptible to leaching processes as buffering from atmospheric deposition and 

mineral weathering is more limited. Sites developed by lateral hydrologic regimes were less 

susceptible to depletion processes and potentially more responsive to recovery processes from 

the influence of shallow groundwater and solute inputs from upslope. Significant differences by 

dominant hydrologic pathways in the Oa horizons suggests high turnover may contribute to 

faster rates of detectable change whereas the rates of detectable change in deeper portions of soil 

profiles may be slower. Hazlett et al. (2011) also discussed the effect of topographic position on 

detectable soil chemical changes and found increases in base cation concentrations in upper 

mineral soil horizons for plots in poorly drained convergent topographic locations.   

In addition, our ability to identify the areal extent and topographic features commonly associated 

with different hydrologic influences on soil formation has greatly improved and was not 

considered when the sites in this study were originally established. However, the uneven number 
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of sites for this study within each hydrologic group could influence detection between groups in 

the spodic, transition, or C horizons. Most of the plots in this study were developed vertically 

which could contribute to the overall regional detection of significant Al change in the Oa 

horizons. Whereas the 9 plots developed laterally are contributing to the overall Al distribution 

within the spodic and transition horizons. An even number of sites within each hydrologic group 

could be selected in future studies by delineating the areal extent of the dominant hydrologic 

patterns influencing soil formation for initial design stratification. In regions where hydrologic 

gradients occur across the landscape, we recommend this method of stratification to help identify 

sites more susceptible to change. For example, in this study, the WMNF could continue 

resampling the 37 permanent plots, intensively sample the 6 subset plots, and consider 

intensively sampling more plots that were developed laterally or bimodally.  

4.5 CONCLUSIONS 

A rapidly changing environment has highlighted the need for more effective and site-specific soil 

monitoring over short time scales. This regional soil monitoring approach investigated a paired-

resampling design by general genetic horizon groups to detect significant decadal change in soil 

chemistry within the same general soil and forest type. The monitoring design was created for 

the WMNF to establish a long-term understanding of how soil chemistry is changing at a 

landscape scale and to inform soil quality standards. The results from this study highlight how 

within-site variability is equal to the landscape-scale of Spodosols in northern hardwood forests. 

Finally, it is important to incorporate landscape-soil-water dynamics when characterizing change 

by the dominant processes of soil formation and horizonation because groundwater influenced 
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soils were more responsive to recovery processes in the Oa horizons compared to soils developed 

vertically via unsaturated flow.  

From a forest management perspective, an ecosystem’s response to changes in soil properties 

provides the context to determine how potential soil property changes may affect ecosystem 

composition, processes and function. This serves as the basis for national forests and other forest 

land managers to determine whether a response to a management activity is moving the 

ecosystem towards or away from a desired condition. This approach to estimate the variance 

components simultaneously at the landscape scale, and at the within-plot or micro-scale is crucial 

for calculating sample size and increases our technical understanding of how management or 

external forcings such as air pollution or climate change may alter soil over time. 
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CHAPTER 5 

CONCLUSIONS 

5.1 INTRODUCTION 

Identifying the areal extent of bedrock outcrops and associated shallow soil has important 

implications in understanding the spatial dynamics of surrounding vegetation, stream chemistry 

gradients, and soil formation. Manual methods of delineating bedrock outcrops and shallow soil 

are still commonly employed in the northeastern US, expensive to employ over broad areas and 

limited by the geometry of polygon units. Therefore, it is crucial we improve the accuracy and 

efficacy in our approach to delineate bedrock outcrops and associated shallow soil in the 

northeastern US. Chapter 2 illustrated our ability to accurately interpret the presence of bedrock 

outcrops and shallow soil from high resolution lidar-derived shaded relief maps through visual 

estimates in order to achieve a statistically valid sample size. Additionally, we were able to 

improve the accuracy and efficiency in delineating the presence of bedrock outcrops and 

associated shallow soil in comparison to manual delineation methods using three topographic 

metrics at Hubbard Brook Experimental Forest as well as across a second validation watershed 

16 km northwest. 

Predicting the asymptotic range of stand relative density and biomass has important implications 

on silvicultural practices and understand forest carbon pools in late successional forests across 

northeastern US. Additionally, quantifying the influence of site quality on carrying capacity in a 

mixed species forest is a long-standing challenge and has not been thoroughly tested with long-
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term longitudinal data. Chapter 3 concluded the stand-level variability of stand relative density 

appeared to be larger than previously assumed. The variability associated with the plot-level 

random effects suggested broad differences in structure among the plots could be accounted for 

with a topographic metric as a proxy for site quality and highlighted the importance of 

incorporating landscape-soil-water dynamics when characterizing stand dynamics and growth. 

The management implications of the stand-level variability suggested site quality may need to be 

considered when employing density management protocols. 

Finally, a primary challenge for soil monitoring is to disentangle heterogeneity at multiple spatial 

scales so variation occurring over space is not confounded with change across time. Therefore, 

Chapter 4 objectives were to investigate overall change in soil chemistry of mid-elevation, 

northern hardwood Spodosols, calculate the variance components at multiple spatial scales, and 

stratify sampling sites by dominant hydrologic pathways to determine if groundwater influenced 

soils were more responsive to acidification recovery processes compared to soils developed 

vertically via unsaturated flow. Significant increases in carbon and base cations and a decrease in 

Al in the Oa horizon while base cations decreased and Al increased in some mineral horizons 

were found from forty permanent plots sampled across the WMNF in 2001-02 and resampled in 

2014. Additionally, within-site variability was comparable to overall variability across the 

WMNF. When study sites were stratified into hydrologic groups, we found an even stronger 

signal of increasing carbon and base cation concentrations from 2001-02 to 2014 for the Oa 

horizon, suggesting that soils influenced by shallow groundwater contributions from upslope 

were more responsive to acidification recovery than soils influenced only by vertical percolation. 
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5.2 BROADER IMPLICATIONS 

Although Chapter 2 explored the binary predictions of various classifiers, the results suggested a 

multinomial classification, including other HPU types, may be possible. Since HPU mapping 

requires delineation of bedrock outcrops and associated shallow soil (Gillin et al., 2015a), the 

framework presented in Chapter 2 greatly improves the accuracy, efficiency, and geographic 

extent of applying HPU models beyond HBEF. In addition, the HBEF database is well suited for 

creating a valley wide HPU model covering the full range of HPUs, not just limited to four soil 

classifications as previously explored. The WAMMO soil database also serves as an independent 

source for future HPU model validation. Finally, the predictive modeling in Chapter 2 can also 

serve NRCS in their efforts to create digital soil maps across Vermont and New Hampshire since 

they are required to delineate bedrock outcrops and associated shallow soils.  

The results from Chapter 3 warrant further investigation in the influence of site quality on both 

stand relative density and biomass. This study likely represents the first successful effort to 

quantify these relationships using variables that are widely available at a landscape scale. 

Chapter 3 methods, however, only explored the influence of reducing stand-level variability 

using one topographic metric as a covariate. Preliminary investigations suggest that more than 

one topographic covariate may reduce variability and an additional covariate applied to the 

second random effect may also improve model results. Additionally, an attempt to compile and 

gather more information regarding soil properties at a randomly selected subset of 

unmanipulated plots would assist in confirming whether the specific topographic metrics used in 

Chapter 3 are appropriate proxies of site quality at BEF. For example, topographic wetness index 

(TWId) (Beven and Kirkby, 1979) was computed with the upslope accumulated area (UAA) 
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using multiple triangular flow direction algorithm (Seibert and McGlynn, 2007) as the numerator 

and a 5 m analysis window for downslope index (Hjerdt et al., 2004) as the denominator. 

Previous studies at HBEF concluded that TWId, although multiple TWI variants were explored, 

was strongly correlated with soils influenced by lateral hydrologic regimes and largely explained 

the transition between typical and bimodal podzols to Bh podzols (Bailey et al., 2014). The 

automation of bedrock outcrops and associated shallow soil delineation from Chapter 2 also has 

important implications for exploring the full extent of HPUs on stand relative density and 

biomass at BEF. Finally, we could gain a better understanding of stand growth between 30 and 

50 years of stand age if BEF manipulated stand data are incorporated. The inclusion of 

manipulated stand data may contradict the Chapter 3 conclusions that a Chapman-Richards 

growth function was a better fit than a logistic function. 

Chapter 4 introduced a new approach in comparing soil colors by observer with paired t-tests. 

Further investigations are warranted in better understanding and quantifying the differences 

among observers. Quantifying differences observers could contribute to understanding the 

influence of sampling by depth rather than by genetic horizons. Additionally, Chapter 4 reported 

the overall change detection across the WMNF as consistent with previous studies and was the 

first study to report within-plot variability was equal to variability across the WMNF. These 

results will directly inform soil monitoring programs in calculating sample size. As the WMNF 

continues monitoring the forty permanent plots, it will be important to continue intensively 

sampling a subset of the plots to ensure these variance components are the same in subsequent 

inventory years. Finally, Chapter 4 also introduces a new concept that rates of temporal change 

may not occur equally in soils developed from vertical rather than lateral hydrologic regimes 

influencing soil formation. Although the results were significant for the Oa horizon (4-10 cm), 
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subsequent sampling years may reveal significant differences in the spodic and transition 

horizons.  
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APPENDIX 

Figure S2.1: WAMMO watershed buffered by 200 meters depicting predicted bedrock outcrop-

shallow soil locations in dark grey. Manual delineation of bedrock-controlled areas is depicted 

by lighter grey polygons. Overall agreement on bedrock occurrence is high, however, predicted 

bedrock outcrop-shallow soils suggest higher presence of small pockets in valley bottoms. 
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Supplemental Table 4.1: Plot location names, ID, elevation (m), aspect (°), plan curvature, slope 

(%), dominant hydrological pathway influencing soil formation, slope position, and landform. 

 

 

Name ID Elev Aspect Plan Slope Hydro† Slope position Landform 

Ames Brook 1 AB1 567 318 150 10 Lateral Mid backslope Nose 

Bunga Jar 1 BJ1 430 3 221 17 Bimodal Toe slope Planar slope 

Bunga Jar 2 BJ2 424 220 310 11 Bimodal Lower backslope Nose 

Bunga Jar 3 BJ3 558 347 172 8 Vertical Shoulder Nose 

Bald Ledge 1 BL1 533 221 295 13 Vertical Upper backslope Nose 

Castle Trail 1 CT1 648 14 222 18 Lateral Upper backslope Nose 

Castle Trail 2 CT2 633 33 204 23 Vertical Mid backslope Planar slope 

Castle Trail 3 CT3 586 356 141 7 Lateral Toe slope Planar slope 

Fox Brook 1 FX1 507 235 284 14 NA Mid backslope Foot slope 

Fox Brook 2 FX2 489 304 293 9 Lateral Toe slope Planar slope 

Fox Brook 3 FX3 616 112 193 14 Vertical Mid backslope Planar slope 

Fox Brook 4 FX4 708 341 74 15 Lateral Shoulder Spur foot 

Glencliff 1 GC1 646 310 55 11 Bimodal Mid backslope Hollow  

Glencliff 2 GC2 683 318 60 12 Vertical Mid backslope Nose 

Glencliff 3 GC3 472 247 330 3 Bimodal Toe slope Nose 

Greeley Brook 1 GR1 603 208 227 5 Lateral Mid backslope Planar slope 

Greeley Brook 2 GR2 637 166 262 10 Vertical Shoulder Spur foot 

Greeley Brook 3 GR3 567 235 327 9 Lateral Toe slope Foot slope 

Haystack Mtn 2 HM2 741 357 285 21 Lateral Lower backslope Planar slope 

Jefferson Notch 2 JN2 638 336 80 20 Vertical Mid backslope Nose 

Lafayette Brook 1 LB1 646 32 277 13 Vertical Mid backslope Spur 

Lafayette Brook 2 LB2 500 312 35 5 Vertical Toe slope Hollow 

Lafayette Brook 3 LB3 695 22 273 2 Bimodal Upper backslope Nose 

Morrison Brook 1 MB1 411 242 118 13 Bimodal Backslope Planar slope 

Morrison Brook 2 MB2 468 280 0 25 Vertical Backslope Nose 

Morrison Brook 3 MB3 390 225 344 13 Vertical Lower backslope Planar slope 

Miles Knob 1 MK1 508 275 230 22 Vertical Upper backslope Planar slope 

Miles Knob 2 MK2 317 160 210 16 Vertical Mid backslope Nose 

Moat Mtn. 1 MO1 248 80 172 10 Vertical Mid backslope Planar slope 

Pond of Safety 1 PS1 684 295 190 17 Lateral Mid backslope Nose 

Rattle River 1 RR1 421 26 120 16 Vertical Mid backslope Hollow  

Rattle River 2 RR2 381 8 281 8 Vertical Upper backslope Nose 

Rattle River 3 RR3 404 270 345 11 Vertical Mid backslope Planar slope 

Shingle Pond 1 SP1 555 135 245 8 Vertical Mid backslope Planar slope 

Shingle Pond 2 SP2 518 184 270 6 Vertical Mid backslope Planar slope 

Stinson Mtn. 1 ST1 515 201 264 22 Vertical Upper backslope Nose 

Wildwood 1 WW1 499 183 275 6 Vertical Backslope Planar slope 

Wildwood 2 WW2 634 219 308 18 Vertical Mid backslope Planar slope 

†Dominant hydrologic pathway influencing soil formation 
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Supplemental Figure S4.1: pH vertical distributions by depth (cm) for 39 sites. Solid black lines 

represent 2001-02 sampling year and dashed grey lines represent 2014 sampling year. 
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Supplemental Figure S4.2: Exchangeable Al (cmolc kg-1) vertical distributions by depth (cm) of 

for 39 sites. Solid black lines represent 2001-02 sampling year and dashed grey lines represent 

2014 sampling year. 
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