INVARIANT OPERATOR RANGES AND SIMILARITY DOMINANCE IN BANACH AND VON NEUMANN ALGEBRAS

BY

ALI ZARRINGHALAM

BS, Computer Engineering, Razi University, Kermanshah, Iran, 2011 Ms, Mathematics, UNH, 2019

DISSERTATION

Submitted to the University of New Hampshire
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy
in
Mathematics

ALL RIGHTS RESERVED
© 2019
Ali Zarringhalam

This dissertation has been examined and approved in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics by:

Thesis Advisor, Don Hadwin,
 Professor of Mathematics

Eric Nordgren,
Professor of Mathematics

Junhao Shen,
Professor of Mathematics,

Rita Hibschweiler,

Professor of Mathematics

Mehmet Orhon,

Professor of Mathematics
on 7/22/2019.

Original approval signatures are on file with the University of New Hampshire Graduate School.

This thesis dedicated to someone.

ACKNOWLEDGMENTS

I would like to thank the Department of Mathematics for supporting me throughout the course of my studies at UNH. Without Don's continuous guidance and encouragement this thesis would be impossible. I would like to thank Professor Rita Hibschweiler for working with me on my minor project and for her valuable comments on the presentation of this thesis.

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS v
ABSTRACT vii
CHAPTER

1. INTRODUCTION 1
1.1 Invariant Operator Ranges 1
1.2 Similarity Dominance 4
2. $\mathrm{ALGLAT}_{1 / 2}(T, \mathcal{M})$ 5
2.1 Preliminaries 5
2.2 Measurable cross-sections 6
2.3 Measurable Families 9
2.4 Direct Integrals 9
2.5 The Central Decomposition 17
2.6 Normal Operators in a Factor 18
2.7 Normal Operators in a type I_{n} von Neumann algebra 30
2.8 Normal Operators in an Arbitrary von Neumann Algebra on a Separable Hilbert Space 36
2.9 Some General Lemmas 39
3. SIMILARITY DOMINANCE 41
3.1 Preliminaries 41
3.2 Main Results 44
BIBLIOGRAPHY 59

ABSTRACT
 Invariant Operator Ranges and Similarity Dominance in Banach and von Neumann Algebras
 by

Ali Zarringhalam
University of New Hampshire, September, 2019

Suppose \mathcal{M} is a von Neumann algebra. An operator range in \mathcal{M} is the range of an operator in \mathcal{M}. When $\mathcal{M}=B(H)$, the algebra of operators on a Hilbert space H, \mathbf{R}. Douglas and C. Foiaş proved that if $S, T \in B(H)$, and T is not algebraic, and if S leaves invariant every T-invariant operator range, then $S=f(T)$ for some entire function f.

In the first part of this thesis, we prove versions of this result when $B(H)$ is replaced with a factor von Neumann algebra \mathcal{M} and T is normal. Then using the direct integral theory, we extend our result to an arbitrary von Neumann algebra.

In the second part of the thesis, we investigate the notion of similarity dominance. Suppose \mathcal{A} is a unital Banach algebra and $S, T \in \mathcal{A}$. We say that T sim-dominates S provided, for every $R>0$,

$$
\sup \left(\left\{\left\|A^{-1} S A\right\|: A \in \mathcal{A}, A \text { invertible, }\left\|A^{-1} T A\right\| \leq R\right\}\right)<\infty
$$

When \mathcal{A} is the algebra $B(H)$, J. B. Conway and D. Hadwin proved that T sim-dominates S implies $S=\varphi(T)$ for some entire function φ. We prove this for a large class of operators in a type III factor von Neumann algebra.

We also prove, for any unital Banach algebra \mathcal{A}, if T sim-dominates S, then S is in the approximate double commutant of T in \mathcal{A}.

Moreover, we prove that sim-domination is preserved under approximate similarity.

CHAPTER 1

INTRODUCTION

1.1 Invariant Operator Ranges

Suppose H is a Hilbert space and $B(H)$ is the set of (bounded, linear) operators on H. By an operator range we mean a linear subspace in H which is the range of some operator in $B(H)$.

In 1971 P.A. Fillmore and J. P. Williams [1] surveyed a number of foundational results on operator ranges. They began by various characterizations of operator ranges, proved a number of results around the notion of similar and unitarily equivalent operator ranges and discussed the consequences in the original context of similar and equivalent operators.

In 1972 C. Foiaş [2] studied operator ranges invariant under given algebras of operators. In particular, he proved a version of Burnside's theorem: If \mathcal{S} is a strongly (or weakly) closed unital subalgebra of $B(H)$, and $\{0\}, H$ are the only operator ranges invariant under \mathcal{S}, then $\mathcal{S}=B(H)$.

In 1979 E. Nordgren, M. Radjabalipour, H. Radjavi and P. Rosenthal [3] considered two general questions regarding operator ranges: (1) Given a lattice of operator ranges, what can be said about the operators leaving them invariant? (2) Given an algebra of operators, what can be said about its lattice of invariant operator ranges? They initiated the study of these problems by considering singly generated lattices and algebras and proved two amazing theorems. Suppose P is any operator in $B(H)$, and let $\mathcal{A}(P)$ be the algebra of operators leaving the range of P invariant. The first result is a structure theorem for the algebra $\mathcal{A}(P)$. It can be written as the sum of a certain algebra of upper triangular matrices and an algebra of lower triangular matrices relative to a decomposition of the space corresponding to certain spectral subspaces of P. Regarding the second question, they proved that every operator has an uncountable set of invariant operator ranges, any pair of which intersect only in $\{0\}$.

In 1976 R. G. Douglas and C. Foiaş [4] proved

Theorem 1.1.1. Suppose $S, T \in B(H)$, T is not algebraic (i.e., $p(T) \neq 0$ for every nonzero polynomial p), and S leaves invariant every T-invariant vector subspace of H. Then there is a polynomial p such that $S=p(T)$.

The second Douglas-Foiaş theorem is more surprising;

Theorem 1.1.2 (Douglas-Foiaş). If $S, T \in B(H)$, T is not algebraic, and S leaves invariant every T-invariant operator range, then there is an entire function $\varphi: \mathbb{C} \rightarrow \mathbb{C}$ such that $T=\varphi(S)$.

If $T \in B(H)$, we let $\operatorname{Lat}(T)$ denote the set of all T-invariant (closed linear) subspaces of H. We let $\operatorname{Lat}_{0}(T)$ denote the set of all T-invariant vector subspaces of H, and we let $\operatorname{Lat}_{1 / 2}(T)$ denote the set of all T-invariant operator ranges. If \mathcal{L} is a collection of vector subspaces of H, we define $\operatorname{Alg}(\mathcal{L})$ to be the set of all operators in $B(H)$ that leave all the elements of \mathcal{L} invariant. Thus the two Douglas-Foiaş theorems say that if $T \in B(H)$ and T is not algebraic, then

1. $\operatorname{AlgLat}_{0}(T)=\{p(T): p$ is a polynomial $\}$, and
2. $\operatorname{AlgLat}_{1 / 2}(T)=\{\varphi(T): \varphi$ is an entire function $\}$.

In [5] D. Hadwin gave a nearly linear-algebraic proof of the first Douglas-Foiaş theorem that holds in an arbitrary Banach space. Later, D. Hadwin and S.-C. Ong [6] used a result in [5] to give a generalization of the second Douglas-Foiaş theorem that was also almost purely algebraic. In both of these generalizations the assumption that $S \in B(H)$ was replaced with $S: H \rightarrow H$ is linear (although $S \in B(H)$ follows from the conclusions).

From this point onward, we will refer to the second Douglas-Foiaş theorem simply as the Douglas-Foiaş theorem.

In [11] J. B. Conway and D. Hadwin improved the Douglas-Foiaş theorem in terms of ranges of compact operators that intertwine positive multiples of the unilateral shift operator. They also
proved a version of the Douglas-Foiaş theorem for type I von Neumann algebras. If \mathcal{M} is a von Neumann algebra and $T \in \mathcal{M}$ we define

$$
\operatorname{Lat}_{1 / 2}(T, \mathcal{M})
$$

to be the set of all ranges of operators in \mathcal{M} that are T-invariant, and we define

$$
\operatorname{AlgLat}_{1 / 2}(T, \mathcal{M})=\left\{S \in \mathcal{M}: \operatorname{Lat}_{1 / 2}(T, \mathcal{M}) \subset \operatorname{Lat}_{1 / 2}(S, \mathcal{M})\right\}
$$

We denote the center of \mathcal{M} by $\mathcal{Z}(\mathcal{M})$, i.e., the elements of \mathcal{M} that commute with every element of \mathcal{M}. We say that an element T of \mathcal{M} is algebraic over the center of \mathcal{M}, if there is a positive integer n and elements $c_{0}, \ldots, c_{n} \in \mathcal{Z}(\mathcal{M})$ with $c_{n} \neq 0$, such that

$$
c_{0}+c_{1} T+\cdots+c_{n} T^{n}=0
$$

i.e., there is a nonzero polynomial p in $\mathcal{Z}(\mathcal{M})[t]$ such that $p(T)=0$. If \mathcal{M} is a factor von Neumann algebra (e.g., $\mathcal{M}=B(H)$), then $\mathcal{Z}(\mathcal{M})=\mathbb{C} 1$ and, therefore the notions of algebraic over the center and algebraic are identical in this case.

If $\varphi: \mathbb{C} \rightarrow \mathcal{Z}(\mathcal{M})$ is an entire function, we can write

$$
\varphi(z)=\sum_{n=0}^{\infty} c_{n} z^{n}
$$

with $c_{0}, c_{1}, \ldots \in \mathcal{Z}(\mathcal{M})$. The radius of convergence R of such a power series is given by

$$
\frac{1}{R}=\limsup _{n \rightarrow \infty} \sqrt[n]{\left\|c_{n}\right\|}
$$

If $T \in \mathcal{M}$ we can evaluate φ at T by

$$
\varphi(T)=\sum_{n=0}^{\infty} c_{n} T^{n} \in \mathcal{M}
$$

J. B. Conway and D. Hadwin [11] proved the following result.

Theorem 1.1.3. Suppose \mathcal{M} is a type I von Neumann algebra acting on a separable Hilbert space, $T \in \mathcal{M}$ and T is not algebraic over $\mathcal{Z}(\mathcal{M})$. Then $\operatorname{AlgLat}_{1 / 2}(T, \mathcal{M})$ is the set of all $\varphi(T)$ with $\varphi: \mathbb{C} \rightarrow \mathcal{Z}(\mathcal{M})$ entire .

In the first part of this thesis we explore $\operatorname{AlgLat}_{1 / 2}(T, \mathcal{M})$ for von Neumann algebras that are not necessarily type I. We prove a version of Theorem 1.1.2 for a normal operator T in all factor von Neumann algebras. Then, using the direct integral theory, we extend our result to a general von Neumann algebra.

1.2 Similarity Dominance

In [11] Conway and Hadwin introduced the notion of similarity domination. Suppose \mathcal{A} is a unital Banach algebra and $S, T \in \mathcal{A}$. We say that T sim-dominates S in \mathcal{A}, provided, for every $R>0$,

$$
\sup \left(\left\{\left\|A^{-1} S A\right\|: A \in \mathcal{A}, A \text { invertible, }\left\|A^{-1} T A\right\| \leq R\right\}\right)<\infty
$$

They proved

Theorem 1.2.1. If $S, T \in B(H)$ and T similarity-dominates S, then there is an entire function $\varphi: \mathbb{C} \rightarrow \mathbb{C}$ such that $S=\varphi(T)$.

Here there is no assumption that T is algebraic. In the second part of this thesis, we explore similarity domination in arbitrary Banach algebras and prove a version of the above theorem for a large class of operators in a type III factor von Neumann algebra.

CHAPTER 2

$\operatorname{ALGLAT}_{1 / 2}(T, \mathcal{M})$

2.1 Preliminaries

The following theorem of Douglas will be used quite often in later sections.

Theorem 2.1.1 (R. G. Douglas [1][7]). Suppose $A, B \in B(H)$. The following conditions are equivalent:

1. $\operatorname{ran}(A) \subset \operatorname{ran}(B)$
2. $A A^{*} \leq \lambda^{2} B B^{*}$ for some constant $\lambda>0$.
3. $A=B C$ for some $C \in B(H)$

Remark. This theorem holds more generally in a von Neumann algebra. The operator C in part 3 can be chosen in $W^{*}(A, B)$ such that $\|C\| \leq \lambda$.

Remark. We can state part 3 of the Douglas's theorem differently. Define

$$
B^{-1}=\left(\left.B\right|_{k e r(B)^{\perp}}\right)^{-1}: \operatorname{ran}(B) \rightarrow \operatorname{ker}(B)^{\perp}
$$

Then $A=B C$ is the same as saying $B^{-1} A \in B(H)$.

Corollary 2.1.2. Suppose $\mathcal{M} \subset B(H)$ is a von Neumann algebra and $T, D \in \mathcal{M}$. The following are equivalent

$$
\begin{aligned}
T(\operatorname{ran}(D)) \subset \operatorname{ran}(D) & \Leftrightarrow \operatorname{ran}(T D) \subset \operatorname{ran}(D) \\
& \Leftrightarrow \exists \lambda>0, \text { such that } T D D^{*} T^{*} \leq \lambda D D * \\
& \Leftrightarrow \exists C \in \mathcal{M} \text { such that } T D=D C \\
& \Leftrightarrow\left\|D^{-1} T D\right\|<\infty
\end{aligned}
$$

Proof. This follows immediately from the remarks and the theorem of Douglas.
Remark. If X is a Banach space, $T, D \in B(X)$ and $T D=D T$ then

$$
T(\operatorname{ran}(D))=\operatorname{ran}(T D)=\operatorname{ran}(D T) \subset \operatorname{ran}(D)
$$

2.2 Measurable cross-sections

Suppose (Y, d) is a separable metric space and μ is a σ-finite measure on the sigma-algebra $\operatorname{Bor}(Y)$ of Borel subsets of Y. A subset $E \subset Y$ is μ-measurable if and only if there are Borel sets $A, B \subset Y$ such that $A \subset E, E \backslash A \subset B$ and $\mu(B)=0$. A subset $E \subset Y$ is absolutely measurable if, for every σ-finite measure μ on $\operatorname{Bor}(Y)$ it follows that E is μ-measurable. The collection of absolutely measurable sets is a σ-algebra (usually properly) containing $\operatorname{Bor}(Y)$. Suppose (W, ρ) is another separable metric space and $f: Y \rightarrow W$. We say that f is absolutely measurable if and only if, for every absolutely measurable subset $A \subset W$, it follows that $f^{-1}(A)$ is absolutely measurable in Y. It is not hard to show that f is absolutely measurable if and only if, for every $A \in$ $\operatorname{Bor}(W), f^{-1}(A)$ is absolutely measurable. In the context of a complete σ-finite measure around, absolute measurability is the same as measurability. The following lemma is elementary.

Lemma 2.2.1. Suppose $(Y, d),(W, \rho),(Z, \delta)$ are separable metric spaces, $B \subset Y$ is absolutely measurable and $f: Y \rightarrow W$ and $g: W \rightarrow Z$ are absolutely measurable. Suppose (Ω, Σ, μ) is
a complete (i.e., $E \in \Sigma, F \subset E, \mu(E)=0$ implies $F \in \Sigma$). Suppose $\varphi: \Omega \rightarrow Y$ is Σ-Bor (Y) measurable. Then

1. $\varphi^{-1}(B) \in \Sigma$, and
2. $f \circ \varphi: \Omega \rightarrow W$ is $\Sigma-\operatorname{Bor}(W)$ measurable.
3. $g \circ f: Y \rightarrow Z$ is absolutely measurable.

The most significant theorem on this subject can be found in [20], chapters 3 and 4 .

Theorem 2.2.2. Suppose X is a Borel subset of a complete metric space, (Y, d) is a separable metric space and $f: X \rightarrow Y$ is continuous. Then

1. $f(X)$ is an absolutely measurable subset of Y, and
2. There is an absolutely measurable function $\gamma: f(X) \rightarrow X$ such that, for every $y \in f(X)$,

$$
f(\gamma(y))=y .
$$

As an application we prove a modified version of a result [15] by C. Pearcy.
Theorem 2.2.3. Suppose $n \in \mathbb{N}$ and (Ω, Σ, μ) is a complete σ-finite measure space and $\varphi: \Omega \rightarrow$ $\mathbb{M}_{n}(\mathbb{C})$ is a measurable map such that, for every $\omega \in \Omega, \varphi(\omega)$ is a normal matrix. Then there is a measurable map $u: \Omega \rightarrow \mathbb{M}_{n}(\mathbb{C})$ and a measurable function $d: \Omega \rightarrow\{1,2, \ldots, n\}$ such that

1. $u(\omega)$ is unitary for every $\omega \in \Omega$,
2. $u(\omega)^{*} \varphi(\omega) u(\omega)=\left(\begin{array}{cccc}t_{1}(\omega) & 0 & \cdots & 0 \\ 0 & t_{2}(\omega) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & t_{n}(\omega)\end{array}\right)=\operatorname{diag}\left(t_{1}(\omega), \ldots, t_{n}(\omega)\right)$
3. $\operatorname{Card}\left(\left\{t_{1}(\omega), \ldots, t_{d(\omega)}(\omega)\right\}\right)=d(\omega)=\operatorname{Card}\left(\left\{t_{1}(\omega), \ldots, t_{n}(\omega)\right\}\right)$.

Proof. Let \mathcal{N} be the set of normal $n \times n$ matrices, and let \mathcal{U} be the set of unitary $n \times n$ matrices. Let

$$
V=\mathcal{N} \times \mathcal{U} \times \prod_{k=1}^{n} \mathbb{C} \times\{1, \ldots, n\} \times \prod_{1 \leq i<j \leq n} \mathbb{C} \backslash\{0\} \times\{1, \ldots, n\}^{\{1, \ldots, n\}}
$$

with the product topology. Then V is a complete separable metric space (with a different metric on $\mathbb{C} \backslash\{0\}$).

Let X be the set of all $\left(T, U,\left(t_{1}, \ldots, t_{n}\right), d,\left\{c_{i j}: 1 \leq i<j \leq n\right\}, h\right)$ in V such that
a. $U^{*} T U=\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right)$
b. If $1 \leq i<j \leq d$, then $t_{i}-t_{j}=c_{i j}$,
c. For all $k \in\{1, \ldots, n\}, h(k) \leq d$
d. For all $k \in\{1, \ldots, n\}, t_{k}=t_{h(k)}$.

It is easily shown that X is a closed subset of V, so X is a complete separable metric space.
Define $f: X \rightarrow \mathcal{N}$ as the projection onto the first coordinate. Since every normal matrix is unitarily equivalent to a diagonal matrix, and since any permutation of the diagonal entries preserves unitary equivalence, we see that $f(X)=\mathcal{N}$. We know from Theorem 2.2.2 there is an absolutely measurable function $\gamma: \mathcal{N} \rightarrow X$ such that, for every $T \in \mathcal{N}, f(\gamma(T))=T$. Since $\varphi: \Omega \rightarrow \mathcal{N}$ is measurable, $\gamma \circ \varphi$ is measurable. We can write

$$
\begin{gathered}
(\gamma \circ \varphi)(\omega)= \\
\left(\varphi(\omega), U(\omega),\left(t_{1}(\omega), \ldots, t_{n}(\omega)\right), d(\omega),\left\{c_{i j}(\omega): 1 \leq i<j \leq n\right\}, h_{\omega}\right) .
\end{gathered}
$$

Thus $d: \Omega \rightarrow\{1, \ldots, n\}, t_{k}: \Omega \rightarrow \mathbb{C}(1 \leq k \leq n)$ are measurable, and from the definition of X, we see that statements (1)-(3) are true.

2.3 Measurable Families

A family $\left\{\mathcal{M}_{\omega}: \omega \in \Omega\right\}$ is a measurable family of von Neumann algebras if, there are sequences of SOT measurable functions f_{n} and g_{n} from Ω into the unit ball of $B(H)$ so that \mathcal{M}_{ω} is the von Neumann algebra generated by the set $\left\{f_{n}(\omega): n \in \mathbb{N}\right\}, \mathcal{M}_{\omega}^{\prime}$ is the von Neumann algebra generated by the set $\left\{g_{n}(\omega): n \in \mathbb{N}\right\}$, and each of those sets is SOT dense in the unit ball of the von Neumann algebra it generates.

2.4 Direct Integrals

Suppose (Ω, Σ, μ) is a complete finite measure space, and suppose H is a separable Hilbert space. Suppose X is a Banach space and $f: \Omega \rightarrow X$ is a function. We define $|f|: \Omega \rightarrow[0, \infty)$ by

$$
|f(\omega)|=\|f(\omega)\|
$$

We define $L^{2}(\mu, H)=\left\{f \mid f: \Omega \rightarrow H\right.$ is measurable and $\left.|f| \in L^{2}(\mu)\right\}$ and we define

$$
L^{\infty}(\mu, B(H))=\left\{\varphi: \Omega \rightarrow B(H) \text { is SOT measurable, }|\varphi| \in L^{\infty}(\mu)\right\}
$$

As usual, in both cases, we identify two functions that are equal almost everywhere. note that $L^{2}(\mu, H)$ is a Hilbert space with $\|f\|_{2}=\| \| f \mid \|_{2}$ and inner product

$$
\langle f, g\rangle=\int_{\Omega}\langle f(\omega), g(\omega)\rangle d \mu(\omega) .
$$

If $\varphi \in L^{\infty}(\mu, B(H))$ we can identify φ with an operator on $L^{2}(\mu, H)$ that sends f to φf defined by

$$
(\varphi f)(\omega)=\varphi(\omega) f(\omega) .
$$

We define the direct integral of the measurable family $\left\{\mathcal{M}_{\omega}: \omega \in \Omega\right\}$ of von Neumann algebras as

$$
\int_{\Omega}^{\oplus} \mathcal{M}_{\omega} d \mu(\omega)=\left\{\varphi \in L^{\infty}(\mu, B(H)): \varphi(\omega) \in \mathcal{M}_{\omega} \text { a.e. }(\mu)\right\}
$$

Another notation we use for the operator identified with $\varphi \in L^{\infty}(\mu, B(H))$ is

$$
\int_{\Omega}^{\oplus} \varphi(\omega) d \mu(\omega)
$$

We also use the notation, if $T \in \int_{\Omega}^{\oplus} \mathcal{M}_{\omega} d \mu(\omega)$ we write

$$
T=\int_{\Omega}^{\oplus} T_{\omega} d \mu(\omega)=\int_{\Omega}^{\oplus} T(\omega) d \mu(\omega)
$$

We also sometimes write

$$
L^{2}(\mu, H)=\int_{\Omega}^{\oplus} H d \mu(\omega)
$$

and denote a vector $f \in L^{2}(\mu, H)$ as

$$
f=\int_{\Omega}^{\oplus} f(\omega) d \mu(\omega)
$$

In this notation we have

$$
T(f)=\int_{\Omega}^{\oplus} T_{\omega}(f(\omega)) d \mu(\omega) \in \int_{\Omega}^{\oplus} H d \mu(\omega) .
$$

We also sometimes write

$$
L^{\infty}(\mu, B(H))=\int_{\Omega}^{\oplus} B(H) d \mu(\omega)
$$

Theorem 2.4.1. Suppose $\mathcal{M}=\int_{\Omega}^{\oplus} \mathcal{M}_{\omega} d \mu(\omega)$ is a direct integral decomposition of a measurable family of von Neumann algebras on a separable Hilbert space H with (Ω, Σ, μ) a complete finite measure space, so $\mathcal{M} \subset B\left(L^{2}(\mu, H)\right)$. Suppose $T=\int_{\Omega}^{\oplus} T_{\omega} d \mu(\omega)$ and $S=\int_{\Omega}^{\oplus} S_{\omega} d \mu(\omega)$ are in \mathcal{M}. If $S \in \operatorname{AlgLat}_{1 / 2}(T, \mathcal{M})$, then

$$
S_{\omega} \in \operatorname{AlgLat}_{1 / 2}\left(T_{\omega}, \mathcal{M}_{\omega}\right) \text { a.e. }(\mu)
$$

Proof. Since $\left\{\mathcal{M}_{\omega}: \omega \in \Omega\right\}$ is a measurable family, there is a sequence $\left\{\psi_{1}, \psi_{2}, \ldots\right\}$ of $*$-SOT measurable functions from Ω into \mathcal{B} such that, for every $\omega \in \Omega$,

$$
\left\{\psi_{1}(\omega), \psi_{2}(\omega), \ldots\right\}^{-*-\text { SOT }}=\left\{A \in \mathcal{M}_{\omega}^{\prime}:\|A\| \leq 1\right\}
$$

Thus an $A=\int_{\Omega}^{\oplus} A_{\omega} d \mu$ in $L^{\infty}(\mu, B(H))$ is in \mathcal{M} if and only if

$$
A_{\omega} \psi_{n}(\omega)=\psi_{n}(\omega) A_{\omega} \text { a.e. }(\mu)
$$

for all $n \in \mathbb{N}$.
Let $\mathcal{B}=\{A \in B(H):\|A\| \leq 1\}$ with the $*$-SOT, and let $\mathcal{B}_{o}=\left\{T \in \mathcal{B}: T=T^{*}\right.$ and $\left.T \neq 0\right\}$. We know, since H is separable, \mathcal{B} is a complete separable metric space with a metric d. Also, since $\mathcal{B}^{s a}=\left\{T \in \mathcal{B}: T=T^{*}\right\}$ is $*$-SOT closed, it is also a complete separable metric space. Since \mathcal{B}_{o} is relatively open in $\mathcal{B}^{s a}$, we know that \mathcal{B}_{o} is a complete separable metric space with an equivalent metric d_{o}.

We then have

$$
\mathcal{X}=\mathcal{B} \times \mathcal{B} \times \mathcal{B} \times \prod_{n=1}^{\infty} \mathcal{B} \times \prod_{n=1}^{\infty} \mathcal{B}_{o}
$$

with the product $*$-SOT topology.
For each positive integer m, let \mathcal{V}_{m} be the set of all $\left(A, B, D,\left\{F_{n}\right\},\left\{G_{n}\right\}\right)$ in \mathcal{X} such that

1. $m D D^{*}-A D D^{*} A^{*} \geq 0$
2. $D F_{n}-F_{n} D=0$ for all $n \in \mathbb{N}$,
3. $\left[n D D^{*}-B D D^{*} B^{*}\right]^{-}=G_{n}$ for all $n \in \mathbb{N}$.

Clearly, \mathcal{V}_{m} is a closed subset of \mathcal{X}, which means that \mathcal{V}_{m} is a complete separable metric space.
Define the continuous maps $\pi: \mathcal{X} \rightarrow \mathcal{B} \times \mathcal{B} \times \prod_{n=1}^{\infty} \mathcal{B}=\mathcal{Y}$ by

$$
\pi\left(\left(A, B, D,\left\{F_{n}\right\},\left\{G_{n}\right\}\right)\right)=\left(A, B,\left\{F_{n}\right\}\right)
$$

and $\rho: \mathcal{X} \rightarrow \mathcal{B}$ by

$$
\rho\left(\left(A, B, D,\left\{F_{n}\right\},\left\{G_{n}\right\}\right)\right)=D .
$$

Then, by Theorem 2.2.2, $\pi\left(\mathcal{V}_{m}\right)$ is an absolutely measurable subset of \mathcal{Y} and there is an absolutely measurable cross-section $\eta_{m}: \pi\left(\mathcal{V}_{m}\right) \rightarrow \mathcal{V}_{m}$ with

$$
\left(\pi \circ \eta_{m}\right)(y)=y
$$

for every $y \in \pi\left(\mathcal{V}_{m}\right)$. Also $\rho \circ \eta_{m}: \pi_{m}\left(\mathcal{V}_{m}\right) \rightarrow \mathcal{B}$ is absolutely measurable.
It is clear that $\pi\left(\mathcal{V}_{m}\right)$ is the set of all $\left(A, B,\left\{F_{n}\right\}\right)$ for which there exists $D \in\left\{F_{1}, F_{2}, \ldots\right\}^{\prime} \cap \mathcal{B}$ such that $A(D(H)) \subset D(H)$ and $B(D(H)) \not \subset D(H)$.

Clearly, there is no harm in assuming $\|S\|,\|T\| \leq 1$, so that $\left\|S_{\omega}\right\|,\left\|T_{\omega}\right\| \leq 1$ for every $\omega \in \Omega$. Thus the map

$$
\left(S, T,\left\{\psi_{n}\right\}\right): \Omega \rightarrow \mathcal{Y}
$$

defined by

$$
\left(S, T,\left\{\psi_{n}\right\}\right)(\omega)=\left(S_{\omega}, T_{\omega},\left\{\psi_{n}(\omega)\right\}\right)
$$

is measurable and

$$
\Omega_{m}=\left(S, T,\left\{\psi_{n}\right\}\right)^{-1}\left(\pi\left(\mathcal{V}_{m}\right)\right)
$$

is the set of all $\omega \in \Omega$ for which there exists $D \in \mathcal{M}_{\omega}$ such that

$$
m D D^{*}-T_{\omega} D D^{*} T_{\omega}^{*} \geq 0
$$

and S_{ω} does not leave the range of D_{ω} invariant.

Define $D_{m}: \Omega \rightarrow \mathcal{B}$ by

$$
D_{m}(\omega)=\left\{\begin{array}{cl}
1 & \text { if } \omega \notin \Omega_{m} \\
\rho_{m}\left(\left(S, T,\left\{\psi_{n}\right\}\right)(\omega)\right) & \text { if } \omega \in \Omega_{m}
\end{array}\right.
$$

Then

$$
m D D^{*}-T D D^{*} T^{*} \geq 0
$$

Thus there exists a positive integer N such that

$$
N D_{\omega} D_{\omega}^{*}-S_{\omega} D_{\omega} D_{\omega}^{*} S^{*} \geq 0 \text { a.e. }(\mu)
$$

It follows that $\mu\left(\Omega_{m}\right)=0$ for each $m \in \mathbb{N}$. Since $\cup_{m=1}^{\infty} \Omega_{m}$ has measure 0 and is the set of all $\omega \in \Omega$ such that there exists $D \in \mathcal{M}_{\omega}$ whose range is invariant for T_{ω} but not for S_{ω}, we see that

$$
S_{\omega} \in \operatorname{AlgLat}_{1 / 2}\left(T_{\omega}, \mathcal{M}_{\omega}\right) \text { a.e. }(\mu) .
$$

Lemma 2.4.2. Suppose $T=T_{1} \oplus T_{2} \oplus \cdots$ and $S=S_{1} \oplus S_{2} \oplus \cdots$ are elements of the von Neumann algebra $\mathcal{M}=\mathcal{M}_{1} \oplus \mathcal{M}_{2} \oplus \cdots$ and $S \in \operatorname{AlgLat}_{1 / 2}(T, \mathcal{M})$. Then

1. $S_{n} \in \operatorname{AlgLat}_{1 / 2}\left(T_{n}, \mathcal{M}_{n}\right)$ for each $n \geq 1$, and
2. If $T_{n} \rightarrow A$ and $S_{n} \rightarrow B$ in the $*$-SOT, then

$$
A B=B A
$$

Proof. Let $\mathbb{C}_{\mathbb{Q}}=\mathbb{Q}+i \mathbb{Q}$ be the set of complex numbers whose real and imaginary parts are both rational. We can write

$$
\mathbb{C}_{\mathbb{Q}}=\left\{z_{1}, z_{2}, \ldots\right\}
$$

Let $D=\left(e^{z_{1} T_{1}} /\left\|e^{z_{1} T_{1}}\right\|\right) \oplus\left(e^{z_{2} T_{2}} /\left\|e^{z_{2} T_{2}}\right\|\right) \oplus \cdots$. Then $T D=D T$. Thus there exists $W=$ $W_{1} \oplus W_{2} \oplus \cdots \in \mathcal{M}$ such that $S D=D W$. Thus, for every $n \in \mathbb{N}$,

$$
S_{n} D_{n}=D_{n} W_{n},
$$

so

$$
\left\|e^{-z_{n} T_{n}} S_{n} e^{z_{n} T_{n}}\right\|=\left\|D_{n}^{-1} S_{n} D_{n}\right\|=\left\|W_{n}\right\| \leq\|W\| .
$$

Now suppose $\lambda \in \mathbb{C}$. Then there is a subsequence $\left\{z_{n_{k}}\right\}$ of $\left\{z_{n}\right\}$ such that

$$
\lim _{k \rightarrow \infty} z_{n_{k}}=\lambda
$$

Thus $S_{n_{k}} \rightarrow A$ and $T_{n_{k}} \rightarrow B$ in the $*-S O T$, so $e^{z_{n_{k}} T_{n_{k}}} \rightarrow e^{\lambda A}$ and $e^{-z_{n_{k}} T_{n_{k}}} \rightarrow e^{-\lambda A}$ in the *-SOT. Hence $e^{-z_{n_{k}} T_{n_{k}}} S_{n_{k}} e^{z_{n_{k}} T_{n_{k}}} \rightarrow e^{-\lambda A} B e^{\lambda A}$ in the $*-S O T$. Thus

$$
\left\|e^{-\lambda A} B e^{\lambda A}\right\| \leq \sup _{k}\left\|e^{-z_{n_{k}} T_{n_{k}}} S_{n_{k}} e^{z_{n_{k}} T_{n_{k}}}\right\| \leq\|W\|
$$

Thus the function $F: \mathbb{C} \rightarrow \mathcal{M}$ defined by

$$
F(\lambda)=e^{-\lambda A} B e^{\lambda A}
$$

is a bounded entire function. Thus, by Liouville's theorem, F is constant. Hence

$$
0=F^{\prime}(0)=-A B+B A
$$

which implies $A B=B A$.

Definition 2.4.3 (Hadwin-Hoover[16]). Suppose (Ω, Σ, μ) is a measure space, Y is a separable metric space and $\varphi: \Omega \rightarrow Y$ is measurable. Then the essential range of φ, denoted by ess-ran (φ) is

$$
Y \backslash \cup\left\{U \subset Y: U \text { is open, } \mu\left(\varphi^{-1}(U)\right)=0\right\} .
$$

Lemma 2.4.4. Suppose (Ω, Σ, μ) is a measure space, Y is a separable metric space and $\varphi: \Omega \rightarrow$ Y is measurable. Then

1. $\varphi(\omega) \in \operatorname{ess-ran}(\varphi)$ a.e. (μ)
2. If $y \in \operatorname{ess}-r a n(\varphi)$ and $y \in U$ and $U \subset Y$ is open, then $\mu\left(\varphi^{-1}(U)\right)>0$.

Lemma 2.4.5. Suppose (Ω, Σ, μ) is a measure space with the following property.
for every $E \in \Sigma$, with $\mu(E)>0$, and for every $0<\varepsilon<\mu(E)$, there exists $F \in \Sigma, F \subset E$, such that $0<\mu(E)<\varepsilon$.

Suppose $\left\{E_{n}\right\}_{n=1}^{\infty}$ is a sequence in Σ with $\mu\left(E_{n}\right)>0$ for every $n \in \mathbb{N}$. Then there exists a mutually disjoint sequence $\left\{F_{n}\right\}_{n=1}^{\infty}$ in Σ, such that $F_{n} \subset E_{n}$, and $\mu\left(F_{n}\right)>0$, for all $n \in \mathbb{N}$.

Proof. Consider the sequence of projections $\left\{\chi_{E_{n}}\right\}$ in $L^{\infty}(\Omega, \mu)$. By Theorem 2.6.5, there exists an orthogonal sequence of nonzero projections $\left\{\chi_{F_{n}}\right\}$, with $\chi_{F_{n}} \leq \chi_{E_{n}}$ for all $n \in \mathbb{N}$. Since $\left\{\chi_{F_{n}}\right\}$ is an orthogonal family, it follows that $F_{n} \cap F_{m}=\varnothing$ for all $m, n \in \mathbb{N}$. Since $\chi_{F_{n}} \neq 0$, it follows that $\mu\left(F_{n}\right)>0$ for all $n \in \mathbb{N}$.

Theorem 2.4.6. Suppose $\mathcal{M}=\int_{\Omega}^{\oplus} \mathcal{M}_{\omega} d \mu(\omega)$ is a direct integral decomposition of a measurable family of von Neumann algebras on a separable Hilbert space H with (Ω, Σ, μ) a complete finite measure space, so $\mathcal{M} \subset B\left(L^{2}(\mu, H)\right)$. Suppose $T=\int_{\Omega}^{\oplus} T_{\omega} d \mu(\omega)$ and $S=\int_{\Omega}^{\oplus} S_{\omega} d \mu(\omega)$ are in \mathcal{M}. If $S \in \operatorname{AlgLat}_{1 / 2}(T, \mathcal{M})$ and μ is nonatomic, then

$$
S T=T S
$$

Proof. We can assume that $\|T\| \leq 1$ and $\|S\| \leq 1$ and we can therefore assume (by redefining on a set of measure 0) $\left\|T_{\omega}\right\| \leq 1$ and $\left\|S_{\omega}\right\| \leq 1$ for every $\omega \in \Omega$. Similarly, by Theorem 2.4.1, we can assume that $S_{\omega} \in \operatorname{AlgLat}_{1 / 2}\left(T_{\omega}, \mathcal{M}_{\omega}\right)$ for every $\omega \in \Omega$. Let $\mathcal{B}=\{A \in B(H):\|A\| \leq 1\}$ and let d be a metric on \mathcal{B} that gives the $*-S O T$ and makes \mathcal{B} a complete separable metric space. Such a metric d exists because H is separable. Define $\varphi: \Omega \rightarrow \mathcal{B} \times \mathcal{B}$ by

$$
\varphi(\omega)=\left(T_{\omega}, S_{\omega}\right)
$$

Suppose $(A, B) \in \operatorname{ess}-r a n(\varphi)$. For each positive integer n, let

$$
U_{n}=\{(C, D) \in \mathcal{B} \times \mathcal{B}: d(A, C)+d(B, D)<1 / n\}
$$

Then U_{n} is open in $\mathcal{B} \times \mathcal{B}$ and $(A, B) \in U$. Thus $\mu\left(\varphi^{-1}\left(U_{n}\right)\right)>0$. We know from lemma 2.4.5 that we can find mutually disjoint subsets $E_{n} \subset \varphi^{-1}\left(U_{n}\right)$, such that for all $n \in \mathbb{N}, \mu\left(E_{n}\right)>0$. Define

$$
U(\omega)=\left\{\begin{array}{cc}
1 & \text { if } \omega \notin \bigcup_{n=1}^{\infty} E_{n} \\
\frac{e^{z_{n} T_{\omega}}}{\left\|e^{z} T_{\omega}\right\|} & \text { if } \omega \in E_{n}
\end{array} .\right.
$$

Then $\|U\| \leq 1$ and for every $\omega \in \Omega$,

$$
T(\omega) U(\omega)=U(\omega) T(\omega)
$$

Thus there exists a bounded operator $C=\int_{\Omega}^{\oplus} C_{\omega} d \mu(\omega) \in \mathcal{M}$ such that $S U=U C$. Since $S_{\omega} \in \operatorname{AlgLat}_{1 / 2}\left(T_{\omega}, \mathcal{M}_{\omega}\right)$, we have for every $\omega \in \Omega$

$$
S(\omega) U(\omega)=U(\omega) C(\omega)
$$

Thus

$$
\left\|e^{-z_{n} T(\omega)} S(\omega) e^{z_{n} T(\omega)}\right\| \leq\|C\|
$$

Suppose $z \in \mathbb{C}$. There exists a subsequence $\left\{z_{n_{k}}\right\}$ of $\left\{z_{n}\right\}$ such that

$$
\lim _{k \rightarrow \infty} z_{n_{k}}=z
$$

Choose $\omega_{n_{k}} \in E_{n_{k}}$. It follows from the definition of $E_{n_{k}}$ that, $S\left(\omega_{n_{k}}\right) \rightarrow B$, and $T\left(\omega_{n_{k}}\right) \rightarrow A$ in the *-SOT. Hence $e^{-z_{n_{k}} T\left(\omega_{n_{k}}\right)} S\left(\omega_{n_{k}}\right) e^{z_{n_{k}} T\left(\omega_{n_{k}}\right)} \rightarrow e^{-z A} B e^{z A}$ in the *-SOT. Thus

$$
\left\|e^{-z A} B e^{z A}\right\| \leq \sup _{k \in \mathbb{N}}\left\|e^{-z_{n_{k}} T\left(\omega_{n_{k}}\right)} S\left(\omega_{n_{k}}\right) e^{z_{n_{k}} T\left(\omega_{n_{k}}\right)}\right\| \leq\|C\| .
$$

Proceeding as in lemma 2.4.2, we see that $A B=B A$ for every $A, B \in \operatorname{ess}-r a n(\varphi)$. However,

$$
\varphi(\omega)=\left(T_{\omega}, S_{\omega}\right) \in \operatorname{ess}-\operatorname{ran}(\varphi), \text { a.e. }(\mu)
$$

Thus $S T=T S$.

2.5 The Central Decomposition

Suppose $1 \leq n \leq \infty=\aleph_{0}$. We define ℓ_{n}^{2} be the space of square summable sequences with the inner product $\langle x, y\rangle=\sum_{i=1}^{n} x_{i} \bar{y}_{i}$. Here is the statement of the Central Decomposition Theorem [19]. Theorem 2.5.1. Suppose \mathcal{M} is a von Neumann algebra on a separable Hilbert space H. Then there is a family $\left(\Omega_{n}, \Sigma_{n}, \mu_{n}\right)$ of finite measure spaces and measurable families $\left\{\mathcal{M}_{n, \omega}: \omega \in \Omega_{n}\right\}$ of von Neumann algebras on $B\left(\ell_{n}^{2}\right)(1 \leq n \leq \infty)$ such that

1. $\mathcal{M}=\sum_{1 \leq n \leq \infty}^{\oplus} \int_{\Omega_{n}}^{\oplus} \mathcal{M}_{n, \omega} d \mu_{n}(\omega)$
2. $\mathcal{M}_{n, \omega}$ is a factor von Neumann algebra for every n and ω
3. $\mathcal{Z}(\mathcal{M})=\sum_{1 \leq n \leq \infty}^{\oplus} \int_{\Omega_{n}}^{\oplus} \mathbb{C} \cdot 1 d \mu_{n}(\omega)$, which is isomorphic to $\sum_{1 \leq n \leq \infty}^{\oplus} L^{\infty}\left(\mu_{n}\right)$.

This is called the central decomposition of \mathcal{M}.
We can prove the following.

Theorem 2.5.2. Suppose $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is a von Neumann algebra with \mathcal{H} separable such that the center $\mathcal{Z}(\mathcal{M})$ has no minimal projections. If $S, T \in \mathcal{M}$ and $S \in \operatorname{AlgLat}_{1 / 2}(T, \mathcal{M})$, then $S T=T S$.

Proof. Relative to the above central decomposition of \mathcal{M}, the fact that $\mathcal{Z}(\mathcal{M})$ has no minimal projections says that each μ_{n} is nonatomic. We can write

$$
T=\sum_{1 \leq n \leq \infty}^{\oplus} T_{n}=\sum_{1 \leq n \leq \infty}^{\oplus} \int_{\Omega_{n}}^{\oplus} T_{n}(\omega) d \mu_{n}(\omega)
$$

and

$$
S=\sum_{1 \leq n \leq \infty}^{\oplus} S_{n}=\sum_{1 \leq n \leq \infty}^{\oplus} \int_{\Omega_{n}}^{\oplus} S_{n}(\omega) d \mu_{n}(\omega)
$$

It follows from Lemma 2.4.2, that, for each n

$$
S_{n} \in \operatorname{AlgLat}_{1 / 2}\left(T_{n}, \int_{\Omega_{n}}^{\oplus} \mathcal{M}_{n, \omega} d \mu_{n}(\omega)\right)
$$

It follows from Theorem 2.4.6 that, for every $n, S_{n} T_{n}=T_{n} S_{n}$. Thus $S T=T S$.

2.6 Normal Operators in a Factor

This first result holds for an arbitrary von Neumann algebra.

Theorem 2.6.1. Suppose $\mathcal{M} \subset B(H)$ is a von Neumann algebra. Suppose $S, T \in \mathcal{M}$ and $S \in \operatorname{AlgLat}_{1 / 2}(T, \mathcal{M})$, and T is normal. Then S is normal and $S T=T S$.

Proof. Let \mathcal{A} be a masa in \mathcal{M} containing T. Suppose $P \in \mathcal{A}$ is a projection. Then $P T=T P$. Hence $\operatorname{ran}(P)$ and $\operatorname{ran}(1-p)$ are T-invariant, and hence S-invariant. Thus $S P=P S$ for every projection in \mathcal{A}. Suppose $W \in \mathcal{A}$. Since \mathcal{A} is weakly closed, \mathcal{A} is a von Neumann algebra and hence contains all spectral projections of W. Thus $S W=W S$ for every $W \in \mathcal{A}$. But \mathcal{A} is a masa, so $S, S^{*} \in \mathcal{A}$. Thus $S T=T S$ and $S S^{*}=S^{*} S$.

Corollary 2.6.2. Assume the hypotheses of Theorem 2.6.1. If $E \subset \sigma(T)$ is a Borel set, the spectral projection $\chi_{E}(T)$ commutes with S.

Proof. We know from Theorem 2.6.1 that S commutes with T. Since T is normal, S commutes with all spectral projections of T by Fuglede's Theorem.

The main theorem in this section is the following. This is a far cry from the Douglas-Foiaş Theorem (1.1.2), in which the function is entire.

Theorem 2.6.3. Suppose $\mathcal{M} \subset B(H)$ is a factor von Neumann algebra on a separable Hilbert $S, T \in \mathcal{M}$ and $S \in \operatorname{AlgLat}_{1 / 2}(T, \mathcal{M})$, and T is normal. Then there is a continuous function φ on $\sigma(T)$ such that

$$
S=\varphi(T)
$$

The proof will be done in a series of lemmas. If we first consider a type I_{n} factor with $1 \leq n<$ ∞, then \mathcal{M} is isomorphic to $\mathbb{M}_{n}(\mathbb{C})=B\left(\mathbb{C}^{n}\right)$ and the result is well-known. If \mathcal{M} is a type I_{∞} factor, then $\mathcal{M}=B\left(\ell^{2}\right)$ and an even stronger result follows theorem 1.1.2.

The remaining types of factors are type $I I_{1}, I I_{\infty}$ and $I I I$.
If \mathcal{M} is a type $I I_{1}$ factor, then \mathcal{M} has a faithful normal tracial state τ and two projections p and q in \mathcal{M} are unitarily equivalent in \mathcal{M} if and only if $\tau(p)=\tau(q)$. Moreover, if \mathcal{C} is a maximal chain of projections in \mathcal{M}, we can write

$$
\mathcal{C}=\left\{p_{t}: 0 \leq t \leq 1\right\}
$$

with $\tau\left(p_{t}\right)=t$ for every $t \in[0,1]$. Thus if $0<s<\tau(p) \leq 1$, there is a projection $q \in \mathcal{M}$ such that $q \leq p$ and $\tau(q)=s$.

If \mathcal{M} is a type $I I_{\infty}$ factor, there is a type $I I_{1}$ factor \mathcal{R} such that

$$
\mathcal{M}=\left\{A=\left(A_{i j}\right) \in B(H): A_{i j} \in \mathcal{R}, \text { for } 1 \leq i, j<\infty\right\}
$$

We can define a faithful normal weight ρ with domain the set of positive elements in \mathcal{M} by

$$
\rho(A)=\sum_{i=1}^{\infty} \tau\left(A_{i, i}\right) \in[0, \infty] .
$$

It is known that two projections $p, q \in \mathcal{M}$ are Murray von Neumann equivalent if and only if $\rho(p)=\rho(q)$. They are unitarily equivalent in \mathcal{M} if and only if we also have $\rho(1-p)=\rho(1-q)$. Also, if $p \neq 0$ and $0 \leq s<\rho(p)$, then there is a projection $q \leq p$ such that $\rho(q)=s$.

In a type $I I I$ factor \mathcal{M} all nonzero projections are Murray von Neumann equivalent and if p, q are projections with $0 \neq p \neq 1$ and $0 \neq q \neq 1$, then p and q are unitarily equivalent in \mathcal{M}. Also if φ is a state on \mathcal{M} and $0<s<\varphi(p)$, then there is a projection $q<p$ such that $\varphi(q)=s$.

One property of an arbitrary von Neumann algebra \mathcal{M} is the following. If $\left\{p_{i}: i \in I\right\}$ and $\left\{q_{i}: i \in I\right\}$ are orthogonal families of projections whose sum is 1 , and if each p_{i} is Murray von Neumann equivalent to q_{i}, then there is a unitary operator $U \in \mathcal{M}$ such that, for every $i \in I$,

$$
U^{*} p_{i} U=q_{i} .
$$

Lemma 2.6.4. Suppose $\mathcal{M} \subset B(H)$ is a von Neumann algebra with no minimal projections and a faithful normal state φ. Suppose P_{1} and P_{2} are nonzero projections in \mathcal{M} and $0<\varepsilon<\varphi\left(P_{1}\right)$. Then there are mutually orthogonal nonzero subprojections $Q_{1} \leq P_{1}$ and $Q_{2} \leq P_{2}$ such that $\varphi\left(P_{1}-Q_{1}\right)<\varepsilon$.

Proof. According to Halmos' standard form [9], we can write

$$
H=H_{1} \oplus H_{2} \oplus H_{3} \oplus H_{4} \oplus H_{5} \oplus H_{6}\left(\text { with } H_{5}=H_{6}\right)
$$

so that

$$
P_{1}=1 \oplus 1 \oplus 0 \oplus 0 \oplus\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

and

$$
P_{2}=1 \oplus 0 \oplus 1 \oplus 0 \oplus\left(\begin{array}{cc}
x & \sqrt{x-x^{2}} \\
\sqrt{x-x^{2}} & 1-x
\end{array}\right)
$$

with $x \in P_{H_{5}} \mathcal{M} P_{H_{5}}$ and $0<x<1$.
For each $k \in\{1,2,3,4\}$ we can choose a masa $\mathcal{D}_{k} \subset P_{H_{k}} \mathcal{M} P_{H_{k}}$ and we can choose a masa $D_{5} \subset P_{5} \mathcal{M} P_{5}$ that contains x. Thus $W^{*}\left(P_{1}, P_{2}\right)^{\prime} \cap \mathcal{M}$ contains

$$
\mathcal{D}=\mathcal{D}_{1} \oplus \mathcal{D}_{2} \oplus \mathcal{D}_{3} \oplus \mathcal{D}_{4} \oplus\left\{\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right): A \in \mathcal{D}_{5}\right\} .
$$

Clearly \mathcal{D} has no minimal projections, so we can choose a projection $E \in \mathcal{D}$ with $E \leq P_{H_{1}}+$ $P_{H_{3}}+P_{H_{5}}+P_{H_{6}}$ such that $0<\varphi(E)<\varepsilon$. If we let $Q_{1}=P_{1}(1-E)$ and $Q_{2}=E P_{2}$, the proof is complete.

Theorem 2.6.5. Suppose $\mathcal{M} \subset B(H)$ is a von Neumann algebra with no minimal projections and a faithful normal state φ. Suppose P_{1}, P_{2}, \ldots are nonzero projections in \mathcal{M}. Then there are nonzero subprojections $Q_{n} \leq P_{n}$ so that $\left\{Q_{1}, Q_{2}, \ldots\right\}$ is orthogonal. Moreover, if \mathcal{M} is a factor, we can also have that $Q_{2 n-1}$ and $Q_{2 n}$ are Murray von Neumann equivalent for all $n \in \mathbb{N}$.

Proof. We can use mathematical induction (constructing $P_{1, n}, \ldots, P_{n, n}$ at the nth stage) and Lemma 2.6.4 to construct projections

$$
\left\{P_{n, k}: n \leq k \leq \infty\right\}
$$

such that

1. $P_{n, n} \leq P_{n, n+1} \leq \cdots \leq P_{n}$ for all $n \in \mathbb{N}$,
2. $\varphi\left(P_{n, k}\right)<\left(\frac{1}{3}\right)^{k} \varphi\left(P_{n}\right)$ for $1 \leq n \leq k<\infty$,
3. $P_{n, n} \perp\left(P_{m}-P_{m, m}\right)$ for $1 \leq m<n<\infty$.

We then let $Q_{n}=P_{n, n}-\sum_{k=n+1}^{\infty} P_{n, k}$.
If \mathcal{M} is a factor, then one of $Q_{2 n-1}$ and $Q_{2 n}$ is Murray von Neumann equivalent to a subprojection of the other for each $n \in \mathbb{N}$.

Suppose T is an operator on a Hilbert space H. We let $\mathfrak{R}(T)$ denote the projection onto the range of T. Then

$$
\mathfrak{R}(T)=\lim _{n \rightarrow \infty}\left(T T^{*}\right)^{1 / n}
$$

where the convergence is in the strong operator topology.
Note that if \mathcal{M} is a von Neumann algebra with a faithful normal state φ, and if P is a nonzero projection and $0<t<\varphi(P)$, there is a projection $P_{1} \leq P$ in \mathcal{M} such that $\varphi(P)=t$.

Theorem 2.6.6. Suppose \mathcal{M} is a von Neumann algebra with no minimal projections and a faithful normal state φ. Suppose $P_{1}, P_{1}^{\prime}, P_{2}, P_{2}^{\prime}, \ldots$ are nonzero projections in \mathcal{M}. Then \mathcal{M} contains nonzero projections $Q_{1}, Q_{1}^{\prime}, Q_{2}, Q_{2}^{\prime}, \ldots$ such that

1. $\left\{Q_{1}, Q_{1}^{\prime}, Q_{2}, Q_{2}^{\prime}, \ldots\right\}$ is orthogonal
2. For every $n \in \mathbb{N}, Q_{n} \leq P_{n}$ and $Q_{n}^{\prime} \leq P_{n}^{\prime}$.
3. If \mathcal{M} is a factor, then, for every $n \in \mathbb{N}, P_{n}$ and P_{n}^{\prime} are Murray von Neumann equivalent.

Proof. First suppose P_{1} and P_{2} are projections. We can write $P_{1} P_{2}=\left(P_{1} P_{2} P_{1}\right)^{1 / 2} V$ as a polar decomposition where the partial isometry has an initial space $V^{*} V$ is the projection onto $\left[\operatorname{ker}\left(P_{1} P_{2}\right)\right]^{\perp}$, so $V^{*} V \leq P_{2}$ and $V V^{*}=\mathfrak{R}\left(P_{1} P_{2}\right) \leq P_{1}$. Thus $V: \mathfrak{R}\left(V V^{*}\right) \rightarrow \mathfrak{R}\left(P_{1} P_{2}\right), V=$ $P_{1}\left(P_{2}(H)\right)^{-}$is unitary. If $P_{1} P_{2}=0$, then $P_{1}(H) \perp P_{2}(H)$.

More generally, suppose $P_{1} P_{2} \neq 0$ and $\varepsilon>0$. Then $\varphi\left(V V^{*}\right)>0$. We can choose a projection $E \leq V V^{*}$ in \mathcal{M} so that $0<\varphi(E)<\varepsilon$. Then $V^{*}(E(H))$ is a closed subspace of $V^{*}(H)$. Thus $F=V^{*} E V$ is a projection and $F=V^{*} E V \leq V^{*} V \leq P_{2}$. Now we can find a subprojection F_{2} of F such that $0<\varphi\left(F_{2}\right)<\varepsilon$. Let $E_{2}=\mathfrak{R}\left(P_{1} F_{2}\right)=V F_{2} V^{*}$. Then

$$
F_{2} \leq P_{2} \text { and } F_{2} \perp P_{1}-E_{1} .
$$

From this point onward, we assume \mathcal{M} is a factor of type $I I_{1}, I I_{\infty}$ or $I I I$ and $T \in \mathcal{M}$ is normal and $S \in \operatorname{AlgLat}_{1 / 2}(T, \mathcal{M})$. Therefore S is normal and S commutes with every spectral projection of T.

Definition 2.6.7. Suppose $E \subset \sigma(T)$ is a Borel set. We define S_{E} to be the restriction of S to the range of the spectral projection $\chi_{E}(T) \in \mathcal{M}$.

Remark. It follows from the Corollary 2.6.2 that $S_{E} \in B\left(\chi_{E}(T)(H)\right)$. We see that S_{E} is normal because $S=S_{E} \oplus S_{s p(T) \backslash E}$.

Lemma 2.6.8. For every $\varepsilon>0$ there exists $\delta>0$ such that, if $E \subset s p(T)$ is a Borel set,

$$
\operatorname{diam}(E)<\delta \Longrightarrow \operatorname{diam}\left(s p\left(S_{E}\right)\right)<\varepsilon
$$

Proof. By way of contradiction there exists a sequence $\left\{E_{n}\right\}$ of Borel subsets of $\sigma(T)$ and an $\varepsilon>0$ such that, for every $n \in \mathbb{N}$,

1. $\operatorname{diam}\left(E_{n}\right)<1 / 2^{n}$, and
2. $\operatorname{diam}\left(\sigma\left(S_{E_{n}}\right)\right) \geq \varepsilon$.

For each $n \in \mathbb{N}$ we can choose $z_{n} \in \sigma\left(\left.T\right|_{\chi_{E_{n}}(T)(H)}\right)$. Thus

$$
\left\|\left(T-z_{n}\right) \chi_{E_{n}}\right\| \leq \operatorname{diam}\left(E_{n}\right) \leq \frac{1}{2^{n}}
$$

We can choose $\alpha_{n}, \beta_{n} \in \sigma\left(S_{E_{n}}\right) \subset \sigma(S)$ such that, for each $n \in \mathbb{N}$,

$$
\left|\alpha_{n}-\beta_{n}\right| \geq \varepsilon
$$

Let $r_{n}=1 / 2^{n}$ for each $n \in \mathbb{N}$. Thus $\chi_{D\left(\alpha_{n}, r_{n}\right)}\left(S_{E_{n}}\right)$ and $\chi_{D\left(\beta_{n}, r_{n}\right)}\left(S_{E_{n}}\right)$ are nonzero subprojections of $\chi_{E_{n}}(T)$. It follows from Theorem 2.6.6 and the fact that \mathcal{M} is a factor of type $I I_{1}, I I_{\infty}$ or
$I I I$, that there is an orthogonal family $\left\{P_{n_{k}}: n \in \mathbb{N}, k \in\{1,2\}\right\}$ of nonzero projections such that $P_{n_{1}} \leq \chi_{D\left(\alpha_{n}, r_{n}\right)}\left(S_{E_{n}}\right)$ and $P_{n_{2}} \leq \chi_{D\left(\beta_{n}, r_{n}\right)}\left(S_{E_{n}}\right)$ for all $n \in \mathbb{N}$ and $k=1,2$. Since \mathcal{M} is a factor, one of $P_{n_{1}}$ and $P_{n_{2}}$ is Murray-von Neumann equivalent to a subprojection of the other. Hence we can assume that $P_{n_{1}}$ and $P_{n_{2}}$ are Murray-von Neumann equivalent. Thus there is a partial isometry $V_{n} \in \mathcal{M}$ such that $V_{n}^{*} V_{n}=P_{n_{1}}$ and $V_{n} V_{n}^{*}=P_{n_{2}}$. Since the map π_{n} such that

$$
\pi_{n}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=a P_{n_{1}}+b V_{n}+c V_{n}^{*}+d P_{n_{2}}
$$

is a $*$-homomorphism on $\mathbb{M}_{2}(\mathbb{C})$, we see that

$$
\left\|a P_{n_{1}}+b V_{n}+c V_{n}^{*}+d P_{n_{2}}\right\|=\left\|\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right\|
$$

For each positive integer n, we define $A_{n}=\frac{1}{n} I_{2}+\frac{1}{2}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ and let $D_{n}=\pi\left(A_{n}\right)$. Clearly

$$
\left\|D_{n}\right\|=\left\|A_{n}\right\|=1+\frac{1}{n} \leq 2 .
$$

If we view D_{n} acting on $\left(P_{n_{1}}+P_{n_{2}}\right)(H)=H_{n}$ we can view D_{n} as being invertible and $D_{n}^{-1}=$ $\pi_{n}\left(A_{n}^{-1}\right)$. However, we have $D_{n}^{-1} D_{n}=\pi_{n}(1)=P_{n_{1}}+P_{n_{2}}$. We will use the notation D_{n}^{-1} for $\pi\left(A_{n}^{-1}\right)$ even though it is not the inverse in \mathcal{M} of D_{n}.

Since $\frac{1}{2}\left(\begin{array}{cc}1 & 1 \\ 1 & 1\end{array}\right)$ is a rank-one projection, we have $\left\|A_{n}^{-1}\right\|=n$ for $n \in \mathbb{N}$.
A simple computation shows that, for each $n \in \mathbb{N}$,

$$
\left\|D_{n}^{-1}\left(\alpha_{n} P_{n_{1}}+\beta_{n} P_{n_{2}}\right) D_{n}\right\|=\left\|A_{n}^{-1}\left(\begin{array}{cc}
\alpha_{n} & 0 \\
0 & \beta_{n}
\end{array}\right) A_{n}\right\| \geq n\left|\alpha_{n}-\beta_{n}\right| \geq n \varepsilon
$$

For each $n \in \mathbb{N}$, let $Q_{n}=P_{n_{1}}+P_{n_{2}}$ and let

$$
D_{\infty}=Q_{\infty}=1-\sum_{n=1}^{\infty} Q_{n}
$$

We define

$$
D=Q_{\infty}+\sum_{n=1}^{\infty} D_{n} \in \mathcal{M}
$$

It is clear that $\|D\| \leq 2$ and that $\operatorname{ker}(D)=\{0\}$. Thus the (unbounded) inverse D^{-1} of D is

$$
D^{-1}=Q_{\infty}+\sum_{n=1}^{\infty} D_{n}^{-1}
$$

We have $Q_{n} D=D Q_{n}=D_{n}$ and $Q_{n} D^{-1}=D^{-1} Q_{n}=D_{n}^{-1}$ for each $n \in \mathbb{N}$. We now want to show that

$$
\left\|D^{-1} T D\right\|<\infty
$$

i.e., the range of D is T-invariant. We have

$$
\begin{gathered}
\left\|D^{-1} T D\right\| \leq \\
\leq \sup _{1 \leq n \leq \infty}\left\|D_{n}^{-1} T D_{n}\right\|+\left\|D^{-1} T D-\sum_{n=1}^{\infty} D_{n}^{-1} T D_{n}\right\| \\
\leq \sup _{1 \leq n \leq \infty}\left\|D_{n}^{-1} T D_{n}\right\|+\sum_{1 \leq n \leq \infty}\left\|Q_{n}\left(D^{-1} T D-\sum_{n=1}^{\infty} D_{n}^{-1} T D_{n}\right)\right\| \\
=\sup _{1 \leq n \leq \infty}\left\|D_{n}^{-1} T D_{n}\right\|+\sum_{1 \leq n \leq \infty}\left\|Q_{n}\left(D_{n}^{-1} T D-D_{n}^{-1} T Q_{n} D\right)\right\| \\
\leq \sup _{1 \leq n \leq \infty}\left\|D_{n}^{-1} T D_{n}\right\|+\sum_{1 \leq n \leq \infty}\left\|D_{n}^{-1}\right\|\left\|Q_{n} T-T Q_{n}\right\|\|D\| .
\end{gathered}
$$

However,

$$
\begin{gathered}
\left\|D_{n}^{-1} T D_{n}\right\|=\left\|D_{n}^{-1}\left(T-z_{n}\right) D_{n}\right\|+\left|z_{n}\right|\left\|D_{n}^{-1} D_{n}\right\| \\
=\left\|D_{n}^{-1}\left(T-z_{n}\right) \chi_{E_{n}}(T) D_{n}\right\|+\left|z_{n}\right| \leq\left\|D_{n}^{-1}\right\| \operatorname{diam}\left(E_{n}\right)\|D\|+\|T\| \\
\leq \frac{n}{2^{n}} 2+\|T\| \leq 1+\|T\|
\end{gathered}
$$

Thus $\sup _{1 \leq n \leq \infty}\left\|D_{n}^{-1} T D_{n}\right\| \leq 1+\|T\|$.

Next, for $1 \leq n<\infty$,

$$
\begin{gathered}
\left\|D_{n}^{-1}\right\|\left\|Q_{n} T-T Q_{n}\right\|\|D\|=\left\|D_{n}^{-1}\right\|\left\|Q_{n}\left(T-z_{n}\right)-\left(T-z_{n}\right) Q_{n}\right\|\|D\| \\
=\left\|D_{n}^{-1}\right\|\left\|Q_{n} \chi_{E_{n}}(T)\left(T-z_{n}\right)-\left(T-z_{n}\right) \chi_{E_{n}}(T) Q_{n}\right\|\|D\| \\
\leq n \frac{2}{2^{n}}\|D\| \leq n / 2^{n-2}
\end{gathered}
$$

Thus

$$
\sum_{n=1}^{\infty}\left\|D_{n}^{-1}\right\|\left\|Q_{n} T-T Q_{n}\right\|\|D\| \leq \sum_{n=1}^{\infty} n / 2^{n-2}<\infty
$$

Also

$$
\left\|Q_{\infty} D^{-1} T D\right\|=\left\|Q_{\infty} T D\right\| \leq 2\|T\|
$$

Hence $\left\|D^{-1} T D\right\|<\infty$.
We now want to show that $D^{-1} S D$ is not bounded.
We know

$$
\begin{gathered}
\left\|D^{-1} S D\right\| \geq \sup _{1 \leq n<\infty}\left\|Q_{n} D^{-1} S D Q_{n}\right\|=\sup _{1 \leq n<\infty}\left\|D_{n}^{-1} Q_{n} S Q_{n} D_{n}\right\| \\
\sup _{1 \leq n<\infty}\left\|D_{n}^{-1}\left(P_{n_{1}}+P_{n_{2}}\right) S\left(P_{n_{1}}+P_{n_{2}}\right) D_{n}\right\| .
\end{gathered}
$$

However,

$$
\left\|P_{n_{1}}\left(S-\alpha_{n}\right)\right\|=\left\|P_{n_{1}}\left(S_{E_{n}}-\alpha_{n}\right)\right\| \leq \frac{1}{2^{n}}
$$

Similarly,

$$
\left\|\left(S-\alpha_{n}\right) P_{n_{1}}\right\| \leq \frac{1}{2^{n}},\left\|P_{n_{2}}\left(S-\beta_{n}\right)\right\| \leq \frac{1}{2^{n}},\left\|\left(S-\beta_{n}\right) P_{n_{2}}\right\| \leq \frac{1}{2^{n}}
$$

Thus,

$$
\begin{gathered}
\left\|D_{n}^{-1}\left(P_{n_{1}}+P_{n_{2}}\right) S\left(P_{n_{1}}+P_{n_{2}}\right) D_{n}\right\| \geq \\
\left\|D_{n}^{-1}\left(\alpha_{n} P_{n_{1}}+\beta_{n} P_{n_{2}}\right) D_{n}\right\|-\left\|D_{n}^{-1}\right\| \frac{4}{2^{n}} \\
\geq n \varepsilon-4\|D\| / 2^{n}
\end{gathered}
$$

Thus $\left\|D^{-1} D S\right\| \nless \infty$. This contradiction proves our lemma.

Lemma 2.6.9. For every $\lambda \in \sigma(T)$ there exists $\alpha \in \mathbb{C}$ such that

$$
\bigcap_{0<r<\infty} \sigma\left(S_{D(\lambda, r)}\right)=\{\alpha\}
$$

Proof. By Lemma 2.6.8 $\operatorname{diam}\left(\sigma\left(S_{D}(\lambda, 1 / n)\right) \rightarrow n\right.$ as $n \rightarrow \infty$. Since for every $n \in \mathbb{N}$, $D(\lambda, 1 /(n+1)) \subset D(\lambda, 1 / n)$, we have $\left\{\sigma\left(S_{D}(\lambda, 1 / n)\right)\right\}$ is a decreasing chain (with respect to \subset) of compact (closed) subsets of \mathbb{C}. Hence the lemma follows from Cantor's intersection theorem for complete metric spaces.

Lemma 2.6.10. Define

$$
\begin{gathered}
f: \sigma(T) \rightarrow \mathbb{C} \\
\{f(\lambda)\}=\bigcap_{0<r<\infty} \sigma\left(S_{D(\lambda, r)}\right) .
\end{gathered}
$$

Then f is uniformly continuous on $\sigma(T)$, and $S=f(T)$.

Proof. The function f is a well defined by Lemma 2.6.9. Given $\varepsilon>0$, Lemma 2.6.8 provides $\delta>0$ such that for every $z, a \in \sigma(T)$, if $|z-a|<\delta / 2$, then $\operatorname{diam}\left(S_{D}((z+a) / 2, \delta / 2)\right)<\varepsilon$. If $|z-a|<\delta / 2$, then $z, a \in D((z+a) / 2, \delta / 2)$. Moreover, $D(z, \delta / 2-|z-a|)$ and $D(a, \delta / 2-|z-a|)$ are both subsets of $D((z+a) / 2, \delta / 2)$. From the definition of f,

$$
f(z) \in \sigma\left(S_{D(z, \delta / 2-|z-a|)}\right) \subset \sigma\left(S_{D((z+a) / 2, \delta / 2)}\right)
$$

and

$$
f(a) \in \sigma\left(S_{D(a, \delta / 2-|z-a|)}\right) \subset \sigma\left(S_{D((z+a) / 2, \delta / 2)}\right)
$$

Therefore

$$
|f(z)-f(a)| \leq \operatorname{diam}\left(\sigma\left(S_{D((z+a) / 2, \delta / 2)}\right)<\varepsilon\right.
$$

Thus f is uniformly continuous on $\sigma(T)$.
Next we show that $S=f(T)$. Let $\varepsilon>0$. It follows from Lemma 2.6.8, and the fact that f is uniformly continuous that there exists $\delta>0$ such that for every Borel subset $E \subset \sigma(T)$, and for every $z, \lambda \in \sigma(T)$,

1. $\operatorname{diam}(E)<\delta \Rightarrow \operatorname{diam}\left(\sigma\left(S_{E}\right)\right)<\varepsilon$,
2. $|z-\lambda| \leq \delta \Rightarrow|f(z)-f(\lambda)| \leq \varepsilon$.

Suppose $\lambda \in E \subset \sigma(T)$ and $\operatorname{diam}(E)<\delta$. It follows from definition of f that $f(\lambda) \in$ $\sigma\left(S_{D(\lambda, \delta)}\right)$. It follows from (1) that $\operatorname{diam}\left(S_{D}(\lambda, \delta)\right)<\varepsilon$. If $z \in \sigma\left(S_{D(\lambda, \delta)}\right)$, then

$$
|z-f(\lambda)| \leq \operatorname{diam}\left(\sigma\left(S_{D(\lambda, \delta)}\right)\right)<\varepsilon .
$$

Define a continuous mapping $h: \sigma\left(S_{D(\lambda, \delta)}\right) \rightarrow \mathbb{C}$, by $h(z)=z-f(\lambda)$. Then

$$
\begin{aligned}
\left\|S_{D(\lambda, \delta)}-f(\lambda) \chi_{D(\lambda, \delta)}(T)\right\| & =\left\|h\left(S_{D(\lambda, \delta)}\right)\right\| \\
& =\sup _{z \in \sigma\left(S_{D}(\lambda, \delta)\right)}|h(z)| \\
& <\varepsilon .
\end{aligned}
$$

Since $\operatorname{diam}(E)<\delta$ it is clear that $E \subset D(\lambda, \delta)$. Let $F=D(\lambda, \delta) \backslash E$. Then

$$
\begin{aligned}
\chi_{E}(T) & \perp \chi_{F}(T) \\
\chi_{D(\lambda, \delta)}(T) & =\chi_{E}(T) \oplus \chi_{F}(T) \\
S_{D(\lambda, \delta)} & =S_{E} \oplus S_{F} .
\end{aligned}
$$

Thus

$$
S_{D(\lambda, \delta)}-f(\lambda) \chi_{D(\lambda, \delta)}(T)=\left(S_{E}-f(\lambda) X_{E}(T)\right) \oplus\left(S_{F}-f(\lambda) X_{F}(T)\right),
$$

It follows that

$$
\begin{aligned}
\left\|S_{E}-f(\lambda) \chi_{E}(T)\right\| & \leq \max \left\{\left\|S_{E}-f(\lambda) \chi_{E}(T)\right\|,\left\|S_{F}-f(\lambda) \chi_{F}(T)\right\|\right\} \\
& =\left\|S_{D(\lambda, \delta)}-f(\lambda) \chi_{D(\lambda, \delta)}(T)\right\| \\
& <\varepsilon
\end{aligned}
$$

Thus far we have shown that if E is a Borel subset of $\sigma(T)$, and $\lambda \in E$, then

$$
\begin{equation*}
\operatorname{diam}(E)<\delta \Rightarrow\left\|S_{E}-f(\lambda) X_{E}(T)\right\|<\varepsilon \tag{2.1}
\end{equation*}
$$

Now consider a partition of $\sigma(T)$ into disjoint, nonempty subsets $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ such that $\operatorname{diam}\left(E_{k}\right)<\delta$, for every $1 \leq k \leq n$. Let $T_{E_{k}}=T \chi_{E_{k}}(T)$. Write

$$
I=\bigoplus_{k=1}^{\infty} \chi_{E_{k}}(T), S=\bigoplus_{k=1}^{n} S_{E_{k}}, T=\bigoplus_{k=1}^{n} T_{E_{k}}
$$

Choose $\lambda_{1} \in E_{1}, \lambda_{2} \in E_{2}, \ldots, \lambda_{n} \in E_{n} . \operatorname{diam}\left(\sigma\left(T_{E_{k}}\right)\right) \leq \delta$ since $\sigma\left(T_{E_{k}}\right) \subset \overline{E_{k}}$. If $z \in$ $\sigma\left(T_{E_{k}}\right)$, then $z \in \overline{E_{k}}$. Hence $\left|z-\lambda_{k}\right| \leq \delta$. Thus $\left|f(z)-f\left(\lambda_{k}\right)\right| \leq \varepsilon$. The mapping $g: \sigma\left(T_{E_{K}}\right) \rightarrow \mathbb{C}$, by $g(z)=f\left(\lambda_{k}\right)-f(z)$ is continuous. Thus for every $1 \leq k \leq n$,

$$
\begin{align*}
\left\|f\left(\lambda_{k}\right) \chi_{E_{k}}(T)-f\left(T_{E_{k}}\right)\right\| & =\left\|g\left(T_{E_{K}}\right)\right\|=\sup _{z \in \sigma\left(T_{E_{k}}\right)}|g(z)| \tag{2.2}\\
& =\sup _{z \in \sigma\left(T_{E_{k}}\right)}\left|f\left(\lambda_{k}\right)-f(z)\right| \\
& \leq \varepsilon .
\end{align*}
$$

Let

$$
D=\bigoplus_{k=1}^{n} f\left(\lambda_{k}\right) \chi_{E_{k}}(T)
$$

Then

$$
\begin{aligned}
\|S-f(T)\| & \leq\|S-D\|+\|D-f(T)\| \\
& =\left\|\bigoplus_{k=1}^{n} S_{E_{k}}-\bigoplus_{k=1}^{n} f\left(\lambda_{k}\right) \chi_{E_{k}}(T)\right\|+\left\|f\left(\bigoplus_{k=1}^{n} T_{E_{k}}\right)-\bigoplus_{k=1}^{n} f\left(\lambda_{k}\right) \chi_{E_{k}}(T)\right\| \\
& =\left\|\bigoplus_{k=1}^{n} S_{E_{k}}-f\left(\lambda_{k}\right) \chi_{E_{k}}(T)\right\|+\left\|\bigoplus_{k=1}^{n} f\left(T_{E_{k}}\right)-f\left(\lambda_{k}\right) \chi_{E_{k}}(T)\right\| \\
& =\max _{1 \leq k \leq n}\left\|S_{E_{k}}-f\left(\lambda_{k}\right) \chi_{E_{k}}(T)\right\|+\max _{1 \leq k \leq n}\left\|f\left(T_{E_{k}}\right)-f\left(\lambda_{k}\right) \chi_{E_{k}}(T)\right\| \\
& \leq \varepsilon+\varepsilon=2 \varepsilon
\end{aligned}
$$

where the last inequality follows from equations (2.1) and (2.2) above. Thus $S=f(T)$.

2.7 Normal Operators in a type I_{n} von Neumann algebra

Suppose \mathcal{M} is a type I_{n} von Neumann algebra. By a result in [19], there is a family of probability spaces $\left\{\left(\Omega_{i}, \Sigma_{i}, \mu_{i}\right): i \in I\right\}$, such that \mathcal{M} is isomorphic (not unitarily equivalent to)

$$
\sum_{i \in I}^{\oplus} \mathbb{M}_{n}\left(L^{\infty}\left(\mu_{i}\right)\right)
$$

We need a simple result about Vandermonde matrices. Suppose t_{1}, \ldots, t_{d} are d distinct complex numbers. The Vandermonde matrix $V\left(t_{1}, \ldots, t_{d}\right)$ is defined as

$$
V\left(t_{1}, \ldots, t_{d}\right)=\left(\begin{array}{ccccc}
1 & t_{1} & t_{1}^{2} & \cdots & t_{1}^{d-1} \\
1 & t_{2} & t_{2}^{2} & \cdots & t_{2}^{d-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & t_{d} & t_{d}^{2} & \cdots & t_{d}^{d-1}
\end{array}\right)
$$

It is well known that $V\left(t_{1}, \ldots, t_{d}\right)$ is invertible. Here are some additional facts.

Lemma 2.7.1. Suppose t_{1}, \ldots, t_{d} are d distinct complex numbers, $s_{1}, \ldots, s_{d} \in \mathbb{C}$, and $p(z)=$ $c_{0}+c_{1} z+\cdots+c_{d-1} z^{d-1}$ is the (unique) polynomial with degree less than d such that $p\left(t_{k}\right)=s_{k}$ for $1 \leq k \leq d$. Then

1. $V\left(t_{1}, \ldots, t_{d}\right)\left(\begin{array}{c}c_{0} \\ c_{1} \\ \vdots \\ c_{d-1}\end{array}\right)=\left(\begin{array}{c}p\left(t_{1}\right) \\ p\left(t_{2}\right) \\ \vdots \\ p\left(t_{d}\right)\end{array}\right)$
2. The first column of $V\left(t_{1}, \ldots, t_{d}\right)^{-1} \operatorname{diag}\left(s_{1}, \ldots, s_{d}\right) V\left(t_{1}, \ldots, t_{d}\right)=\left(\begin{array}{c}c_{0} \\ c_{1} \\ \vdots \\ c_{d-1}\end{array}\right)$.
3. $V\left(t_{1}, \ldots, t_{d}\right)^{-1} \operatorname{diag}\left(t_{1}, \ldots, t_{d}\right) V\left(t_{1}, \ldots, t_{d}\right)=\left(\begin{array}{ccccc}0 & 0 & \cdots & 0 & a_{0} \\ 1 & 0 & \cdots & 0 & a_{1} \\ 0 & 1 & \cdots & 0 & a_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & a_{d-1}\end{array}\right)$, where

$$
a_{0}+a_{1} z+\cdots+a_{d-1} z^{d-1}=z^{d}-\left(z-t_{1}\right) \cdots\left(z-t_{d}\right) .
$$

4. $\left\|V\left(t_{1}, \ldots, t_{d}\right)^{-1} \operatorname{diag}\left(t_{1}, \ldots, t_{d}\right) V\left(t_{1}, \ldots, t_{d}\right)\right\| \leq(1+R)^{d}$, where $R=\max _{1 \leq k \leq d}\left|t_{k}\right|$.

Proof. (1). This is trivial.
(2). The first column of $V\left(t_{1}, \ldots, t_{d}\right)^{-1} \operatorname{diag}\left(s_{1}, \ldots, s_{d}\right) V\left(t_{1}, \ldots, t_{d}\right)$ is

$$
V\left(t_{1}, \ldots, t_{d}\right)^{-1} \operatorname{diag}\left(s_{1}, \ldots, s_{d}\right) V\left(t_{1}, \ldots, t_{d}\right)\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

$$
=V\left(t_{1}, \ldots, t_{d}\right)^{-1} \operatorname{diag}\left(s_{1}, \ldots, s_{d}\right)\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)=V\left(t_{1}, \ldots, t_{d}\right)^{-1}\left(\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
s_{d}
\end{array}\right)=\left(\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{d-1}
\end{array}\right)
$$

where the last equality follows from part (1).
(3). Suppose $V\left(t_{1}, \ldots, t_{d}\right)^{-1} \operatorname{diag}\left(s_{1}, \ldots, s_{d}\right) V\left(t_{1}, \ldots, t_{d}\right)=B$. Then

$$
\operatorname{diag}\left(s_{1}, \ldots, s_{d}\right) V\left(t_{1}, \ldots, t_{d}\right)=\left(\begin{array}{cccc}
t_{1} & t_{1}^{2} & \cdots & t_{1}^{d} \\
t_{2} & t_{2}^{2} & \cdots & t_{2}^{d} \\
\vdots & \vdots & \vdots & \ddots \\
t_{d} & t_{d}^{2} & \cdots & t_{d}^{d}
\end{array}\right)=V\left(t_{1}, \ldots, t_{d}\right) B
$$

If B_{j} denotes the $j^{\text {th }}$ column of the matrix B, then

$$
V\left(t_{1}, \ldots, t_{d}\right) B_{j}=\left(\begin{array}{c}
t_{1}^{j} \\
t_{2}^{j} \\
\vdots \\
t_{d}^{j}
\end{array}\right)=(j+1)^{t h} \text { column of } V\left(t_{1}, \ldots, t_{d}\right)
$$

Therefore B_{j} is the column vector with a 1 at the $(j+1)^{t h}$ component and 0 everywhere else, for $1 \leq j<d$. Suppose the last column of B is

$$
B_{d}=\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{d-1}
\end{array}\right),
$$

and let $P(z)=a_{0}+a_{1} z+\ldots a_{d-1} z^{d-1}$ be the unique polynomial of degree $<d$ such that $p\left(t_{k}\right)=t_{k}^{d}$ for $1 \leq k \leq d$. It is clear that $p(z)=z^{d}-\left(z-t_{1}\right)\left(z-t_{2}\right) \ldots\left(z-t_{d}\right)$.
(4) The columns of the matrix B in part (3) are all unit vectors with a simple form except for the last column. The elements a_{k} of the last column of B are coefficients of $p(z)=z^{d}-\left(z-t_{1}\right)(z-$ $\left.t_{2}\right) \ldots\left(z-t_{d}\right)$. Thus to estimate $\|B\|$, we expand the polynomial and estimate the magnitude of the coefficients. Let $R=\max _{1 \leq k \leq d}\left|t_{k}\right|$. Then $\left|a_{k}\right| \leq C(d, d-k) R^{d-k}$. Thus

$$
\sum_{k=0}^{d}\left|a_{k}\right| \leq \sum_{k=0}^{d} C(d, d-k) R^{d-k} \leq(1+R)^{d}
$$

Hence $\|B\| \leq(1+R)^{d}$.

Theorem 2.7.2. Suppose $n \in \mathbb{N}$ and \mathcal{M} is a type I_{n} von Neumann algebra. Suppose $S, T \in \mathcal{M}$, T is normal and $S \in \operatorname{AlgLat}_{1 / 2}(T, \mathcal{M})$. Then there are elements $c_{0}, c_{1}, \ldots, c_{n-1} \in \mathcal{Z}(\mathcal{M})$ such that

$$
S=c_{0}+c_{1} T+\cdots+c_{n-1} T^{n-1}
$$

Proof. Write

$$
\begin{gathered}
\mathcal{M}=\sum_{i \in I}^{\oplus} \mathbb{M}_{n}\left(L^{\infty}\left(\mu_{i}\right)\right), \\
T=\sum_{i \in I}^{\oplus} T_{i}
\end{gathered}
$$

and

$$
S=\sum_{i \in I}^{\oplus} S_{i} .
$$

Theorem 2.2.3 provides a unitary $U=\sum_{i \in I}^{\oplus} U_{i} \in \mathcal{M}$ such that, for every $i \in I$, there are measurable functions $d_{i}: \Omega_{i} \rightarrow\{1, \ldots, n\}$ and $t_{i, 1}, \ldots, t_{i, n}: \Omega_{i} \rightarrow \mathbb{C}$ such that

$$
U_{i}^{*}(\omega) T_{i}(\omega) U_{i}(\omega)=\operatorname{diag}\left(t_{i, 1}(\omega), \ldots, t_{i, n}(\omega)\right)
$$

and

$$
\operatorname{Card}\left(\left\{t_{i, 1}(\omega), \ldots, t_{i, d_{i}(\omega)}(\omega)\right\}\right)=d_{i}(\omega)=\operatorname{Card}\left(\left\{t_{i, 1}(\omega), \ldots, t_{i, n}(\omega)\right\}\right) .
$$

Since the theorem is unchanged if we replace T with $U^{*} T U$ and S with $U^{*} S U$, we can assume that

$$
T_{i}(\omega)=\operatorname{diag}\left(t_{i, 1}(\omega), \ldots, t_{i, n}(\omega)\right)
$$

holds.
For each $i \in I$ and $\omega \in \Omega_{i}$ define

$$
W_{i, \omega}=\left(\begin{array}{cc}
V\left(t_{i, 1}(\omega), \ldots, t_{i, d_{i}(\omega)}(\omega)\right) & 0 \\
0 & I_{n-d_{i}(\omega)}
\end{array}\right)
$$

Then $W=\sum_{i \in I}^{\oplus} W_{i} \in \mathcal{M}$ and has norm at most $(1+\|T\|)^{n}$. Also if for each $i \in I$ and each $\omega \in \Omega_{i}$ we define

$$
D_{i, \omega}=W_{i, \omega}^{-1} T_{i}(\omega) W_{i, \omega}
$$

and define

$$
D=\sum_{i \in I}^{\oplus} D_{i} \in \mathcal{M}
$$

then

$$
T W=W D
$$

and

$$
\|D\| \leq(1+\|T\|)^{n}
$$

Since $S \in \operatorname{AlgLat}_{1 / 2}(T, \mathcal{M})$ we have, for each $i \in I, S_{i} \in \operatorname{AlgLat}_{1 / 2}\left(T_{i}, \mathbb{M}_{n}\left(L^{\infty}\left(\mu_{i}\right)\right)\right)$. It follows from Theorem 2.4.1 that we can assume, for every $\omega \in \Omega_{i}$

$$
S_{i}(\omega) \in \operatorname{AlgLat}_{1 / 2}\left(T_{i}(\omega), \mathbb{M}_{n}(\mathbb{C})\right)
$$

Since every normal matrix is reflexive, it follows that there is a polynomial

$$
p_{i, \omega}(z)=c_{i, 0}(\omega)+c_{i, 1}(\omega) z+\cdots+c_{i, n-1}(\omega) z^{n-1}
$$

with $c_{i, k}(\omega)=0$ when $d_{i}(\omega) \leq k \leq n-1$, i.e, the degree of $p_{i, \omega}$ is less than $d_{i}(\omega)$.

Thus, for each $i \in I$ and each $\omega \in \Omega_{i}$,

$$
S_{i}(\omega)=\operatorname{diag}\left(p_{i, \omega}\left(t_{i, 1}(\omega)\right), \ldots, p_{i, \omega}\left(t_{i, n}(\omega)\right)\right)
$$

Since $S \in \operatorname{AlgLat}_{1 / 2}(T, \mathcal{M})$ and $T W=W D$, there exists $B=\sum_{i \in I}^{\oplus} B_{i} \in \mathcal{M}$ such that $S W=W B$. Hence, we can assume for every $i \in I$ and each $\omega \in \Omega_{i}$ that

$$
W_{i, \omega}^{-1} S_{i,}(\omega) W_{i, \omega}=B_{i, \omega}
$$

and therefore

$$
\left\|W_{i, \omega}^{-1} S_{i,}(\omega) W_{i, \omega}\right\| \leq\|B\| .
$$

By Lemma 2.7.1, the first column of $W_{i, \omega}^{-1} S_{i,}(\omega) W_{i, \omega}$ is

$$
\left(\begin{array}{c}
c_{i, 0}(\omega) \\
c_{i, 1}(\omega) \\
\vdots \\
c_{d-1}(\omega)
\end{array}\right)
$$

It follows that each $c_{i, k}$ is measurable and

$$
\sup \left\{\left|c_{i, k}(\omega)\right|: i \in I, \omega \in \Omega_{i}\right\} \leq\|B\| .
$$

We can define $C_{0}, \ldots C_{n-1} \in \mathcal{Z}(\mathcal{M})$ where

$$
C_{k}=\sum_{i \in I}^{\oplus} C_{k, i}
$$

and

$$
C_{k, i}(\omega)=c_{i, k}(\omega) I
$$

We clearly have $S=C_{0}+C_{1} T+\cdots+C_{n-1} T^{n-1}$.

2.8 Normal Operators in an Arbitrary von Neumann Algebra on a Separable Hilbert Space

Theorem 2.8.1. Suppose \mathcal{M} is a von Neumann algebra acting on a separable Hilbert space. If $S, T \in \mathcal{M}, T$ is normal, and $S \in \operatorname{AlgLat}_{1 / 2}(T, \mathcal{M})$, then

$$
S \in C^{*}(\{T\} \cup \mathcal{Z}(\mathcal{M}))
$$

Proof. Case 1: First assume $\mathcal{M}=\sum_{n \in E}^{\oplus} \mathcal{M}_{n}$ with $E \subset \mathbb{N}$ and each \mathcal{M}_{n} is a factor. Write $T=\sum_{n \in E}^{\oplus} T_{n}$ and $S=\sum_{n \in E}^{\oplus} T_{n}$. Since $S \in \operatorname{AlgLat}_{1 / 2}(T, \mathcal{M})$, for each $n \in E, S_{n} \in$ AlgLat $_{1 / 2}\left(T_{n}, \mathcal{M}_{n}\right)$. Thus, for each $n \in \mathbb{N}$ there is a continuous function $f_{n}: \mathbb{C} \rightarrow \mathbb{C}$ such that $S_{n}=f_{n}\left(T_{n}\right)$. If E is finite, we are done. Thus we can assume $E=\mathbb{N}$. We know from [10] that there is a sequence $\left\{P_{m}\right\}$ of projections in \mathcal{M} such that

$$
\lim _{m \rightarrow \infty}\left\|P_{m} T-T P_{m}\right\|=0
$$

and

$$
\lim _{m \rightarrow \infty}\left\|P_{m} S-S P_{m}\right\|=\operatorname{dist}\left(S, C^{*}(\{T\} \cup \mathcal{Z}(\mathcal{M}))\right)=2 \varepsilon
$$

Assume via contradiction that $\varepsilon>0$. We can assume that for every $m \in \mathbb{N}$,

$$
\left\|P_{m} S-S P_{m}\right\|>\varepsilon
$$

For each $m \in \mathbb{N}$ we can write $P_{m}=\sum_{k \in \mathbb{N}}^{\oplus} P_{m, k}$. Since

$$
\lim _{m \rightarrow \infty}\left[\sup _{k \in \mathbb{N}}\left\|P_{m, k} T_{k}-T_{k} P_{m, k}\right\|\right]=0
$$

and $S_{k}=f_{k}\left(T_{k}\right)$, we have, for each $k \in \mathbb{N}$

$$
\lim _{m \rightarrow \infty}\left\|P_{m, k} S_{k}-S_{k} P_{m, k}\right\|=0
$$

It follows that there are integers $1 \leq k_{1}<k_{2}<\cdots$ and projections Q_{1}, Q_{2}, \ldots such that, for each $s \in \mathbb{N}$,

$$
\left\|Q_{s} T_{k_{s}}-T_{k_{s}} Q_{s}\right\|<1 / 2^{s} \text { and }\left\|Q_{s} S_{k_{s}}-S_{k_{s}} Q_{s}\right\|>\varepsilon
$$

Since for every operator A and every projection Q

$$
\|Q A-A Q\|=\max \left(\|(1-Q) A Q\|,\left\|\left(1-Q^{\perp}\right) A Q^{\perp}\right\|\right)
$$

by replacing Q_{s} with $1-Q_{s}=Q_{s}^{\perp}$ if necessary, we can assume that for every $s \in \mathbb{N}$

$$
\left\|\left(1-Q_{s}\right) S_{k_{s}} Q_{s}\right\|>\varepsilon
$$

We define $A=\sum_{n \in \mathbb{N}}^{\oplus} A_{n}$ and $B=\sum_{n \in \mathbb{N}}^{\oplus} B_{n}$ in \mathcal{M} by

$$
\begin{gathered}
A_{n}=\left\{\begin{array}{cc}
Q_{s}+\frac{1}{n} Q_{s}^{\perp} & \text { if } n=k_{s} \text { for some } s \in \mathbb{N} \\
I & \text { otherwise }
\end{array}\right. \\
B_{n}=\left\{\begin{array}{cc}
\left(Q_{s}+\frac{1}{n} Q_{s}^{\perp}\right)^{-1} T_{k_{s}}\left(Q_{s}+\frac{1}{n} Q_{s}^{\perp}\right) & \text { if } n=k_{s} \text { for some } s \in \mathbb{N} \\
I & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Then, for every $n \in \mathbb{N}$,

$$
T_{n} A_{n}=A_{n} B_{n}, \text { and }\left\|B_{n}\right\| \leq\left\|T_{n}\right\|+\left(n+\frac{1}{n}\right) / 2^{n}
$$

Thus $T A=A B$, so there exists $C=\sum_{n \in \mathbb{N}}^{\oplus} C_{n}$ in \mathcal{M} such that

$$
S A=A C .
$$

This means

$$
A_{k_{s}}^{-1} S_{k_{s}} A_{k_{s}}=C_{k_{s}} .
$$

This contradicts the fact that, for every $s \in \mathbb{N}$,

$$
\begin{aligned}
\|C\| \geq\left\|C_{k_{s}}\right\| & =\left\|A_{k_{s}}^{-1} S_{k_{s}} A_{k_{s}}\right\| \geq\left\|\left(1-Q_{k_{s}}\right) A_{k_{s}}^{-1} S_{k_{s}} A_{k_{s}} Q_{k_{s}}\right\| \\
& \geq\left\|\left(1-Q_{k_{s}}\right) A_{k_{s}}^{-1} S_{k_{s}} A_{k_{s}} Q_{k_{s}}\right\| \\
& \geq s\left\|\left(1-Q_{k_{s}}\right) S_{k_{s}} Q_{k_{s}}\right\| \geq s \varepsilon .
\end{aligned}
$$

Case 2. There is a nonatomic σ-finite measure space (Ω, Σ, μ) and a measurable family $\left\{\mathcal{M}_{\omega}: \omega \in \Omega\right\}$ of factor von Neumann algebras such that $\mathcal{M}=\int_{\Omega}^{\oplus} \mathcal{M}_{\omega} d \mu(\omega)$. We can write $T=\int_{\Omega}^{\oplus} T_{\omega} d \mu(\omega)$ and $S=\int_{\Omega}^{\oplus} S_{\omega} d \mu(\omega)$. Assume, via contradiction that

$$
\operatorname{dist}\left(S, C^{*}(\{T\} \cup \mathcal{Z}(\mathcal{M}))\right)=2 \varepsilon>0
$$

Arguing as in Case 1, there is a sequence $\left\{P_{n}\right\}$ of projections in \mathcal{M} such that, for every $n \in \mathbb{N}$,

$$
\left\|P_{n} T-T P_{n}\right\|<1 / 2^{n} \text { and }\left\|P_{n} S-S P_{n}\right\|>\varepsilon .
$$

Then there is a sequence $\left\{E_{n}\right\}$ of measurable sets with positive measure such that, for every $n \in \mathbb{N}$ and every $\omega \in E_{n}$,

$$
\left\|P_{n}(\omega) T_{\omega}-T_{\omega} P_{n}(\omega)\right\|<1 / 2^{n} \text { and }\left\|P_{n}(\omega) S_{\omega}-S_{\omega} P_{n}(\varepsilon)\right\|>\varepsilon
$$

Since μ is nonatomic we can replace each E_{n} with a subset with positive measure, so that the sets E_{n} are pairwise disjoint. Since E_{n} is the union of the

$$
\left\{\omega \in E_{n}:\left\|\left(1-P_{n}(\omega)\right) S_{\omega} P_{n}(\omega)\right\|>\varepsilon\right\} \cup\left\{\omega \in E_{n}:\left\|\left(1-P_{n}^{\perp}(\omega)\right) S_{\omega} P_{n}^{\perp}(\omega)\right\|>\varepsilon\right\}
$$

we can assume that, for every $\omega \in E_{n}$

$$
\left\|\left(1-P_{n}(\omega)\right) S_{\omega} P_{n}(\omega)\right\|>\varepsilon
$$

Following the proof of Case 1 , we define $A, B \in \mathcal{M}$ by

$$
A(\omega)=\left\{\begin{array}{cc}
P_{n}(\omega)+\frac{1}{n} P_{n}^{\perp}(\omega) & \text { if } \omega \in E_{n} \text { for some } n \in \mathbb{N} \\
I & \text { otherwise }
\end{array}\right.
$$

and

$$
B(\omega)=\left\{\begin{array}{cc}
A(\omega)^{-1} T_{\omega} A(\omega) & \text { if } \omega \in E_{n} \text { for some } n \in \mathbb{N} \\
I & \text { otherwise }
\end{array} .\right.
$$

Then as in Case 1, $A, B \in \mathcal{M}$ and $T A=A B$. Since $S \in \operatorname{AlgLat}_{1 / 2}(T, \mathcal{M})$, there exists $C=$ $\int_{\Omega}^{\oplus} C(\omega) d \mu(\omega)$ such that $S A=A C$. Thus, since $\mu\left(E_{n}\right)>0$, we know for each positive integer n,

$$
\varepsilon n \leq\left\|A(\omega)^{-1} S(\omega) A(\omega) \chi_{E_{n}}(\omega)\right\|_{\infty}=\|C(\omega)\|_{\infty}=\|C\|<\infty .
$$

This contradiction proves Case 2.
General Case. Using the central decomposition for \mathcal{M} [19], we can write

$$
\mathcal{M}=\mathcal{N} \oplus \mathcal{R}
$$

where \mathcal{N} satisfies the condition of Case 1 and \mathcal{R} satisfies the condition of Case 2 . It easily follows from Cases 1 and 2 that the general case is true.

2.9 Some General Lemmas

Lemma 2.9.1. Suppose \mathcal{B} is a von Neumann algebra, $\mathcal{A} \subset \mathcal{B}$ is von Neumann subalgebra, and $S, T \in \mathcal{A}$. If $S \in \operatorname{AlgLat}_{1 / 2}(T, \mathcal{B})$, then $S \in \operatorname{AlgLat}_{1 / 2}(T, \mathcal{A})$.

Proof. Suppose $D \in \mathcal{A}$ and $T(\operatorname{Ran}(D)) \subset \operatorname{Ran}(D)$. Then, $D \in \mathcal{B}$, so $S(\operatorname{Ran}(D)) \subset \operatorname{Ran}(D)$ and therefore $S \in \operatorname{AlgLat}_{1 / 2}(T, \mathcal{B})$.

Corollary 2.9.2. Suppose \mathcal{A} and \mathcal{B} are von Neumann algebras and $\pi: \mathcal{A} \rightarrow \mathcal{B}$ is an isometric unital $*$-homomorphism such that $\pi(\mathcal{A})$ is a von Neumann algebra. Suppose $S, T \in \mathcal{A}$. If $\pi(S) \in$ $\operatorname{Alg}^{\operatorname{Lat}}{ }_{1 / 2}(\pi(T), \mathcal{B})$, then $S \in \operatorname{Alg}^{\operatorname{Lat}}{ }_{1 / 2}(T, \mathcal{A})$.

Proof. Suppose $D \in \mathcal{A}$ and $T(\operatorname{Ran}(D)) \subset \operatorname{Ran}(D)$. Then there exists a bounded $C \in \mathcal{A}$ such that $T D=D C$. Therefore $\pi(T D)=\pi(T) \pi(D)=\pi(D) \pi(C)$. It follows from the previous lemma that $\pi(S) \in \operatorname{AlgLat}_{1 / 2}(\pi(T), \pi(\mathcal{A}))$. Thus there exists $C_{1} \in \pi(\mathcal{A})$, such that $\pi(S) \pi(D)=$ $\pi(D) C_{1}$. But $\pi: \mathcal{A} \rightarrow \pi(\mathcal{A})$ is a $*$-isomorphism. Hence $C_{1}=\pi(C)$, for some $C \in \mathcal{A}$. Thus $S D=D C$, and $S \in \operatorname{AlgLat}_{1 / 2}(T, \mathcal{A})$.

Theorem 2.9.3. Suppose \mathcal{M} is a von Neumann algebra, $\pi: B\left(\ell^{2}\right) \rightarrow \mathcal{M}$ is a unital isometric *-homomorphism, $S, T \in \pi\left(B\left(\ell^{2}\right)\right)$, T is not algebraic and $S \in \operatorname{AlgLat}_{1 / 2}(T, \mathcal{M})$. Then there exists an entire function φ such that

$$
S=\varphi(T)
$$

Proof. There exist $S_{1}, T_{1} \in B\left(\ell^{2}\right)$ such that $S=\pi\left(S_{1}\right)$ and $T=\pi\left(T_{1}\right)$. Since $\pi\left(S_{1}\right) \in$ $\operatorname{AlgLat} t_{1 / 2}\left(\pi\left(T_{1}\right), \mathcal{M}\right)$, it follows from the previous lemma that $S_{1} \in \operatorname{AlgLat}_{1 / 2}\left(T_{1}, B\left(\ell^{2}\right)\right)$. Therefore Douglas-Foiaş theorem implies that there exists an entire function $\varphi(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ such that $S_{1}=\varphi\left(T_{1}\right)$. Thus

$$
\begin{aligned}
S=\pi\left(S_{1}\right)=\pi\left(\varphi\left(T_{1}\right)\right) & =\pi\left(\lim _{N \rightarrow \infty} \sum_{n=0}^{N} c_{n} T_{1}^{n}\right)=\lim _{n \rightarrow \infty} \pi\left(\sum_{n=0}^{N} c_{n} T_{1}^{n}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{n=0}^{N} c_{n} \pi\left(T_{1}\right)^{n}=\sum_{n=0}^{\infty} c_{n} \pi\left(T_{1}\right)^{n}=\varphi\left(\pi\left(T_{1}\right)\right) \\
& =\varphi(T)
\end{aligned}
$$

Corollary 2.9.4. Suppose \mathcal{M} and ρ are as in Theorem 3.2.14, $X, Y, W \in \mathcal{M}, W$ is invertible, $X_{1}=W^{-1} X W, Y_{1}=W^{-1} Y W \in \rho\left(B\left(\ell^{2}\right)\right), Y \in \operatorname{AlgLat}_{1 / 2}(X, \mathcal{M})$, and X is not algebraic. Then there is an entire function $\varphi: \mathbb{C} \rightarrow \mathbb{C}$ such that $Y=\varphi(X)$.

Proof. By Theorem 2.9.3, $Y_{1}=\varphi\left(X_{1}\right)$. Thus $W^{-1} Y W=\varphi\left(W^{-1} X W\right)=W^{-1} \varphi(X) W$. Thus $Y=\varphi(X)$.

CHAPTER 3

SIMILARITY DOMINANCE

3.1 Preliminaries

In [11], J. B. Conway and D. Hadwin introduced the notion of Similarity Dominance.

Definition 3.1.1 (Similarity Dominance). Suppose \mathcal{A} is a unital Banach algebra and $S, T \in \mathcal{A}$. We say that T sim-dominates S provided, for every $R>0$,

$$
\sup \left(\left\{\left\|A^{-1} S A\right\|: A \in \mathcal{A}, A \text { invertible, }\left\|A^{-1} T A\right\| \leq R\right\}\right)<\infty
$$

Theorem 3.1.2 (J. B. Conway, D. Hadwin). Suppose H is a separable Hilbert space, and $S, T \in$ $B(H)$. If T sim-dominates S in $B(H)$, then $S=\varphi(T)$ for an entire function φ.

One of our goals in this chapter is to prove a version of Theorem 3.1.2 for a large class of operators in a type III factor von Neumann algebra.

Another goal of this chapter is to explore the interplay between Sim-Domination, Approximate Double Commutants and Approximate Similarity.

In [8] D. Hadwin introduced the notion of a Double Commutant of a subset of operators in $B(H)$. He proved an asymptotic version of the von Neumann's Double Commutant Theorem, in which C^{*} algebras play the role of von Neumann algebras. He then used this theorem to to investigate asymptotic versions of similarity, reflexivity and reductivity.

We begin by a review of the basic concepts initially studied in [8], and outline the main results of section 3.2.

Definition 3.1.3 (Approximate Double Commutant [8]). Suppose $\mathcal{S} \subset B(H)$. The Approximate Double Commutant of S, denoted by $\operatorname{Appr}(\mathcal{S})^{\prime \prime}$ is

$$
\operatorname{Appr}(\mathcal{S})^{\prime \prime}=\left\{T \in B(H):\left\|A_{n} T-T A_{n}\right\| \rightarrow 0\right\}
$$

for every bounded net $\left\{A_{n}\right\}$ in $B(H)$ for which $\left\|A_{n} S-S A_{n}\right\| \rightarrow 0$, for every $S \in \mathcal{S}$.

More generally we can define the Relative Approximate Double Commutant of a set of operators in a unital Banach algebra.

Definition 3.1.4 (Relative Approximate Double Commutant [10]). Suppose \mathcal{B} is a unital Banach Algebra, and $\mathcal{S} \subset \mathcal{B}$. We define the approximate double commutant of \mathcal{S} in \mathcal{B}, denoted by Appr $(\mathcal{S}, \mathcal{B})^{\prime \prime}$ as in definition 3.1.3, with the additional requirement that T 's and A_{n} 's belong to \mathcal{B}.

Suppose \mathcal{A} is a unital Banach Algebra and $S, T \in \mathcal{A}$. One of our results in the next section states that if T sim-dominates S in \mathcal{A}, then $S \in \operatorname{Appr}(T, \mathcal{A})^{\prime \prime}$. That is, if $\left\{A_{n}\right\}$ is a bounded sequence in \mathcal{A} such that $\lim _{n \rightarrow \infty}\left\|A_{n} T-T A_{n}\right\|=0$, then $\lim _{n \rightarrow \infty}\left\|A_{n} S-S A_{n}\right\|=0$.

Definition 3.1.5 (Invertibly Bounded Sequence [8]). A sequence $\left\{W_{n}\right\}$ in a Banach algebra \mathcal{B} is invertibly bounded if each W_{n} is invertible and $\sup _{n \in \mathbb{N}} \max \left(\left\|W_{n}\right\|,\left\|W_{n}^{-1}\right\|\right)<\infty$.

Definition 3.1.6 (Approximate Similarity [8]). Suppose \mathcal{B} is a unital Banach algebra. Two operators $S, T \in \mathcal{B}$ are approximately similar if there is a sequence $\left\{W_{n}\right\}$ of invertibly bounded operators in \mathcal{B} such that $\left\|W_{n}^{-1} T W_{n}-S\right\| \rightarrow 0$.

Definition 3.1.7 (Approximately Similar Pair). A pair (S, T) in a Banach algebra \mathcal{B} is approximately similar to a pair $\left(S_{1}, T_{1}\right)$ if and only if there is an invertibly bounded sequence $\left\{W_{n}\right\}$ in \mathcal{B} such that

$$
\lim _{n \rightarrow \infty}\left\|W_{n}^{-1} T W_{n}-T_{1}\right\|+\left\|W_{n}^{-1} S W_{n}-S_{1}\right\|=0
$$

We will prove that sim-domination is preserved under approximate similarity, i.e., if $\left\{A_{n}\right\}$ is an invertibly bounded sequence in \mathcal{A} with $\left\|A_{n}^{-1} T A_{n}-T^{\prime}\right\| \rightarrow 0$, then there is an $S^{\prime} \in \mathcal{A}$ such that $\left\|A_{n}^{-1} S A_{n}-S^{\prime}\right\| \rightarrow 0$, and, T^{\prime} sim-dominates S^{\prime}.

Definition 3.1.8. We say that elements S, T in a unital C^{*}-algebra \mathcal{A} are approximately equivalent in \mathcal{A} if and only if there is a sequence $\left\{U_{n}\right\}$ of unitary operators such that

$$
\lim _{n \rightarrow \infty}\left\|U_{n}^{*} T U_{n}-S\right\|=0
$$

Here we list several results of J. B. Conway and D. Hadwin [11], to be used in section 3.2.

Lemma 3.1.9. Suppose $A, T \in B(H), A \geq 0$ and $T(\operatorname{ran}(A)) \subset \operatorname{ran}(A)$. Then, for every $\varepsilon>0$

$$
\left\|(A+\varepsilon)^{-1} T(A+\varepsilon)\right\| \leq\|T\|+\left\|A^{-1} T A\right\|
$$

Lemma 3.1.10. Suppose $A, S \in B(H), A \geq 0$ and

$$
\sup _{\varepsilon>0}\left\|(A+\varepsilon)^{-1} S(A+\varepsilon)\right\|<\infty
$$

Then, $S(\operatorname{ran}(A)) \subset \operatorname{ran}(A)$.

Lemma 3.1.11. Suppose $T \in B(H), M$ is a Hilbert space, $W: M \rightarrow H$, and $T(\operatorname{ran}(W)) \subset$ $\operatorname{ran}(W)$. Then $T\left(\operatorname{ran}\left(W W^{*}\right)^{1 / 2}\right) \subset \operatorname{ran}\left(W W^{*}\right)^{1 / 2}$ and

$$
\left\|W^{-1} T W\right\|=\left\|\left(\left(W W^{*}\right)^{1 / 2}\right)^{-1} T\left(W W^{*}\right)^{1 / 2}\right\| .
$$

The following lemma is motivated by an argument in Theorem 7 in [11]. We mention the proof here for convenience.

Lemma 3.1.12. Suppose \mathcal{A} is a unital Banach algebra, $S, T \in \mathcal{A}$ and T sim-dominates S in \mathcal{A}. Then $S \in\{T\}^{\prime \prime}$.

Proof. Suppose $A \in \mathcal{A}$ and $T A=A T$. Then $e^{\lambda A} T=T e^{\lambda A}$, and

$$
\sup _{\lambda \in \mathbb{C}}\left\|e^{-\lambda A} T e^{\lambda A}\right\|=\|T\| .
$$

Since T sim-dominates S,

$$
\sup _{\lambda \in \mathbb{C}}\left\|e^{-\lambda A} S e^{\lambda A}\right\|<\infty
$$

Thus the map $\varphi(\lambda)=e^{-\lambda A} S e^{\lambda A}$ is a bounded entire function, which, by generalized Liouville theorem, is constant. Computing

$$
0=\varphi^{\prime}(0)=-A S+S A
$$

we see that $A S=S A$. Thus $S \in\{T\}^{\prime \prime}$.

3.2 Main Results

Lemma 3.2.1. Suppose \mathcal{A} is a Banach algebra, $A, S, T \in \mathcal{A}$ and A is invertible. Then T simdominates S in \mathcal{A} if and only if $A^{-1} T A$ sim-dominates $A^{-1} S A$ in \mathcal{A}.

Proof. This follows from the fact that

$$
\begin{aligned}
& \left\{\left\|W^{-1} A^{-1} S A W\right\|: W \in \mathcal{A} \text { is invertible, }\left\|W^{-1} A^{-1} T A W\right\|<R\right\}= \\
& \left\{\left\|(A W)^{-1} S(A W)\right\|: W \in \mathcal{A} \text { is invertible, }\left\|(A W)^{-1} T(A W)\right\|<R\right\}= \\
& \left\{\left\|W^{-1} S W\right\|: W \in \mathcal{A} \text { is invertible, }\left\|W^{-1} T W\right\|<R\right\}
\end{aligned}
$$

Lemma 3.2.2. Suppose \mathcal{A} is a unital Banach algebra and $T \in \mathcal{A}$. Then

$$
\{S \in \mathcal{A}: T \text { sim-dominates } S \text { in } \mathcal{A}\}
$$

is an algebra containing T and the center $\mathcal{Z}(\mathcal{A})$ of \mathcal{A}.

Proof. It is clear that T sim-dominates T. If $R, S \in \mathcal{A}$, and $\alpha \in \mathbb{C}$, then

$$
\left\|W^{-1}(R S) W\right\|=\left\|W^{-1} R W W^{-1} S W\right\| \leq\left\|W^{-1} R W\right\|\left\|W^{-1} S W\right\|
$$

and

$$
\left\|W^{-1}(\alpha R+S) W\right\| \leq|\alpha|\left\|W^{-1} R W\right\|+\left\|W^{-1} S W\right\|
$$

If $R \in \mathcal{Z}(\mathcal{M})$, then

$$
\left\|W^{-1} R W\right\|=\|R\| .
$$

Theorem 3.2.3. Suppose \mathcal{A} is a unital Banach algebra, $S, T \in \mathcal{A}$ and T sim-dominates S in \mathcal{A}. Then $S \in \operatorname{Appr}(T, \mathcal{A})^{\prime \prime}$.

Proof. Consider the mappings

$$
\mathcal{A} \xrightarrow{\rho} \ell^{\infty}(\mathcal{A}) \xrightarrow{\eta} \ell^{\infty}(\mathcal{A}) / C_{0}(\mathcal{A}),
$$

where $\rho(T)=(T, T, T, \ldots)$, and η is the quotient map. Define $\pi: \mathcal{A} \rightarrow \ell^{\infty}(\mathcal{A}) / C_{0}(\mathcal{A})$ by $\pi=\eta \circ \rho$. We first show that $\pi(T)$ sim-dominates $\pi(S)$ in $\ell^{\infty}(\mathcal{A}) / C_{0}(\mathcal{A})$.

Suppose $W \in \ell^{\infty}(\mathcal{A}) / C_{0}(\mathcal{A})$ is such that $\left\|W^{-1} \pi(T) W\right\|<R$. We need to show that there is a constant β_{R} depending on R, such that $\left\|W^{-1} \pi(S) W\right\|<\beta_{R}$. If W is invertible, then there exists a $V \in \ell^{\infty}(\mathcal{A}) / C_{0}(\mathcal{A})$ such that $W V=V W=1$. Let $W=\eta\left(\left(w_{n}\right)\right), V=\eta\left(\left(v_{n}\right)\right)$. Thus $\eta\left(\left(w_{n} v_{n}-1\right)\right)=\eta\left(\left(v_{n} w_{n}-1\right)\right)=0$. Therefore $\left(w_{n} v_{n}-1\right)$ and $\left(v_{n} w_{n}-1\right) \in C_{0}(\mathcal{A})$. This means that $\lim _{n \rightarrow \infty}\left\|w_{n} v_{n}-1\right\|=0$, and that $\left(w_{n} v_{n}\right)$ is eventually invertible. We have the same conclusion for $\left(v_{n} w_{n}\right)$. Thus $\left(v_{n} w_{n}\right)\left(v_{n} w_{n}\right)^{-1}=1$ and $\left(w_{n} v_{n}\right)^{-1}\left(w_{n} v_{n}\right)=1$ eventually. Hence $\left(v_{n}\right)$ has a left and a right inverse eventually, and is therefore eventually invertible. We have the same conclusion for $\left(w_{n}\right)$. We may replace the finitely many initial terms of these sequences (those which may not be invertible) by 1 , and thus we may assume that they are invertible.

Since $\left(w_{n} v_{n}\right)^{-1},\left(v_{n}\right)$ and $\left(w_{n}\right)$ are bounded, $\left(w_{n}^{-1}\right),\left(v_{n}^{-1}\right)$ are also bounded sequences. Thus

$$
\begin{aligned}
\left\|W^{-1} \pi(T) W\right\| & =\left\|\eta\left(w_{n}^{-1}\right) \eta(T, T, \ldots, T) \eta\left(w_{n}\right)\right\| \\
& =\left\|\eta\left(w_{n}^{-1} T w_{n}\right)\right\| \\
& =\limsup \left\|w_{n}^{-1} T w_{n}\right\|<R
\end{aligned}
$$

Therefore there exists $N_{w} \in \mathbb{N}$ such that

$$
\sup _{n>N_{w}}\left\|w_{n}^{-1} T w_{n}\right\|<R .
$$

Since T sim-dominates $S \in \mathcal{A}$, there exists a constant β_{R}, such that

$$
\sup _{n>N_{w}}\left\|w_{n}^{-1} S w_{n}\right\|<\beta_{R} .
$$

Therefore

$$
\begin{aligned}
\lim \sup \left\|w_{n}^{-1} S w_{n}\right\| & =\left\|\eta\left(w_{n}^{-1} S w_{n}\right)\right\| \\
& =\left\|\eta\left(w_{n}^{-1}\right) \eta(S, S, \ldots, S) \eta\left(w_{n}\right)\right\| \\
& =\left\|W^{-1} \pi(S) W\right\|<\beta_{R} .
\end{aligned}
$$

This shows that $\pi(T)$ sim-dominates $\pi(S)$. Thus $\pi(S) \in\{\pi(T)\}^{\prime \prime}$ by Lemma 3.1.12, which is the same as saying $S \in \operatorname{Appr}(T)^{\prime \prime}$.

Theorem 3.2.4. Suppose \mathcal{A} is a unital centrally prime C^{*}-algebra with center $\mathcal{Z}(\mathcal{A})$. Suppose $S, T \in \mathcal{A}, T$ is normal and T sim-dominates S in \mathcal{A}. Then $S \in C^{*}(\{T\} \cup \mathcal{Z}(\mathcal{A}))$. Also if S is in the algebra generated by $\{T\} \cup \mathcal{Z}(\mathcal{A})$, then T sim-dominates S in \mathcal{A}.

Proof. Since T sim-dominates S, Theorem 3.2.3 yields $S \in A p p(T, \mathcal{A})^{\prime \prime}$. From [12]

$$
\operatorname{App}\left(C^{*}(\{T\} \cup \mathcal{Z}(\mathcal{M})), \mathcal{A}\right)^{\prime \prime}=C^{*}(\{T\} \cup \mathcal{Z}(\mathcal{A}))
$$

Thus

$$
S \in \operatorname{App}(T, \mathcal{A})^{\prime \prime} \subset \operatorname{App}\left(C^{*}(\{T\} \cup \mathcal{Z}(\mathcal{M})), \mathcal{A}\right)^{\prime \prime}=C^{*}(\{T\} \cup \mathcal{Z}(\mathcal{A}))
$$

Theorem 3.2.5. Suppose \mathcal{A} is a unital Banach algebra, $S, T \in \mathcal{A}$ and T sim-dominates S in \mathcal{A}. Suppose $\left\{W_{n}\right\}$ is an invertibly bounded sequence in \mathcal{A} with $\sup _{n \in \mathbb{N}} \max \left(\left\|W_{n}\right\|,\left\|W_{n}^{-1}\right\|\right)=M$. Suppose $T^{\prime} \in \mathcal{A}$ and $\left\|W_{n}^{-1} T W_{n}-T^{\prime}\right\| \rightarrow 0$. Then

1. There exists $S^{\prime} \in \mathcal{A}$ such that $\left\|W_{n}^{-1} S W_{n}-S^{\prime}\right\| \rightarrow 0$.
2. T^{\prime} sim-dominates S^{\prime} in \mathcal{A}.
3. If $\varphi: \mathbb{C} \rightarrow \mathbb{C}$ is an entire function, then $S=\varphi(T) \Leftrightarrow S_{1}=\varphi\left(T_{1}\right)$.

Proof. Define

$$
\mathcal{S}=\left\{A \in \mathcal{B}:\left\{W_{n}^{-1} A W_{n}\right\} \text { is convergent, whenever }\left\{W_{n}\right\}\right.
$$

$$
\text { is an invertibly bounded sequence such that } \left.\left\{W_{n}^{-1} T W_{n}\right\} \text { is norm convergent. }\right\}
$$

(1) Theorem 3.4 in [8] yields $\mathcal{S}=\operatorname{Appr}(T)^{\prime \prime}$. By Theorem 3.2.3, $S \in \operatorname{Appr}(T)^{\prime \prime}$. Hence $S \in \mathcal{S}$. Thus there exists $S_{1} \in \mathcal{B}$ such that $\lim _{n \rightarrow \infty}\left\|W_{n}^{-1} S W_{n}-S_{1}\right\|=0$.
(2) Assume by way of contradiction that T_{1} does not sim-dominate S_{1}. Thus There exists a sequence $\left\{B_{n}\right\}$ in \mathcal{A} and $R>0$, such that for every $n \in \mathbb{N},\left\|B_{n}^{-1} T_{1} B_{n}\right\|<R$, but $\left\|B_{n}^{-1} S_{1} B_{n}\right\|>$ 2^{n}. For every $n, k \in \mathbb{N}$, define

$$
C_{n, k}=W_{k}^{-1} B_{n} W_{k}
$$

Thus,

$$
\begin{equation*}
\left\|C_{n, k}^{-1} T C_{n, k}\right\| \leq\left\|C_{n, k}^{-1}\left(T-W_{k} T_{1} W_{k}^{-1}\right) C_{n, k}\right\|+\left\|C_{n, k}^{-1} W_{k} T_{1} W_{k}^{-1} C_{n, k}\right\| \tag{3.1}
\end{equation*}
$$

Since $W_{k} T_{1} W_{k}^{-1} \rightarrow T$, for every $n \in \mathbb{N}$, there exists $k_{n} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left\|T-W_{k} T_{1} W_{k}^{-1}\right\| \leq \frac{1 / n}{M^{4}\left\|B_{n}\right\|\left\|B_{n}^{-1}\right\|}, \tag{3.2}
\end{equation*}
$$

for all $k \geq k_{n}$. Therefore

$$
\begin{align*}
\left\|C_{n, k}^{-1}\left(T-W_{k} T_{1} W_{k}^{-1}\right) C_{n, k}\right\| & \leq\left\|C_{n, k}^{-1}\right\|\left\|T-W_{k} T_{1} W_{k}^{-1}\right\|\left\|C_{n, k}\right\| \tag{3.3}\\
& =\left\|W_{k} B_{n}^{-1} W_{k}^{-1}\right\|\left\|T-W_{k} T_{1} W_{k}^{-1}\right\|\left\|W_{k}^{-1} B_{n} W_{k}\right\| \\
& \leq M^{4}\left\|B_{n}^{-1}\right\|\left\|B_{n}\right\|\left\|T-W_{k} T_{1} W_{k}^{-1}\right\| \\
& \leq \frac{1}{n} \frac{M^{4}\left\|B_{n}\right\|\left\|B_{n}^{-1}\right\|}{M^{4}\left\|B_{n}\right\|\left\|B_{n}^{-1}\right\|} \\
& \leq 1 .
\end{align*}
$$

From part (1), $W_{k} S_{1} W_{k}^{-1} \rightarrow S$. Thus for every $n \in \mathbb{N}$, there exists $k_{n}^{\prime} \in \mathbb{N}$ such that $k \geq k_{n}^{\prime}$ implies that relations (3.2) and (3.3) remain true when T and T_{1} are replaced by S and S_{1} in that order. Hence if $t_{n}=\max \left\{k_{n}, k_{n}^{\prime}\right\}$, (3.2) and (3.3) remain true for pairs S, S_{1} and T, T_{1}. Thus

$$
\begin{align*}
& \sup _{n \in \mathbb{N}}\left\|C_{n, t_{n}}^{-1}\left(S-W_{t_{n}} S_{1} W_{t_{n}}^{\prime-1}\right) C_{n, t_{n}}\right\| \leq 1, \tag{3.4}\\
& \sup _{n \in \mathbb{N}}\left\|C_{n, t_{n}}^{-1}\left(S-W_{t_{n}} T_{1} W_{t_{n}}^{\prime-1}\right) C_{n, t_{n}}\right\| \leq 1 . \tag{3.5}
\end{align*}
$$

Also, for every $n, k \in \mathbb{N}$,

$$
\begin{equation*}
\left\|C_{n, k}^{-1} W_{k} T_{1} W_{k}^{-1} C_{n, k}\right\|=\left\|W_{k} B_{n}^{-1} T_{1} B_{n} W_{k}^{-1}\right\| \leq M^{2} R . \tag{3.6}
\end{equation*}
$$

Putting (3.1), (3.5), and (3.6) together yields

$$
\sup _{n \in \mathbb{N}}\left\|C_{n, t_{n}}^{-1} T C_{n, t_{n}}\right\| \leq M^{2} R+1
$$

Since T sim-dominates S,

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left\|C_{n, t_{n}}^{-1} S C_{n, t_{n}}\right\|<\infty \tag{3.7}
\end{equation*}
$$

From (3.4) and (3.1)

$$
\begin{aligned}
\left\|C_{n, t_{n}}^{-1} S C_{n, t_{n}}\right\| & \geq\left\|C_{n, t_{n}}^{-1} W_{t_{n}} S_{1} W_{t_{n}}^{-1} C_{n, t_{n}}\right\|-\left\|C_{n, t_{n}}^{-1}\left(S-W_{t_{n}} S_{1} W_{t_{n}}^{-1}\right) C_{n, k_{n}}\right\| \\
& \geq\left\|W_{t_{n}} B_{n}^{-1} S_{1} B_{n} W_{t_{n}}^{-1}\right\|-1 \\
& \geq 1 / M^{2}\left\|B_{n}^{-1} S_{1} B_{n}\right\|-1 \\
& \geq 2^{n} / M^{2}-1
\end{aligned}
$$

for every $n \in \mathbb{N}$. This contradicts (3.7) and completes the proof of part (2).
(3) Define a mapping $\pi:$ Appr $(T)^{\prime \prime} \rightarrow$ Appr $(\pi(T))^{\prime \prime}$ by $\pi(A)=\lim _{n \rightarrow \infty} W_{n}^{-1} A W_{n}$. Then by Theorem 3.4 in [8], π is a bounded unital algebra isomorphism. Thus

$$
\begin{align*}
S_{1} & =\pi(S), \text { and } \tag{3.8}\\
T_{1} & =\pi(T) \tag{3.9}
\end{align*}
$$

Suppose $\varphi: \mathbb{C} \rightarrow \mathbb{C}$ is an entire function represented by $\phi(z)=\sum_{n=0}^{\infty} a_{k} z^{k}$. Then we have

$$
\begin{align*}
\pi(\varphi(T)) & =\pi\left(\sum_{k=0}^{\infty} a_{k} T^{k}\right)=\pi\left(\lim _{N \rightarrow \infty} \sum_{k=0}^{N} a_{k} T^{k}\right)=\lim _{N \rightarrow \infty} \pi\left(\sum_{k=0}^{N} a_{k} T^{k}\right) \tag{3.10}\\
& =\lim _{N \rightarrow \infty} \sum_{k=0}^{N} a_{k} \pi(T)^{k}=\sum_{k=0}^{\infty} a_{k} \pi(T)^{k}=\varphi(\pi(T)) . \tag{3.11}
\end{align*}
$$

Thus

$$
\begin{aligned}
S=\varphi(T) & \Longleftrightarrow \pi(S)=\pi(\varphi(T)) & & \pi \text { is bijective } \\
& \Longleftrightarrow \pi(S)=\varphi(\pi(T)) & & \text { equations } 3.10 \text { and } 3.11 \\
& \Longleftrightarrow S_{1}=\varphi\left(T_{1}\right) . & & \text { equations } 3.8 \text { and } 3.9
\end{aligned}
$$

Lemma 3.2.6. Suppose \mathcal{B} is a unital Banach algebra, $1 \in \mathcal{A} \subset \mathcal{B}$ is a closed subalgebra, and $S, T \in \mathcal{A}$. If T sim-dominates S in \mathcal{B}, then T sim-dominates S in \mathcal{A}.

Proof. Suppose $\sup _{n \in \mathbb{N}}\left\|W_{n}^{-1} T W_{n}\right\|<R$ for an invertible sequence $\left\{W_{n}\right\}$ in \mathcal{A} and for some $R>$ 0 . Since $\left\{W_{n}\right\}$ is an invertible sequence in \mathcal{B}, and T sim-dominates S in $\mathcal{B}, \sup _{n \in \mathbb{N}}\left\|W_{n}^{-1} S W_{n}\right\|<$ ∞. It follows that T sim-dominates S in \mathcal{A}.

Corollary 3.2.7. Suppose \mathcal{A} and \mathcal{B} are unital Banach algebras and $\pi: \mathcal{A} \rightarrow \mathcal{B}$ is a bounded injective unital homomorphism such that $\pi(\mathcal{A})$ is closed in \mathcal{B}. Suppose $S, T \in \mathcal{A}$. If $\pi(T)$ simdominates $\pi(S)$ in \mathcal{B}, then T sim-dominates S in \mathcal{A}.

Proof. $\pi(\mathcal{A})$ is a unital Banach subalgebra of \mathcal{B}. By Lemma 3.2.6, $\pi(T)$ sim-dominates $\pi(S)$ in $\pi(\mathcal{A})$. The mapping $\pi: \mathcal{A} \rightarrow \pi(\mathcal{A})$ is an isomorphism. Thus T sim-dominates S in \mathcal{A}. The details are as follows. Suppose

$$
\sup _{n \in \mathbb{N}}\left\|W_{n}^{-1} T W_{n}\right\|<R .
$$

Then for every $n \in \mathbb{N}$,

$$
\left\|\pi\left(W_{n}\right)^{-1} \pi(T) \pi\left(W_{n}\right)\right\|=\left\|\pi\left(W_{n}^{-1} T W_{n}\right)\right\| \leq\|\pi\|\left\|W_{n}^{-1} T W_{n}\right\| \leq R\|\pi\|
$$

Since $\pi(T)$ sim-dominates $\pi(S)$ in $\pi(\mathcal{A})$,

$$
\sup _{n \in \mathbb{N}}\left\|\pi\left(W_{n}\right)^{-1} \pi(S) \pi\left(W_{n}\right)\right\|<\infty
$$

Thus

$$
\begin{aligned}
\sup _{n \in \mathbb{N}}\left\|W_{n}^{-1} S W_{n}\right\| & =\sup _{n \in \mathbb{N}}\left\|\pi^{-1}\left(\pi\left(W_{n}^{-1} S W_{n}\right)\right)\right\| \\
& \leq \sup _{n \in \mathbb{N}}\left\|\pi^{-1}\right\|\left\|\pi\left(W_{n}\right)^{-1} \pi(S) \pi\left(W_{n}\right)\right\| \\
& <\infty .
\end{aligned}
$$

It follows that T sim-dominates S in \mathcal{A}.
Theorem 3.2.8. Suppose \mathcal{M} is a von Neumann algebra and $T \in \mathcal{M}$. Then

$$
\{S \in \mathcal{M}: T \text { sim-dominates } S \text { in } \mathcal{M}\} \subset \operatorname{AlgLat}_{1 / 2}(T, \mathcal{M}) .
$$

Proof. Suppose T sim-dominates S in \mathcal{M} and $T(\operatorname{ran}(D)) \subset \operatorname{ran}(D)$, for some $D \in \mathcal{M}$. By lemma 3.1.11, we may assume without loss of generality that D is a positive operator. Since $T(\operatorname{ran}(D)) \subset \operatorname{ran}(D)$, and $D>0$, by lemma 3.1.9

$$
\sup _{\epsilon>0}\left\|(D+\epsilon)^{-1} T(D+\epsilon)\right\| \leq\|T\|+\left\|D^{-1} T D\right\|<\infty .
$$

Since T sim-dominates S, and $D+\epsilon$ is invertible for any $\epsilon>0$,

$$
\sup _{\epsilon>0}\left\|(D+\epsilon)^{-1} S(D+\epsilon)\right\|<\infty .
$$

It follows from Lemma 3.1.10 that $S(\operatorname{ran}(D)) \subset \operatorname{ran}(D)$.

Lemma 3.2.9. Suppose \mathcal{A} is a unital Banach algebra, $S, T \in \mathcal{A}$ and T sim-dominates S in \mathcal{A}. Suppose $\left\{P_{n}\right\}$ is a bounded sequence of idempotents in \mathcal{A} such that

$$
\left\|\left(1-P_{n}\right) T P_{n}\right\| \rightarrow 0 .
$$

Then

$$
\left\|\left(1-P_{n}\right) S P_{n}\right\| \rightarrow 0
$$

Proof. Let $d_{n}=\left\|\left(1-P_{n}\right) T P_{n}\right\|+1 / n$ and define

$$
D_{n}=\frac{1}{d_{n}} P_{n}+\left(1-P_{n}\right)
$$

D_{n} is invertible in \mathcal{A} for every $n \in \mathbb{N}$ and the inverse is $D_{n}^{-1}=d_{n} P_{n}+\left(1-P_{n}\right)$. Moreover, $\left\{D_{n}^{-1} T D_{n}\right\}$ is a bounded sequence as the following computation shows.

$$
\begin{align*}
\left\|D_{n}^{-1} T D_{n}\right\| & =\left\|\left(d_{n} P_{n}+\left(1-P_{n}\right)\right) T\left(\frac{1}{d_{n}} P_{n}+\left(1-P_{n}\right)\right)\right\| \\
& \leq\left\|P_{n}\right\|^{2}\|T\|+\left\|P_{n}\right\|\left\|1-P_{n}\right\|\|T\|+\left\|1-P_{n}\right\|^{2}\|T\| \tag{3.12}\\
& +\frac{1}{d_{n}}\left\|\left(1-P_{n}\right) T P_{n}\right\| \tag{3.13}
\end{align*}
$$

Since $\left\{P_{n}\right\}$ is a bounded sequence, all three terms in (3.12) are bounded, and the last term (3.13) is less than 1 by definition of d_{n}. Thus there exists $R>0$, such that $\sup _{n \in \mathbb{N}}\left\|D_{n}^{-1} T D_{n}\right\|<R$. Since T sim-dominates S, there exists $\beta_{R}>0$ such that $\sup _{n \in \mathbb{N}}\left\|D_{n}^{-1} S D_{n}\right\|<\beta_{R}$. Therefore

$$
\begin{aligned}
\beta_{R} & \geq\left\|D_{n}^{-1} S D_{n}\right\|=\left\|\left(d_{n} P_{n}+\left(1-P_{n}\right)\right) S\left(\frac{1}{d_{n}} P_{n}+\left(1-P_{n}\right)\right)\right\| \\
& \geq \frac{1}{d n}\left\|\left(1-P_{n}\right) S P_{n}\right\|-\left\|P_{n} S P_{n}+d_{n} P_{n} S\left(1-P_{n}\right)+\left(1-P_{n}\right) S\left(1-P_{n}\right)\right\|
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{1}{d n}\left\|\left(1-P_{n}\right) S P_{n}\right\| & \leq \beta_{R}+\left\|P_{n} S P_{n}\right\|+d_{n}\left\|P_{n} S\left(1-P_{n}\right)\right\|+\left\|\left(1-P_{n}\right) S\left(1-P_{n}\right)\right\| \\
& <\infty
\end{aligned}
$$

$\lim _{n \rightarrow \infty} 1 / d_{n}=\infty$, thus, $\lim _{n \rightarrow \infty}\left\|\left(1-P_{n}\right) S P_{n}\right\|=0$ in order for the left hand side to be bounded.

Corollary 3.2.10. Suppose H is a Hilbert space and $S, T \in B(H)$. If T sim-dominates S in $B(H)$, then $S \in \operatorname{ApprAlgLat}(T)$.

Proof. Let $\left\{P_{n}\right\}$ be a sequence of projections in $B(H)$ such that $\left\|\left(1-P_{n}\right) T P_{n}\right\| \rightarrow 0$. Since $\left\|P_{n}\right\| \leq 1$ for all $n \in \mathbb{N}$, it follows from Lemma 3.2.9 that $\lim _{n \rightarrow \infty}\left\|\left(1-P_{n}\right) S P_{n}\right\|=0$. Thus $S \in \operatorname{ApprAlgLat}(T)$.

Lemma 3.2.11. Suppose X is a Banach space and $S, T \in B(X)$. If T sim-dominates S and $P \in B(X)$ is an idempotent such that $(1-P) T P=0$, then $(1-P) S P=0$.

Proof. This follows from Lemma 3.2.9, with $P_{n}=P$, for all $n \in \mathbb{N}$.

Theorem 3.2.12. Suppose X is a Banach space, $S, T \in B(X)$ and T is algebraic. If T simdominates S in $B(X)$, then there exists a polynomial $p \in \mathbb{C}[x]$ such that $S=p(T)$.

Proof. First we show that $S \in \operatorname{AlgLat}(T)$. Suppose $T(M) \subset M$, where M is a closed subspace of X. Since T is algebraic, there exists a polynomial $0 \neq m \in \mathbb{C}[x]$ such that $m(T)=0$. Thus $q(T)=m(T) u(T)+r(T)=r(T)$ with $\operatorname{deg}(r)<\operatorname{deg}(m)$, for any $q \in \mathbb{C}[x]$. Thus $\{p(T): p \in \mathbb{C}[x]\}$ is a finite dimensional subspace of $B(X)$. For any $x \in X$, define

$$
M_{x}=\{p(T) x: p \in \mathbb{C}[x]\} .
$$

Note that M_{x} is a finite dimensional invariant subspace for T, and

$$
M=\bigcup_{x \in M} M_{x}
$$

By a lemma, we may assume M_{x} is the range of some bounded idempotent $P_{x} \in B(X)$. Thus $\left(1-P_{x}\right) T P_{x}=0$. By Lemma 3.2.11 $\left(1-P_{x}\right) S P_{x}=0$. Thus M_{x} is T-invariant and

$$
S(M)=S\left(\bigcup_{x \in M} M_{x}\right) \subset \bigcup_{x \in M} S\left(M_{x}\right) \subset \bigcup_{x \in M} M_{x} \subset M
$$

This shows that M is S-invariant and $S \in \operatorname{AlgLat}(T)$. Moreover, $S \in\{T\}^{\prime \prime}$ by lemma 3.1.12, and therefore $S T=T S$. A theorem of Hadwin and Nordgren [17] now implies that $S=p(T)$ for some polynomial $p \in \mathbb{C}[x]$.

Theorem 3.2.13. Suppose \mathcal{A} is a finite-dimensional semisimple unital Banach algebra and $T \in \mathcal{A}$. Then

1. If $S \in \mathcal{A}$ and T sim-dominates S in \mathcal{A}, there is a polynomial $p(z)=c_{0}+c_{1} z+\cdots+c_{n} z^{n}$ with $c_{0}, \ldots, c_{n} \in \mathcal{Z}(\mathcal{A})$ such that $S=p(T)$.
2. $\{S \in \mathcal{A}: T$ sim-dominates S in $\mathcal{A}\}$ is the algebra generated by $\{T\} \cup \mathcal{Z}(\mathcal{A})$.

Proof. 1) Artin's theorem implies that

$$
\mathcal{A}=\bigoplus_{k=1}^{N} \mathbb{M}_{n_{k}}\left(D_{k}\right),
$$

where D_{k} are finite dimensional division algebras, and $n_{k}, N \in \mathbb{N}$. Since D_{k} is finite dimensional, it is a Banach algebra, and a Banach algebra that is a division ring is isomorphic to \mathbb{C}. Thus we may write

$$
\mathcal{A}=\bigoplus_{k=1}^{N} \mathbb{M}_{n_{k}}(\mathbb{C})
$$

Let

$$
T=\bigoplus_{i=k}^{N} T_{k}, \quad S=\bigoplus_{k=1}^{N} S_{k} .
$$

It follows from Theorem 3.2.12 that $S_{k}=P_{k}\left(T_{k}\right)$ for a polynomial $P_{k} \in \mathbb{C}[x]$ for $k \in \mathbb{N}, 1 \leq$ $k \leq N$. Let $m=\max _{1 \leq k \leq N} \operatorname{deg}\left(P_{k}\right)$. We can write

$$
S_{k}=P_{k}\left(T_{k}\right)=a_{k, 0}+a_{k, 1} T_{k}+\cdots+a_{k, m} T_{k}^{m},
$$

where $a_{k, j}=0$ for $j>\operatorname{deg}\left(P_{k}\right)$.

Let $I_{n_{k}} \in \mathbb{M}_{n_{k}}(\mathbb{C})$ be the identity matrix For every $j \in \mathbb{N}, 1 \leq j \leq m$, and define

$$
A_{j}=\bigoplus_{k=1}^{N} a_{k, j} I_{k}
$$

Since $\mathcal{Z}\left(\mathcal{M}_{n_{k}}(\mathbb{C})\right)=\mathbb{C} I_{k}$, it follows that $A_{j} \in \mathcal{Z}(\mathcal{M})$ for every $j \in \mathbb{N}, 1 \leq j \leq m$. Thus $P(x)=\sum_{j=0}^{m} A_{j} x^{j}$ is a polynomial over the center of \mathcal{M} and

$$
S=\bigoplus_{k=1}^{N} P_{k}\left(T_{k}\right)=\bigoplus_{k=1}^{N} \sum_{j=1}^{m} a_{k, j} T_{k}^{j}=\sum_{j=1}^{m} \bigoplus_{k=1}^{N} a_{k, j} T_{k}^{j}=\sum_{j=1}^{m} \bigoplus_{k=1}^{N} a_{k, j} I_{k} T^{j}=\sum_{j=1}^{m} A_{j} T^{j}=P(T) .
$$

(2) This follows easily from part 1 and Lemma 3.2.2.

Theorem 3.2.14 (Kadison[19]). If \mathcal{M} is a type $I I_{\infty}$ or type III factor von Neumann algebra acting on a separable Hilbert space, then there exists a unital isometric $*$-homomorphism $\rho: B\left(\ell^{2}\right) \rightarrow \mathcal{M}$. Moreover, if \mathcal{M} is a $I I_{\infty}$ factor with faithful normal tracial weight τ, we can choose ρ so that for every $A \in B\left(\ell^{2}\right)$,

$$
\rho\left(\tau\left(A^{*} A\right)\right)=\infty .
$$

Corollary 3.2.15. Suppose \mathcal{M} and ρ are as in Theorem 3.2.14, X,Y, \mathcal{M}, X sim-dominates Y in \mathcal{M}, and X is not algebraic. If $X_{1}, Y_{1} \in \rho\left(B\left(\ell^{2}\right)\right)$ and (X, Y) is approximately similar to $\left(X_{1}, Y_{1}\right)$, then there exists an entire function $\varphi: \mathbb{C} \rightarrow \mathbb{C}$ such that $Y=\varphi(X)$.

Proof. Since (X, Y) is approximately similar to $\left(X_{1}, Y_{1}\right)$ and X sim-dominates $Y \in \mathcal{M}$, Theorem 3.2.5 implies that X_{1} sim-dominates Y_{1} in \mathcal{M}. There exist $S, T \in B\left(\ell^{2}\right)$ such that $X_{1}=\rho(T)$ and $Y_{1}=\rho(S)$. Since sim-domination is preserved under isomorphism, T sim-dominates S in $B\left(\ell^{2}\right)$. It follows from Theorem 3.1.2 that there exists an entire function $\varphi: \mathbb{C} \rightarrow \mathbb{C}$ such that $S=\phi(T)$. Thus

$$
Y_{1}=\rho(S)=\rho(\phi(T))=\phi(\rho(T))=\phi\left(X_{1}\right) .
$$

Thus by Theorem 3.2.5, $Y=\phi(X)$.

Theorem 3.2.16 (Shen, Hadwin [10]). Suppose \mathcal{M} is a factor von Neumann algebra and \mathcal{A} is a countably generated unital $A H C^{*}$-subalgebra of \mathcal{M}. Then $\mathcal{A}=\operatorname{Appr}(\mathcal{A}, \mathcal{M})^{\prime \prime}$.

Corollary 3.2.17. Suppose \mathcal{M} is a factor von Neumann algebra, $T \in \mathcal{M}$ and $C^{*}(\mathcal{T})$ is $A H$. Then

$$
\{S \in \mathcal{M}: T \text { sim-dominates } S \text { in } \mathcal{M}\} \subset C^{*}(T)
$$

Proof. $C^{*}(T)=\operatorname{Appr}\left(C^{*}(T), \mathcal{M}\right)^{\prime \prime}$ by Theorem 3.2.16. If T sim-dominates S in \mathcal{M}, then by Theorem 3.2.3, $S \in \operatorname{Appr}(T, \mathcal{M})^{\prime \prime}$. But Appr $(T, \mathcal{M})^{\prime \prime} \subset \operatorname{Appr}\left(C^{*}(T), \mathcal{M}\right)^{\prime \prime}$. Thus $S \in C^{*}(T)$.

Theorem 3.2.18 (Ding, Hadwin [13]). Suppose \mathcal{M} is a type III factor von Neumann algebra acting on a separable Hilbert space, \mathcal{A} is a separable unital $A H C^{*}$-subalgebra of \mathcal{M}, and π : $\mathcal{A} \rightarrow \mathcal{M}$ is an injective unital $*$-homomorphism. Then there exists a sequence $\left\{U_{n}\right\}$ of unitary operators in \mathcal{M} such that for every $A \in \mathcal{A}, \lim _{n \rightarrow \infty}\left\|U_{n}^{*} A U_{n}-\pi(A)\right\|=0$.

Theorem 3.2.19 (Li, Shen, Shi [14]). Suppose \mathcal{M} is a type $I I_{\infty}$ factor von Neumann algebra with a normal tracial weight τ acting on a separable Hilbert space, \mathcal{A} is a separable nuclear unital C^{*}-subalgebra of \mathcal{M}, and $\pi: \mathcal{A} \rightarrow \mathcal{M}$ is a unital $*$-homomorphism. Suppose for every $0 \neq A \in \mathcal{A}, \tau\left(A^{*} A\right)=\tau\left(\pi\left(A^{*} A\right)\right)=\infty$. Then there exists a sequence $\left\{U_{n}\right\}$ of unitary operators in \mathcal{M} such that for every $0 \neq A \in \mathcal{A}, \lim _{n \rightarrow \infty}\left\|U_{n}^{*} A U_{n}-\pi(A)\right\|=0$.

Theorem 3.2.20. Suppose \mathcal{M} is a type III factor von Neumann algebra, $S, T \in \mathcal{M}$, T simdominates S in \mathcal{M} and T is not algebraic. Suppose $T_{1} \in \mathcal{M}$ such that

1. T_{1} is approximately similar to T and
2. $C^{*}\left(T_{1}\right)$ is $A H$.

Then there exists an entire function $\varphi: \mathbb{C} \rightarrow \mathbb{C}$ such that $S=\varphi(T)$.

Proof. By Theorem 3.2.5, there exists $S_{1} \in \mathcal{M}$ such that (S, T) is approximately similar to $\left(S_{1}, T_{1}\right)$, and T_{1} sim-dominates S_{1} in \mathcal{M}. By Corollary 3.2.17, $S_{1} \in C^{*}\left(T_{1}\right)$. There exists an injective unital *-homomorphism $\gamma: C^{*}(T) \rightarrow B\left(\ell^{2}\right)$ by the the GNS construction. Let $\rho: B\left(\ell^{2}\right) \rightarrow$ \mathcal{M} be as in Theorem 3.2.14. It follows that the composition map $\pi=\rho \circ \gamma: C^{*}\left(T_{1}\right) \rightarrow \mathcal{M}$ is an injective unital *-homomorphism. Hence by Theorem 3.2.18, there exists a sequence $\left\{U_{n}\right\}$ of unitaries in $C^{*}\left(T_{1}\right)$, such that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\|U_{n}^{*} T_{1} U_{n}-\pi\left(T_{1}\right)\right\|=0, \text { and } \\
& \lim _{n \rightarrow \infty}\left\|U_{n}^{*} S_{1} U_{n}-\pi\left(S_{1}\right)\right\|=0
\end{aligned}
$$

Thus $\left(T_{1}, S_{1}\right)$ is approximately similar to $\left(\pi\left(T_{1}\right), \pi\left(S_{1}\right)\right)$. Since $\pi\left(T_{1}\right), \pi\left(S_{1}\right) \in \rho\left(B\left(\ell^{2}\right)\right)$, Corollary 3.2.15 implies that $S_{1}=\varphi\left(T_{1}\right)$ for some entire function $\varphi: \mathbb{C} \rightarrow \mathbb{C}$. Thus $S=\varphi(T)$, By Theorem 3.2.5.

Theorem 3.2.21. Suppose \mathcal{M} is a $I I_{\infty}$ factor von Neumann algebra with a faithful normal tracial weight τ. Suppose $S, T \in \mathcal{M}$, T sim-dominates S in \mathcal{M}, T is not algebraic, (S, T) is approximately similar to $\left(S_{1}, T_{1}\right)$ in \mathcal{M} and

1. Either

(a) $C^{*}\left(S_{1}, T_{1}\right)$ is nuclear, or
(b) $C^{*}\left(T_{1}\right)$ is $A H$
2. For every $0 \neq A \in C^{*}\left(S_{1}, T_{1}\right), \tau\left(A^{*} A\right)=\infty$.

Then there exists an entire function $\varphi: \mathbb{C} \rightarrow \mathbb{C}$ such that $S=\varphi(T)$.

Proof. By Theorem 3.2.5, T_{1} sim-dominates S_{1}. If $C^{*}\left(T_{1}\right)$ is $\mathrm{AH}, S_{1} \in C^{*}\left(T_{1}\right)$ by Corollary 3.2.17. Since every AH C*-algebra is nuclear, if $1(b)$ holds, then $1(a)$ holds. By Theorem 3.2.14,
there is a unital isometric $*$-homomorphism $\rho: B\left(\ell^{2}\right) \rightarrow \mathcal{M}$ such that, for every $0 \neq D \in B\left(\ell^{2}\right)$, $\tau\left(\rho(D)^{*} \rho(D)\right)=\infty$. By GNS construction, there exists a unital isometric $*$-homomorphism $\gamma: C^{*}\left(S_{1}, T_{1}\right) \rightarrow B\left(\ell^{2}\right)$. Thus, applying Theorem 3.2.19 to $\pi=\rho \circ \gamma$, provides a sequence $\left\{U_{n}\right\}$ of unitary operators in \mathcal{M} such that

$$
\left\|U_{n}^{*} T_{1} U_{n}-(\rho \circ \gamma)\left(T_{1}\right)\right\| \rightarrow 0
$$

and

$$
\left\|U_{n}^{*} S_{1} U_{n}-(\rho \circ \gamma)\left(S_{1}\right)\right\| \rightarrow 0
$$

Following the proof of Theorem 3.2.20, we see that there exists an entire function $\varphi: \mathbb{C} \rightarrow \mathbb{C}$ such that $S=\varphi(T)$.

BIBLIOGRAPHY

[1] P. A. Fillmore and J. P. Williams, On Operator Ranges, Advances In Mathematics. 7 (1971), no. 3, 254-281
[2] C. Foiaş, Invariant Para-closed Subspaces, Indiana Univ. Math. J. 21 (1972), no. 10, 887-906
[3] E. Nordgren, M. Radjabalipour, H. Radjavi and P. Rosenthal, On Invariant Operator Ranges, Trans. Amer. Math. Soc. 251 (1979), 389-398
[4] R. G. Douglas, and C. Foiaş, Infinite Dimensional Versions of a Theorem of Brickman-Fillmore, Indiana Univ. Math. J. 25 (1976), no. 4, 315-320
[5] D. Hadwin, Algebraically Reflexive Linear Transformations, Linear and Multilinear Algebra. 14 (1983), 225-223
[6] D. W. Hadwin, and S.-C. ONG, On Algebraic and Para-Reflexivity, J. operator Theory, 17 (1987), 23-31
[7] R. G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-416
[8] D.Hadwin, An Asymptotic Double Commutant Theorem for C^{*} Algebras, Trans. Amer. Math. Soc. 244 (1978)
[9] P. R. Halmos, Two Subspaces, Trans. Amer. Math. Soc. 144 (1969), 381-389
[10] D. Hadwin and J. Shen, Approximate Double Commutants and Distance Formulas, Operators and Matrices. 8 (2014), 529-553
[11] J. B. Conway and D. Hadwin, When is an Operator S an Analytic Function of an Operator T ? Unpublished
[12] D. Hadwin, Approximate double commutants in von Neumann algebras, arXiv:1108.5021 [math.OA] (2011)
[13] H. Ding, D. W. Hadwin, Approximate equivalence in von Neumann algebras, Sci. China Ser. A-Math. 48 (2005), no. 2, 239-247
[14] Q. Li, J. Shen, R. Shi, A generalization of the Voiculescu theorem for normal operators in semifinite von Neumann algebras, arXiv:1706.09522 [math.OA] (2017)
[15] D. Deckard, C. Pearcy, On matrices over the ring of continuous complex valued functions on a Stonian space, Proc. Amer. Math. Soc. 14 (1963), 322-328
[16] D. Hadwin, T. Hoover, Operator algebras and the conjugacy of transformations, J. Funct. Anal. 77 (1988), 112-122
[17] D. W. Hadwin, E. Nordgren, Subalgebras of reflexive algebras, J. Operator Theory. 7 (1982), no. 1, 3-23
[18] Richard V. Kadison, John R. Ringrose. Fundamentals of the Theory of Operator Algebras Volume I
[19] Richard V. Kadison, John R. Ringrose. Fundamentals of the Theory of Operator Algebras Volume II.
[20] W. Arveson. An Invitation to C^{*} Algebras Springer-Verlag.

