
ADVANCING THE TERRESTRIAL ECOLOGICAL UNIT INVENTORY WITHIN 

THE WHITE MOUNTAIN NATIONAL FOREST USING LiDAR 

by 

Robert A. Colter 

B.A. General Agriculture Science, Southern Illinois University, 1998 

M.S. Plant and Soil Science, Southern Illinois University, 2001

DISSERTATION 

Submitted to the University of New Hampshire 

in Partial Fulfillment of 

the Requirements for the Degree of 

Doctor of Philosophy 

in 

Natural Resources and Environmental Study

September 2019 



ii 

 

This thesis/dissertation has been examined and approved in partial fulfillment of the requirements for the 

degree of Doctor of Philosophy in Earth and Environmental Science by: 

 

 

Dissertation Director, Mark J. Ducey, Professor (Natural Resources and the 

Environment) 

 

Scott W. Bailey, Research Scientist (U.S. Forest Service) 

 

Thomas Lee, Professor (Natural Resources and the Environment)  

 

Gregory Nowacki, R9 Regional Ecologist (U.S. Forest Service)  

 

Michael Palace, Associate Professor (Earth Sciences) 

 

On April 2, 2019 

 

 

 

Original approval signatures are on file with the University of New Hampshire Graduate School. 

 

  



iii 

 

 

 

 

 

 

 

 

 

 

 

 

to my mother and father 

 

  



iv 

 

ACKNOWLEDGEMENTS 

I would like to extend my deepest gratitude to my graduate committee, Drs. Mark Ducey, Scott Bailey, 

Tom Lee, Greg Nowacki and Michael Palace. They have shared with me much of their time and insights. 

I would like to send a huge thanks to Olivia Fraser.  

I would like to thank Steve Fay, Tom Wagner, Roger Simmons and Stacy Lemieux. And the folks at the 

White Mountain National Forest. 

I would also like to thank Jessica Philippe, Roger Dekett, Robert Long, and Nels Barrett. And the folks at 

Natural Resource and Conservation Service. 

I would like to thank all the field crews for the measurements used in this dissertation.  

I would like to thank my family, friends, and colleagues. 

Finally, I would like to thank my wife, Melissa Davis, for her support.  

  



v 

 

TABLE OF CONTENTS 

DEDICATION...........................................................................................................................iii 

ACKNOWLEDGEMENTS.......................................................................................................iv 

TABLE OF CONTENTS...........................................................................................................v 

LIST OF TABLES.....................................................................................................................viii 

LIST OF FIGURES ...................................................................................................................ix 

ABSTRACT ..............................................................................................................................xi  

 

CHAPTER          PAGE 

I. Background…………………...........................................................................................14 

1.0 Intrdocution..............................................................................................................14 

1.1.1 Ecological Classification 

1.1.2 Ecological Units 

1.1.3 Ecological Types 

1.1.4 Relationship between Classification and Mapping 

1.1.5 Map Unit Delineation 

1.1.6 Historic Vegetation and Disturbance Regimes 

1.1.7 Disturbance Regimes 

1.1.8 Historic Vegetation 

1.1.9 Existing Vegetation 

1.1.10 Potential Natural Vegetation 

1.1.11 Utility of Potential Natural Vegetation 

1.1.12 Field Sampling 

1.2 Research Questions and Objectives 

II. Stratified Random Sampling Using LiDAR and The Soil Inference Engine to Inventory for 

Terrestrial Ecological Unit Inventory…...............................................................................27 

2.1 Introduction.................................................................................................................28 

2.2 Methods 

2.2.1 Study site 

2.2.2 LiDAR Acquisition 

2.2.3 Topographic Metrics  

2.2.4 Soil Inference Engine 

2.2.5 Management Areas 



vi 

2.2.6 Stratified Random Sampling 

2.2.7 Stratified Plots by LiDAR-derived Classes 

2.2.8 Site Information  

2.2.9 Vegetation and Soil Sampling Protocol  

2.2.10 Descriptive Summaries 

2.3 Results 

2.3.1 Indicator Species and NH Heritage Community Types by Topographic Metrics 

2.3.2 Soil Series by Topographic Metrics 

2.4 Discussion 

2.5 Conclusions 

III. Assessing Understory Specie Relationships with Soil and Topographic Metrics Using Non metric

Multidimensional Scaling………….......................................................................................52 

3.1 Introduction....................................................................................................................53 

3.2 Methods 

3.2.1 Study Site 

3.2.2 Sample Design 

3.2.3 Understory Sampling Protocol 

3.2.4 Soil Sampling and Chemistry 

3.2.5 Topographic Metrics 

3.2.6 Statistical Analysis: NMDS 

3.3 Results  

3.4 Discussion  

3.5 Conclusions 

IV. Budget Comparison of Traditional Ecological Classification to Stratified Random Approach Using

LiDAR and SIE.......................................................................................................................71 

4.1 Introduction....................................................................................................................72 

4.2 Methods 

4.2.1 Study Site 

4.2.2 TEUI Inventory and Mapping by Traditional Methods 

4.2.3 TEUI Inventory and Mapping using Stratified Random Sampling 

4.2.4 Inventory Protocol Costs 

4.3 Results 

4.3.1 Traditional TEUI and Mapping Expenses 



vii 

 

4.3.2 Stratified Random Sampling by LiDAR-derived Topographic metrics 

4.4 Discussion 

4.5 Conclusions 

V. Conclusions........................................................................................................................86 

5.1 Introduction...............................................................................................................86 

5.2 Broader Implications  

LIST OF REFERENCES.............................................................................................................90 

 

  



viii 

LIST OF TABLES 

2.1 The acres and proportion of the watershed covered by topographic metric classes (slope and wetness) 

and parent material as well as the number of plots in each category based on timber managed and 

unmanaged areas within the Wammo watershed.……………………………………………….43 

2.2 Mean and standard deviation by indicator species and New Hampshire Heritage Community type of 

elevation (m), aspect (degrees), slope (%), and topographic wetness index (TWI) calculated from a 5 

meter LiDAR-derived DEM. ……………………………………………………………………45 

2.3 Mean and standard deviation by soil series, as determined by the soil pit description, of elevation (m), 

aspect (degrees), slope (%), and topographic wetness index (TWI) calculated from a 5 meter LiDAR-

derived DEM. …………………………………………………………………………….46 

3.1 Topographic Metrics and soil chemistry analyzed showing strongest correlations (Pearson) to 

understory species……………….………………………………………………………………64 

3.2 NMDS results for correlations with the understory vegetation, with a three-dimensional ordination. 

Correlations are listed by r-values. Species are indicated by a 6 letter codes that corresponds to the 

first 3 letters of the genus and first 3 letters of the species. Scientific name and common name are 

shown too……………………………………………….……………………………………………………...67 

4.1 The number of plots needed, the cost per plot, LiDAR acquisition costs per acre, and the total cost 

between the two TEUI methods within the Wammo watershed………………………………..83 



ix 

 

LIST OF FIGURES 

 

2.1 Inset map a) shows the White Mountain National Forest (WMNF) external boundaries in gray within 

the Northeastern US as well as the location of the Wammo study area marked by a five point star. 

Map b) shows a 1 meter shaded relief map derived from LiDAR within the 17,010 acre Wammo 

watershed. Inset map c) also shows a 1 meter shaded relief map within the Wammo watershed at a 

finer scale to highlight the notable differences in roughness used to delineate parent 

material.…………………………………………………………………………………………..31 

2.2 The LiDAR flight paths on November 2010 and April 2012 are depicted in red, blue, and green lines 

representing the different transects needed to achieve a standardized resolution across the western 

portion of the WMNF. The Upper Wild Ammonoosuc watershed (Wammo) study area is depicted 

with a black outline……………………………………………………………………………….34 

2.3 The Wild Ammonoosuc (Wammo) watershed is outlined in black with the different parent material 

types represented by associated colors (on left). Wammo watershed also outlined in back with 

different stratified classes derived from LiDAR and the Soil Inference Engine represented by different 

colors …….……………………………………………………………………………………....44 

3.1 Inset map a) shows the White Mountain National Forest (WMNF) external boundaries in gray within 

the Northeastern US as well as the location of the Wammo study area marked by a five point star. 

Map b) shows a 1 meter shaded relief map derived from LiDAR within the 17,010 acre Wammo 

watershed. Inset map c) also shows a 1 meter shaded relief map within the Wammo watershed at a 

finer scale to highlight the notable differences in roughness. ……. …………………………….58 

3.2 The Wild Ammonoosuc (Wammo) watershed is outlined in black with the different parent material 

types represented by associated colors. Wammo watershed also outlined in back with different 



x 

 

stratified classes derived from LiDAR and the Soil Inference Engine represented by different 

colors…………………………………………………...…… …………………………………..60 

3.3 The soil and topographic metric variables are illustrated as lines in the ordination graphics, the 

direction of each line indicating the direction of gradient and the length indicating the strength of the 

correlation between variable, ordination and axis………………………………………………65 

3.4 The soil and topographic metric variables are illustrated as lines in the ordination graphics, the 

direction of each line indicating the direction of gradient and the length indicating the strength of the 

correlation between variable, ordination and axis.……………………………………………..66 

4.1 Georefenced hand drawn Traditional Ecological Land Type delineations completed in 1998 of the 

Wammo study area using black and white aerial imagery from 1956 (on left). Digitized hand drawn 

Ecological Land Type delineations depicted on 1 meter LiDAR-derived shaded relief map.…78 

4.2 The Wild Ammonoosuc (Wammo) watershed is outlined in black with the different parent material 

types represented by associated colors (on left). Wammo watershed also outlined in black with 

different stratified classes derived from LiDAR and the Soil Inference Engine represented by different 

colors (on right)..………………………………………………………………………………79 

 

 

 

  



xi 

ABSTRACT 

ADVANCING THE TERRESTRIAL ECOLOGICAL UNIT INVENTORY WITHIN 

THE WHITE MOUNTAIN NATIONAL FOREST USING LiDAR 

by Robert A. Colter 

University of New Hampshire 

Forest land managers need ecological classification to assess and describe resource conditions, 

vegetation conditions, outcomes resulting from various management prescription scenarios, and 

communicate environmental effects of land management planning alternatives. However, there is a need 

to incorporate more ecological classification into the land management plans. The U.S. Forest Service’s 

approach, the Terrestrial Ecological Unit Inventory (TEUI), relies heavily on field data collection and 

verification of map unit delineations that is time-consuming and costly. Traditional mapping methods far 

exceed the current financial capacity of the U.S. Forest Service. In order to justify new ecological 

classification mapping approaches, there needs to be significant evidence that new approaches will create 

equivalent or superior map products, reduce costs, improve efficiencies and maybe improve accuracy. 

Therefore the objectives of chapter 2 were to use the Soil Inference Engine (SIE) to partition the areal 

extent of a project area watershed in the White Mountain National Forest (WMNF) using on topographic 

metrics derived from Light Detection and Ranging (LiDAR) data including both timber managed and un-

managed timber production lands. A total of 189 plots were randomly generated within strata, based on 

parent material, and topographic metrics using a stratified random sampling approach. The number of 

plots calculated for stratified random sampling was predominately determined by the number of 

strata, the acres of timber-managed areas, and budget. 172 of those plots had both vegetation and 

soils information recorded. The results from chapter 2 showed that stratified random sampling using 

LiDAR-derived topographic metrics as SIE data inputs were sufficient in capturing the environmental 
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gradients required by the U.S. Forest Service ecological classification requirements. Additionally, 10 New 

Hampshire Natural sensitive indicator species were located and recorded in 16% of plots stratified by 

topographic metrics and parent material. These results suggest this new approach to ecological 

classification on the WMNF improved the accuracy and efficiency in delineating ecological areas as well 

as locating the presence of nutrient rich areas. 

The objectives of chapter 3 used nonmetric multidimensional scaling (NMDS) to assess the relationship 

between understory species and environmental variables, including parent material, slope, aspect, 

elevation, and wetness. The results from chapter 3 showed how both soil properties and topographic 

metrics correlated with understory species in ordination space. NMDS ordination explained 81.1% of the 

cumulative variation of understory species presence in three dimensions using soil properties and 

topographic metrics with a final stress value of 17.3 and a p-value of 0.04. NMDS results also suggested 

that understory species clustered distinctly within New Hampshire Natural Community types. These 

results also support the idea that LiDAR-derived topographic metrics could assist in determining where 

community types are positioned across a landscape. Additional NMDS analysis also showed either soil 

chemistry or topographic metrics explained nearly equal amounts of cumulative understory species 

variation. The results from this objective highlights the use of topographic metrics as predictors of 

understory vegetation, and likely community types, which could be validated in other WMNF watersheds. 

Finally, the primary challenge for ecological classification is reducing the cost of traditional unit 

mapping. Therefore, the objectives of chapter 4 was a conceptual synthesis of the reasoning behind doing 

ecological classification. Information from the WMNF management plans of 1985 and 2005, and current 

National and Regional land management direction of the US Forest Service were reviewed. A cost review 

of ecological classification by stratified random sampling using LiDAR-derived topographic metrics was 

compared to traditional TEUI mapping methods. In both approaches, the mapping of the plots averaged 

approximately $989.00 per plot including soil chemistry analysis from U.S. Forest Service Laboratory. 
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This yielded a total cost of approximately $623,000 for the traditional TEUI compared to approximately 

$221,000 including the LiDAR acquisition required for stratified random sampling using topographic 

metrics. This chapter showed that stratified random sampling using LiDAR-derived topographic metrics 

reduced costs by approximately $402,000, including the additional LiDAR acquisition costs, compared to 

the traditional TEUI approach.  
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CHAPTER I 

BACKGROUND  

 

1.0 INTRODUCTION 

This dissertation integrates forest ecology, soil science, and remote sensing methods to 

investigate the LiDAR-derived topographic metrics as predictors of relationships between 

vegetation and soil properties. Land managers need accurate ecological information to make 

sound land management decisions. The Terrestrial Ecological Unit Inventory (TEUI) is a nested 

hierarchical land survey that produces natural resource information at multiple spatial scales 

under the auspices of the National Hierarchical Framework of Ecological Units (Cleland et al. 

1997, Winthers et al. 2005). It is a fundamental component of ecosystem management, especially 

for land management planning and embedded project execution by the U.S. Forest Service. The 

Forest Service has been working on completing Ecological Landtype (ELT) and Ecological 

Landtype Phase (ELTp) mapping in the eastern United States for over 40 years. The current cost 

of the classification and mapping portions of TEUI, however, is prohibitive based on current 

Forest Service requirements and budgets. Here, we implemented new methods to complete ELT 

classification and mapping using a stratified random sampling based on LiDAR-derived 

topographic metrics (vs. the traditional “transects” approach) to generate products at a reduced 

cost to foster land management decisions.  

The TEUI concept integrates both abiotic and biotic ecosystem properties into spatially defined 

ecological groups and maps them to use on the landscape. Traditional TEUI unit delineation 

typically uses aerial photos and topographic maps or spatial data combined with Geographic 

Information Systems (GIS) and a transect-based sampling field campaign. However, this 

approach is inherently time consuming, field intensive, and requires a large budget. Therefore, 
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there is a significant need across the US Forest Service supporting land management planning 

efforts to develop more consistent, rapid, and cost-effective method to delineate ecological Land 

Type (ELT) and Land Type Phase (ELTp) map units. 

1.1.1 Ecological Classification 

Ecosystems are the place where organisms and the environment interact in the three-dimensional 

space of Earth (Rowe, 1980). Tansley (1935) introduced the term ecosystem by describing how 

ecological systems are composed of multiple abiotic and biotic factors (Major, 1969). The 

ecosystem concept is a holistic framework that combines the biological and physical worlds in 

order to describe, evaluate, and manage the system (Rowe, 1992). Energy, moisture, nutrients, 

and disturbance gradients are the primary regulators of ecosystem structure and function 

(Cleland et al., 1997). Multiple environmental and biological factors influence these gradients, 

including climate, geology, soils, vegetation, fire, and wind, while varying at different spatial 

and temporal scales (Cleland et. al., 1997).  

In order to implement proper ecosystem management, land managers need basic information 

about the nature and distribution of ecosystems (Cleland et al., 1997). Working definitions of 

ecosystems supported by field inventories are used to develop the classifications, maps, and 

descriptions required to properly execute ecosystem management (Cleland et al., 1997). Land 

managers also need to understand both the ecological patterns and processes of social, physical, 

and biological interrelationships (Cleland et al., 1997). Land managers must obtain better 

information about the distribution and interaction of organisms on the lands in which they occur. 

This includes the demographics of species, the development and succession of communities, the 
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influence of environmental variables, and the effects of human activities and land use on species 

and ecosystems (Urban et al., 1987). 

Multiple biotic and abiotic factors, organized within various spatial scales based on ecosystem 

characteristics and processes, define the National Hierarchical Framework of Ecological Units 

(Cleland et. al., 1997). The National Hierarchy compresses an infinite variety of ecosystems and 

places into a limited number of units based on differences in compositional, structural, and/or 

functional characteristics (Cleland et. al., 1997). 

1.1.2 Ecological Units 

Land managers overlay maps of existing vegetation (conditions that change readily) onto 

ecological maps (which depict potential natural vegetation) to aptly track successional changes 

overtime within an ecosystem (Cleland et al., 1997). Existing conditions are labeled such as 

current vegetation, whereas potential conditions such as defined areas of different biological and 

physical potentials are labeled as ecological units (Cleland et al., 1997). Complexes of life and 

environment form the basis for defining and mapping ecosystems and the integration of multiple 

biotic and abiotic factors. Inventories of existing vegetation, air quality, aquatic systems, 

wildlife, and human elements can help inform TEUI efforts (Cleland et al., 1997). Biotic 

distributions and ecological processes can then be extrapolated to other similar ecosystems 

during the mapping process (Cleland et al, 1997). The combination of this information on 

ecosystems along with our knowledge of various processes facilitates a more ecologically sound 

approach to resource planning, management, and research (Cleland et al., 1997). 
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The TEUI approach classifies, maps, and describes ecosystems based on biotic and abiotic 

factors that comprise the physical environment. The principal landscape elements are physical 

environmental factors (Winthers et al., 2005). Land managers should combine information on 

existing vegetation with TEUI products to understand active management impacts and support 

good land management decisions (Brohman et al., 2005). Current vegetation composition, 

structure, and patterns become the basis for existing vegetation classification maps (Brohman et 

al., 2005). In contrast, TEUI uses a broad array of ecological factors (climate, geology, 

topography, soils, and vegetation) to classify and define land units, thus depicting their 

ecological potentials (potential natural vegetation). TEUI-based units help define a system’s 

response to disturbance processes and land management activities relative to physical site 

characteristics and their ecological potential (Brohman et al., 2005). 

1.1.3 Ecological Types 

A land category consisting of landscape elements, differing from other types in the kind and 

amount of vegetation and in its ability to respond to natural disturbances and management 

actions, is defined as an ecological type (Winthers et al., 2005). An ecological type describes, 

classifies, and characterizes ecosystems based on landscape and site factors, vegetation (existing, 

historic, and natural potential), disturbance regimes, and state and transition models (Winthers et 

al., 2005). Ecological type classifications and associated unit maps, when combined with existing 

vegetation classifications/maps, provide land managers a context for evaluating ecological 

conditions and resource values (e.g., wildlife habitat, forage, watershed conditions, and timber) 

(Brohman, et al., 2005). Bourgeron et al. (1994) looked at biotic components and abiotic 

relationships as significant factors for predicting management response of ecosystems and 
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landscapes due to various management scenarios. Bailey et al. (1994) also described the 

importance delineating land areas based on similar potential for management to effectively 

assess ecosystem health. 

Describing successional relationships and dynamics is an important component for predicting 

vegetation responses to various management scenarios or natural disturbance regimes (Brohman, 

et al., 2005). This requires describing and classifying the plant communities associated with an 

ecological type (Brohman et al., 2005). The Ecological Land Type Phase (ELTp) is the finest 

resolution level of ecological units, requiring divisions in landforms of specific variables and 

vegetation data to form ecological types.  Ecological type classification requires analysis and 

description of relationships among potential natural vegetation (PNV), soils, local climate or 

microclimate, geomorphology, surficial geology, bedrock geology, and/or hydrology (Winthers 

et al., 2005). This approach requires analysis on plot inventory data, site-level transect 

observations, and environmental data (Winthers et al., 2005). 

1.1.4 Relationship between Classification and Mapping 

Developing high-resolution ecological maps is a long standing challenge for soil scientists and 

vegetation ecologists (Nowacki, 2003). Soil scientists have traditionally conducted soil surveys 

on a county-by-county basis. However these surveys, representing a single-resource taxonomy, 

cannot be used alone when generating ecological units, which represents a multifactor 

“partonomy” approach (see Nowacki and Sorokine 2003 for details).  Ecologists, on the other 

hand, have focused on developing vegetation-based classifications and maps using multivariate 

methods and indicator plants (Winthers et al., 2005). As with soil maps, these too suffer from 

taxonomic limitations and a single-resource perspective. Cleland et al. (1997) proposed to use a 
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multifactor approach simultaneously integrating site, soil, and vegetation to classify ecological 

types and subsequently delineate ecological map units at various scales. Therefore, TEUIs are an 

attempt to combine the strengths of these two approaches while incorporating climatic and 

geologic factors (Winthers et al., 2005). The use of multivariate statistical analysis from 

vegetation ecology can be helpful teasing apart relationships between potential natural 

vegetation, existing vegetation, soils, and other landscape elements with other ecological or 

biological factors (Winthers et al., 2005). Multivariate statistical analysis, however, can be 

applied to specific soil properties instead of soil taxonomy, in order to incorporate the influences 

of soil on vegetation (USDA Soil Conservation Service, 1994). Therefore, multivariate statistical 

analysis is essential for ecological classification at the Ecological Landtype (ELT) and 

Ecological Landtype phase (ELTp) levels. 

1.1.5 Map Unit Delineation 

Common TEUI mapping techniques use aerial photos and/or GIS based topographic maps 

combined with a transect-based field sampling to manually delineate areas. However, neither 

understory vegetation nor soils can be seen on aerial photos, satellite imagery, or widely 

available digital elevation maps (DEM) depicting Earth’s bare surface (Winthers et al., 2005). In 

addition, potential natural vegetation is often is estimated because existing vegetation may not be 

the ideal representation due to past natural and human disturbances (Winthers et al., 2005). Land 

managers, therefore, must rely on other landscape element predictors, such as landform, 

morphometry, and surficial geology. The landscape elements may serve as predictors to the map 

unit delineation criteria, but may not be necessarily used for the design criteria (Winthers et al., 
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2005). Map unit delineation criteria can then be selected after elements and associated scale have 

been selected for map unit design (Winthers et al., 2005).  

1.1.6 Historic Vegetation and Disturbance Regimes 

Vegetation, as the ultimate expression of living tissue (biomass), is a fundamental component of 

ecosystems. Vegetation is complex and inherently reflects the abiotic and biotic relationships and 

disturbance regimes across time and space (Winthers et al., 2005). These relationships become 

less apparent as humans continue to manipulate vegetation over the course of thousands of years 

for food and fiber production (Winthers et al., 2005). The core components of vegetation 

dynamics include existing vegetation, historic vegetation, and potential natural vegetation, and 

prevailing disturbance regimes (Winthers et al., 2005). All core components are important for 

understanding vegetation patterns and processes at various spatial and temporal scales. The core 

components are also essential for ecosystem management, particularly for preparing desired 

future conditions, silvicultural prescriptions, and ecological restoration plans (Winthers et al., 

2005). 

1.1.7 Disturbance Regimes 

Forest composition, structure, and function around the world are shaped by natural disturbances 

(Picket and White, 1985; Attiwill, 1994; Reice, 2003). Many forest characteristics are shaped by 

responses to specific disturbances rather than the result of successional change (Brubaker, 1987). 

Therefore, disturbance ecology provides the framework for understanding forest ecosystems and 

is a crucial component of resource management (Engstrom et al., 1999). Disturbances, whether 

natural or human-caused, change ecosystem characteristics, including species composition and 
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structure, biodiversity, resource productivity, and incidence of disease (Winthers et al., 2005). 

Since disturbances have significant influences on the biotic portion of ecosystems (e.g., species 

evolution and adaptations; vegetation compositions and structures), disturbance regimes can be 

used as a template to design forest management activities. Land managers can emulate those 

effects of natural disturbance to support native diversity and ecological attributes (Attiwill, 1994, 

Swetnam et al., 1999). For example, ecosystem restoration through silvicultural intervention can 

benefit from mimicking natural disturbance regimes, especially after human disturbance 

(Kimball et al., 1995; Walker et al., 1995; Nowacki and Kramer, 1998; Cissel et al., 1999; 

Bergeron et al., 2002; Seymour and White, 2002).   

1.1.8 Historic Vegetation  

Vegetation communities reflect past events as well as contemporary processes. Therefore, 

ecologists who overlook the past are likely to misinterpret the present (Whitney, 1994). 

“Stepping back to look forward” is a rationale way of understanding the historical disturbance 

that has led to current vegetative conditions (Foster, 1998). The origin of current forest 

conditions can be explained by stand histories (Carvell, 1986). In addition, the restoration of 

ecological systems requires a thorough understanding of past disturbance that may have 

negatively altered the stand by either human or natural disturbances or both. Historic vegetation 

can be displayed in patterns over long time periods spanning thousands of years (Winthers et al., 

2005). Land managers should attempt to document vegetation conditions immediately prior to 

major landscape changes (Whitney, 1994).  
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1.1.9 Existing Vegetation 

Existing vegetation information alone cannot answer important questions about successional 

relationships based on historical ranges of characteristics as responses to management actions 

(Brohman et al., 2005). These questions can only be considered by linking information about 

existing vegetation to the ecological potential of the land and stand history (Brohman et al., 

2005). Existing vegetation only represents a single point in time, whereas ecological 

classifications and map reflects potential natural communities (theoretically the endpoint of 

succession) based on site conditions and past disturbance regimes (Brohman et al., 2005). Thus, 

ecological units can be effectively used, when coupled with existing vegetation information, to 

accurately show successional trajectories for a given piece of land. 

1.1.10 Potential Natural Vegetation 

Potential natural vegetation (PNV) is the vegetation that would establish if human interference 

did not occur under past and present climatic and environmental conditions (Winthers et al., 

2005).  Climate, geology, geomorphology, and soil characteristics can be environmental 

conditions (Winthers et al., 2005). Recent human-based impacts to the land make it difficult to 

ascertain PNV; however indicator plants can be used to reasonably estimate PNV conditions.  

1.1.11 Utility of Potential Natural Vegetation 

Increasingly in the last three decades, a single-state climax concept has been shown to be too 

simplistic (Cook, 1996). Vegetation on similar sites after disturbance can move toward multiple 

possible future conditions (Abrams et al. 1985, Winthers et al., 2005). Moreover, the alteration of 

past disturbance regimes and/or elimination of historically important disturbance drivers (e.g., 
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fire suppression) can allow ecosystems to undergo succession to a new steady state not seen 

before (Nowacki and Abrams 2008). Potential natural vegetation can be used to describe the 

land’s capability to support specific vegetation communities and always be evaluated in the 

context of existing and historic vegetation (Winthers et al., 2005). Indicator species are often 

associated with a distinct habitat (Kricher, 1998). An indicator species is commonly defined as a 

specific plant species found to only occur or be adapted to certain habit where a specific climate 

and soil are needed for the plant to survive (Kricher, 1998).  Potential natural vegetation can be a 

useful ecosystem expression even if it is based solely on vegetation characteristics (Winthers et 

al., 2005). In addition, potential natural vegetation can be viewed as a more permanent feature of 

the landscape than existing vegetation incorporating the structural and compositional stages of 

vegetation (Winthers et al., 2005). Potential natural vegetation becomes a more valuable 

approach when it is combined with other key landscape elements (e.g., soil, landform, climate, 

and geology) to identify ecological types (Winthers et al., 2005). Although existing vegetation 

can used to help delineate ecological map units, it is important to remember existing vegetation 

does not always reflect historic or potential vegetation (Winthers et al., 2005). Existing 

vegetation and potential natural vegetation classification maps inherently address different 

questions and should be viewed as complementary (Brohman et al., 2005).  

It is more beneficial to integrate existing vegetation information with TEUI products for the 

purposes of making sound land management decisions (Brohman et al., 2005). Existing 

vegetation classification maps describe current vegetation composition, structure, and patterns. 

However, TEUI provides ecological type classifications and defines land units, including the 

vegetation responses to disturbance processes and land use based on potential natural vegetation 

and physical site characteristics (Brohman et al., 2005). Land managers are able to evaluate 
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ecological conditions when existing vegetation classifications maps are combined with 

ecological type classifications and mapped units to select appropriate land management practices 

based on ecosystem capability.  

1.1.12 Field Sampling 

Plot data are the basic premise underlying vegetation classification used to inform ecological 

classification and mapping (Jennings et al., 2004). It is critical to develop and assess a field 

protocol before data collection can begin. A field protocol ensures consistent, reliable, and 

statistically valid data are collected to avoid inaccuracies (Jennings et al., 2004). Metadata should 

be included with all field plot data collection in order to ensure interpretation is correct and the 

protocol is repeatable (Jennings et al., 2004). There are many approaches to create a sampling 

design. Configuring plots in areas with relatively uniform physiognomy, floristic composition, 

and environmental conditions is called preferential sampling (Brohman et al., 2005). However, 

preferential sampling should locate plots “subjectively without preconceived bias” (Ellenberg 

and Mueller-Dombois, 1974). This means that plots are carefully selected for relatively uniform 

vegetation and environmental variables, but are not selected because they “fit” a preconceived 

community type (Brohman et al., 2005). Objective sampling locates plots systematically or 

randomly in strata and is also called representative sampling (Jennings et al., 2004).  

The “gradsect” technique, or gradient-directed sampling, is one example of an objective 

approach (Austin and Heylingers, 1991). This technique is a form of stratified random sampling 

that may be cost effective for sampling vegetation patterns along environmental gradients 

(Gillison, 1985). The objectivity of sampling can be maintained as long as rejection criteria are 

clearly defined (Brohman et al., 2005). Representative sampling should be used when the 
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stratification units are large and variable (Ellenberg and Mueller-Dombois, 1974). The best way 

to account for severe changes in ecological classification and mapping is to use all the tools 

available for ecological classification.  As shown earlier, ecological classification does not just 

include climax or potential natural vegetation. It also includes all the common variations that can 

occur in vegetation and soils due to management, succession, and disturbance. 

1.2 RESEARCH QUESTIONS AND OBJECTIVES 

In light of the above, the objectives of this dissertation were to 1) evaluate the Soil Inference 

Engine (SIE) as a tool to stratify a watershed in the design phase of a field campaign; 2) assess 

topographic features (e.g., slope, aspect, elevation) as predictors of ecological units using 

multivariate statistical analysis; and 3) compare stratified sampling to traditional ecological unit 

mapping methods to determine if there was a cost reduction. Chapters addressing the 

aforementioned objectives follow, specifically: 

Chapter 2 The Soil Inference Engine (SIE) was used to stratify the project area watershed based 

on topographic metrics derived from Light Detection and Ranging (LiDAR) data including both 

timber managed and un-managed timber production lands.  

Chapter 3 introduces nonmetric multidimensional scaling (NMDS) and how it can be used to 

assess the relationship between understory species presence and environmental variables, 

including parent material, slope, aspect, elevation, and wetness.  

Chapter 4 was a conceptual synthesis of the reasoning behind conducting ecological 

classification and mapping.  Information from the White Mountain National Forest management 

plans of 1985 and 2005, and current National and Regional land management direction of the US 
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Forest Service were reviewed. A review of the cost of doing ecological classification and 

mapping by stratified random sampling using LiDAR-derived topographic metrics was analyzed 

versus a TEUI inventory using a traditional mapping method as outlined by the TEUI Manual 

(Winthers et al. 2005).  
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CHAPTER 2 

STRATIFIED RANDOM SAMPLING USING LiDAR AND THE SOIL INFERENCE 

ENGINE FOR TERRESTRIAL ECOLOGICAL UNIT INVENTORY 

 

ABSTRACT  

The Forest Service has been working on completing Ecological Landtype (ELT) and Ecological 

Landtype Phase (ELTp) mapping in the eastern United States for over 40 years. Ecological 

mapping relies heavily on field data collection to develop the underlining classification and 

verification of map unit delineations. Traditional mapping techniques use aerial photos and low-

resolution topographic maps combined with transect-based field sampling to manually delineate 

units. This approach is costly and accuracy can be low. In contrast, Light Detection and Ranging 

(LIDAR) derived data can be used to create high-resolution terrain derivates representative of 

important forest type predictors (e.g., elevation, aspect, and slope). The Soil Inference Engine 

(SIE), a software modeling program designed to predict soil types and map their areal extent, 

was created by the Natural Resource Conservation Service (NRCS) to accurately predict soil 

types across a landscape using LiDAR-derived terrain products, called topographic metrics. The 

objective of this chapter was to create and assess the application of a stratified random sampling 

approach using LiDAR-derived topographic metrics as inputs into the SIE to design an 

ELT/ELTp inventory across a 17,010 acre watershed in western New Hampshire. A total of 189 

plots were randomly generated within strata and 172 plots had both vegetation and soils 

information recorded. All strata based on slope and drainage were first partitioned based on 

parent material. There were at least 8 plots per stratum and strata were further divided by timber 

managed areas and non-timber managed areas. There were 252 understory species recorded 
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across the 172 plots and 15 total NH Heritage Community Types of vegetation were identified. 

Additionally, 10 of the 12 sensitive indicator understory species from the New Hampshire 

Natural Community types were found in a total of 28 plots across the study watershed. This 

supports that the stratified random sampling approach was successful in partitioning the 

watershed and still locating sensitive plants indicative of site enrichment. The mean and standard 

deviation of topographic metrics within each New Hampshire Natural Community type suggests 

topographic metrics were adequate predictors for high-elevation and flood-plain areas, but did 

not appear to be as distinct in mid-elevation, slightly sloping community types in well-drained 

soils. The results also suggest the sampling approach was successful in distributing plots across 

an array of soil and site conditions within and outside timber managed areas. The application of a 

stratified random sampling approach based on LiDAR-derived topographic metrics as SIE data 

inputs appear to be a valid method and valuable for future field campaigns, but more research is 

needed to better understand the next steps of TEUI across a landscape using topographic metrics 

as predictors. 

2.1 INTRODUCTION 

Over several decades, the US Forest Service has been working on completing Ecological 

Landtype (ELT) and Landtype Phase (ELTp) mapping in the Eastern United States. ELT and 

ELTp classification and mapping rely heavily on field data for concept building (ecological type 

creation) and ecological unit delineation and verification. However, traditional mapping 

techniques are time-consuming and costly.  Due to limited budgets and personnel, progress 

toward completing the mapping has diminished over time. National Forest System lands 

managed by the U.S. Forest Service need to complete ecological inventories in a shorter time 
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frame so that land managers can incorporate ecological information in developing and assessing 

management alternatives (USDA, 2005).  

Traditional mapping techniques use aerial photos and widely available yet coarse-resolution 

topographic data combined with a transect-based sampling field campaign to manually delineate 

units. In 2008, a new effort to use Light Detection and Ranging (LiDAR) to increase inventory 

efficiency and accuracy of topographic-derived data were explored by the White Mountain 

National Forest (WMNF). Lefsky et al. (2002) defined LiDAR, as “a remote sensing technology 

that promises to both increase the accuracy of biophysical measurements and extend spatial 

analysis into the third (z) dimension (i.e., elevation)”. High-resolution topographic data and 

estimates of vegetation height, cover, and canopy structure can be made by LiDAR sensors as 

laser beams intercept the forest canopy. Moreover, this technology advances our mapping efforts 

by making topography more distinct and visible, thus increasing our capabilities of 

understanding the total environment (Lefsky et al., 2002). Indeed, the potential exists that our 

TEUI efforts could benefit greatly by employing LiDAR technology (Lefsky et al, 2002).  

More recently, the Soil Inference Engine was created by the Natural Resource Conservation 

Service (NRCS) to increase efficiencies in predicting soil types using LiDAR-derived terrain 

products, called topographic metrics. The Soil Inference Engine (SIE) was first used in 2008 to 

predict soil types in Essex, VT (Mckay, 2008). The SIE is an expert knowledge-based inference 

model designed for creating soil maps under degrees of truth (fuzzy logic) using remotely sensed 

data (Mckay, 2008). Parent material is the primary predictor of soil type used in the SIE, but 

must be manually delineated by the knowledge expert in contrast to other model variables 

derived from LiDAR. Based on field inventory plot information, the concept of “fuzzy” soil 
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classification assigns degrees of membership values for different soil types to each location 

(McKay, 2008). In 2008, results from two watersheds in Essex, VT yielded a 74 and 89% 

accuracy rate in predicting soil series and drainage classes using an independent validation 

across the watershed (McKay, 2008). In the second validation watershed, the SIE predictions 

yielded a 71 and 90% accuracy rate. The results were based on a soil parent material of basal till 

and three soil series consisting of Cabot, Colonel, and Dixfield (McKay, 2008). 

Therefore, the objective of this chapter was to create and assess the application of stratified 

random sampling using LiDAR-derived topographic metrics as Soil Inference Engine data inputs 

to design an ELT/ELTp field campaign.   

2.2 METHODS 

2.2.1 Study Area  

The White Mountain National Forest (WMNF) covers approximately 800,000 acres located in 

north-central New Hampshire and adjacent western Maine. This study was centered on the Upper 

Wild Ammonoosuc watershed, a single 17,010 acre watershed in the western New Hampshire 

portion of the WMNF. The Upper Wild Ammonoosuc watershed (Wammo) was selected 

because it encompasses most forest types and soils found within the WMNF. Here, the US Forest 

Service owns 16,245 acres, with the remaining acreage being privately owned. The Wammo 

watershed has an elevation gradient ranging from 336 to 1,462 meters. Dominant vegetation 

types include northern hardwood, spruce-fir, and mixed-species forests (McNab & Avers, 1994). 

Annual precipitation averages 90-180 cm and total annual snowfall ranges from 250-400 cm 

(McNab & Avers, 1994). The soils tend to be Spodosols, spanning the suborders of Aquods 
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(wet), Cryods (cold), Humods (high organic matter), and Orthods (ordinary spodosols) (USDA, 

2006).   

Figure 2.1: Inset map a) shows the White Mountain National Forest (WMNF) external 

boundaries in gray within the Northeastern U.S. as well as the location of the Wammo study area 

within the WMNF marked by a five point star. Map b) shows a 1 meter shaded relief map derived 

from LiDAR within the 17,010 acre Wammo watershed. Inset map c) also shows a 1 meter 

shaded relief map within the Wammo watershed at a finer scale to highlight the differences in 

roughness used to delineate parent material. 
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2.2.2 LiDAR Acquisition 

In 2010, for this study, the WMNF contracted Photo Science, Inc. to acquire LiDAR for the 

western third of the WMNF in New Hampshire. The primary acquisition requirements were: 1) 

1-meter nominal spacing and 2) leaf-off conditions. Photo Science subsequently acquired the 

desired data on November 2010 and April 2012 for the Wammo study area, during conditions 

with no snow and stream flows at or below normal levels. The WMNF LiDAR acquisition were 

planned most efficiently at 1,158 meters AGL using 30% overlap using a GEMINI Airborne 

Laser Terrain Mapper (ALTM) sensor. The scan frequency was 49.3 Hz and a total scan angle of 

27 degrees (+13.5 and -13.5 degrees from NADIR). This resulted in a planned resolution of 

0.548 per meter across and along track for average point spacing of 3 points per square meter.  

The altitude and pulse rates were selected due to the point spacing results working around the 

atmospheric constraints of the laser. These settings provide a system vertical accuracy of better 

than 18 cm. Final accuracy was improved with QC ground control points being used to remove 

any vertical bias. Each LiDAR LAS file (per tile) produced by Photo Science was in both 

LAS1.2 format using Point Record Format #1, with POSIX time stamps and ASCII (x,y,z) 

format and included first return, last return, and one or more intermediate returns. Each return 

contained information regarding X, Y, and Z locations, return number, classification, GPS time 

and intensity. 

Although the WMNF LiDAR acquisition project was designed to map existing vegetation, the 

LiDAR acquisition specifications selected were the minimum specifications necessary to achieve 

the desired results. Cost of LiDAR acquisition prohibited obtaining a higher number of points 
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per return. The cost of the LiDAR specified for this acquisition was $2.00 an acre. A higher 

point-per-square-meter resolution would have doubled the cost. In addition, the drastic 

differences in terrain across a range of flood plains, moderate to steep slopes, and across an 

elevation gradient of approximately 1,100 meters was also limiting and contributed to increased 

costs. Figure 2.2 shows the flight pattern needed in order to gain the specified LiDAR 

specifications of 3 points/m2. 
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Figure 2.2: The LiDAR flight paths on November 2010 and April 2012 are depicted in red, blue, 

and green lines representing the different transects needed to achieve a standardized resolution 

across the western portion of the WMNF. The Upper Wild Ammonoosuc watershed (Wammo) 

study area is depicted with a black outline. 

 

LiDAR flights are generally flown in a straight back-and-forth motion to save costs in fuel and 

plane time, however the flight pattern in the Wammo acquisition was flown in multiple 

directions. This flight pattern was necessary due to the drastic differences in elevation as the 

capabilities of the plane were not able to compensate quickly enough to maintain data quality 

and safety of the crew. Drastic differences in elevation also contributed to the LiDAR acquisition 
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taking multiple years. The LiDAR acquisition costs were more than predicted because multiple 

plane and crew trips were needed to the project area at different times in the spring and fall to 

meet the specifications required of leaf off and snow free conditions due to the high elevation 

variability.  

2.2.3 Topographic Metrics 

LiDAR data can be derived or processed to provide accurate measurements of important 

landscape features or attributes that drive potential natural vegetation, such as elevation, aspect, 

and slope. These landscape features can serve as proxies for various soil and hydrologic 

properties that can also drive potential natural vegetation. For example, while working in a New 

York forest, Gauch and Stone (1979) identified moisture gradients as a primary vegetation 

driver, therefore a proxy for surficial wetness would be beneficial for identifying other 

mechanisms influencing vegetation. Seibert et al. (2007) researching boreal forests in Sweden 

reported correlations between topographic indices such as topographic wetness index (TWI) and 

soil characteristics such as pH. Therefore, topographic metrics were created from LiDAR-

derived digital elevation models (DEMs) as the inputs in the SIE to stratify the Wammo study 

area. The topographic metrics used for the Wammo study area were derived from LiDAR 

included elevation, aspect, slope, and topographic wetness computed in ArcGIS© (ArcMap, 

version 10.3) software. A 1-meter DEM was created from only LiDAR ground returns, 

coarsened to 5 meter through mean cell aggregation and filled using an algorithm that maintains 

the downslope gradient (Wang and Liu, 2006). A DEM resolution of 5 meter was selected 

because it was shown to strongly correlate with ground water fluctuations and land survey 

measurements (Gillin et al., 2015). Slope was calculated using maximum slope algorithm (Travis 
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et al., 1975). Topographic wetness index (TWI) (Beven and Kirkby, 1979) was calculated with 

the upslope accumulated area (UAA) computed from a multiple flow direction algorithm and 

slope. 

2.2.4 Soil Inference Engine 

The Soil Inference Engine (SIE) is an expert user knowledge-based inference model using 

remotely sensed data such as LiDAR, designed for creating soil raster maps by looking at the 

range of soil characteristics across a landscape (Shi, 2013). Soil types for each location have a 

range of characteristics for soil classification and the SIE performs the soil predictions based on 

the range of characteristics across a landscape (McKay, 2008). The values are meant to represent 

the similarities of a given soil to those soil types (Shi, 2013). Rule-based reasoning is used by the 

SIE to calculate the ranges of the characteristic membership values and represent the similarities 

of a given soil to be predicted to those soil types defined (Shi, 2013).  

The primary input variable in the SIE process for the Wammo study area was the areal extent of 

six different parent material types (Table 2.1). Parent material was defined according to NRCS 

(Schoeneberger, 2012) and delineated by NRCS personnel using visual interpretation of 1-meter 

LiDAR-derived shaded relief maps combined with field verification. The high-resolution shaded 

relief maps enable the expert soil scientist to distinguish a transition in parent material by a 

change in roughness on Earth’s bare surface. For example, bedrock-controlled soils were very 

rough based on the shaded relief map, whereas ablation and basal till commonly have a relatively 

smooth surface signature (McKay, 2008). Each topographic metric was then reclassified into 

groups as the additional SIE variable inputs based on ranges most commonly associated with soil 

types within each parent material. For example, slope was classified into six groups representing 
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0-8%, 9-15%, 16-35%, 36-60%, and greater than 60%. A total of 189 plots were randomly 

generated within strata and a total of 11 strata (Table 2.1) consisting of slope and drainage class 

were used across the Wammo study area. The field campaign took place over two years where a 

total of 88 plots were completed in 2013 and a total of 99 plots were completed in 2014. 

2.2.5 Management Areas 

The 2005 WMNF Management Plan split the Wammo watershed into different management 

areas consisting of timber treatment areas, alpine area, snowmobile recreation, and non-

snowmobile recreation (USDA, 2005). Since this project was designed for the WMNF, a higher 

number of plots was located in highly managed timber areas (135 plots) rather than non-timber 

managed (54 plots). The purpose of the increased number of plots in these areas was also to 

capture any differences the SIE model may have missed. The timber managed area, including 

inholdings, consisted of 10,688 acres and the unmanaged timber areas consisted of 6,322 acres. 

2.2.6 Stratified Random Sampling 

Stratified random sampling was selected for distributing ELT plots across the Wammo. This 

method of sampling has been shown to reduce overall soil prediction error since points are 

uniformly allocated over the study area proportional to the distribution of soil type (Hengl et al., 

2003). The topographic metrics that correspond to important environmental variables driving 

vegetation patterns in the WMNF included elevation, slope, aspect, topographic wetness, and 

parent material. Previous studies have shown that using a stratified random sampling rather than 

simple random sampling can result in a greater number of presences and a higher accuracy of 
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future model predictions (Guisan et al., 2006). It has been shown using a stratified random 

sampling reduces costs and improves accuracy (Guisan et al., 2006). 

2.2.7 Stratified Plots by LiDAR-derived Classes 

A total of 189 plots were randomly generated within strata and 172 plots had both vegetation and 

soils information recorded (Figure 2.3). All strata based on slope and drainage were first 

partitioned based on parent material (Table 2.1). In addition, there were at least 8 plots per strata 

and strata were further divided by timber and non-timber managed areas. For example, this 

resulted in 63 plots in timber managed areas and 12 plots in non-timber managed areas within 

basal till. There were at least 10 plots per parent material and more than 12 plots in both timber 

and non-timber managed areas.  

2.2.8 Site Information 

Once plots were randomly stratified using SIE, the plots were located on the ground using a 

Trimble Pro XH GPS receiver and the plot center was monumented with a buried magnet. This 

monumented location became the actual plot location and may differ slightly from the original 

UTM coordinates due to small GPS errors. The Trimble Pro XH receiver GPS was located over 

the monument and began collecting approximately 900 points per location to achieve accuracy. 

Continuously Operating Reference Station (CORS) data from the National Geodetic Survey and 

Trimble Pathfinder software were later used to obtain approximately 1-2 meter horizontal 

precision of plot center after differential corrections. If the specified UTM coordinate fell within 

open water, or a location that was determined to be physically unsafe (e.g., in a road, on a cellar 

hole), or in a location where mechanical disturbance had substantially modified the natural soils 

(e.g., old road, landing), then the plot center and the monuments were displaced by 5 meters in a 
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random direction until the sample point was not in the previous feature and determined safe to 

work. 

Plot information was typed into a Panasonic Toughbook to ensure data recording was efficient 

and accurate. Information collected included the plot number, soil type, and UTM coordinates as 

well as the names of field crew, date of sampling and the general plot location information (e.g., 

landmarks, routes,). Any visual evidence of disturbance such as recent logging, skid trails, fresh 

stumps, decayed stumps, stone walls, and windthrow were also noted. General conditions 

surrounding the plots were taken, including site homogeneity, any departures in overall 

vegetation structure/composition and their approximate distance/direction, apparent landform, 

and other peculiarities. Finally, the community vegetation type based on the New Hampshire 

Natural Community key was visually evaluated and recorded in the field (Sperduto and Kimball, 

2011).   

2.2.9 Vegetation and Soil Sampling Protocol 

The overstory composition and structure were measured including on all woody stems greater 

than 2.5 cm diameter at breast height (DBH). Woody stems less than 2.5 cm DBH or shorter than 

breast height, and all herbaceous species, were treated as understory species. For all living and 

dead woody stems of 2.5 cm DBH or greater within the appropriate size/distance relationship, 

the DBH, distance from plot center, bearing from plot center, species, decay status, and cavity 

presence were recorded. Woody stems within a 4.23 meter fixed radius were recorded if stems 

measured between 2.5 cm and 12.6 cm DBH. Woody stems within a 10 meter fixed radius were 

recorded if stems measured greater than 12.7 cm. Tree height measurements were recorded based 

on a metric BAF 2.25 m2/ha (using Spiegel-relascope, 1.5 bars) for all trees found with a metric 



40 

 

BAF 4 m2/ha (using Spiegel-relascope, 2 bars). Total height of the trees based on the tallest tree 

element (live or dead) as well as height to base of crown (live trees only) was recorded. Crown 

radius toward the plot center, and away from the plot center (live trees only) were also recorded. 

The understory composition and structure were captured using a 10meter fixed radius plot. The 

scientific name along with the plant type code and sociability code (Sperduto and Kimball, 2011) 

were also recorded.  Ocular estimate of maximum height was recorded, to nearest 0.5 meter if 

less than 2 meters and to the nearest meter if taller than 2 meters and ocular estimate of percent 

cover.  

One soil pit was dug per plot location and located within the plot. A full soil profile was 

characterized per NRCS standards. The NRCS standards include describing and sampling soil 

profiles based on genetic horizons and Munsell color, texture, structure, moist consistence, 

presence of redoximorphic features, rooting density, and coarse fragment content 

(Schoeneberger, 2012). Soil samples for chemical analysis were collected from the pit profile by 

the height of the horizon and width of the pit including the first 10 cm of the Oa horizon, the first 

10 cm of the B horizon and the first 10 cm of the C horizon.   

All soil samples were then air-dried, sieved to remove particles >2 mm, homogenized and split to 

generate a subsample for chemical analysis. Samples were measured for pH in 0.01 mol/L CaCl2 

(Robarge and Fernandez, 1987). All samples were analyzed for carbon and nitrogen on a CN 

elemental analyzer (CE-Elantech Thermo FlashEA 1112 Series NC Soil Analyzer) using 

pulverized subsamples. Soil standards obtained from the North American Proficiency Testing 

program were used to standardize the instrument. Exchangeable cations were measured in an 

extract obtained from a mechanical vacuum extractor using 1 M NH4OAc buffered at pH 4.8. 
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Cation concentrations were measured with an Agilent inductively coupled plasma spectrometer 

(Agilent Technologies 700 Series ICP-OES) at the US Forest Service laboratory in Durham, NH. 

Reference samples of Oa and Bs horizons from Vermont were included in all analytical streams 

and yielded values of C, N, pH, and exchangeable cations comparable to the median values 

reported in an interlaboratory study (Ross et al., 2015).  

2.2.10 Descriptive Summaries 

Descriptive summaries partitioned by indicator species and NH Natural Community Types, mean 

and standard deviation, were calculated based on the plot locations extracted from the two 

dimensional topographic metric data to determine how plots distributed across strata (Table 2.1) 

as stated by the TEUI Tech Guide (Winthers et al., 2005). In addition, mean and standard 

deviation topographic metric values based on the 12 sensitive indicator species listed by NH 

Natural Community type (Sperduto and Engstrom, 1995), NH Natural Community Types, and 

soil series are reported. Sensitive indicator species can be useful when trying to type out natural 

communities as that indicator species will be only found in that given natural vegetation 

community. In the case of the 12 sensitive indicator species assessed in this study, they are all 

indicators of enriched sites important to the WMNF from a forest management perspective 

(Sperduto and Kimball, 2011).   

2.3 RESULTS 

2.3.1 Indicator species and NH Heritage Community Types by Topographic metrics 

There were 252 understory species recorded across the 172 plots and 15 total NH Heritage 

Community Types were identified. Sperduto and Engstrom (1995) identified 12 sensitive 

understory indicator species for the WMNF and 10 of those indicator species were found in a 
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total of 28 plots across the Wammo watershed. Table 2.2 shows the number of plots by sensitive 

indicator understory species (six letter species code) along with the number of plots that were in 

timber managed or non-timber managed areas. The following 10 sensitive understory indicator 

species were indicators of enriched sites: Botrychium virginianum (rattlesnake fern), Aralia 

racemosa (spikenard), Carex plantaginea (plantain-leaved sedge), Carex leptonervia (snake 

root), Carex laxiflora (lax sedge), Caulophyllum thalictroides (blue cohosh), Laportea 

canadensis (wood-nettle), Osmorhiza claytonii (sweet cicely), Solidago flexicaulis (zig-zag 

goldenrod), Viola pubescens (downy yellow violet) (Sperduto and Engstrom, 1995).
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Table 2.1: The acres and proportion of the watershed covered by topographic metric classes (slope and wetness) and parent material 

as well as the number of plots in each category based on timber managed and non-timber managed areas within the Wammo.

Strata 

Managed 

(acres) 

Unmanaged 

(acres) Total 

Proportion of watershed 

(%) 

n 

(managed) 

n 

(unmanaged) 

0-8% Slope 1373.6 95.3 1468.9 8.6% 27 10 

9-15% Slope 2247.8 261.5 2509.3 14.8% 24 9 

16-35% Slope 4391.1 2050.3 6441.4 37.9% 33 17 

36-60% Slope 1142.0 1156.0 2298.0 13.5% 13 5 

> 60% Slope 506.0 207.2 713.2 4.2% 7 6 

Wet 116.7 222.3 339.0 2.0% 5 9 

Dry 905.3 2324.8 3230.0 19.0% 18 6 

Parent material 

Managed 

(acres) 

Unmanaged 

(acres) Total 

Proportion of watershed 

(%) 

n 

(managed) 

n 

(unmanaged) 

ATI 3100.8 314.8 3415.6 20.1% 28 13 

ATI_ALL/Outwash 878.3 40.2 918.5 5.4% 20 9 

BTI 3908.4 378.7 4287.2 25.2% 63 12 

BDR_4 1944.0 1096.8 3040.8 17.9% 4 1 

BDR_5 762.1 4098.9 4861.0 28.6% 16 23 

ORM 93.2 18.7 111.9 0.7% 0 0 

Total 10686.7 5948.2 16634.9 131 58 
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Figure 2.3: The Wild Ammonoosuc (Wammo) watershed is outlined in black with the different 

parent material types represented by associated colors (on left). Wammo watershed also outlined 

in black with different stratified classes derived from LiDAR and the Soil Inference Engine 

represented by different colors (on right). 

Table 2.2 also shows the mean and standard deviation of the topographic metric values of the 

elevation, aspect, slope and wetness (if the species occurred more than once) of each. 6 of the 

total 28 plots had more than one sensitive understory indicator species occur in the same plot. 

Only 4 plots that had any of these indicator species were within the non-timber managed areas. 
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Table 2.2: Mean and standard deviation by indicator species and New Hampshire Heritage Community type of elevation (m), aspect 

(degrees), slope (%), and topographic wetness index (TWI) calculated from a 5 meter LiDAR-derived DEM.  

Indicator species n (managed) n (unmanaged) Elevation (SD) Aspect (SD) Slope (SD) TWI (SD) 

ARARAC 2 1 552.3 (51.4) 302 (27.2) 0.12 (0.03) 9.5 (0.7) 

BOTVIR 1 0 408.9 31.3 0.12 6.5 

CARPLA 2 0 364.7 (11.0) 184.7 (131.6) 0.1 (0.07) 8.6 (1.0) 

CARLEP 5 3 650.8 (68.5) 151.7 (110.5) 0.2 (0.12) 9 (1.6) 

CARLAX 1 0 611.1 306.3 0.18 7 

CAUTHA 2 0 381.3 (27.6) 42.1 (10.9) 0.14 (0.03) 8 (1.6) 

LAPCAN 5 0 427.2 (66.6) 109.9 (82.5) 0.12 (0.07) 7.4 (1.5) 

OSMCLA 4 1 551.7 (83.6) 192.3 (142.0) 0.14 (0.04) 8.2 (1.2) 

SOLFLE 10 0 480.3 (115.8) 183.1 (134.8) 0.11 (0.06) 9.3 (1.1) 

VIOPUB 3 0 379.4 (22.7) 133.5 (129.5) 0.11 (0.06) 7.8 (1.3) 

Heritage codes n (managed) n (unmanaged) Elevation (SD) Aspect (SD) Slope (SD) TWI (SD) 

26A 2 2 582.6 (15.4) 88.4 (35.4) 0.18 (0.13) 6.5 (0.4) 

26B 1 0 399.7 162.7 0.15 9 

28A 2 3 627.5 (121.3) 144.3 (71.2) 0.07 (0.05) 9.7 (2.0) 

29A 0 6 1,055.50 (123.4) 235.7 (140.7) 0.25 (0.09) 7.1 (1.2) 

29B 1 13 877.2 (67.0) 242.6 (93.7) 0.33 (0.17) 7.8 (1.6) 

37A 4 7 663.5 (109.4) 223.3 (115.7) 0.27 (0.13) 8 (1.7) 

37B 14 0 515.5 (125.8 198 (119.7) 0.21 (0.17) 8.2 (1.8) 

41A 7 2 504.5 (62.2) 199.9 (111.0) 0.16 (0.14) 7.1 (1.2) 

43A 2 0 523.4 (99.7) 258.8 (36.8) 0.17 (0.08) 7.4 (1.1) 

43B 46 18 579.5 (86.0) 189.8 (112.8) 0.21 (0.14) 7.8 (1.9) 

4A 4 0 462.4 (81.5) 207.6 (122.3) 0.14 (0.13) 8 (1.1) 

4B 21 1 526.5 (86.2) 208.2 (98.1) 0.15 (0.06) 8.7 (1.2) 

52A wetlands 0 1 721.9 298.2 0.11 9.2 

54B wetlands 1 0 400.4 188.3 0.06 7.1 

6A wetlands 5 0 380.4 (12.7) 30.8 (26.5) 0.04 (0.02) 9.7 (0.5) 
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Table 2.3: Mean and standard deviation by soil series, as determined by the soil pit description, of elevation (m), aspect (degrees), 

slope (%), and topographic wetness index (TWI) calculated from a 5 meter LiDAR-derived DEM. 

Soil series 
n 

(managed) 

n 

(unmanaged) 
Elevation (SD) Aspect (SD) Slope (SD) TWI (SD) 

Abram 2 1 621.0 203.0 181.5 111.4 0.24 0.10 7.3 1.5 

Adirondack 22 5 550.5 95.2 186.2 93.9 0.18 0.12 7.6 1.3 

Alluvium 3 0 461.9 127.7 219.3 179.1 0.06 0.04 8.0 0.8 

Berkshire 2 3 799.4 172.0 285.2 24.2 0.45 0.08 7.9 1.3 

Cabot 4 0 508.9 45.7 166.7 94.5 0.05 0.02 11.3 1.5 

Colluvium 0 3 678.2 34.9 183.7 174.0 0.46 0.06 7.8 1.8 

Colonel 14 3 588.8 77.3 252.4 84.4 0.19 0.12 7.7 1.6 

Danforth 2 5 591.6 102.5 186.6 112.1 0.34 0.17 7.5 0.9 

Dixfield 22 3 571.5 76.4 172.7 129.8 0.25 0.14 7.1 1.3 

Dixmont 2 0 452.5 48.5 192.6 222.2 0.16 0.01 6.8 0.9 

Glebe 0 1 936.3 24.5 0.04 6.1 

Houghtonville 1 0 691.2 305.0 0.40 7.7 

Knob 0 1 817.1 156.8 216.1 123.3 0.40 0.33 6.6 2.7 

Lombard 1 0 714.1 129.5 0.21 9.0 

Londonderry 0 1 1032.3 21.6 0.35 5.5 

Lyman 4 2 721.4 81.7 225.6 98.3 0.24 0.15 7.7 2.7 

Lyme 5 0 389.9 20.1 118.1 113.9 0.02 0.02 8.3 0.4 

Madawaska 3 0 382.3 12.5 23.0 32.3 0.04 0.02 7.5 0.7 

Mahoosuc 1 2 904.3 286.7 142.0 96.5 0.29 0.13 9.3 2.5 

Marlow 1 0 592.3 204.3 0.06 9.2 

Monadnock 2 1 507.6 92.3 220.9 154.5 0.11 0.08 7.4 1.4 

Moosilauke 0 1 678.9 282.4 0.10 12.2 

Pillsbury 0 1 718.9 29.4 0.13 5.7 
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Rawsonville 0 1 601.3 274.0 0.54 7.4 

Rockrift 0 1 598.4 82.6 0.14 10.9 

Roundabout 1 0 379.5 14.2 0.06 7.1 

Rumney 1 0 366.8 65.2 0.02 8.4 

Saddleback 0 1 901.6 299.8 0.37 7.7 

Skerry 2 0 397.6 62.1 186.3 188.4 0.14 0.04 9.0 0.8 

Stratton 1 1 931.4 399.0 224.5 167.0 0.22 0.09 7.3 2.0 

Sunapee 11 11 568.1 124.3 167.4 113.4 0.16 0.10 7.5 1.9 

Tunbridge 3 1 656.0 173.2 120.2 128.7 0.20 0.08 8.0 1.9 

Wilmington 14 3 535.0 75.8 210.4 109.3 0.14 0.12 9.3 2.3 

Wonsqueak 0 1 721.9 298.2 0.11 9.2 
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Table 2.2 also shows the 15 NH Heritage Community codes based on types (Sperduto and 

Kimball, 2011) recorded in the study area along with indication of whether it was located in the 

timber managed or non-timber managed plot. The mean and standard deviation of each 

topographic metric, including elevation, aspect, slope and wetness (if the species occurred more 

than once) is also listed by NH Heritage Community code.  

2.3.3 Soil Series by Topographic metrics 

Although the goal for ecological classification is to map by soil variables rather than by soil 

series, it is still worthwhile knowing how the series align themselves by topographic metric used 

to stratify plots to determine the best method for prediction soils. Table 2.3 shows the soil series 

as identified by NRCS by topographic metric and if the soil occurred in a managed timber plot or 

non-timber managed plot. The top three soil series, all basal till soils but differing in drainage, 

occurring at the most plots were Adirondack, Dixfield, and Colonel.  

2.4 DISCUSSION 

The objective of this chapter was to create and assess the application of stratified random 

sampling using LiDAR-derived topographic metrics as Soil Inference Engine (SIE) data inputs to 

design an ELT/ELTp field campaign. The results presented in Table 2.1 support the TEUI 

requirement that plots be well distributed across environmental gradients. Since the accuracy of 

the SIE relies so heavily on parent material, even distribution of plots within each parent material 

was crucial in designing this field sampling campaign. The results shown in Table 2.2 support 

the stratified random sampling approach as successful in locating sensitive indicator species. 

Because the goal of ecological classification is to aid decision makers in making sound forest 

management decisions, it was important to know if strata derived from topographic metrics as 
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inputs in the SIE model captured indicator plant species of enrichment. Although only 4 of the 

28 plots had sensitive indicator species in unmanaged areas, the environmental conditions of the 

unmanaged area may not contain ideal stand conditions to support sensitive species. For 

example, the areal extent of the unmanaged areas starts at mid elevation ranges to the top of the 

Mt. Moosilauke. The presence of sensitive species in 24 plots within the managed areas suggests 

the past management history did not disturb the conditions necessary to support indicator 

species. However, because those 24 plots have been actively managed, it is possible the 

overstory is not representative of the understory lending to the importance of collecting both 

vegetation layers when mapping.  

In addition, the results presented in Table 2.2 regarding the mean and standard deviation of 

topographic metrics within each New Hampshire Heritage type (Sperduto and Kimball, 2011) 

suggest topographic metrics were adequate predictors for high-elevation and flood-plain areas. 

For example, “High-elevation balsam fir forest” (29A, Sperduto and Kimball, 2011) typically 

occurs at higher elevations up to the krummholz area and is very prone to windthrow. This 

community type had a mean elevation of 1,055 meters (a standard deviation of 123.4) and the 

mean slope was 25% (a standard deviation of 0.1). This community type is usually found at high 

elevations with steep slopes. The topographic metrics descriptive summaries successfully 

represents those conditions.  

On the other hand, there were 5 plots “Balsam fir floodplain/silt plain wetland” NH Natural 

Community type (6A, Sperduto and Kimball, 2011). This community type typically has balsam 

fir with red-maple and forms a forested zone above flooded areas. This community type had a 

mean elevation derived from the LiDAR consisting of 380 meters (a standard deviation of 12.7), 

a 4% slope (a standard deviation of 0.02), and a wetness index of 9.7 (a standard deviation of 



50 

 

0.5). This is also consistent with the general landscape conditions used to describe the ideal 

condition for this community type.  

However, the descriptive summaries for mid-elevation, slightly sloping community types in 

well-drained soils did not appear to be as distinct based on topographic metrics. These include 

combinations of “Northern hardwood-spruce-fir forest” (26A, Sperduto and Kimball, 2011) 

typically found on basal till or rocky soils, “Hemlock-oak -northern hardwood forest” (41A, 

Sperduto and Kimball, 2011) found on rocky slopes and till soils up to elevation of 610 meters 

and “Sugar maple-beech-yellow birch forest” (43B, Sperduto and Kimball, 2011) found on 

ablation tills below 760 meters. All community types resulted in mean elevations of 582.6, 

504.5, and 579.5 respectively. Further analysis is needed to determine if, based on topographic 

metrics, there are enough differences in those community types to accurately delineate those 

units. 

The results presented in Table 2.3 suggest the stratified random sampling approach as successful 

in distributing plots based on soil series in terms of timber managed areas verses non-timber 

managed areas. For example, Dixfield and Colonel were two of the three basal till parent 

material soils series McKay (2008) concentrated on when validating the SIE model in Essex, VT. 

In addition, the Wonsqueak series, a wetland soil, was located in one non-timber managed area at 

an elevation of 722 meters, an aspect of 298 degrees, a mean slope of 11%, and a wetness value 

of 9.2. This type of plot should not be managed for timber because it is too wet for mechanized 

operation. In another example, the Madawaska series, a moderately well drained outwash soil, 

was recorded in three timber managed plots at an elevation of 382 meters (standard deviation of 

12.5), aspect of 23 degrees (standard deviation of 32), a mean slope of 36% (standard deviation 

of 0.02), and a wetness index of 7.5 (standard deviation of 0.7). This type of plot can be managed 
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for timber because elevation and wetness are appropriate for mechanized operation. Limitations 

need to be placed on this analysis as it only looks at timber managed plots versus unmanaged for 

timber plots and does not look at the vegetation for correlation with the series.  

2.5 CONCLUSIONS 

LiDAR-derived topographic metrics as SIE data inputs appears to be a valid method for stratified 

random sampling for ecological classification. However, more work is needed to further refine 

the inventory and vegetation analysis to increase the boundary accuracy of ecological units. One 

way to do this would be to automate the parent material delineations to ensure delineation is 

accurate. Currently, this process still requires expert soil knowledge to delineate, however if the 

process were to become automated, the delineation accuracy might increase or decrease the cost. 

More analysis is also needed between the understory species and the overstory species in the 

timber managed areas to identify which components of the overstory may be in a state of 

transition compared to the understory. It may be possible given the age of the overstory, in the 

non-managed timber areas (last managed around the turn of the 20th century), the overstory and 

understory could both be representative of the climax species at which point there may be other 

predictors that could improve accuracy and time. Finally, more study is needed to evaluate if 

there are more indicator species to assist community typing. In this study, only 12 understory 

sensitive indicator species for enriched sites were selected as defined by Sperduto and Kimball, 

(2011), however there may be additional sensitive indicator species available for classification 

and ELT/ELTp delineation. 
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CHAPTER 3 

ASSESSING UNDERSTORY SPECIES RELATIONSHIPS WITH SOIL PROPERTIES AND 

TOPOGRAPHIC METRICS USING NONMETRIC MULTIDIMENSIONAL SCALING 

ABSTRACT 

Land managers need terrestrial ecological unit inventory (TEUI) products to assess and describe 

resource conditions, vegetation conditions, outcomes resulting from various management 

prescription scenarios, and communicate environmental effects of land management planning 

alternatives. The U.S. Forest Service approach to ecological classification relies heavily on field-

data collection and map-unit verification that is time-consuming and costly. The White Mountain 

National Forest (WMNF) covers approximately 800,000 acres located in north-central New 

Hampshire and adjacent western Maine has not completed ecological classification at the scale 

required by the National TEUI guidelines (Winthers et al. 2005). However, recent research 

suggests that remotely sensed data, such as LiDAR, can be important predictors of both 

vegetation and soil properties. Therefore, the objective of this chapter was to assess soil 

properties and topographic metrics (e.g., slope, aspect, elevation and wetness) derived from 

LiDAR as predictors of understory species presence across a 17,010 acre watershed in western 

New Hampshire using multivariate statistical analysis. Specifically, the project area concentrated 

on a single watershed called the Upper Wild Ammonoosuc (Wammo) in the western portion of 

the White Mountain National Forest (WMNF). A total of 189 plots were randomly generated 

within strata, parent material and topographic metrics using a stratified random sampling 

approach. One hundred and seventy two of those plots had both vegetation and soils information 

recorded. The presence of 252 understory vegetation species were also recorded across the 172 

plots and a total of 15 NH Natural Community types were identified. The understory vegetation 
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presence were used to analyze the significance of environmental gradients on vegetation since 

the study watershed had intense land disturbances potentially influencing the overstory species to 

a state not representative of potential natural vegetation. Sperduto and Engstrom (1995) 

identified 12 sensitive indicator understory species across the WMNF and 10 of those species 

were found in 28 of the 172 plots across the Wammo watershed. Nonmetric multidimensional 

scaling (NMDS) was used to investigate the soil properties and topographic metrics as 

environmental gradients associated with understory species in ordination space. NMDS 

ordination explained 81.1% of the cumulative variation of understory species presence in three 

dimensions using soil properties and topographic metrics with a final stress value of 17.3 and a 

p-value of 0.04. NMDS results suggested that understory species clustered distinctly within New 

Hampshire Natural Community types. These results suggest that LiDAR-derived topographic 

metrics and availability of soil nutrients could assist in determining where community types are 

positioned across a landscape. Additional NMDS analysis also showed either soil chemistry (Ca, 

C, and Al) or topographic metrics explained nearly equal amounts of cumulative understory 

species variation. The results from this study highlight the use of LiDAR-derived topographic 

metrics as predictors of understory vegetation and likely community types which could be 

validated in other WMNF watersheds.  

3.1 Introduction 

Ecosystems are the place where organisms and the environment interact in the three-dimensional 

space of Earth (Rowe, 1980). Tansley (1935) introduced the term ecosystem by describing how 

ecological systems are composed of multiple abiotic and biotic factors (Major, 1969). The 

ecosystem concept is a holistic framework that combines the biological and physical worlds in 

order to describe, evaluate, and manage the system (Rowe, 1992). Energy, moisture, nutrients, 
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and disturbance gradients are the primary regulators of ecosystem structure and function 

(Cleland et al., 1997). Multiple environmental and biological factors influence these gradients, 

including climate, geology, soils, flora, fire, and wind, while varying at different spatial and 

temporal scales (Cleland et al., 1997).  

Forest vegetation is complex and reflects the abiotic and biotic relationships across time and 

space (Winthers et al., 2005). These relationships are less obvious as humans continue to 

manipulate vegetation (Winthers et al., 2005). The core components of vegetation dynamics 

include historic vegetation, disturbance regimes, existing vegetation, and potential natural 

vegetation and are important for understanding vegetation patterns and processes at different 

spatial and temporal scales. (Winthers et al., 2005). The core components are also essential for 

ecosystem management, particularly for preparing desired future conditions, silvicultural 

prescriptions, and ecological restoration plans (Winthers et al., 2005). Existing vegetation 

information alone cannot answer important questions about successional trajectories based on 

historical range of characteristics as responses to management actions (Brohman et al., 2005).  

These questions can only be considered by combining information about potential natural 

vegetation and existing vegetation (Brohman et al., 2005). An existing vegetation classification 

only represents a single point in time whereas the current plant community reflects the history of 

a site (Brohman et al., 2005). Because of these disturbance factors, existing vegetation often does 

not represent the potential natural vegetation under current environmental conditions (Brohman 

et al., 2005). Vegetation on similar sites after a disturbance can move toward multiple possible 

future conditions (Winthers et al., 2005). Potential natural vegetation can be used to describe the 

land’s capability to support specific vegetative ecosystems and can be evaluated in the context of 

existing and historic vegetation (Winthers et al., 2005). In addition, potential natural vegetation 
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can be viewed as a more permanent feature of the landscape than existing vegetation (Winthers 

et al., 2005). However, understory vegetation is able to withstand past disturbances (e.g. timber 

harvesting) on the landscape whereas the overstory vegetation often reflects these past 

disturbances (Gilliam, 2007). In forest ecosystems, structure and function can be determined 

significantly by understory vegetation (Gilliam, 2007). In this chapter, understory vegetation 

presence was used to analyze the significance of environmental gradients on vegetation since the 

study watershed had intense land disturbances potentially influencing the overstory species to a 

state not representative of potential natural vegetation.  

More recent approaches to ecological classification use biophysical variables where both 

biological and physical chemical criteria are evaluated (Leak, 1982). Habitat types described on 

the basis of vegetation, soils, and glacial deposit fit the biophysical approach (Mueller-Dombois, 

1965). For example, Leak (1982) delineated ecological units at Bartlett Experimental Forest 

(BEF) in the central portion of the White Mountain National Forest (WMNF) using biological, 

physical, and chemical conditions. Although vegetation across the White Mountain National 

Forest can be highly varied, Leak (1982) suggests that this variation can be explained with 

climate and the mineralogy of the parent material. In the Leak (1982) approach to delineating 

units, habitats tend to be small from a few to greater than 40 hectares within a given climatic 

mineralogical zone and supporting a distinct vegetation growing on a specific soil type.  

The approach explored at BEF is very similar to the U.S. Forest Service Ecological Land Type 

phase (ELTp) approach to ecological classification. The most detailed type of ecological unit 

classification is an ELTp and requires ecological types based on physiographic and vegetation 

data collected through field inventory. Ecological type classification requires analysis and 

description of relationships among potential natural vegetation (PNV), soils, local climate or 
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microclimate, geomorphology, surficial geology, bedrock geology, and/or hydrology (Winthers 

et al., 2005). The ecological type classification analysis is completed using plot inventory data, 

site level transect observations, and environmental data (Winthers et al., 2005). These final map 

units are then used in planning and conducting sustainable forestry operations. 

It is most beneficial to overlay existing vegetation maps on ecological units generated by TEUI 

for the purposes of making sound land management decisions (Brohman et al., 2005). Existing 

vegetation classification maps describe current vegetation composition, structure, and patterns. 

However, TEUI provides ecological type classifications and defines land units, including the 

vegetation responses to disturbance processes and land use based on potential natural vegetation 

and physical site characteristics (Brohman et al., 2005).  

Land managers are able to evaluate ecological conditions when existing vegetation classification 

maps are combined with ecological type classifications and ecological unit maps to select 

appropriate land management practices based on ecosystem capability. Plot data is the basic 

premise underlying vegetation classification used to describe and recognize classifications 

(Jennings et al., 2004). Therefore, the objective of this chapter was to assess soil properties 

measured in the field and topographic metrics (e.g., slope, aspect, elevation and wetness) derived 

from LiDAR as predictors of understory species presence across a 17,010 acre watershed in 

western New Hampshire using multivariate statistical analysis.  
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3.2 Methods 

3.2.1 Study site 

The White Mountain National Forest (WMNF) covers approximately 800,000 acres located in 

north-central New Hampshire and adjacent western Maine shown (Figure 3.1). Specifically, the 

study area consisted of a single 17,010 acre watershed in the western New Hampshire portion of 

the WMNF called the Upper Wild Ammonoosuc (Wammo). The Wammo watershed was chosen 

because the WMNF had acquired LiDAR for the entire watershed by 2012 and the WMNF owns 

16,245 acres of the watershed. The Wammo is also representative of most forest cover types, 

soils, and elevation gradients present within WMNF (McNab and Avers, 1994). The remaining 

765 acres of private land in Wammo were not included in the plot inventory conducted in this 

project. 
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Figure 3.1: Inset map a) shows the White Mountain National Forest (WMNF) external 

boundaries in gray within the Northeastern US as well as the location of the Wammo study area 

marked by a five point star. Map b) shows a 1 meter shaded relief map derived from LiDAR 

within the 17,010 acre Wammo watershed. Inset map c) also shows a 1 meter shaded relief map 

within the Wammo watershed at a finer scale to highlight the notable differences in roughness. 

The Wammo has an elevation gradient of 336 to 1,462 meters. Dominant vegetation types 

include northern hardwood, spruce-fir, and mixed-species forests (McNab and Avers, 1994). 

Annual precipitation averages 90-180 cm and total annual snowfall ranges from 250-400 cm 

(McNab and Avers, 1994). The soils tend to be Spodosols and are of the suborder either of 
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Aquods (wet), Cryod (cold), Humods (high organic matter), and Orthods (ordinary spodosols) 

(USDA, 2006). A NH Heritage code (Sperduto and Kimball, 2011) was assigned in the field to 

plots during data collection.  

3.2.2 Sample design 

Stratified random sampling was selected for distributing inventory plots across the Wammo. This 

method of sampling has been shown to reduce overall prediction error as points are uniformly 

allocated over the study area proportional to the distribution of soil types (Hengl et al., 2003). 

The topographic metrics that correspond to the important environmental variables driving 

vegetation patterns in the WMNF were used. It has also been reported that using a stratified 

random sampling approach can reduce costs and improves accuracy (Guisan et al., 2006). A total 

of 189 plots were randomly generated within strata based on parent material and topographic 

metrics (Figure 3.2). One hundred and seventy two of those plots had both vegetation and soils 

information recorded. All strata based on slope and drainage were first partitioned based on 

parent material. In addition, there were at least 8 plots per strata and strata were further divided 

by timber managed areas and non-timber managed areas. For example, this resulted in 63 plots in 

timber managed areas and 12 plots in non-timber managed areas within the basal till parent 

material.  There were at least 10 plots per parent material and more than 12 plots in both timber 

and non-timber managed areas. 

3.2.3 Understory Sampling Protocol 

The understory composition and structure were captured using a 10-meter radius plot. The 

scientific name along with the plant type code and sociability code (Sperduto and Kimball, 2011) 

were also captured.   
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Figure 3.2: The Wild Ammonoosuc (Wammo) watershed is outlined in black with the different 

parent material types represented by associated colors (on left). Wammo watershed also outlined 

in black with different stratified classes derived from LiDAR and the Soil Inference Engine 

represented by different colors (on right). 

Ocular estimate of maximum height was recorded, to nearest 0.5 m if less than 2 m and to 

nearest meter if taller than 2 m and ocular estimate of percent cover, by the following categories, 

separately for 0-0.5m and 0.5m-5m. There were 252 understory species recorded across the 172 

plots and 15 total NH Natural Communities were identified. Sperduto and Engstrom (1995) 

identified 12 sensitive indicator understory species that are important to locate across the WMNF 
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and 10 of those species were found in a total of 28 plots across the Wammo watershed. In 

addition, the use of significant indicator species has been shown to aid in evaluating nutrient 

status to reduce the need for intensive soil sampling and interpretation (Horsley et al., 2008). 

3.2.4 Soil Sampling and Chemistry 

A soil pit was dug per field plot location and located within the plot. A full soil profile was 

characterized per NRCS standards. The NRCS standards include describing and sampling soil 

profiles based on genetic horizons and Munsell color, texture, structure, moist consistence, 

presence of redoximorphic features, rooting density, and coarse fragment content 

(Schoeneberger, 2012). Soil samples for chemistry analysis were collected from around the pit 

including the first 10 cm of the Oa horizon, the first 10 cm of the B horizon and the first 10 cm 

of the C horizon.  

All soil samples were then air-dried, sieved to remove particles >2 mm, homogenized and split to 

generate a subsample for chemical analysis. Samples were measured for pH in 0.01 mol/L CaCl2 

(Robarge and Fernandez, 1987). All samples were analyzed for carbon and nitrogen on a CN 

elemental analyzer (CE-Elantech Thermo FlashEA 1112 Series NC Soil Analyzer) using 

pulverized subsamples. Soil standards obtained from the North American Proficiency Testing 

program were used to standardize the instrument. Exchangeable cations were measured in an 

extract obtained from a mechanical vacuum extractor using 1 M NH4OAc buffered at pH 4.8. 

Cation concentrations were measured with an Agilent inductively coupled plasma spectrometer 

(Agilent Technologies 700 Series ICP-OES) at the US Forest Service laboratory in Durham, NH. 

Reference samples of Oa and Bs horizons from Vermont were included in all analytical streams 
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and yielded values of C, N, pH, and exchangeable cations comparable to the median values 

reported in an interlaboratory study (Ross et al., 2015). 

3.2.5 Topographic Metrics 

A 1 meter DEM was created from only LiDAR ground returns, coarsened to 5 meter through 

mean cell aggregation and filled using an algorithm that maintains the downslope gradient 

(Wang and Liu, 2006). A DEM resolution of 5 meter was selected because it was shown to 

strongly correlate with ground water fluctuations and land survey measurements (Gillin et al., 

2015). Slope was calculated using maximum slope algorithm (Travis et al., 1975). Topographic 

wetness index (TWI) (Beven and Kirkby, 1979) was calculated with the upslope accumulated 

area (UAA) computed from a multiple flow direction algorithm and slope. 

3.2.6 Statistical Analysis: NMDS 

Nonmetric multidimensional scaling (NMDS) ordination (Kruskal, 1964) was used to investigate 

the relationship between soil properties and topographic metrics as environmental gradients 

associated with understory species. NMDS analysis works well with highly variable data to 

reveal significant relationships because NMDS avoids the assumption of linear relationships 

among variables (McCune et al., 2002). NMDS uses ranked distances to better align the 

relationship between distances measured in ordination space to distances in environmental space 

and is often the preferred method for ecological analyses (McCune et al., 2002). PC-ORD 

version 6.01 was used to calculate the ordinations based on the Wammo watershed understory 

species and environmental matrices (McCune and Mefford 2011). A binary presence–absence 

species matrix contained all species that were present in 172 plots which was a total of 252 

species. An environmental matrix included variables of soil horizon thicknesses, soil chemistry, 
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redox depth, elevation, slope, aspect, profile, and wetness index. To determine the appropriate 

number of dimensions needed, initial runs of NMDS in ‘‘autopilot’’ mode were used and three 

axes were chosen (McCune et al., 2002).  “Clarke” stress values for ecological community data 

typically have values between 10 and 20 when successful (McCune et al., 2002). After the 

analysis was completed, a convex hull was used to display NH Natural Community types 

(Sperduto and Kimball, 2011) and parent material to assess whether understory species clustered 

within either categorical variables. 

3.3 RESULTS 

NMDS ordination explained 81.1% of the cumulative variation of understory species using soil 

chemistry and topographic metrics on three axes with a final stress value of 17.3 and a p-value of 

0.04. 48.4% of variability was associated with axis 1 where elevation (r=0.646), pH (r=0.497) 

and carbon concentration (C) in the Oa horizon (r=0.483) were the strongest environmental 

variables correlated (Pearson) with understory vegetation (Table 3.1). Other variables strongly 

associated with axis1 were slope and nitrogen concentration (N) in the Oa horizon, exchangeable 

calcium concentration (Ca) in the B horizon, and the measured thickness of either the Oa or E 

horizons (Table 3.1). Understory species strongly positively correlated with axis 1 (Table 3.2) 

were hardwood species sugar maple (Acer saccharum, r=0.632), white ash (Fraxinus Americana, 

r=0.616) and beech (Fagus, r=0.532). Axes 2 accounted for 19.2 % of the variability. TWI had 

the strongest relationship (r=0.317) on Axis 2 followed by redox depth (r=0.209). Understory 

species strongly positively correlated with axis 2 were North American balsam fir (Abies 

balsamea, r = 0.493) and New England sedge (Carex novae angliae) (r=0.445). Axis 3 

accounted for 13.1 % of the variability. N in the C horizon (r=0.333) and elevation (r=0.374) 

showed the strongest relationship to Axis 3 while C in the C horizon (r=0.289) and aluminum 
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(Al) in the B horizon (r=0.261) showed weaker influence. Understory species strongly positively 

correlated with axis 3 were northern beech fern (Phegopteris connectilis, r=0.458) and northern 

woodsorrel (Oxalis montana) (r=0.442). After the analysis was completed, the convex hulls 

associated with NH Natural Community types were displayed to assess whether understory 

species clustered within community types (Figure 3.3).  

 

Table 3.1 Topographic Metrics and soil chemistry analyzed showing strongest correlations 

(Pearson) to understory species. 

 
Variable Axis 1 Axis 2 Axis 3 

Oa horizon C -0.483 0.145 0.214 

Oa horizon N -0.436 0.197 0.116 

Oa horizon pH 0.497 -0.05 -0.053 

Oa horizon Ca 0.106 0.168 0.127 

B horizon Al -0.14 0.041 0.261 

B horizon Ca 0.321 -0.028 -0.027 

C horizon C -0.196 -0.119 -0.289 

C horizon N -0.14 -0.126 -0.333 

C horizon Al -0.205 0.049 -0.206 

C horizon Mn 0.029 -0.179 -0.107 

Redox depth -0.113 0.209 0.092 

Oa thickness -0.397 -0.029 0.051 

E thickness -0.306 -0.147 0.002 

TWI  0.264 -0.317 -0.213 

Aspect  0.006 0.168 -0.12 

Slope  -0.376 0.148 -0.125 

Profile  -0.072 0.183 0.245 

TPI (5m) -0.013 0.111 0.234 

Elevation (m) -0.646 -0.156 -0.374 
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Figure 3.3: The soil and topographic metric variables are illustrated as lines in the ordination graphics, the direction of each line 

indicating the direction of gradient and the length indicating the strength of the correlation between variable, ordination and axis. 
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Figure 3.4: The soil and topographic metric variables are illustrated as lines in the ordination graphics, the direction of each line 

indicating the direction of gradient and the length indicating the strength of the correlation between variable, ordination and axis. 
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Table 3.2: NMDS results for correlations with the understory vegetation, with a three-

dimensional ordination. Correlations are listed by r-values. Species are indicated by a 6 letter 

codes that corresponds to the first 3 letters of the genus and first 3 letters of the species. 

Scientific name and common name are shown too.  (Appendix 1). 

Species Scientific name Common name Axis 1 Axis 2 Axis 3 

ABIBAL Abies balsamea fir -0.358 0.493 0.071 

ACEPEN Acer pensylvanicum stripe maple 0.403 -0.162 0.114 

ACERUB Acer rubrum Red maple 0.245 0.187 0.515 

ACESAC Acer saccharum Sugar maple 0.632 -0.135 -0.047 

ARITRI Arisaema triphyllum Jack in the pulpit 0.487 0.055 -0.097 

ATHANG Athyrium angustum northern lady fern 0.414 0.186 -0.321 

CARNOV Carex novae angliae New England sedge 0.121 0.445 0.161 

COPTRI Coptis trifolia gold thread -0.17 0.422 0.159 

CORCAN Cornus canadensis dogwood -0.103 0.427 0.241 

DIPDIG Diphasiastrum digitatum fan clubmoss 0.143 0.084 0.313 

FAGGRA Fagus grandifolia beech 0.532 -0.364 0.133 

FRAAME Fraxinus americana ash 0.616 -0.078 0.204 

HUPLUC Huperzia lucidala shining fir moss 0.093 -0.427 -0.305 

LYCDEN 

Lycopodium 

dendroideum tree ground pine 0.131 0.083 0.352 

LYCHIC Lycopodium hickeyi 

Hickey's tree club-

moss 0.093 -0.041 0.323 

MEDVIR Medeola virginiana Indian cucumber-root 0.22 -0.375 0.177 

ONOSEN Onoclea sensibilis sensitive fern 0.413 0.168 -0.19 

OXAMON Oxalis montana mountain woodsorrel -0.135 0.078 -0.442 

PHECON Phegopteris connectilis long beech fern 0.178 0.162 -0.458 

SPIALB Spiraea alba white meadowsweet 0.266 0.493 0.26 

THENOV 

Thelypteris 

noveboracensis New York fern 0.453 0.12 -0.292 

TIACOR Tiarella cordifolia foamflower 0.494 0.166 -0.306 

UVUSES Uvularia sessilifolia wild oats 0.565 -0.183 -0.053 

VIOBLA Viola blanda sweet white violet 0.482 -0.128 -0.09 

VIOROT Viola rotundifolia violet 0.405 -0.252 -0.295 
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3.4 DISCUSSION  

The NH Natural Community types appeared to create distinct understory groups and contain 

understory species within those groups consistent with the NH Natural Community type 

definition. The pH of Oa horizon suggested a correlation with rich mesic and a semi-rich mesic 

forests. Based on existing knowledge of forest communities we would expect to have higher soil 

Oa pH versus the other direction in NMDS showing a high-elevation spruce or high-elevation 

balsam fir forest. The results also suggests TWI increases when redox depth is shallower. This is 

consistent with our understanding of redox depth as indication of water tables and higher TWI 

values would suggest surficial flowpath is more saturated. The NDMS results suggest TWI was 

greater with a Balsam fir floodpain/silt plain and a lowland spruce-fir forest rather than the redox 

depth occurring much lower in the soil profile of a hemlock-oak-northern hardwood forest. 

These species groupings are consistent with the NMDS results suggesting TWI was wetter and 

redox was higher in the profile within a Balsam fir floodpain/silt plain and a lowland spruce-fir 

forest. 

The opposite was suggested for a hemlock-oak-northern hardwood forest where redox depth was 

lower in the soil profile and low TWI values indicates the site should be drier. In addition, the 

results suggested an elevation gradient that correlates well with the NH Natural Community 

groupings of high elevation spruce-fir forest and balsam fir forest. This is also consistent with 

Lee et al. (2005) results conducted on transects on the WMNF. It can also be suggested that an 

increase in elevation may result in soil Oa pH decrease. Although NH Natural Community 

groupings were distinct in the NMDS results for a few community types, there were several 

community types that had overlapping convex hulls. These overlapping community type convex 

hulls suggest that understory species in mid-elevation community types were not necessarily 
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found together on a plot-level basis in the study watershed. Therefore, some other classification 

of understory species might be better suited for the understory species in this watershed. 

NMDS results showed elevation, profile curvature, slope, aspect, and topographic wetness values 

derived from LiDAR correlated significantly to understory species. This suggests LiDAR-

derived topographic metrics may be successful for predicting and locating ecological units based 

on the convex hulls displaying NH Natural Community types. However, the results also show 

physical and chemical soil properties explain significant understory species variation. In this 

study, physical and chemical soil properties were measured in the field, however more study 

needs to evaluate if soil properties can be modeled using topographic metrics (Fraser, 2019). 

Previous research at Hubbard Brook Experimental Forest in the WMNF, 16 kilometers southeast 

of Wammo watershed, had success predicting soils based on horizon sequences using LiDAR-

derived topographic metrics (Gillin et al., 2015).   

Finally, convex hulls were used to delineate parent material type associated by plot to assess 

whether understory species were correlated with parent material. The distribution of understory 

species in ordination space did not appear to cluster by parent material (Schoeneberger, 2012). 

The convex hulls of parent material were not distinct groups, whereas with the NH Natural 

Community types appeared to be more distinct. Lee et al. (2005), however, found elevation and 

parent material, grouped based on nutrient content, had strong influences to vegetation.   

3.5 CONCLUSIONS 

This study demonstrates the potential use of understory species as an indicator of ecological 

classification in the Wammo watershed. NMDS results also demonstrated LiDAR-derived 

topographic metrics and soil properties are important factors in explaining understory species 
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variation. In addition, topographic metrics are potentially important predictors of NH Natural 

Community types. This conclusion was based on the apparent clustering of understory vegetation 

species (252 species) within NH Natural Community types. Parent material appeared to have 

little influence with understory species. Further research is needed to evaluate the use LiDAR-

derived topographic metrics as model predictors for soil properties and ecological classification 

across Wammo and subsequently the WMNF.  
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CHAPTER 4 

BUDGET COMPARISON OF TRADITIONAL ECOLOGICAL CLASSIFICATION TO 

STRATIFIED RANDOM APPROACH USING LiDAR AND SIE 

 

ABSTRACT 

Land managers need accurate ecological information to make sound decisions. Terrestrial 

Ecological Unit Inventory (TEUI) is a taxonomic land survey system that produces natural 

resource information that is a fundamental component of ecosystem management useful for 

forest planning by the U.S. Forest Service. The current cost of TEUI classification and mapping, 

however, is prohibitive based on current Forest Service TEUI requirements and budgets. New 

methods to complete TEUI classification and mapping used stratified random sampling based on 

LiDAR-derived topographic metrics rather than the traditional mapping transects to achieve the 

results at a reduced cost. The objectives of this chapter were to assess the cost of ecological 

classification by traditional methods outlined by the TEUI Inventory Manual compared to new 

methods based on stratified random sampling using LiDAR-derived topographic metrics. 

Traditional TEUI ecological mapping would require 630 plots across the study area compared to 

189 plots used for stratified random sampling using LiDAR-derived topographic metrics across a 

17,010 acre study watershed in the western portion of the White Mountain National Forest 

(WMNF). The number of plots calculated for stratified random sampling was predominately 

determined by the number of strata, the acres of timber-managed areas, and budget. In both 

approaches, the mapping of the plots averaged approximately $989.00 per plot including soil 

chemistry analysis from U.S. Forest Service Laboratory. This yielded a total cost of 

approximately $623,000 for the traditional TEUI inventory and mapping compared to 

approximately $187,000 for stratified random sampling using LiDAR-derived topographic 
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metrics. However, LiDAR technology is necessary to obtain results using the stratified random 

sampling approach. This technology comes at a cost of approximate $2.00 per acre for 1-meter 

nominal spacing with an average point spacing of 3 points per square meter, totaling 

approximately $34,000 across the 17,010 acre study watershed. The total cost to conduct the 

TEUI traditional method of mapping would have been approximately $623,000 in the study area, 

while the total cost to conduct stratified random sampling with additional LiDAR acquisition 

was approximately $221,000 across the study area. This chapter showed that stratified random 

sampling using LiDAR-derived topographic metrics costs approximately $402,000 less, 

including the additional LiDAR acquisition costs, than the traditional TEUI mapping approach. 

The advantages of stratified random sampling to establish ecological plots using LiDAR-derived 

topographic metrics establishes the possibility for the U.S. Forest Service to map ecological units 

at a feasible cost based on current budgets while increasing efficiency.  

4.1 INTRODUCTION 

Terrestrial Ecological Unit Inventory (TEUI) is a taxonomic land survey system that produces 

natural resource information implemented that is both a fundamental component of ecosystem 

management useful for forest planning by the US Forest Service (Winthers et al., 2005). The 

(TEUI) approach classifies and maps ecosystems based on biotic and abiotic factors that 

comprise the physical environment. Land managers should combine the existing vegetation 

classification and TEUI protocols to support good land management decisions (Brohman et al., 

2005). Currently vegetation composition, structure, and patterns are the basis for existing 

vegetation classification maps (Brohman et al., 2005). In contrast, TEUI provides ecological 

classifications and defines land units by assessing the ecosystems response to disturbance 
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processes and land management activities based on potential natural vegetation and physical site 

characteristics (Brohman et al., 2005). 

Describing successional relationships and dynamics is an important component for predicting 

vegetation responses to various management scenarios or natural disturbance regimes (Brohman, 

et al., 2005). This requires describing and classifying the plant communities associated with an 

ecological type (Brohman et al., 2005). The Ecological Land Type Phase (ELTp) level is the 

most detailed of the classification of ecological units requiring ecological types of physiographic 

variables and vegetation data.  Ecological type classification requires analysis and description of 

relationships among potential natural vegetation (PNV), soils, local climate or microclimate, 

geomorphology, surficial geology, bedrock geology, and/or hydrology (Winthers et al., 2005). 

This approach requires analysis on plot inventory data, site level transect observations, and 

environmental data (Winthers et al., 2005). The TEUI spatial unit delineation techniques 

typically use transect base field campaigns either by aerial photos and topographic maps or 

spatial data combined with Geographic Information Systems (GIS). Both approaches are 

inherently time consuming, field intensive, and require a large budget. Therefore, there is a 

significant need across the U.S. Forest Service for forest land management planning to develop 

more consistent, rapid, and cost-effective methods to delineate ecological Land Type Phase 

(ELTp) map units.  

The TEUI Technical Guide (Winthers et al., 2005) outlined the requirement to interpret aerial 

photos for landform designation. This method has been used for decades by U.S. Forest Service, 

however there are challenges and problems when applying it across large survey areas. Gathering 

and viewing hundreds of photographs is both time consuming and the resolution of those 

photographs are not sufficient in areas of very dense vegetation. This method requires an expert 
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observer to visually interpret photos which can lead to bias between users resulting in differing 

and contradiction delineation results. Finally, the traditional TEUI method requires a user to first 

draw proposed polygons on a photo and then later digitize them into spatial data to be used in a 

digital Geographic Information Systems program which can also contribute to inaccuracy results. 

The TEUI Geospatial Toolkit (Toolkit), an ArcGIS tool, assists users in mapping and analyzing 

landscapes using geospatial data (USFS GTAC, 2008). The Toolkit allows the user to use 

geospatial data through Geographic Information Systems (GIS) to improve both mapping and 

landscape analysis. It also reduces the time required when using aerial photos. Data typically 

needed for use in the Toolkit include environmental and terrain layers such as soils, digital 

elevation models (DEMs), potential natural vegetation (PNV), and timber information. However 

it should be noted, widely available U.S. Geological Survey DEMs have a 10 meter spatial 

resolution. In comparison, LiDAR-derived DEMs often have a 1 meter resolution. Most U.S. 

Forest Service national forests have soil series maps produced by Natural Resource Conservation 

Service (NRCS), however the soil maps were generally produced in the 1960-1980s when 

surveys used aerial photographs and then digitized for GIS use. There are a number of U.S. 

Forest Service national forests across the country without a formal soil survey, including the 

White Mountain National Forest (WMNF). Because the WMNF did not have a soil survey, a 

hybrid system of ecological classification consisting of Ecological Land Types (ELT) was 

completed in the1970-1980s. The WMNF ELT map, used a combination of soil parent material 

and plot inventory data, along with hand drawn unit delineations, on black and white aerial 

imagery from 1956. The traditional plot inventory conducted in the 1970-1980s included 

transects and randomly generated field verifications. The ELT units were made digitally 

available in 2000 to land managers by digitizing the unit delineations in GIS. 
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Starting in the 1990s there was a large initiative in the U.S. Forest Service to map national forest 

landscapes using ecological classification. The WMNF was an early adopter of ecological 

classification as the 1986 Land Management Plan relied heavily on ecological units for land 

management planning. In 1990’s, there was a dedicated line budget item from the Washington 

Office Headquarters of the Forest Service (WO) that directed money to national forests to meet 

the proposed target of mapped TEUI acres. However, the national budget starting in 2000’s 

brought a change in land managers’ focus and direction. The budget line item and target number 

of TEUI acres mapped was no longer included in budget direction from the WO as a high 

priority and several U.S. Forest Service Regional Offices (RO), including the Northeastern U.S. 

(R9) followed that direction. The current leadership direction from R9 requires individual 

national forests to use limited discretionary funds or obtain outside partnerships for 

implementing TEUI initiatives. Yet, the need for high quality ecological data remains in order to 

achieve maximum accuracy and efficiency. 

In 2008, various new efforts to use Light Detection and Ranging (LiDAR) to increase efficiency 

and accuracy were explored by the WMNF. Ecosystem understanding has increased due to 

modeling and mapping made possible by LiDAR (Lefsky et al., 2002). Lefsky et al. (2002) 

LiDAR as “an alternative remote sensing technology that promises to both increase the accuracy 

of biophysical measurements and extend spatial analysis into the third (z) dimension (i.e., 

elevation)”. High-resolution topographic maps and estimates of vegetation height, cover, and 

canopy structure can be made by LiDAR sensors penetrating the tree canopies to reach the 

ground. These maps advanced ecological understanding by making topography more visible 

which has influences on the structure, composition, and function of forest systems (Lefsky et al., 

2002). 
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In 2012, a WMNF watershed study area in western New Hampshire called the Upper Wild 

Ammonoosuc (Wammo) was selected for study because it represented the full range of most 

forest types and soils found across the WMNF (Colter, 2019). Stratified random sampling was 

selected for distributing inventory plots across the Wammo because this method of sampling has 

been shown to reduce the overall prediction error since points are uniformly allocated over the 

study area proportional to the distribute plots (Hengl et al., 2003).  

The objective of this chapter was to compare the cost of completing an ecological inventory 

using a traditional mapping method as outlined by the TEUI Technical Guide to new approaches 

using stratified random sampling based on LiDAR-derived topographic metrics as inputs in the 

Soil Inference Engine (SIE). 

4.2 METHODS 

4.2.1 Study Site 

The White Mountain National Forest (WMNF) covers approximately 800,000 acres located in 

north-central New Hampshire and adjacent western Maine. Specifically, the study area for this 

project concentrated on a single 17,010 acre watershed in the western New Hampshire portion of 

the forest called the Upper Wild Ammonoosuc (Wammo) within the White Mountain National 

Forest (WMNF). The Wammo watershed has an elevation gradient of 336 to 1,462 meters. 

Dominant vegetation types include northern hardwood, spruce-fir, and mixed-species forests. 

Annual precipitation averages 90-180 cm and total annual snowfall ranges from 250-400 cm 

(McNab & Avers, 1994).  The soils tend to be Spodosols and are of the suborder of either 

Aquods (wet), Cryod (cold), Humods (high organic matter), and Orthods (ordinary spodosols) 

(USDA, 2006). 
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4.2.2 TEUI Inventory and Mapping by Traditional Methods 

Information for this chapter was obtained from the White Mountain National Forest Management 

Plans of 1986 and 2005, the current and past 20 years of national and R9 Forest Service budgets, 

as well as the past two decades of national and R9 land management objectives and reviewed for 

ecological classification. The Wammo study area was evaluated using traditional mapping 

methods outlined in the TEUI Technical Guide (Winthers et al. 2005) to estimate cost.  

In order to estimate an accurate budget for the traditional method of Ecological Land Type Phase 

(ELTp) inventory and mapping, the watershed was partitioned using the current Ecological Land 

Type (ELT) layer which includes 21 total mapped ELT’s (Figure 4.1). The TEUI Technical 

Guide manual requires a minimum of three transects across a proposed ELT with a minimum of 

10 plots per transect in order to achieve accurate results. It was assumed, since accurate 

traditional mapping costs for the WMNF were unavailable, the plot inventory costs would be the 

same as the stratified random sampling using LiDAR-derived topographic metrics as the same 

inventory of vegetation and soil were required. It was also assumed the analysis of using aerial 

photos or the TEUI tool kit would require roughly the same amount of time as the SIE modeling 

and parent material analysis needed in the stratified random sampling using LiDAR-derived 

topographic metrics approach for the Wammo study area.  
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Figure 4.1: Georeferenced hand drawn Traditional Ecological Land Type delineations 

completed in 1998 of the Wammo study area using black and white aerial imagery from 1956 (on 

left). Digitized hand drawn Ecological Land Type delineations depicted on 1 meter LiDAR-

derived shaded relief map (on right). 

 

4.2.3 TEUI Inventory and Mapping using Stratified Random Sampling 

Stratified random sampling was selected for distributing ELTp inventory plots across the 

Wammo study area. This method of sampling has been shown to reduce overall prediction error 

as points are uniformly allocated over the study area proportional to the distribution of plots 

(Hengl et al., 2003).  
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Figure 4.2: The Wild Ammonoosuc (Wammo) watershed is outlined in black with the different 

parent material types represented by associated colors (on left). Wammo watershed also outlined 

in black with different stratified classes derived from LiDAR and the Soil Inference Engine 

represented by different colors (on right). 

The topographic metrics that correspond to important environmental variables driving vegetation 

patterns in the WMNF were used in an effort to reduce costs and improve accuracy. A total of 

189 plots were randomly generated within strata. The number of plots calculated for stratified 

random sampling was predominately determined by the number of strata, the acres of timber-

managed areas, and budget. One hundred and seventy two plots had both vegetation and soils 
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information recorded (Figure 4.2). All strata based on slope and drainage were first partitioned 

based on parent material. In addition, there were at least 8 plots per strata and strata were further 

divided by timber managed areas and non-timber managed areas. For example, this resulted in 63 

plots in timber managed areas and 12 plots in non-timber managed areas within the till parent 

material basal till. There were at least 10 plots per parent material (except BDR4 and ORM) and 

more than 12 plots in both timber and non-timber managed areas. Natural Resource and 

Conservation Service (NRCS) assisted in processing the LiDAR, conducted the Soil Inference 

Engine (SIE) modeling development, documentation, parent material mapping and GIS analysis 

at an approximate cost of $16,000. 

4.2.4 Inventory Protocol Costs 

The plot protocol per the TEUI Technical Guide (Winthers et al. 2005) requires that site 

information, overstory composition, understory composition, and soil descriptions be recorded at 

each plot. The cost of each plot inventory within the Wammo watershed study area was 

approximately $989.00. The information recorded per plot included location of plot (Trimble Pro 

XH), plot center monumented with a magnet for future inventory purposes, date of sampling, and 

site information regarding disturbance. Recorded plot information also included general notes 

that described overall plot surroundings, indicated as homogenous or heterogeneous, any 

departures in overall vegetation structure/composition near plot, their approximate 

distance/direction, apparent landform, and any other information of interest. In addition, the 

community type from New Hampshire Natural Heritage Bureau, key to natural communities, 

was visually evaluated and recorded by the field technicians (Sperduto and Kimball, 2011).   
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The overstory composition and structure was measured based on all woody stems greater than 

2.5 cm diameter at breast height (DBH). Woody stems less than 2.5 cm DBH or shorter than 

breast height, and all herbaceous species, were treated as understory species. The understory 

composition and structure were recorded by the scientific name and captured using a 10 meter 

radius plot as a relevé. Ocular estimates of maximum height were recorded as well as ocular 

estimates of percent cover. In addition, a soil pit was dug at each field plot location and located 

within the plot. A full soil profile was characterized per NRCS standards. The NRCS standards 

include soil profile descriptions and samples based on genetic horizons and Munsell color 

(Schoeneberger, 2012). Soil samples for chemistry analysis included the first 10 cm of the Oa 

horizon, the first 10 cm of the B horizon and the first 10 cm of the C horizon. Field technicians 

later air-dried and sieved soil samples for lab analysis. Soil chemistry analysis, including pH, 

carbon, nitrogen, and cation concentrations, were also included in the $989.00 cost per plot. 

The field crews consisted of 3 groups because each group worked on a different time scale 

needed to collect different types of information. The first group collected the plot information, 

monumented the plot, measured the overstory, entered the plot data and processed the soil 

samples for lab analysis. This two person group was contracted to University of New Hampshire 

(UNH) at a cost of approximately $60,000. The second group consisted of a single contract 

botanist hired to record the understory and herbaceous layer at a cost of approximately $21,000. 

NRCS was tasked as the third group, with digging the soil pit, recording the profile and 

collecting the soil samples at an approximate cost of $60,000. The soil samples were then 

analyzed by the Northern Research Station’s soil lab in Durham, New Hampshire. This lab was 

selected instead of the NRCS soil lab in Lincoln, Nebraska because previous soils analyzed from 

the nearby Forest Service Hubbard Brook experimental forest were also analyzed by the Durham 
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lab. This decision for lab analysis not only maintained regional consistency, but also ensured 

future comparison of soils would be possible.  The cost of the lab analysis was approximately 

$30,000. 

For the Wammo study project, all overstory inventory data was recorded in a Panasonic 

Toughbook in the field. However, per plot cost estimates of $989.00 include time for data entry 

typically required because some of the soils plot information was recorded by hand and then 

entered digitally.  

4.3 RESULTS 

4.3.1 Traditional TEUI and Mapping Expenses 

Since the TEUI Technical Guide manual requires a minimum of three transects across a 

proposed ELT with a minimum of 10 plots per transect, this yielded a need for 630 plots across 

the 21 ELTs. Cost per plot was approximately $989.00 including plot location layout and soil lab 

analysis. Table 4.1 shows the total cost to conduct the traditional method of ELT mapping would 

have been approximately $623,000 for the total 630 required plots across the Wammo watershed. 

4.3.2 Stratified Random Sampling by LiDAR-derived Topographic Metrics 

The stratified random sampling using LiDAR-derived topographic metrics described in Table 1 

showed a need for 189 plots in the watershed at a cost of approximately $989.00 per plot 

including topographic metric analysis and soil lab analysis. This yields a total cost of 

approximately $187,000 for 189 plots in a 17,010 acre watershed.  However, LiDAR is needed 

in order to achieve these results at a cost of approximate $2.00 per acre for 1-meter nominal 

spacing with an average point spacing of 3 points per square meter.  The watershed was 17,010 
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acres at a cost of $2.00 acre for LiDAR, totaling approximately $34,000. The total cost to 

conduct the sampling if LiDAR is not already available using stratified Random Sampling based 

on LiDAR-derived topographic metrics was approximately $221,000 for a 17,010 watershed. 

Table 4.1: The number of plots needed, the cost per plot, LiDAR acquisition costs per acre, and 

the total cost between the two TEUI methods within the Wammo watershed. 

4.4 DISCUSSION 

Land managers need accurate ecological information to make sound decisions as well as map 

ecological classifications, however the cost of traditional mapping methods are prohibitive based 

on current U.S. Forest Service direction and budgets. The goal of using stratified random 

sampling based on LiDAR-derived topographic metrics was to achieve the results of traditional 

ecological mapping at a significantly lower cost. This results from this chapter showed that 

stratified random sampling using LiDAR-derived topographic metrics costs approximately 

$402,000 less, including the additional LiDAR acquisition costs, than the traditional TEUI 

approach. The advantages of stratified random sampling to establish plots for TEUI using 

LiDAR-derived topographic metrics establishes the possibility for the U.S. Forest Service to map 

ecological units at a feasible cost based on current budgets while increasing efficiency. 

TEUI Approach 

Number 

of plots 

Cost 

per plot Cost 

LiDAR 

per acre Total cost 

Traditional TEUI methods 630 $989.00 $623,000 $0.00 $623,000 

Stratified by LiDAR and SIE 189 $989.00 $187,000 $2.00 $221,000 



84 

However, designing a TEUI field campaign based on stratified random sampling using LiDAR-

derived topographic metrics may not be appropriate for every U.S. Forest Service National 

Forest. First, LiDAR data is necessary for this process. As described above, LiDAR acquisition 

would be approximately $0.50-$2.00 per acre depending on the location and the objectives of the 

LiDAR acquisition. LiDAR can be used for other applications such as previous land use history. 

For example, on the WMNF LiDAR was used to delineate the location of rock walls and cellar 

holes, which is required by the WMNF Forest Management Plan (USDA, 2005). There is also a 

cost associated with having GIS and remote sensing expertise to run SIE and process LiDAR 

compared to more traditional ways of TEUI work. This cost was included in the cost per plot in 

this study as those skills were already available and measurable. However, if the user does not 

possess those skills, or does not have the ability to acquire them, there could be a measurable 

cost increase with hiring or contracting for additional spatial data processing. 

Stratified random sampling based on LiDAR-derived topographic metrics was effective for the 

WMNF because traditional mapping methods were cost prohibitive. Additionally, LiDAR 

allowed for more accurate topographic maps and terrain derivatives of areas on the WMNF with 

significant elevation gradients compared to traditional methods using aerial photos. For 

geographical areas lacking steep elevation gradients or vegetation, the traditional mapping 

methods using the TEUI Tookit may be more cost effective.  

The WMNF is one of the few national forests without a NRCS soil map. This created a unique 

opportunity for the WMNF to take advantage of a national initiative for soils mapping, creating a 

partnership to share field costs with other agencies. In this project, NRCS shared the field costs 

for soil sampling and profile descriptions, while the WMNF covered the vegetation measurement 

costs and the soil chemistry analysis. However, the total cost of analysis for each agency was 
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shown in the cost per plot. Most national forests starting a TEUI project campaign would need to 

cover the costs for the soils collection or find partner agencies for cost-sharing.  Inventory and 

sampling of the remaining 783,000 acres of the WMNF is necessary to complete the TEUI 

mapping efforts and to determine whether similar results in cost-savings and accuracy can be 

reproduced or improved in other watershed areas. 

4.5. CONCLUSIONS 

The chapter concludes that stratified random sampling based on LiDAR-derived topographic 

metrics can reduce costs and increase efficiency for the U.S. Forest Service WMNF to map 

ecological units compared to the current traditional mapping methods. It is important for national 

forests seeking to start future TEUI projects to establish the objectives and the available 

resources before deciding if stratified random sampling best tool to use for TEUI mapping.   
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CHAPTER 5 

CONCLUSIONS 

5.1 INTRODUCTION 

Land managers need ecological classification to assess and describe resource conditions, 

vegetation conditions, outcomes resulting from various management prescription scenarios, and 

communicate environmental effects of land management planning alternatives. The U.S. Forest 

Service’s approach to ecological classification relies heavily on field data collection and 

verification of map unit delineations that is time-consuming and costly. However, there is a need 

to incorporate more ecological classification into the land management plans. Traditional 

mapping methods for ecological classification far exceed the capacity of the U.S. Forest 

Service’s current budget. In order to justify new ecological classification mapping approaches, 

there needs to be significant evidence that new approaches will reduce costs and improve 

efficiency. The results from chapter 2 illustrated stratified random sampling based on LiDAR-

derived topographic metrics as Soil Inference Engine data inputs was sufficient in capturing the 

environmental gradients required by the U.S. Forest Service ecological classification 

requirements. Additionally, 10 New Hampshire Natural sensitive indicator species were located 

and recorded in 16% of plots stratified by topographic metrics and parent material. This suggests 

and supports the new approach to ecological classification on the White Mountain National 

Forest (WMNF) as likely improving the accuracy and efficiency in delineating ecological units 

and locating the presence of nutrient rich areas. 

The results from nonmetric multidimensional scaling (NMDS) in chapter 3 showed how soil 

properties and topographic metrics as environmental gradients correlated with understory species 
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in ordination space. NMDS ordination explained 81.1% of the cumulative variation of understory 

species in three dimensions using soil properties and topographic metrics with a final stress value 

of 17.3 and a p-value of 0.04. NMDS results also suggested that understory species clustered 

distinctly within New Hampshire Natural Community types. These results support the idea that 

LiDAR-derived topographic metrics could assist in determining where community types are 

positioned across a landscape. Additional NMDS analysis also showed either soil chemistry or 

topographic metrics explained nearly equal amounts of cumulative understory species variation. 

The results from this objective highlights the use of topographic metrics as predictors of 

understory vegetation and likely community types which could be validated in other WMNF 

watersheds. 

Finally, the primary challenge for ecological classification is reducing the cost of traditional unit 

mapping. Therefore, chapter 4 was to compare the cost of completing an ecological survey under 

TEUI using the traditional method as outlined by the TEUI Technical Guide to new approaches 

using stratified random sampling based on LiDAR-derived topographic metrics as inputs in the 

Soil Inference Engine. In both approaches, the mapping of the plots averaged approximately 

$989.00 per plot including soil chemistry analysis from U.S. Forest Service Laboratory. This 

yielded a total cost of approximately $623,000 for the traditional TEUI efforts compared to 

approximately $221,000 including the LiDAR acquisition required for stratified random 

sampling using topographic metrics and parent material. This chapter showed that stratified 

random sampling using LiDAR-derived topographic metrics reduced costs by approximately 

$402,000, including the additional LiDAR acquisition costs, than the traditional TEUI approach.  
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5.2 BROADER IMPLICATIONS 

Additional research is needed to understand the application of stratified random sampling for the 

purposes of ELT/ELTp inventory and mapping across other WMNF watersheds. Since the 

results from chapter 2 suggested the stratified random sampling approach was successful in 

partitioning the watershed across significant environmental gradients and located sensitive 

indicator species of enrichment, it appears the same results would be achieved in other WMNF 

watersheds with similar soil types, elevation gradients, and forest cover types. The mean and 

standard deviation of topographic metrics within each New Hampshire Natural Community type 

suggests topographic metrics were adequate predictors for high-elevation and flood-plain areas 

but did not appear to be as distinct in mid-elevation, slightly sloping community types in well-

drained soils. The results also suggest the sampling approach was successful in distributing plots 

across numerous soil series within and outside timber managed areas. The methods presented in 

chapter 2 greatly improved the accuracy, efficiency, and geographic extent of applying stratified 

random sampling based on LiDAR-derived topographic metrics beyond the study area. Finally, 

the study design outlined in objective 1 can also serve the U.S. Forest Service in their efforts to 

create ecological classification maps across the Northeastern U.S.  

The results from chapter 3 warrant further investigation to evaluate the use of LiDAR-derived 

topographic metrics as model predictors for various soil properties and ecological classification 

across the Upper Wild Ammonoosuc (Wammo) watershed and subsequently the WMNF. NMDS 

results demonstrated LiDAR-derived topographic metrics and soil properties are important 

factors in explaining understory species variation. In addition, topographic metrics are 

potentially important predictors of NH Natural Community types. However, the results also 

show physical and chemical soil properties explain significant understory species variation. In 
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this study, physical and chemical soil properties were measured in the field, however more study 

needs to evaluate if soil properties can be modeled using topographic metrics. Previous research 

at Hubbard Brook Experimental Forest in the WMNF, 16 kilometers southeast of Wammo 

watershed, had success predicting soils based on horizon sequences using LiDAR-derived 

topographic metrics (Gillin et al., 2015). Additional research could use the Wammo watershed 

inventory soils data to assess the accuracy of predicting soils based on horizon sequences using 

topographic metrics. Finally, additional research is needed to evaluate how well understory 

species matches the overstory vegetation present to consider whether existing vegetation 

represents potential natural vegetation. 

Chapter 4 evaluated the new stratified random sampling approach in reducing costs for 

ecological classification compared to traditional mapping methods. Further investigations are 

warranted for U.S. Forest Service national forests seeking to start TEUI projects to establish the 

objectives and the available resources to determine if stratified random sampling and topographic 

metrics are the best tools to use for ecological mapping. As the WMNF continues ecological 

classification across the remaining 793,000 acres, it will be important to evaluate if the number 

of plots per watershed can be reduced from 172 using analysis of watersheds similar to Wammo 

watershed. Finally, additional LiDAR-derived topographic metrics may refine the inventory 

process, increase prediction accuracy, and ultimately reduce the cost of mapping ecological units 

even more.  
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