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ABSTRACT
Invariant Operator Ranges and Similarity Dominance in Banach and von

Neumann Algebras
by

Ali Zarringhalam
University of New Hampshire, September, 2019

SupposeM is a von Neumann algebra. An operator range inM is the range of an operator

inM. WhenM = B (H), the algebra of operators on a Hilbert space H , R. Douglas and C. Foiaş

proved that if S, T ∈ B (H), and T is not algebraic, and if S leaves invariant every T -invariant

operator range, then S = f (T ) for some entire function f .

In the first part of this thesis, we prove versions of this result when B (H) is replaced with a

factor von Neumann algebraM and T is normal. Then using the direct integral theory, we extend

our result to an arbitrary von Neumann algebra.

In the second part of the thesis, we investigate the notion of similarity dominance. Suppose

A is a unital Banach algebra and S, T ∈ A. We say that T sim-dominates S provided, for every

R > 0,

sup
({∥∥A−1SA

∥∥ : A ∈ A, A invertible,
∥∥A−1TA

∥∥ ≤ R
})

<∞.

WhenA is the algebraB (H), J. B. Conway and D. Hadwin proved that T sim-dominates S implies

S = ϕ (T ) for some entire function ϕ. We prove this for a large class of operators in a type III

factor von Neumann algebra.

We also prove, for any unital Banach algebraA, if T sim-dominates S, then S is in the approx-

imate double commutant of T in A.

Moreover, we prove that sim-domination is preserved under approximate similarity.
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CHAPTER 1

INTRODUCTION

1.1 Invariant Operator Ranges

Suppose H is a Hilbert space and B (H) is the set of (bounded, linear) operators on H . By an

operator range we mean a linear subspace in H which is the range of some operator in B (H).

In 1971 P.A. Fillmore and J. P. Williams [1] surveyed a number of foundational results on

operator ranges. They began by various characterizations of operator ranges, proved a number

of results around the notion of similar and unitarily equivalent operator ranges and discussed the

consequences in the original context of similar and equivalent operators.

In 1972 C. Foiaş [2] studied operator ranges invariant under given algebras of operators. In

particular, he proved a version of Burnside’s theorem: If S is a strongly (or weakly) closed unital

subalgebra of B (H), and {0}, H are the only operator ranges invariant under S, then S = B (H).

In 1979 E. Nordgren, M. Radjabalipour, H. Radjavi and P. Rosenthal [3] considered two gen-

eral questions regarding operator ranges: (1) Given a lattice of operator ranges, what can be said

about the operators leaving them invariant? (2) Given an algebra of operators, what can be said

about its lattice of invariant operator ranges? They initiated the study of these problems by consid-

ering singly generated lattices and algebras and proved two amazing theorems. Suppose P is any

operator in B (H), and let A(P ) be the algebra of operators leaving the range of P invariant. The

first result is a structure theorem for the algebra A(P ). It can be written as the sum of a certain

algebra of upper triangular matrices and an algebra of lower triangular matrices relative to a de-

composition of the space corresponding to certain spectral subspaces of P . Regarding the second

question, they proved that every operator has an uncountable set of invariant operator ranges, any

pair of which intersect only in {0}.
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In 1976 R. G. Douglas and C. Foiaş [4] proved

Theorem 1.1.1. Suppose S, T ∈ B (H), T is not algebraic (i.e., p (T ) 6= 0 for every nonzero

polynomial p), and S leaves invariant every T -invariant vector subspace of H . Then there is a

polynomial p such that S = p (T ).

The second Douglas-Foiaş theorem is more surprising;

Theorem 1.1.2 (Douglas-Foiaş). If S, T ∈ B (H), T is not algebraic, and S leaves invariant every

T -invariant operator range, then there is an entire function ϕ : C→ C such that T = ϕ (S).

If T ∈ B (H), we let Lat(T ) denote the set of all T -invariant (closed linear) subspaces of

H . We let Lat0 (T ) denote the set of all T -invariant vector subspaces of H , and we let Lat1/2 (T )

denote the set of all T -invariant operator ranges. If L is a collection of vector subspaces of H ,

we define Alg(L) to be the set of all operators in B (H) that leave all the elements of L invariant.

Thus the two Douglas-Foiaş theorems say that if T ∈ B (H) and T is not algebraic, then

1. AlgLat0 (T ) = {p (T ) : p is a polynomial}, and

2. AlgLat1/2(T ) = {ϕ (T ) : ϕ is an entire function} .

In [5] D. Hadwin gave a nearly linear-algebraic proof of the first Douglas-Foiaş theorem that

holds in an arbitrary Banach space. Later, D. Hadwin and S.-C. Ong [6] used a result in [5] to give

a generalization of the second Douglas-Foiaş theorem that was also almost purely algebraic. In

both of these generalizations the assumption that S ∈ B (H) was replaced with S : H → H is

linear (although S ∈ B (H) follows from the conclusions).

From this point onward, we will refer to the second Douglas-Foiaş theorem simply as the

Douglas-Foiaş theorem.

In [11] J. B. Conway and D. Hadwin improved the Douglas-Foiaş theorem in terms of ranges

of compact operators that intertwine positive multiples of the unilateral shift operator. They also

2



proved a version of the Douglas-Foiaş theorem for type I von Neumann algebras. IfM is a von

Neumann algebra and T ∈M we define

Lat1/2 (T,M)

to be the set of all ranges of operators inM that are T -invariant, and we define

AlgLat1/2(T,M) =
{
S ∈M : Lat1/2 (T,M) ⊂ Lat1/2 (S,M)

}
.

We denote the center ofM by Z(M), i.e., the elements ofM that commute with every element

ofM. We say that an element T ofM is algebraic over the center ofM, if there is a positive

integer n and elements c0, . . . , cn ∈ Z (M) with cn 6= 0, such that

c0 + c1T + · · ·+ cnT
n = 0,

i.e., there is a nonzero polynomial p in Z (M) [t] such that p (T ) = 0. If M is a factor von

Neumann algebra (e.g.,M = B (H)), then Z (M) = C1 and , therefore the notions of algebraic

over the center and algebraic are identical in this case.

If ϕ : C→ Z (M) is an entire function, we can write

ϕ (z) =
∞∑
n=0

cnz
n ,

with c0, c1, . . . ∈ Z (M). The radius of convergence R of such a power series is given by

1

R
= lim sup

n→∞

n
√
‖cn‖.

If T ∈M we can evaluate ϕ at T by

ϕ (T ) =
∞∑
n=0

cnT
n ∈M.

J. B. Conway and D. Hadwin [11] proved the following result.

3



Theorem 1.1.3. SupposeM is a type I von Neumann algebra acting on a separable Hilbert space,

T ∈ M and T is not algebraic over Z (M). Then AlgLat1/2(T,M) is the set of all ϕ (T ) with

ϕ : C→ Z (M) entire.

In the first part of this thesis we explore AlgLat1/2 (T,M) for von Neumann algebras that are

not necessarily type I . We prove a version of Theorem 1.1.2 for a normal operator T in all factor

von Neumann algebras. Then, using the direct integral theory, we extend our result to a general

von Neumann algebra.

1.2 Similarity Dominance

In [11] Conway and Hadwin introduced the notion of similarity domination. SupposeA is a unital

Banach algebra and S, T ∈ A. We say that T sim-dominates S in A, provided, for every R > 0,

sup
({∥∥A−1SA

∥∥ : A ∈ A, A invertible,
∥∥A−1TA

∥∥ ≤ R
})

<∞.

They proved

Theorem 1.2.1. If S, T ∈ B (H) and T similarity-dominates S, then there is an entire function

ϕ : C→ C such that S = ϕ (T ).

Here there is no assumption that T is algebraic. In the second part of this thesis, we explore

similarity domination in arbitrary Banach algebras and prove a version of the above theorem for a

large class of operators in a type III factor von Neumann algebra.

4



CHAPTER 2

ALGLAT1/2(T,M)

2.1 Preliminaries

The following theorem of Douglas will be used quite often in later sections.

Theorem 2.1.1 (R. G. Douglas [1][7]). Suppose A,B ∈ B (H). The following conditions are

equivalent:

1. ran(A) ⊂ ran(B)

2. AA∗ ≤ λ2BB∗ for some constant λ > 0.

3. A = BC for some C ∈ B (H)

Remark. This theorem holds more generally in a von Neumann algebra. The operator C in part 3

can be chosen in W ∗(A,B) such that ‖C‖ ≤ λ.

Remark. We can state part 3 of the Douglas’s theorem differently. Define

B−1 = (B|ker(B)⊥)−1 : ran(B)→ ker(B)⊥.

Then A = BC is the same as saying B−1A ∈ B (H).
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Corollary 2.1.2. SupposeM⊂ B (H) is a von Neumann algebra and T,D ∈ M. The following

are equivalent

T (ran(D)) ⊂ ran(D)⇔ ran(TD) ⊂ ran(D)

⇔ ∃λ > 0, such that TDD∗T ∗ ≤ λDD∗

⇔ ∃C ∈M such that TD = DC

⇔
∥∥D−1TD

∥∥ <∞

Proof. This follows immediately from the remarks and the theorem of Douglas.

Remark. If X is a Banach space, T,D ∈ B(X) and TD = DT then

T (ran(D)) = ran(TD) = ran(DT ) ⊂ ran(D).

2.2 Measurable cross-sections

Suppose (Y, d) is a separable metric space and µ is a σ-finite measure on the sigma-algebra Bor(Y )

of Borel subsets of Y . A subset E ⊂ Y is µ-measurable if and only if there are Borel sets

A,B ⊂ Y such thatA ⊂ E, E\A ⊂ B and µ (B) = 0. A subsetE ⊂ Y is absolutely measurable

if, for every σ-finite measure µ on Bor(Y ) it follows that E is µ-measurable. The collection of

absolutely measurable sets is a σ-algebra (usually properly) containing Bor(Y ). Suppose (W, ρ)

is another separable metric space and f : Y → W . We say that f is absolutely measurable if

and only if, for every absolutely measurable subset A ⊂ W , it follows thatf−1 (A) is absolutely

measurable in Y . It is not hard to show that f is absolutely measurable if and only if, for everyA ∈

Bor(W ), f−1 (A) is absolutely measurable. In the context of a complete σ-finite measure around,

absolute measurability is the same as measurability. The following lemma is elementary.

Lemma 2.2.1. Suppose (Y, d), (W, ρ) , (Z, δ) are separable metric spaces, B ⊂ Y is absolutely

measurable and f : Y → W and g : W → Z are absolutely measurable. Suppose (Ω,Σ, µ) is
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a complete (i.e., E ∈ Σ, F ⊂ E, µ (E) = 0 implies F ∈ Σ). Suppose ϕ : Ω → Y is Σ-Bor(Y )

measurable. Then

1. ϕ−1 (B) ∈ Σ, and

2. f ◦ ϕ : Ω→ W is Σ-Bor(W ) measurable.

3. g ◦ f : Y → Z is absolutely measurable.

The most significant theorem on this subject can be found in [20], chapters 3 and 4.

Theorem 2.2.2. Suppose X is a Borel subset of a complete metric space, (Y, d) is a separable

metric space and f : X → Y is continuous. Then

1. f (X) is an absolutely measurable subset of Y , and

2. There is an absolutely measurable function γ : f (X)→ X such that, for every y ∈ f (X),

f (γ (y)) = y.

As an application we prove a modified version of a result [15] by C. Pearcy.

Theorem 2.2.3. Suppose n ∈ N and (Ω,Σ, µ) is a complete σ-finite measure space and ϕ : Ω →

Mn (C) is a measurable map such that, for every ω ∈ Ω, ϕ (ω) is a normal matrix. Then there is a

measurable map u : Ω→Mn (C) and a measurable function d : Ω→ {1, 2, . . . , n} such that

1. u (ω) is unitary for every ω ∈ Ω,

2. u (ω)∗ ϕ (ω)u (ω) =



t1 (ω) 0 · · · 0

0 t2 (ω) · · · 0

...
... . . . ...

0 0 · · · tn (ω)


= diag (t1 (ω) , . . . , tn (ω))

3. Card
({
t1 (ω) , . . . , td(ω) (ω)

})
= d (ω) = Card ({t1 (ω) , . . . , tn (ω)}) .

7



Proof. Let N be the set of normal n× n matrices, and let U be the set of unitary n× n matrices.

Let

V = N × U ×
n∏
k=1

C× {1, . . . , n} ×
∏

1≤i<j≤n

C\ {0} × {1, . . . , n}{1,...,n}

with the product topology. Then V is a complete separable metric space (with a different metric

on C\ {0}).

Let X be the set of all (T, U, (t1, . . . , tn) , d, {cij : 1 ≤ i < j ≤ n} , h) in V such that

a. U∗TU = diag (t1, . . . , tn)

b. If 1 ≤ i < j ≤ d, then ti − tj = cij ,

c. For all k ∈ {1, . . . , n}, h (k) ≤ d

d. For all k ∈ {1, . . . , n}, tk = th(k).

It is easily shown that X is a closed subset of V , so X is a complete separable metric space.

Define f : X → N as the projection onto the first coordinate. Since every normal matrix

is unitarily equivalent to a diagonal matrix, and since any permutation of the diagonal entries

preserves unitary equivalence, we see that f (X) = N . We know from Theorem 2.2.2 there is an

absolutely measurable function γ : N → X such that, for every T ∈ N , f (γ (T )) = T. Since

ϕ : Ω→ N is measurable, γ ◦ ϕ is measurable. We can write

(γ ◦ ϕ) (ω) =

(ϕ (ω) , U (ω) , (t1 (ω) , . . . , tn (ω)) , d (ω) , {cij (ω) : 1 ≤ i < j ≤ n} , hω) .

Thus d : Ω→ {1, . . . , n}, tk : Ω→ C (1 ≤ k ≤ n) are measurable, and from the definition of X ,

we see that statements (1)-(3) are true.

8



2.3 Measurable Families

A family {Mω : ω ∈ Ω} is a measurable family of von Neumann algebras if, there are sequences

of SOT measurable functions fn and gn from Ω into the unit ball of B (H) so that Mω is the

von Neumann algebra generated by the set {fn (ω) : n ∈ N} ,M′
ω is the von Neumann algebra

generated by the set {gn (ω) : n ∈ N}, and each of those sets is SOT dense in the unit ball of the

von Neumann algebra it generates.

2.4 Direct Integrals

Suppose (Ω,Σ, µ) is a complete finite measure space, and suppose H is a separable Hilbert space.

Suppose X is a Banach space and f : Ω→ X is a function. We define |f | : Ω→ [0,∞) by

|f (ω)| = ‖f (ω)‖ .

We define L2 (µ,H) = {f |f : Ω→ H is measurable and |f | ∈ L2 (µ)} and we define

L∞ (µ,B (H)) = {ϕ : Ω→ B (H) is SOT measurable, |ϕ| ∈ L∞ (µ)} .

As usual, in both cases, we identify two functions that are equal almost everywhere. note that

L2 (µ,H) is a Hilbert space with ‖f‖2 = ‖|f |‖2 and inner product

〈f, g〉 =

∫
Ω

〈f (ω) , g (ω)〉 dµ (ω) .

If ϕ ∈ L∞ (µ,B (H)) we can identify ϕ with an operator on L2 (µ,H) that sends f to ϕf defined

by

(ϕf) (ω) = ϕ (ω) f (ω) .

We define the direct integral of the measurable family {Mω : ω ∈ Ω} of von Neumann alge-

bras as ∫ ⊕
Ω

Mω dµ (ω) = {ϕ ∈ L∞ (µ,B (H)) : ϕ (ω) ∈Mω a.e. (µ)} .

9



Another notation we use for the operator identified with ϕ ∈ L∞ (µ,B (H)) is

∫ ⊕
Ω

ϕ (ω) dµ (ω) .

We also use the notation, if T ∈
∫ ⊕

Ω
Mω dµ (ω) we write

T =

∫ ⊕
Ω

Tω dµ (ω) =

∫ ⊕
Ω

T (ω) dµ (ω) .

We also sometimes write

L2 (µ,H) =

∫ ⊕
Ω

H dµ (ω)

and denote a vector f ∈ L2 (µ,H) as

f =

∫ ⊕
Ω

f (ω) dµ (ω) .

In this notation we have

T (f) =

∫ ⊕
Ω

Tω (f (ω)) dµ (ω) ∈
∫ ⊕

Ω

H dµ (ω) .

We also sometimes write

L∞ (µ,B (H)) =

∫ ⊕
Ω

B (H) dµ (ω) .

Theorem 2.4.1. SupposeM =
∫ ⊕

Ω
Mω dµ (ω) is a direct integral decomposition of a measurable

family of von Neumann algebras on a separable Hilbert space H with (Ω,Σ, µ) a complete finite

measure space, soM⊂ B (L2 (µ,H)) . Suppose T =
∫ ⊕

Ω
Tω dµ (ω) and S =

∫ ⊕
Ω
Sω dµ (ω) are in

M. If S ∈ AlgLat1/2(T,M), then

Sω ∈ AlgLat1/2 (Tω,Mω) a.e. (µ) .

10



Proof. Since {Mω : ω ∈ Ω} is a measurable family, there is a sequence {ψ1, ψ2, . . .} of ∗-SOT

measurable functions from Ω into B such that, for every ω ∈ Ω,

{ψ1 (ω) , ψ2 (ω) , . . .}−∗-SOT = {A ∈M′
ω : ‖A‖ ≤ 1} .

Thus an A =
∫ ⊕

Ω
Aω dµ in L∞ (µ,B (H)) is inM if and only if

Aωψn (ω) = ψn (ω)Aω a.e. (µ)

for all n ∈ N.

Let B = {A ∈ B (H) : ‖A‖ ≤ 1}with the ∗-SOT, and let Bo = {T ∈ B : T = T ∗ and T 6= 0}.

We know, sinceH is separable, B is a complete separable metric space with a metric d. Also, since

Bsa = {T ∈ B : T = T ∗} is ∗-SOT closed, it is also a complete separable metric space. Since Bo

is relatively open in Bsa, we know that Bo is a complete separable metric space with an equivalent

metric do.

We then have

X = B × B × B ×
∞∏
n=1

B×
∞∏
n=1

Bo

with the product ∗-SOT topology.

For each positive integer m, let Vm be the set of all (A,B,D, {Fn} , {Gn}) in X such that

1. mDD∗ − ADD∗A∗ ≥ 0

2. DFn − FnD = 0 for all n ∈ N,

3. [nDD∗ −BDD∗B∗]− = Gn for all n ∈ N.

11



Clearly, Vm is a closed subset of X , which means that Vm is a complete separable metric space.

Define the continuous maps π : X → B × B ×
∞∏
n=1

B = Y by

π ((A,B,D, {Fn} , {Gn})) = (A,B, {Fn})

and ρ : X → B by

ρ ((A,B,D, {Fn} , {Gn})) = D.

Then, by Theorem 2.2.2, π (Vm) is an absolutely measurable subset of Y and there is an absolutely

measurable cross-section ηm : π (Vm)→ Vm with

(π ◦ ηm) (y) = y

for every y ∈ π (Vm). Also ρ ◦ ηm : πm (Vm)→ B is absolutely measurable.

It is clear that π (Vm) is the set of all (A,B, {Fn}) for which there existsD ∈ {F1, F2, . . .}′∩B

such that A (D (H)) ⊂ D (H) and B (D (H)) 6⊂ D (H).

Clearly, there is no harm in assuming ‖S‖ , ‖T‖ ≤ 1, so that ‖Sω‖ , ‖Tω‖ ≤ 1 for every ω ∈ Ω.

Thus the map

(S, T, {ψn}) : Ω→ Y

defined by

(S, T, {ψn}) (ω) = (Sω, Tω, {ψn (ω)})

is measurable and

Ωm = (S, T, {ψn})−1 (π (Vm))

is the set of all ω ∈ Ω for which there exists D ∈Mω such that

mDD∗ − TωDD∗T ∗ω ≥ 0

and Sω does not leave the range of Dω invariant.
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Define Dm : Ω→ B by

Dm (ω) =

 1 if ω /∈ Ωm

ρm ((S, T, {ψn}) (ω)) if ω ∈ Ωm

Then

mDD∗ − TDD∗T ∗ ≥ 0.

Thus there exists a positive integer N such that

NDωD
∗
ω − SωDωD

∗
ωS
∗ ≥ 0 a.e. (µ) .

It follows that µ (Ωm) = 0 for each m ∈ N. Since ∪∞m=1Ωm has measure 0 and is the set of all

ω ∈ Ω such that there exists D ∈Mω whose range is invariant for Tω but not for Sω, we see that

Sω ∈ AlgLat1/2 (Tω,Mω) a.e. (µ) .

Lemma 2.4.2. Suppose T = T1⊕T2⊕· · · and S = S1⊕S2⊕· · · are elements of the von Neumann

algebraM =M1 ⊕M2 ⊕ · · · and S ∈ AlgLat1/2 (T,M). Then

1. Sn ∈ AlgLat1/2(Tn,Mn) for each n ≥ 1, and

2. If Tn → A and Sn → B in the ∗-SOT, then

AB = BA.
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Proof. Let CQ = Q + iQ be the set of complex numbers whose real and imaginary parts are both

rational. We can write

CQ = {z1, z2, . . .} .

Let D =
(
ez1T1/

∥∥ez1T1∥∥) ⊕ (ez2T2/∥∥ez2T2∥∥) ⊕ · · · . Then TD = DT . Thus there exists W =

W1 ⊕W2 ⊕ · · · ∈ M such that SD = DW. Thus, for every n ∈ N,

SnDn = DnWn,

so ∥∥e−znTnSneznTn∥∥ =
∥∥D−1

n SnDn

∥∥ = ‖Wn‖ ≤ ‖W‖ .

Now suppose λ ∈ C. Then there is a subsequence {znk
} of {zn} such that

lim
k→∞

znk
= λ.

Thus Snk
→ A and Tnk

→ B in the ∗-SOT , so eznk
Tnk → eλA and e−znk

Tnk → e−λA in the

∗-SOT . Hence e−znk
TnkSnk

eznk
Tnk → e−λABeλA in the ∗-SOT . Thus

∥∥e−λABeλA∥∥ ≤ sup
k

∥∥e−znk
TnkSnk

eznk
Tnk

∥∥ ≤ ‖W‖ .

Thus the function F : C→M defined by

F (λ) = e−λABeλA

is a bounded entire function. Thus, by Liouville’s theorem, F is constant. Hence

0 = F ′ (0) = −AB +BA,

which implies AB = BA.
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Definition 2.4.3 (Hadwin-Hoover[16]). Suppose (Ω,Σ, µ) is a measure space, Y is a separable

metric space and ϕ : Ω→ Y is measurable. Then the essential range of ϕ, denoted by ess-ran(ϕ)

is

Y \ ∪
{
U ⊂ Y : U is open, µ

(
ϕ−1 (U)

)
= 0
}
.

Lemma 2.4.4. Suppose (Ω,Σ, µ) is a measure space, Y is a separable metric space and ϕ : Ω→

Y is measurable. Then

1. ϕ (ω) ∈ ess-ran(ϕ) a.e. (µ)

2. If y ∈ ess-ran(ϕ) and y ∈ U and U ⊂ Y is open, then µ (ϕ−1 (U)) > 0.

Lemma 2.4.5. Suppose (Ω,Σ, µ) is a measure space with the following property.

for every E ∈ Σ, with µ(E) > 0, and for every 0 < ε < µ(E), there exists F ∈ Σ, F ⊂ E,

such that 0 < µ(E) < ε.

Suppose {En}∞n=1 is a sequence in Σ with µ(En) > 0 for every n ∈ N. Then there exists a

mutually disjoint sequence {Fn}∞n=1 in Σ, such that Fn ⊂ En, and µ(Fn) > 0, for all n ∈ N.

Proof. Consider the sequence of projections {χEn} in L∞(Ω, µ). By Theorem 2.6.5, there exists

an orthogonal sequence of nonzero projections {χFn}, with χFn ≤ χEn for all n ∈ N. Since {χFn}

is an orthogonal family, it follows that Fn ∩ Fm = ∅ for all m,n ∈ N. Since χFn 6= 0, it follows

that µ(Fn) > 0 for all n ∈ N.

Theorem 2.4.6. SupposeM =
∫ ⊕

Ω
Mω dµ (ω) is a direct integral decomposition of a measurable

family of von Neumann algebras on a separable Hilbert space H with (Ω,Σ, µ) a complete finite

measure space, soM⊂ B (L2 (µ,H)) . Suppose T =
∫ ⊕

Ω
Tω dµ (ω) and S =

∫ ⊕
Ω
Sω dµ (ω) are in

M. If S ∈ AlgLat1/2(T,M) and µ is nonatomic, then

ST = TS .
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Proof. We can assume that ‖T‖ ≤ 1 and ‖S‖ ≤ 1 and we can therefore assume (by redefining on

a set of measure 0) ‖Tω‖ ≤ 1 and ‖Sω‖ ≤ 1 for every ω ∈ Ω. Similarly, by Theorem 2.4.1, we can

assume that Sω ∈ AlgLat1/2(Tω,Mω) for every ω ∈ Ω. Let B = {A ∈ B (H) : ‖A‖ ≤ 1} and let

d be a metric on B that gives the ∗-SOT and makes B a complete separable metric space. Such a

metric d exists because H is separable. Define ϕ : Ω→ B × B by

ϕ (ω) = (Tω, Sω) .

Suppose (A,B) ∈ ess-ran(ϕ). For each positive integer n, let

Un = {(C,D) ∈ B × B : d (A,C) + d (B,D) < 1/n} .

Then Un is open in B × B and (A,B) ∈ U. Thus µ (ϕ−1 (Un)) > 0. We know from lemma 2.4.5

that we can find mutually disjoint subsets En ⊂ ϕ−1(Un), such that for all n ∈ N, µ(En) > 0.

Define

U(ω) =

 1 if ω /∈
⋃∞
n=1En

eznTω

‖eznTω‖ if ω ∈ En
.

Then ‖U‖ ≤ 1 and for every ω ∈ Ω,

T (ω)U(ω) = U(ω)T (ω).

Thus there exists a bounded operator C =
∫ ⊕

Ω
Cω dµ (ω) ∈ M such that SU = UC. Since

Sω ∈ AlgLat1/2(Tω,Mω), we have for every ω ∈ Ω

S(ω)U(ω) = U(ω)C(ω).

Thus ∥∥e−znT (ω)S(ω)eznT (ω)
∥∥ ≤ ‖C‖ .
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Suppose z ∈ C. There exists a subsequence {znk
} of {zn}such that

lim
k→∞

znk
= z.

Choose ωnk
∈ Enk

. It follows from the definition of Enk
that, S(ωnk

) → B, and T (ωnk
) → A in

the *-SOT. Hence e−znk
T (ωnk

)S(ωnk
)eznk

T (ωnk
) → e−zABezA in the *-SOT. Thus

∥∥e−zABezA∥∥ ≤ sup
k∈N

∥∥e−znk
T (ωnk

)S(ωnk
)eznk

T (ωnk
)
∥∥ ≤ ‖C‖ .

Proceeding as in lemma 2.4.2, we see that AB = BA for every A,B ∈ ess-ran(ϕ). However,

ϕ(ω) = (Tω, Sω) ∈ ess-ran(ϕ), a.e.(µ)

Thus ST = TS.

2.5 The Central Decomposition

Suppose 1 ≤ n ≤ ∞ = ℵ0. We define `2
n be the space of square summable sequences with the

inner product 〈x, y〉 =
n∑
i=1

xiȳi. Here is the statement of the Central Decomposition Theorem [19].

Theorem 2.5.1. Suppose M is a von Neumann algebra on a separable Hilbert space H . Then

there is a family (Ωn,Σn, µn) of finite measure spaces and measurable families {Mn,ω : ω ∈ Ωn}

of von Neumann algebras on B (`2
n) (1 ≤ n ≤ ∞) such that

1. M =
∑⊕

1≤n≤∞
∫ ⊕

Ωn
Mn,ω dµn (ω)

2. Mn,ω is a factor von Neumann algebra for every n and ω

3. Z (M) =
∑⊕

1≤n≤∞
∫ ⊕

Ωn
C · 1 dµn (ω) , which is isomorphic to

∑⊕
1≤n≤∞ L

∞ (µn).

This is called the central decomposition ofM.

We can prove the following.
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Theorem 2.5.2. Suppose M⊂ B (H) is a von Neumann algebra with H separable such that

the center Z (M) has no minimal projections. If S, T ∈ M and S ∈ AlgLat1/2(T,M), then

ST = TS.

Proof. Relative to the above central decomposition of M, the fact that Z (M) has no minimal

projections says that each µn is nonatomic. We can write

T =
⊕∑

1≤n≤∞

Tn =
⊕∑

1≤n≤∞

∫ ⊕
Ωn

Tn (ω) dµn(ω)

and

S =
⊕∑

1≤n≤∞

Sn =
⊕∑

1≤n≤∞

∫ ⊕
Ωn

Sn (ω) dµn(ω).

It follows from Lemma 2.4.2, that, for each n

Sn ∈ AlgLat1/2

(
Tn,

∫ ⊕
Ωn

Mn,ω dµn (ω)

)
.

It follows from Theorem 2.4.6 that, for every n, SnTn = TnSn. Thus ST = TS.

2.6 Normal Operators in a Factor

This first result holds for an arbitrary von Neumann algebra.

Theorem 2.6.1. Suppose M ⊂ B (H) is a von Neumann algebra. Suppose S, T ∈ M and

S ∈ AlgLat1/2(T,M), and T is normal. Then S is normal and ST = TS.

Proof. Let A be a masa inM containing T . Suppose P ∈ A is a projection. Then PT = TP .

Hence ran(P ) and ran(1 − p) are T -invariant, and hence S-invariant. Thus SP = PS for every

projection in A. Suppose W ∈ A. Since A is weakly closed, A is a von Neumann algebra and

hence contains all spectral projections ofW . Thus SW = WS for everyW ∈ A. ButA is a masa,

so S, S∗ ∈ A. Thus ST = TS and SS∗ = S∗S.
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Corollary 2.6.2. Assume the hypotheses of Theorem 2.6.1. If E ⊂ σ(T ) is a Borel set, the spectral

projection χE(T ) commutes with S.

Proof. We know from Theorem 2.6.1 that S commutes with T . Since T is normal, S commutes

with all spectral projections of T by Fuglede’s Theorem.

The main theorem in this section is the following. This is a far cry from the Douglas-Foiaş

Theorem (1.1.2), in which the function is entire.

Theorem 2.6.3. SupposeM ⊂ B (H) is a factor von Neumann algebra on a separable Hilbert

S, T ∈ M and S ∈ AlgLat1/2(T,M), and T is normal. Then there is a continuous function ϕ on

σ (T ) such that

S = ϕ (T ) .

The proof will be done in a series of lemmas. If we first consider a type In factor with 1 ≤ n <

∞, thenM is isomorphic to Mn (C) = B (Cn) and the result is well-known. IfM is a type I∞

factor, thenM = B (`2) and an even stronger result follows theorem 1.1.2.

The remaining types of factors are type II1, II∞ and III .

IfM is a type II1 factor, thenM has a faithful normal tracial state τ and two projections p

and q inM are unitarily equivalent inM if and only if τ (p) = τ (q). Moreover, if C is a maximal

chain of projections inM, we can write

C = {pt : 0 ≤ t ≤ 1}

with τ (pt) = t for every t ∈ [0, 1]. Thus if 0 < s < τ (p) ≤ 1, there is a projection q ∈ M such

that q ≤ p and τ (q) = s.
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IfM is a type II∞ factor, there is a type II1 factorR such that

M = {A = (Aij) ∈ B (H) : Aij ∈ R, for 1 ≤ i, j <∞} .

We can define a faithful normal weight ρ with domain the set of positive elements inM by

ρ (A) =
∞∑
i=1

τ (Ai,i) ∈ [0,∞] .

It is known that two projections p, q ∈ M are Murray von Neumann equivalent if and only if

ρ (p) = ρ (q). They are unitarily equivalent inM if and only if we also have ρ (1− p) = ρ (1− q).

Also, if p 6= 0 and 0 ≤ s < ρ (p), then there is a projection q ≤ p such that ρ (q) = s.

In a type III factorM all nonzero projections are Murray von Neumann equivalent and if p, q

are projections with 0 6= p 6= 1 and 0 6= q 6= 1, then p and q are unitarily equivalent inM. Also if

ϕ is a state onM and 0 < s < ϕ (p) , then there is a projection q < p such that ϕ (q) = s.

One property of an arbitrary von Neumann algebra M is the following. If {pi : i ∈ I} and

{qi : i ∈ I} are orthogonal families of projections whose sum is 1, and if each pi is Murray von

Neumann equivalent to qi, then there is a unitary operator U ∈M such that, for every i ∈ I,

U∗piU = qi.

Lemma 2.6.4. SupposeM ⊂ B (H) is a von Neumann algebra with no minimal projections and

a faithful normal state ϕ. Suppose P1 and P2 are nonzero projections inM and 0 < ε < ϕ(P1).

Then there are mutually orthogonal nonzero subprojections Q1 ≤ P1 and Q2 ≤ P2 such that

ϕ (P1 −Q1) < ε.

Proof. According to Halmos’ standard form [9], we can write

H = H1 ⊕H2 ⊕H3 ⊕H4 ⊕H5 ⊕H6 (with H5 = H6)
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so that

P1 = 1⊕ 1⊕ 0⊕ 0⊕

 1 0

0 0

 ,

and

P2 = 1⊕ 0⊕ 1⊕ 0⊕

 x
√
x− x2

√
x− x2 1− x


with x ∈ PH5MPH5 and 0 < x < 1.

For each k ∈ {1, 2, 3, 4} we can choose a masa Dk ⊂ PHk
MPHk

and we can choose a masa

D5 ⊂ P5MP5 that contains x. Thus W ∗ (P1, P2)′ ∩M contains

D = D1 ⊕D2 ⊕D3 ⊕D4 ⊕


 A 0

0 A

 : A ∈ D5

 .

Clearly D has no minimal projections, so we can choose a projection E ∈ D with E ≤ PH1 +

PH3 + PH5 + PH6 such that 0 < ϕ (E) < ε. If we let Q1 = P1 (1− E) and Q2 = EP2, the proof

is complete.

Theorem 2.6.5. Suppose M ⊂ B (H) is a von Neumann algebra with no minimal projections

and a faithful normal state ϕ. Suppose P1, P2, . . . are nonzero projections inM. Then there are

nonzero subprojections Qn ≤ Pn so that {Q1, Q2, . . .} is orthogonal. Moreover, ifM is a factor,

we can also have that Q2n−1 and Q2n are Murray von Neumann equivalent for all n ∈ N.

Proof. We can use mathematical induction (constructing P1,n, . . . , Pn,n at the nth stage) and Lemma

2.6.4 to construct projections

{Pn,k : n ≤ k ≤ ∞}

such that

1. Pn,n ≤ Pn,n+1 ≤ · · · ≤ Pn for all n ∈ N,

2. ϕ (Pn,k) <
(

1
3

)k
ϕ (Pn) for 1 ≤ n ≤ k <∞,
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3. Pn,n ⊥ (Pm − Pm,m) for 1 ≤ m < n <∞.

We then let Qn = Pn,n −
∑∞

k=n+1 Pn,k.

IfM is a factor, then one of Q2n−1 and Q2n is Murray von Neumann equivalent to a subpro-

jection of the other for each n ∈ N.

Suppose T is an operator on a Hilbert space H . We let R (T ) denote the projection onto the

range of T. Then

R (T ) = lim
n→∞

(TT ∗)1/n ,

where the convergence is in the strong operator topology.

Note that ifM is a von Neumann algebra with a faithful normal state ϕ, and if P is a nonzero

projection and 0 < t < ϕ (P ) , there is a projection P1 ≤ P inM such that ϕ (P ) = t.

Theorem 2.6.6. SupposeM is a von Neumann algebra with no minimal projections and a faith-

ful normal state ϕ. Suppose P1, P
′
1, P2, P

′
2, . . . are nonzero projections in M. Then M contains

nonzero projections Q1, Q
′
1, Q2, Q

′
2, . . . such that

1. {Q1, Q
′
1, Q2, Q

′
2, . . .} is orthogonal

2. For every n ∈ N, Qn ≤ Pn and Q′n ≤ P ′n.

3. IfM is a factor, then, for every n ∈ N, Pn and P ′n are Murray von Neumann equivalent.

Proof. First suppose P1 and P2 are projections. We can write P1P2 = (P1P2P1)1/2 V as a po-

lar decomposition where the partial isometry has an initial space V ∗V is the projection onto

[ker (P1P2)]⊥, so V ∗V ≤ P2 and V V ∗ = R (P1P2) ≤ P1. Thus V : R (V V ∗) → R (P1P2) , V =

P1 (P2 (H))− is unitary. If P1P2 = 0, then P1 (H) ⊥ P2 (H).

More generally, suppose P1P2 6= 0 and ε > 0. Then ϕ (V V ∗) > 0. We can choose a projection

E ≤ V V ∗ inM so that 0 < ϕ (E) < ε. Then V ∗ (E (H)) is a closed subspace of V ∗ (H). Thus

F = V ∗EV is a projection and F = V ∗EV ≤ V ∗V ≤ P2. Now we can find a subprojection F2 of

F such that 0 < ϕ (F2) < ε. Let E2 = R (P1F2) = V F2V
∗. Then

F2 ≤ P2 and F2 ⊥ P1 − E1.
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From this point onward, we assume M is a factor of type II1, II∞ or III and T ∈ M is

normal and S ∈AlgLat1/2 (T,M). Therefore S is normal and S commutes with every spectral

projection of T .

Definition 2.6.7. Suppose E ⊂ σ (T ) is a Borel set. We define SE to be the restriction of S to the

range of the spectral projection χE(T ) ∈M.

Remark. It follows from the Corollary 2.6.2 that SE ∈ B(χE(T )(H)). We see that SE is normal

because S = SE ⊕ Ssp(T )\E .

Lemma 2.6.8. For every ε > 0 there exists δ > 0 such that, if E ⊂ sp(T ) is a Borel set,

diam(E) < δ =⇒ diam(sp(SE)) < ε.

Proof. By way of contradiction there exists a sequence {En} of Borel subsets of σ (T ) and an

ε > 0 such that, for every n ∈ N,

1. diam(En) < 1/2n, and

2. diam(σ (SEn)) ≥ ε.

For each n ∈ N we can choose zn ∈ σ
(
T |χEn (T )(H)

)
. Thus

‖(T − zn)χEn‖ ≤ diam (En) ≤ 1

2n
.

We can choose αn, βn ∈ σ (SEn) ⊂ σ (S) such that, for each n ∈ N,

|αn − βn| ≥ ε.

Let rn = 1/2n for each n ∈ N. Thus χD(αn,rn) (SEn) and χD(βn,rn) (SEn) are nonzero subprojec-

tions of χEn (T ). It follows from Theorem 2.6.6 and the fact thatM is a factor of type II1, II∞ or
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III , that there is an orthogonal family {Pnk
: n ∈ N, k ∈ {1, 2}} of nonzero projections such that

Pn1 ≤ χD(αn,rn) (SEn) and Pn2 ≤ χD(βn,rn) (SEn) for all n ∈ N and k = 1, 2. SinceM is a factor,

one of Pn1 and Pn2 is Murray-von Neumann equivalent to a subprojection of the other. Hence we

can assume that Pn1 and Pn2 are Murray-von Neumann equivalent. Thus there is a partial isometry

Vn ∈M such that V ∗n Vn = Pn1 and VnV ∗n = Pn2 . Since the map πn such that

πn


 a b

c d


 = aPn1 + bVn + cV ∗n + dPn2

is a ∗-homomorphism on M2 (C), we see that

‖aPn1 + bVn + cV ∗n + dPn2‖ =

∥∥∥∥∥∥∥
 a b

c d


∥∥∥∥∥∥∥ .

For each positive integer n, we define An = 1
n
I2 + 1

2

 1 1

1 1

 and let Dn = π (An) . Clearly

‖Dn‖ = ‖An‖ = 1 +
1

n
≤ 2.

If we view Dn acting on (Pn1 + Pn2) (H) = Hn we can view Dn as being invertible and D−1
n =

πn (A−1
n ) . However, we have D−1

n Dn = πn (1) = Pn1 + Pn2 . We will use the notation D−1
n for

π (A−1
n ) even though it is not the inverse inM of Dn.

Since 1
2

 1 1

1 1

 is a rank-one projection, we have ‖A−1
n ‖ = n for n ∈ N.

A simple computation shows that, for each n ∈ N,

∥∥D−1
n (αnPn1 + βnPn2)Dn

∥∥ =

∥∥∥∥∥∥∥A−1
n

 αn 0

0 βn

An

∥∥∥∥∥∥∥ ≥ n |αn − βn| ≥ nε.
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For each n ∈ N, let Qn = Pn1 + Pn2 and let

D∞ = Q∞ = 1−
∞∑
n=1

Qn.

We define

D = Q∞ +
∞∑
n=1

Dn ∈M.

It is clear that ‖D‖ ≤ 2 and that ker (D) = {0}. Thus the (unbounded) inverse D−1 of D is

D−1 = Q∞ +
∞∑
n=1

D−1
n .

We have QnD = DQn = Dn and QnD
−1 = D−1Qn = D−1

n for each n ∈ N. We now want to

show that ∥∥D−1TD
∥∥ <∞,

i.e., the range of D is T -invariant. We have

∥∥D−1TD
∥∥ ≤

≤ sup
1≤n≤∞

∥∥D−1
n TDn

∥∥+

∥∥∥∥∥D−1TD −
∞∑
n=1

D−1
n TDn

∥∥∥∥∥
≤ sup

1≤n≤∞

∥∥D−1
n TDn

∥∥+
∑

1≤n≤∞

∥∥∥∥∥Qn

(
D−1TD −

∞∑
n=1

D−1
n TDn

)∥∥∥∥∥
= sup

1≤n≤∞

∥∥D−1
n TDn

∥∥+
∑

1≤n≤∞

∥∥Qn

(
D−1
n TD −D−1

n TQnD
)∥∥

≤ sup
1≤n≤∞

∥∥D−1
n TDn

∥∥+
∑

1≤n≤∞

∥∥D−1
n

∥∥ ‖QnT − TQn‖ ‖D‖ .

However, ∥∥D−1
n TDn

∥∥ =
∥∥D−1

n (T − zn)Dn

∥∥+ |zn|
∥∥D−1

n Dn

∥∥
=
∥∥D−1

n (T − zn)χEn (T )Dn

∥∥+ |zn| ≤
∥∥D−1

n

∥∥ diam (En) ‖D‖+ ‖T‖

≤ n

2n
2 + ‖T‖ ≤ 1 + ‖T‖ .

Thus sup1≤n≤∞ ‖D−1
n TDn‖ ≤ 1 + ‖T‖.
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Next, for 1 ≤ n <∞,

∥∥D−1
n

∥∥ ‖QnT − TQn‖ ‖D‖ =
∥∥D−1

n

∥∥ ‖Qn (T − zn)− (T − zn)Qn‖ ‖D‖

=
∥∥D−1

n

∥∥ ‖QnχEn (T ) (T − zn)− (T − zn)χEn (T )Qn‖ ‖D‖

≤ n
2

2n
‖D‖ ≤ n/2n−2.

Thus
∞∑
n=1

∥∥D−1
n

∥∥ ‖QnT − TQn‖ ‖D‖ ≤
∞∑
n=1

n/2n−2 <∞.

Also ∥∥Q∞D−1TD
∥∥ = ‖Q∞TD‖ ≤ 2 ‖T‖ .

Hence ‖D−1TD‖ <∞.

We now want to show that D−1SD is not bounded.

We know

∥∥D−1SD
∥∥ ≥ sup

1≤n<∞

∥∥QnD
−1SDQn

∥∥ = sup
1≤n<∞

∥∥D−1
n QnSQnDn

∥∥
sup

1≤n<∞

∥∥D−1
n (Pn1 + Pn2)S (Pn1 + Pn2)Dn

∥∥ .
However,

‖Pn1 (S − αn)‖ = ‖Pn1 (SEn − αn)‖ ≤ 1

2n
.

Similarly,

‖(S − αn)Pn1‖ ≤
1

2n
, ‖Pn2 (S − βn)‖ ≤ 1

2n
, ‖(S − βn)Pn2‖ ≤

1

2n
.

Thus, ∥∥D−1
n (Pn1 + Pn2)S (Pn1 + Pn2)Dn

∥∥ ≥∥∥D−1
n (αnPn1 + βnPn2)Dn

∥∥− ∥∥D−1
n

∥∥ 4

2n

≥ nε− 4 ‖D‖ /2n.

Thus ‖D−1DS‖ 6<∞. This contradiction proves our lemma.
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Lemma 2.6.9. For every λ ∈ σ(T ) there exists α ∈ C such that

⋂
0<r<∞

σ(SD(λ,r)) = {α}.

Proof. By Lemma 2.6.8 diam(σ (SD(λ, 1/n)) → n as n → ∞ . Since for every n ∈ N,

D(λ, 1/(n+1)) ⊂ D(λ, 1/n), we have {σ (SD(λ, 1/n))} is a decreasing chain (with respect to⊂)

of compact (closed) subsets of C. Hence the lemma follows from Cantor’s intersection theorem

for complete metric spaces.

Lemma 2.6.10. Define

f : σ(T )→ C

{f(λ)} =
⋂

0<r<∞

σ(SD(λ,r)).

Then f is uniformly continuous on σ(T ), and S = f (T ) .

Proof. The function f is a well defined by Lemma 2.6.9. Given ε > 0, Lemma 2.6.8 provides

δ > 0 such that for every z, a ∈ σ(T ), if |z − a| < δ/2, then diam(SD((z + a)/2, δ/2)) < ε. If

|z−a| < δ/2, then z, a ∈ D((z+a)/2, δ/2). Moreover,D(z, δ/2−|z−a|) andD(a, δ/2−|z−a|)

are both subsets of D((z + a)/2, δ/2). From the definition of f ,

f(z) ∈ σ(SD(z,δ/2−|z−a|)) ⊂ σ(SD((z+a)/2,δ/2)),

and

f(a) ∈ σ(SD(a,δ/2−|z−a|)) ⊂ σ(SD((z+a)/2,δ/2)).
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Therefore

|f(z)− f(a)| ≤ diam(σ(SD((z+a)/2,δ/2)) < ε.

Thus f is uniformly continuous on σ(T ).

Next we show that S = f(T ). Let ε > 0. It follows from Lemma 2.6.8, and the fact that f is

uniformly continuous that there exists δ > 0 such that for every Borel subset E ⊂ σ(T ), and for

every z, λ ∈ σ(T ),

1. diam(E) < δ ⇒ diam(σ(SE)) < ε,

2. |z − λ| ≤ δ ⇒ |f(z)− f(λ)| ≤ ε.

Suppose λ ∈ E ⊂ σ(T ) and diam(E) < δ. It follows from definition of f that f(λ) ∈

σ(SD(λ,δ)). It follows from (1) that diam(SD(λ, δ)) < ε. If z ∈ σ(SD(λ,δ)), then

|z − f(λ)| ≤ diam(σ(SD(λ,δ))) < ε.

Define a continuous mapping h : σ(SD(λ,δ))→ C, by h(z) = z − f(λ). Then

∥∥SD(λ,δ) − f(λ)χD(λ,δ)(T )
∥∥ =

∥∥h (SD(λ,δ)

)∥∥
= sup

z∈σ(SD(λ,δ))

|h(z)|

< ε.

Since diam(E) < δ it is clear that E ⊂ D(λ, δ). Let F = D(λ, δ) \ E. Then

χE(T ) ⊥ χF (T )

χD(λ,δ)(T ) = χE(T )⊕ χF (T )

SD(λ,δ) = SE ⊕ SF .
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Thus

SD(λ,δ) − f(λ)χD(λ,δ)(T ) = (SE − f(λ)XE(T ))⊕ (SF − f(λ)XF (T )) ,

It follows that

‖SE − f(λ)χE (T )‖ ≤ max{‖SE − f(λ)χE(T )‖ , ‖SF − f(λ)χF (T )‖}

=
∥∥SD(λ,δ) − f(λ)χD(λ,δ)(T )

∥∥
< ε

Thus far we have shown that if E is a Borel subset of σ(T ), and λ ∈ E, then

diam(E) < δ ⇒ ‖SE − f(λ)XE(T )‖ < ε. (2.1)

Now consider a partition of σ(T ) into disjoint, nonempty subsets {E1, E2, . . . , En} such that

diam(Ek) < δ, for every 1 ≤ k ≤ n. Let TEk
= TχEk

(T ). Write

I =
∞⊕
k=1

χEk
(T ), S =

n⊕
k=1

SEk
, T =

n⊕
k=1

TEk
.

Choose λ1 ∈ E1, λ2 ∈ E2, . . . , λn ∈ En. diam(σ(TEk
)) ≤ δ since σ(TEk

) ⊂ Ek. If z ∈

σ(TEk
), then z ∈ Ek. Hence |z−λk| ≤ δ. Thus |f(z)−f(λk)| ≤ ε. The mapping g : σ(TEK

)→ C,

by g(z) = f(λk)− f(z) is continuous. Thus for every 1 ≤ k ≤ n,

‖f(λk)χEk
(T )− f(TEk

)‖ = ‖g(TEK
)‖ = sup

z∈σ(TEk
)

|g(z)| (2.2)

= sup
z∈σ(TEk

)

|f(λk)− f(z)|

≤ ε.

Let

D =
n⊕
k=1

f(λk)χEk
(T ).
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Then

‖S − f(T )‖ ≤ ‖S −D‖+ ‖D − f(T )‖

=

∥∥∥∥∥
n⊕
k=1

SEk
−

n⊕
k=1

f(λk)χEk
(T )

∥∥∥∥∥+

∥∥∥∥∥f
(

n⊕
k=1

TEk

)
−

n⊕
k=1

f(λk)χEk
(T )

∥∥∥∥∥
=

∥∥∥∥∥
n⊕
k=1

SEk
− f(λk)χEk

(T )

∥∥∥∥∥+

∥∥∥∥∥
n⊕
k=1

f (TEk
)− f(λk)χEk

(T )

∥∥∥∥∥
= max

1≤k≤n
‖SEk

− f(λk)χEk
(T )‖+ max

1≤k≤n
‖f (TEk

)− f(λk)χEk
(T )‖

≤ ε+ ε = 2ε

where the last inequality follows from equations (2.1) and (2.2) above. Thus S = f(T ).

2.7 Normal Operators in a type In von Neumann algebra

SupposeM is a type In von Neumann algebra. By a result in [19], there is a family of probability

spaces {(Ωi,Σi, µi) : i ∈ I}, such thatM is isomorphic (not unitarily equivalent to)

⊕∑
i∈I

Mn (L∞ (µi)) .

We need a simple result about Vandermonde matrices. Suppose t1, . . . , td are d distinct com-

plex numbers. The Vandermonde matrix V (t1, . . . , td) is defined as

V (t1, . . . , td) =



1 t1 t21 · · · td−1
1

1 t2 t22 · · · td−1
2

...
...

... . . . ...

1 td t2d · · · td−1
d


.

It is well known that V (t1, . . . , td) is invertible. Here are some additional facts.
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Lemma 2.7.1. Suppose t1, . . . , td are d distinct complex numbers, s1, . . . , sd ∈ C, and p (z) =

c0 + c1z + · · ·+ cd−1z
d−1 is the (unique) polynomial with degree less than d such that p (tk) = sk

for 1 ≤ k ≤ d. Then

1. V (t1, . . . , td)



c0

c1

...

cd−1


=



p (t1)

p (t2)

...

p (td)



2. The first column of V (t1, . . . , td)
−1diag(s1, . . . , sd)V (t1, . . . , td) =



c0

c1

...

cd−1


.

3. V (t1, . . . , td)
−1 diag (t1, . . . , td)V (t1, . . . , td) =



0 0 · · · 0 a0

1 0 · · · 0 a1

0 1 · · · 0 a2

...
... . . . ...

...

0 0 · · · 1 ad−1


, where

a0 + a1z + · · ·+ ad−1z
d−1 = zd − (z − t1) · · · (z − td) .

4.
∥∥V (t1, . . . , td)

−1 diag (t1, . . . , td)V (t1, . . . , td)
∥∥ ≤ (1 +R)d, where R = max1≤k≤d |tk|.

Proof. (1) . This is trivial.

(2). The first column of V (t1, . . . , td)
−1diag(s1, . . . , sd)V (t1, . . . , td) is

V (t1, . . . , td)
−1 diag (s1, . . . , sd)V (t1, . . . , td)



1

0

...

0
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= V (t1, . . . , td)
−1 diag (s1, . . . , sd)



1

1

...

1


= V (t1, . . . , td)

−1



s1

s2

...

sd


=



c0

c1

...

cd−1


,

where the last equality follows from part (1).

(3). Suppose V (t1, . . . , td)
−1diag(s1, . . . , sd)V (t1, . . . , td) = B. Then

diag(s1, . . . , sd)V (t1, . . . , td) =



t1 t21 · · · td1

t2 t22 · · · td2
...

...
... . . .

td t2d · · · tdd


= V (t1, . . . , td)B.

If Bj denotes the jth column of the matrix B, then

V (t1, . . . , td)Bj =



tj1

tj2
...

tjd


= (j + 1)thcolumn of V (t1, . . . , td).

Therefore Bj is the column vector with a 1 at the (j + 1)th component and 0 everywhere else, for

1 ≤ j < d. Suppose the last column of B is

Bd =



a0

a1

...

ad−1


,
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and let P (z) = a0+a1z+. . . ad−1z
d−1 be the unique polynomial of degree< d such that p(tk) = tdk

for 1 ≤ k ≤ d. It is clear that p(z) = zd − (z − t1)(z − t2) . . . (z − td).

(4) The columns of the matrixB in part (3) are all unit vectors with a simple form except for the

last column. The elements ak of the last column of B are coefficients of p(z) = zd − (z − t1)(z −

t2) . . . (z − td). Thus to estimate ‖B‖, we expand the polynomial and estimate the magnitude of

the coefficients. Let R = max1≤k≤d |tk|. Then |ak| ≤ C(d, d− k)Rd−k. Thus

d∑
k=0

|ak| ≤
d∑

k=0

C(d, d− k)Rd−k ≤ (1 +R)d.

Hence ‖B‖ ≤ (1 +R)d.

Theorem 2.7.2. Suppose n ∈ N andM is a type In von Neumann algebra. Suppose S, T ∈ M,

T is normal and S ∈ AlgLat1/2(T,M). Then there are elements c0, c1, . . . , cn−1 ∈ Z (M) such

that

S = c0 + c1T + · · ·+ cn−1T
n−1.

Proof. Write

M =
⊕∑
i∈I

Mn (L∞ (µi)) ,

T =
⊕∑
i∈I

Ti,

and

S =
⊕∑
i∈I

Si .

Theorem 2.2.3 provides a unitary U =
∑⊕

i∈I Ui ∈ M such that, for every i ∈ I , there are measur-

able functions di : Ωi → {1, . . . , n} and ti,1, . . . , ti,n : Ωi → C such that

U∗i (ω)Ti (ω)Ui (ω) = diag (ti,1 (ω) , . . . , ti,n (ω))

and

Card
({
ti,1 (ω) , . . . , ti,di(ω) (ω)

})
= di (ω) = Card ({ti,1 (ω) , . . . , ti,n (ω)}) .
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Since the theorem is unchanged if we replace T with U∗TU and S with U∗SU , we can assume

that

Ti (ω) = diag (ti,1 (ω) , . . . , ti,n (ω))

holds.

For each i ∈ I and ω ∈ Ωi define

Wi,ω =

 V
(
ti,1 (ω) , . . . , t

i,di(ω) (ω)
)

0

0 In−di(ω)

 .

Then W =
∑⊕

i∈IWi ∈ M and has norm at most (1 + ‖T‖)n. Also if for each i ∈ I and each

ω ∈ Ωi we define

Di,ω = W−1
i,ω Ti (ω)Wi,ω

and define

D =
⊕∑
i∈I

Di ∈M,

then

TW = WD

and

‖D‖ ≤ (1 + ‖T‖)n .

Since S ∈ AlgLat1/2 (T,M) we have, for each i ∈ I , Si ∈ AlgLat1/2 (Ti,Mn (L∞ (µi))). It

follows from Theorem 2.4.1 that we can assume, for every ω ∈ Ωi

Si (ω) ∈ AlgLat1/2 (Ti (ω) ,Mn (C)) .

Since every normal matrix is reflexive, it follows that there is a polynomial

pi,ω (z) = ci,0 (ω) + ci,1 (ω) z + · · ·+ ci,n−1 (ω) zn−1

with ci,k (ω) = 0 when di (ω) ≤ k ≤ n− 1, i.e, the degree of pi,ω is less than di(ω).
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Thus, for each i ∈ I and each ω ∈ Ωi,

Si (ω) = diag (pi,ω (ti,1 (ω)) , . . . , pi,ω (ti,n (ω))) .

Since S ∈ AlgLat1/2 (T,M) and TW = WD, there exists B =
∑⊕

i∈I Bi ∈ M such that

SW = WB. Hence, we can assume for every i ∈ I and each ω ∈ Ωi that

W−1
i,ω Si, (ω)Wi,ω = Bi,ω,

and therefore ∥∥W−1
i,ω Si, (ω)Wi,ω

∥∥ ≤ ‖B‖ .
By Lemma 2.7.1, the first column of W−1

i,ω Si, (ω)Wi,ω is



ci,0 (ω)

ci,1 (ω)

...

cd−1 (ω)


.

It follows that each ci,k is measurable and

sup {|ci,k (ω)| : i ∈ I, ω ∈ Ωi} ≤ ‖B‖ .

We can define C0, . . . Cn−1 ∈ Z (M) where

Ck =
⊕∑
i∈I

Ck,i

and

Ck,i (ω) = ci,k (ω) I.

We clearly have S = C0 + C1T + · · ·+ Cn−1T
n−1.
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2.8 Normal Operators in an Arbitrary von Neumann Algebra on a Separa-

ble Hilbert Space

Theorem 2.8.1. Suppose M is a von Neumann algebra acting on a separable Hilbert space. If

S, T ∈M, T is normal, and S ∈ AlgLat1/2(T,M), then

S ∈ C∗ ({T} ∪ Z (M)) .

Proof. Case 1: First assume M =
∑⊕

n∈EMn with E ⊂ N and each Mn is a factor. Write

T =
∑⊕

n∈E Tn and S =
∑⊕

n∈E Tn. Since S ∈ AlgLat1/2 (T,M), for each n ∈ E, Sn ∈ Al-

gLat1/2 (Tn,Mn). Thus, for each n ∈ N there is a continuous function fn : C → C such that

Sn = fn (Tn). If E is finite, we are done. Thus we can assume E = N. We know from [10] that

there is a sequence {Pm} of projections inM such that

lim
m→∞

‖PmT − TPm‖ = 0

and

lim
m→∞

‖PmS − SPm‖ = dist (S,C∗ ({T} ∪ Z (M))) = 2ε.

Assume via contradiction that ε > 0. We can assume that for every m ∈ N,

‖PmS − SPm‖ > ε .

For each m ∈ N we can write Pm =
∑⊕

k∈N Pm,k. Since

lim
m→∞

[
sup
k∈N
‖Pm,kTk − TkPm,k‖

]
= 0

and Sk = fk (Tk), we have, for each k ∈ N

lim
m→∞

‖Pm,kSk − SkPm,k‖ = 0.
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It follows that there are integers 1 ≤ k1 < k2 < · · · and projections Q1, Q2, . . . such that, for each

s ∈ N,

‖QsTks − TksQs‖ < 1/2s and ‖QsSks − SksQs‖ > ε.

Since for every operator A and every projection Q

‖QA− AQ‖ = max
(
‖(1−Q)AQ‖ ,

∥∥(1−Q⊥)AQ⊥∥∥) ,
by replacing Qs with 1−Qs = Q⊥s if necessary, we can assume that for every s ∈ N

‖(1−Qs)SksQs‖ > ε.

We define A =
∑⊕

n∈NAn and B =
∑⊕

n∈NBn inM by

An =

 Qs + 1
n
Q⊥s if n = ks for some s ∈ N

I otherwise

Bn =


(
Qs + 1

n
Q⊥s
)−1

Tks
(
Qs + 1

n
Q⊥s
)

if n = ks for some s ∈ N

I otherwise

Then, for every n ∈ N,

TnAn = AnBn, and ‖Bn‖ ≤ ‖Tn‖+

(
n+

1

n

)
/2n.

Thus TA = AB, so there exists C =
∑⊕

n∈NCn inM such that

SA = AC.

This means

A−1
ks
SksAks = Cks .
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This contradicts the fact that, for every s ∈ N,

‖C‖ ≥ ‖Cks‖ =
∥∥A−1

ks
SksAks

∥∥ ≥ ∥∥(1−Qks)A
−1
ks
SksAksQks

∥∥
≥
∥∥(1−Qks)A

−1
ks
SksAksQks

∥∥
≥ s ‖(1−Qks)SksQks‖ ≥ sε.

Case 2. There is a nonatomic σ-finite measure space (Ω,Σ, µ) and a measurable family

{Mω : ω ∈ Ω} of factor von Neumann algebras such that M =
∫ ⊕

Ω
Mω dµ (ω). We can write

T =
∫ ⊕

Ω
Tω dµ (ω) and S =

∫ ⊕
Ω
Sω dµ (ω) . Assume, via contradiction that

dist (S,C∗ ({T} ∪ Z (M))) = 2ε > 0.

Arguing as in Case 1, there is a sequence {Pn} of projections inM such that, for every n ∈ N,

‖PnT − TPn‖ < 1/2n and ‖PnS − SPn‖ > ε.

Then there is a sequence {En} of measurable sets with positive measure such that, for every n ∈ N

and every ω ∈ En,

‖Pn (ω)Tω − TωPn (ω)‖ < 1/2n and ‖Pn (ω)Sω − SωPn (ε)‖ > ε.

Since µ is nonatomic we can replace each En with a subset with positive measure, so that the sets

En are pairwise disjoint. Since En is the union of the

{ω ∈ En : ‖(1− Pn (ω))SωPn (ω)‖ > ε} ∪
{
ω ∈ En :

∥∥(1− P⊥n (ω)
)
SωP

⊥
n (ω)

∥∥ > ε
}
,

we can assume that, for every ω ∈ En

‖(1− Pn (ω))SωPn (ω)‖ > ε.
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Following the proof of Case 1, we define A,B ∈M by

A (ω) =

 Pn (ω) + 1
n
P⊥n (ω) if ω ∈ En for some n ∈ N

I otherwise

and

B (ω) =

 A (ω)−1 Tω A (ω) if ω ∈ En for some n ∈ N

I otherwise
.

Then as in Case 1, A,B ∈ M and TA = AB. Since S ∈ AlgLat1/2 (T,M), there exists C =∫ ⊕
Ω
C (ω) dµ (ω) such that SA = AC. Thus, since µ (En) > 0, we know for each positive integer

n,

εn ≤
∥∥A (ω)−1 S (ω)A (ω)χEn (ω)

∥∥
∞ = ‖C (ω)‖∞ = ‖C‖ <∞.

This contradiction proves Case 2.

General Case. Using the central decomposition forM [19], we can write

M = N ⊕R

whereN satisfies the condition of Case 1 andR satisfies the condition of Case 2. It easily follows

from Cases 1 and 2 that the general case is true.

2.9 Some General Lemmas

Lemma 2.9.1. Suppose B is a von Neumann algebra, A ⊂ B is von Neumann subalgebra, and

S, T ∈ A. If S ∈ AlgLat1/2(T,B), then S ∈ AlgLat1/2(T,A).

Proof. Suppose D ∈ A and T (Ran(D)) ⊂ Ran(D). Then, D ∈ B, so S(Ran(D)) ⊂ Ran(D)

and therefore S ∈ AlgLat1/2(T,B).

Corollary 2.9.2. Suppose A and B are von Neumann algebras and π : A → B is an isometric

unital ∗-homomorphism such that π (A) is a von Neumann algebra. Suppose S, T ∈ A. If π (S) ∈

AlgLat1/2(π(T ),B), then S ∈ AlgLat1/2(T,A).
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Proof. Suppose D ∈ A and T (Ran(D)) ⊂ Ran(D). Then there exists a bounded C ∈ A such

that TD = DC. Therefore π(TD) = π(T )π(D) = π(D)π(C). It follows from the previous

lemma that π(S) ∈ AlgLat1/2(π(T ), π(A)). Thus there exists C1 ∈ π(A), such that π(S)π(D) =

π(D)C1. But π : A → π(A) is a ∗-isomorphism. Hence C1 = π(C), for some C ∈ A. Thus

SD = DC, and S ∈ AlgLat1/2(T,A).

Theorem 2.9.3. Suppose M is a von Neumann algebra, π : B (`2) → M is a unital isometric

∗-homomorphism, S, T ∈ π (B (`2)), T is not algebraic and S ∈ AlgLat1/2(T,M). Then there

exists an entire function ϕ such that

S = ϕ (T ) .

Proof. There exist S1, T1 ∈ B(`2) such that S = π(S1) and T = π(T1). Since π(S1) ∈

AlgLat1/2(π(T1),M), it follows from the previous lemma that S1 ∈ AlgLat1/2(T1, B(`2)). There-

fore Douglas-Foiaş theorem implies that there exists an entire function ϕ(z) =
∑∞

n=0 cnz
n such

that S1 = ϕ(T1). Thus

S = π(S1) = π(ϕ(T1)) = π( lim
N→∞

N∑
n=0

cnT
n
1 ) = lim

n→∞
π(

N∑
n=0

cnT
n
1 )

= lim
n→∞

N∑
n=0

cnπ(T1)n =
∞∑
n=0

cnπ(T1)n = ϕ(π(T1))

= ϕ(T ).

Corollary 2.9.4. Suppose M and ρ are as in Theorem 3.2.14, X, Y,W ∈ M, W is invertible,

X1 = W−1XW,Y1 = W−1YW ∈ ρ(B(`2)), Y ∈ AlgLat1/2(X,M), and X is not algebraic.

Then there is an entire function ϕ : C→ C such that Y = ϕ (X).

Proof. By Theorem 2.9.3, Y1 = ϕ(X1). Thus W−1YW = ϕ (W−1XW ) = W−1ϕ(X)W. Thus

Y = ϕ(X).
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CHAPTER 3

SIMILARITY DOMINANCE

3.1 Preliminaries

In [11], J. B. Conway and D. Hadwin introduced the notion of Similarity Dominance.

Definition 3.1.1 (Similarity Dominance). SupposeA is a unital Banach algebra and S, T ∈ A. We

say that T sim-dominates S provided, for every R > 0,

sup
({∥∥A−1SA

∥∥ : A ∈ A, A invertible,
∥∥A−1TA

∥∥ ≤ R
})

<∞.

Theorem 3.1.2 (J. B. Conway, D. Hadwin). Suppose H is a separable Hilbert space, and S, T ∈

B (H). If T sim-dominates S in B (H), then S = ϕ (T ) for an entire function ϕ.

One of our goals in this chapter is to prove a version of Theorem 3.1.2 for a large class of

operators in a type III factor von Neumann algebra.

Another goal of this chapter is to explore the interplay between Sim-Domination, Approximate

Double Commutants and Approximate Similarity.

In [8] D. Hadwin introduced the notion of a Double Commutant of a subset of operators in

B (H). He proved an asymptotic version of the von Neumann’s Double Commutant Theorem,

in which C∗ algebras play the role of von Neumann algebras. He then used this theorem to to

investigate asymptotic versions of similarity, reflexivity and reductivity.

We begin by a review of the basic concepts initially studied in [8], and outline the main results

of section 3.2.
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Definition 3.1.3 (Approximate Double Commutant [8]). Suppose S ⊂ B (H). The Approximate

Double Commutant of S, denoted by Appr (S)′′ is

Appr (S)′′ = {T ∈ B(H) : ‖AnT − TAn‖ → 0}

for every bounded net {An} in B (H) for which ‖AnS − SAn‖ → 0, for every S ∈ S.

More generally we can define the Relative Approximate Double Commutant of a set of opera-

tors in a unital Banach algebra.

Definition 3.1.4 ( Relative Approximate Double Commutant [10]). Suppose B is a unital Ba-

nach Algebra, and S ⊂ B. We define the approximate double commutant of S in B, denoted by

Appr (S,B)′′ as in definition 3.1.3, with the additional requirement that T ’s and An’s belong to B.

Suppose A is a unital Banach Algebra and S, T ∈ A . One of our results in the next section

states that if T sim-dominates S in A, then S ∈ Appr (T,A)′′. That is, if {An} is a bounded

sequence in A such that limn→∞ ‖AnT − TAn‖ = 0, then limn→∞ ‖AnS − SAn‖ = 0.

Definition 3.1.5 (Invertibly Bounded Sequence [8]). A sequence {Wn} in a Banach algebra B is

invertibly bounded if each Wn is invertible and supn∈N max (‖Wn‖ , ‖W−1
n ‖) <∞.

Definition 3.1.6 (Approximate Similarity [8]). Suppose B is a unital Banach algebra. Two op-

erators S, T ∈ B are approximately similar if there is a sequence {Wn} of invertibly bounded

operators in B such that ‖W−1
n TWn − S‖ → 0.

Definition 3.1.7 (Approximately Similar Pair). A pair (S, T ) in a Banach algebra B is approxi-

mately similar to a pair (S1, T1) if and only if there is an invertibly bounded sequence {Wn} in B

such that

lim
n→∞

∥∥W−1
n TWn − T1

∥∥+
∥∥W−1

n SWn − S1

∥∥ = 0.

We will prove that sim-domination is preserved under approximate similarity, i.e., if {An} is

an invertibly bounded sequence inA with ‖A−1
n TAn − T ′‖ → 0, then there is an S ′ ∈ A such that

‖A−1
n SAn − S ′‖ → 0, and, T ′ sim-dominates S ′.
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Definition 3.1.8. We say that elements S, T in a unital C*-algebraA are approximately equivalent

in A if and only if there is a sequence {Un} of unitary operators such that

lim
n→∞

‖U∗nTUn − S‖ = 0.

Here we list several results of J. B. Conway and D. Hadwin [11], to be used in section 3.2.

Lemma 3.1.9. Suppose A, T ∈ B (H) , A ≥ 0 and T (ran(A)) ⊂ ran(A). Then, for every ε > 0

∥∥(A+ ε)−1T (A+ ε)
∥∥ ≤ ‖T‖+

∥∥A−1TA
∥∥ .

Lemma 3.1.10. Suppose A, S ∈ B (H) , A ≥ 0 and

sup
ε>0

∥∥(A+ ε)−1S(A+ ε)
∥∥ <∞.

Then, S(ran(A)) ⊂ ran(A).

Lemma 3.1.11. Suppose T ∈ B (H), M is a Hilbert space, W : M → H , and T (ran(W )) ⊂

ran(W ). Then T
(
ran(WW ∗)1/2

)
⊂ ran(WW ∗)1/2 and

∥∥W−1TW
∥∥ =

∥∥∥∥((WW ∗)1/2
)−1

T (WW ∗)1/2

∥∥∥∥ .
The following lemma is motivated by an argument in Theorem 7 in [11]. We mention the proof

here for convenience.

Lemma 3.1.12. Suppose A is a unital Banach algebra, S, T ∈ A and T sim-dominates S in A.

Then S ∈ {T}′′.
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Proof. Suppose A ∈ A and TA = AT . Then eλAT = TeλA , and

sup
λ∈C

∥∥e−λATeλA∥∥ = ‖T‖ .

Since T sim-dominates S,

sup
λ∈C

∥∥e−λASeλA∥∥ <∞.
Thus the map ϕ(λ) = e−λASeλA is a bounded entire function, which, by generalized Liouville

theorem, is constant. Computing

0 = ϕ′(0) = −AS + SA,

we see that AS = SA. Thus S ∈ {T}′′.

3.2 Main Results

Lemma 3.2.1. Suppose A is a Banach algebra, A, S, T ∈ A and A is invertible. Then T sim-

dominates S in A if and only if A−1TA sim-dominates A−1SA in A.

Proof. This follows from the fact that

{∥∥W−1A−1SAW
∥∥ : W ∈ A is invertible,

∥∥W−1A−1TAW
∥∥ < R

}
={∥∥(AW )−1S(AW )

∥∥ : W ∈ A is invertible,
∥∥(AW )−1T (AW )

∥∥ < R
}

={∥∥W−1SW
∥∥ : W ∈ A is invertible,

∥∥W−1TW
∥∥ < R

}

Lemma 3.2.2. Suppose A is a unital Banach algebra and T ∈ A. Then

{S ∈ A : T sim-dominates S in A}

is an algebra containing T and the center Z (A) of A.
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Proof. It is clear that T sim-dominates T . If R, S ∈ A, and α ∈ C, then

∥∥W−1(RS)W
∥∥ =

∥∥W−1RWW−1SW
∥∥ ≤ ∥∥W−1RW

∥∥∥∥W−1SW
∥∥ ,

and ∥∥W−1(αR + S)W
∥∥ ≤ |α| ∥∥W−1RW

∥∥+
∥∥W−1SW

∥∥ .
If R ∈ Z(M), then ∥∥W−1RW

∥∥ = ‖R‖ .

Theorem 3.2.3. Suppose A is a unital Banach algebra, S, T ∈ A and T sim-dominates S in A.

Then S ∈ Appr(T,A)′′.

Proof. Consider the mappings

A ρ−→ `∞(A)
η−→ `∞(A)/C0(A),

where ρ(T ) = (T, T, T, . . . ), and η is the quotient map. Define π : A → `∞(A)/C0(A) by

π = η ◦ ρ. We first show that π(T ) sim-dominates π(S) in `∞(A)/C0(A).

Suppose W ∈ `∞(A)/C0(A) is such that ‖W−1π(T )W‖ < R. We need to show that there

is a constant βR depending on R, such that ‖W−1π(S)W‖ < βR. If W is invertible, then there

exists a V ∈ `∞(A)/C0(A) such that WV = VW = 1. Let W = η((wn)), V = η((vn)). Thus

η((wnvn − 1)) = η((vnwn − 1)) = 0. Therefore (wnvn − 1) and (vnwn − 1) ∈ C0(A). This

means that limn→∞ ‖wnvn − 1‖ = 0, and that (wnvn) is eventually invertible. We have the same

conclusion for (vnwn). Thus (vnwn)(vnwn)−1 = 1 and (wnvn)−1(wnvn) = 1 eventually. Hence

(vn) has a left and a right inverse eventually, and is therefore eventually invertible. We have the

same conclusion for (wn). We may replace the finitely many initial terms of these sequences (those

which may not be invertible) by 1, and thus we may assume that they are invertible.
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Since (wnvn)−1, (vn) and (wn) are bounded, (w−1
n ), (v−1

n ) are also bounded sequences. Thus

∥∥W−1π(T )W
∥∥ =

∥∥η(w−1
n )η(T, T, . . . , T )η(wn)

∥∥
=
∥∥η(w−1

n Twn)
∥∥

= lim sup
∥∥w−1

n Twn
∥∥ < R.

Therefore there exists Nw ∈ N such that

sup
n>Nw

∥∥w−1
n Twn

∥∥ < R.

Since T sim-dominates S ∈ A, there exists a constant βR, such that

sup
n>Nw

∥∥w−1
n Swn

∥∥ < βR.

Therefore

lim sup
∥∥w−1

n Swn
∥∥ =

∥∥η(w−1
n Swn)

∥∥
=
∥∥η(w−1

n )η(S, S, . . . , S)η(wn)
∥∥

=
∥∥W−1π(S)W

∥∥ < βR.

This shows that π(T ) sim-dominates π(S). Thus π(S) ∈ {π(T )}′′ by Lemma 3.1.12, which is

the same as saying S ∈ Appr(T )′′.

Theorem 3.2.4. Suppose A is a unital centrally prime C*-algebra with center Z (A). Suppose

S, T ∈ A,T is normal and T sim-dominates S in A. Then S ∈ C∗ ({T} ∪ Z (A)) . Also if S is in

the algebra generated by {T} ∪ Z (A), then T sim-dominates S in A.
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Proof. Since T sim-dominates S, Theorem 3.2.3 yields S ∈ App(T,A)′′. From [12]

App (C∗ ({T} ∪ Z(M)) ,A)′′ = C∗ ({T} ∪ Z(A)) .

Thus

S ∈ App(T,A)′′ ⊂ App (C∗ ({T} ∪ Z(M)) ,A)′′ = C∗ ({T} ∪ Z(A)) .

Theorem 3.2.5. Suppose A is a unital Banach algebra, S, T ∈ A and T sim-dominates S in A.

Suppose {Wn} is an invertibly bounded sequence in A with supn∈N max (‖Wn‖ , ‖W−1
n ‖) = M.

Suppose T ′ ∈ A and ‖W−1
n TWn − T ′‖ → 0. Then

1. There exists S ′ ∈ A such that ‖W−1
n SWn − S ′‖ → 0.

2. T ′ sim-dominates S ′ in A.

3. If ϕ : C→ C is an entire function, then S = ϕ (T )⇔ S1 = ϕ (T1) .

Proof. Define

S =
{
A ∈ B : {W−1

n AWn}is convergent, whenever {Wn}

is an invertibly bounded sequence such that{W−1
n TWn} is norm convergent.

}

(1) Theorem 3.4 in [8] yields S = Appr (T )′′. By Theorem 3.2.3, S ∈ Appr (T )′′. Hence

S ∈ S. Thus there exists S1 ∈ B such that limn→∞ ‖W−1
n SWn − S1‖ = 0.
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(2) Assume by way of contradiction that T1 does not sim-dominate S1. Thus There exists a

sequence {Bn} in A and R > 0, such that for every n ∈ N, ‖B−1
n T1Bn‖ < R, but ‖B−1

n S1Bn‖ >

2n. For every n, k ∈ N, define

Cn,k = W−1
k BnWk.

Thus, ∥∥C−1
n,kTCn,k

∥∥ ≤ ∥∥C−1
n,k

(
T −WkT1W

−1
k

)
Cn,k

∥∥+
∥∥C−1

n,kWkT1W
−1
k Cn,k

∥∥ . (3.1)

Since WkT1W
−1
k → T , for every n ∈ N, there exists kn ∈ N such that

∥∥T −WkT1W
−1
k

∥∥ ≤ 1/n

M4 ‖Bn‖ ‖B−1
n ‖

, (3.2)

for all k ≥ kn. Therefore

∥∥C−1
n,k

(
T −WkT1W

−1
k

)
Cn,k

∥∥ ≤ ∥∥C−1
n,k

∥∥∥∥T −WkT1W
−1
k

∥∥ ‖Cn,k‖ (3.3)

=
∥∥WkB

−1
n W−1

k

∥∥∥∥T −WkT1W
−1
k

∥∥∥∥W−1
k BnWk

∥∥
≤M4

∥∥B−1
n

∥∥ ‖Bn‖
∥∥T −WkT1W

−1
k

∥∥
≤ 1

n

M4 ‖Bn‖ ‖B−1
n ‖

M4 ‖Bn‖ ‖B−1
n ‖

≤ 1.

From part (1), WkS1W
−1
k → S. Thus for every n ∈ N, there exists k′n ∈ N such that k ≥ k′n

implies that relations (3.2) and (3.3) remain true when T and T1 are replaced by S and S1 in that

order. Hence if tn = max{kn, k′n}, (3.2) and (3.3) remain true for pairs S, S1 and T, T1. Thus

sup
n∈N

∥∥C−1
n,tn

(
S −WtnS1W

′−1
tn

)
Cn,tn

∥∥ ≤ 1, (3.4)

sup
n∈N

∥∥C−1
n,tn

(
S −WtnT1W

′−1
tn

)
Cn,tn

∥∥ ≤ 1. (3.5)

Also, for every n, k ∈ N,

∥∥C−1
n,kWkT1W

−1
k Cn,k

∥∥ =
∥∥WkB

−1
n T1BnW

−1
k

∥∥ ≤M2R. (3.6)
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Putting (3.1), (3.5), and (3.6) together yields

sup
n∈N

∥∥C−1
n,tnTCn,tn

∥∥ ≤M2R + 1.

Since T sim-dominates S,

sup
n∈N

∥∥C−1
n,tnSCn,tn

∥∥ <∞. (3.7)

From (3.4) and (3.1)

∥∥C−1
n,tnSCn,tn

∥∥ ≥ ∥∥C−1
n,tnWtnS1W

−1
tn Cn,tn

∥∥− ∥∥C−1
n,tn

(
S −WtnS1W

−1
tn

)
Cn,kn

∥∥
≥
∥∥WtnB

−1
n S1BnW

−1
tn

∥∥− 1

≥ 1/M2
∥∥B−1

n S1Bn

∥∥− 1

≥ 2n/M2 − 1,

for every n ∈ N. This contradicts (3.7) and completes the proof of part (2).

(3) Define a mapping π : Appr (T )′′ → Appr (π(T ))′′ by π(A) = limn→∞W
−1
n AWn. Then

by Theorem 3.4 in [8], π is a bounded unital algebra isomorphism. Thus

S1 = π(S), and (3.8)

T1 = π(T ). (3.9)

Suppose ϕ : C→ C is an entire function represented by φ(z) =
∑∞

n=0 akz
k. Then we have

π(ϕ(T )) = π(
∞∑
k=0

akT
k) = π( lim

N→∞

N∑
k=0

akT
k) = lim

N→∞
π(

N∑
k=0

akT
k) (3.10)

= lim
N→∞

N∑
k=0

akπ(T )k =
∞∑
k=0

akπ(T )k = ϕ(π(T )). (3.11)
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Thus

S = ϕ(T ) ⇐⇒ π(S) = π(ϕ(T )) π is bijective

⇐⇒ π(S) = ϕ(π(T )) equations 3.10 and 3.11

⇐⇒ S1 = ϕ(T1). equations 3.8 and 3.9

Lemma 3.2.6. Suppose B is a unital Banach algebra, 1 ∈ A ⊂ B is a closed subalgebra, and

S, T ∈ A. If T sim-dominates S in B, then T sim-dominates S in A.

Proof. Suppose supn∈N ‖W−1
n TWn‖ < R for an invertible sequence {Wn} inA and for someR >

0. Since {Wn} is an invertible sequence in B, and T sim-dominates S in B, supn∈N ‖W−1
n SWn‖ <

∞. It follows that T sim-dominates S in A.

Corollary 3.2.7. Suppose A and B are unital Banach algebras and π : A → B is a bounded

injective unital homomorphism such that π (A) is closed in B. Suppose S, T ∈ A. If π (T ) sim-

dominates π (S) in B, then T sim-dominates S in A.

Proof. π(A) is a unital Banach subalgebra of B. By Lemma 3.2.6, π(T ) sim-dominates π(S) in

π(A). The mapping π : A → π(A) is an isomorphism. Thus T sim-dominates S inA. The details

are as follows. Suppose

sup
n∈N

∥∥W−1
n TWn

∥∥ < R.

Then for every n ∈ N,

∥∥π(Wn)−1π(T )π(Wn)
∥∥ =

∥∥π (W−1
n TWn

)∥∥ ≤ ‖π‖∥∥W−1
n TWn

∥∥ ≤ R ‖π‖ .

Since π(T ) sim-dominates π(S) in π(A),

sup
n∈N

∥∥π(Wn)−1π(S)π(Wn)
∥∥ <∞.
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Thus

sup
n∈N

∥∥W−1
n SWn

∥∥ = sup
n∈N

∥∥π−1
(
π
(
W−1
n SWn

))∥∥
≤ sup

n∈N

∥∥π−1
∥∥∥∥π(Wn)−1π(S)π(Wn)

∥∥
<∞.

It follows that T sim-dominates S in A.

Theorem 3.2.8. SupposeM is a von Neumann algebra and T ∈M. Then

{S ∈M : T sim-dominates S inM} ⊂ AlgLat1/2 (T,M) .

Proof. Suppose T sim-dominates S in M and T (ran(D)) ⊂ ran(D), for some D ∈ M. By

lemma 3.1.11, we may assume without loss of generality that D is a positive operator. Since

T (ran(D)) ⊂ ran(D), and D > 0, by lemma 3.1.9

sup
ε>0

∥∥(D + ε)−1T (D + ε)
∥∥ ≤ ‖T‖+

∥∥D−1TD
∥∥ <∞.

Since T sim-dominates S, and D + ε is invertible for any ε > 0,

sup
ε>0

∥∥(D + ε)−1S(D + ε)
∥∥ <∞.

It follows from Lemma 3.1.10 that S(ran(D)) ⊂ ran(D).

Lemma 3.2.9. Suppose A is a unital Banach algebra, S, T ∈ A and T sim-dominates S in A.

Suppose {Pn} is a bounded sequence of idempotents in A such that

‖(1− Pn)TPn‖ → 0.

Then

‖(1− Pn)SPn‖ → 0.

51



Proof. Let dn = ‖(1− Pn)TPn‖+ 1/n and define

Dn =
1

dn
Pn + (1− Pn).

Dn is invertible in A for every n ∈ N and the inverse is D−1
n = dnPn + (1 − Pn). Moreover,

{D−1
n TDn} is a bounded sequence as the following computation shows.

∥∥D−1
n TDn

∥∥ =

∥∥∥∥(dnPn + (1− Pn))T

(
1

dn
Pn + (1− Pn)

)∥∥∥∥
≤ ‖Pn‖2 ‖T‖+ ‖Pn‖ ‖1− Pn‖ ‖T‖+ ‖1− Pn‖2 ‖T‖ (3.12)

+
1

dn
‖(1− Pn)TPn‖ (3.13)

Since {Pn} is a bounded sequence, all three terms in (3.12) are bounded, and the last term (3.13) is

less than 1 by definition of dn. Thus there exists R > 0, such that supn∈N ‖D−1
n TDn‖ < R. Since

T sim-dominates S, there exists βR > 0 such that supn∈N ‖D−1
n SDn‖ < βR. Therefore

βR ≥
∥∥D−1

n SDn

∥∥ =

∥∥∥∥(dnPn + (1− Pn))S

(
1

dn
Pn + (1− Pn)

)∥∥∥∥
≥ 1

dn
‖(1− Pn)SPn‖ − ‖PnSPn + dnPnS(1− Pn) + (1− Pn)S(1− Pn)‖ .

Thus

1

dn
‖(1− Pn)SPn‖ ≤ βR + ‖PnSPn‖+ dn ‖PnS(1− Pn)‖+ ‖(1− Pn)S(1− Pn)‖

<∞

limn→∞ 1/dn = ∞, thus, limn→∞ ‖(1− Pn)SPn‖ = 0 in order for the left hand side to be

bounded.
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Corollary 3.2.10. Suppose H is a Hilbert space and S, T ∈ B(H). If T sim-dominates S in

B(H), then S ∈ ApprAlgLat (T ) .

Proof. Let {Pn} be a sequence of projections in B(H) such that ‖(1− Pn)TPn‖ → 0. Since

‖Pn‖ ≤ 1 for all n ∈ N, it follows from Lemma 3.2.9 that limn→∞ ‖(1− Pn)SPn‖ = 0. Thus

S ∈ ApprAlgLat(T ).

Lemma 3.2.11. Suppose X is a Banach space and S, T ∈ B(X). If T sim-dominates S and

P ∈ B(X) is an idempotent such that (1− P )TP = 0, then (1− P )SP = 0.

Proof. This follows from Lemma 3.2.9, with Pn = P , for all n ∈ N.

Theorem 3.2.12. Suppose X is a Banach space, S, T ∈ B (X) and T is algebraic. If T sim-

dominates S in B (X), then there exists a polynomial p ∈ C[x] such that S = p (T ) .

Proof. First we show that S ∈ AlgLat(T ). Suppose T (M) ⊂ M , where M is a closed subspace

of X . Since T is algebraic, there exists a polynomial 0 6= m ∈ C[x] such that m(T ) = 0.

Thus q(T ) = m(T )u(T ) + r(T ) = r(T ) with deg(r) < deg(m), for any q ∈ C[x]. Thus

{p(T ) : p ∈ C[x]} is a finite dimensional subspace of B(X). For any x ∈ X , define

Mx = {p(T )x : p ∈ C[x]}.

Note that Mx is a finite dimensional invariant subspace for T , and

M =
⋃
x∈M

Mx.

By a lemma, we may assume Mx is the range of some bounded idempotent Px ∈ B(X). Thus

(1− Px)TPx = 0. By Lemma 3.2.11 (1− Px)SPx = 0. Thus Mx is T -invariant and

S(M) = S

(⋃
x∈M

Mx

)
⊂
⋃
x∈M

S(Mx) ⊂
⋃
x∈M

Mx ⊂M.
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This shows that M is S-invariant and S ∈ AlgLat(T ). Moreover, S ∈ {T}′′ by lemma 3.1.12,

and therefore ST = TS. A theorem of Hadwin and Nordgren [17] now implies that S = p(T ) for

some polynomial p ∈ C[x].

Theorem 3.2.13. SupposeA is a finite-dimensional semisimple unital Banach algebra and T ∈ A.

Then

1. If S ∈ A and T sim-dominates S in A, there is a polynomial p (z) = c0 + c1z + · · ·+ cnz
n

with c0, . . . , cn ∈ Z (A) such that S = p (T ) .

2. {S ∈ A : T sim-dominates S in A} is the algebra generated by {T} ∪ Z (A).

Proof. 1) Artin’s theorem implies that

A =
N⊕
k=1

Mnk
(Dk),

where Dk are finite dimensional division algebras, and nk, N ∈ N. Since Dk is finite dimensional,

it is a Banach algebra, and a Banach algebra that is a division ring is isomorphic to C. Thus we

may write

A =
N⊕
k=1

Mnk
(C).

Let

T =
N⊕
i=k

Tk, S =
N⊕
k=1

Sk.

It follows from Theorem 3.2.12 that Sk = Pk(Tk) for a polynomial Pk ∈ C[x] for k ∈ N, 1 ≤

k ≤ N . Let m = max1≤k≤N deg(Pk). We can write

Sk = Pk(Tk) = ak,0 + ak,1Tk + · · ·+ ak,mT
m
k ,

where ak,j = 0 for j > deg(Pk).
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Let Ink
∈Mnk

(C) be the identity matrix For every j ∈ N, 1 ≤ j ≤ m, and define

Aj =
N⊕
k=1

ak,jIk.

Since Z (Mnk
(C)) = CIk, it follows that Aj ∈ Z(M) for every j ∈ N, 1 ≤ j ≤ m. Thus

P (x) =
∑m

j=0Ajx
j is a polynomial over the center ofM and

S =
N⊕
k=1

Pk(Tk) =
N⊕
k=1

m∑
j=1

ak,jT
j
k =

m∑
j=1

N⊕
k=1

ak,jT
j
k =

m∑
j=1

N⊕
k=1

ak,jIkT
j =

m∑
j=1

AjT
j = P (T ).

(2) This follows easily from part 1 and Lemma 3.2.2.

Theorem 3.2.14 (Kadison[19]). If M is a type II∞ or type III factor von Neumann algebra

acting on a separable Hilbert space, then there exists a unital isometric ∗-homomorphism

ρ : B (`2) → M. Moreover, ifM is a II∞ factor with faithful normal tracial weight τ , we can

choose ρ so that for every A ∈ B (`2),

ρ (τ (A∗A)) =∞.

Corollary 3.2.15. Suppose M and ρ are as in Theorem 3.2.14, X, Y ∈ M, X sim-dominates

Y inM, and X is not algebraic. If X1, Y1 ∈ ρ (B (`2)) and (X, Y ) is approximately similar to

(X1, Y1), then there exists an entire function ϕ : C→ C such that Y = ϕ (X).

Proof. Since (X, Y ) is approximately similar to (X1, Y1) and X sim-dominates Y ∈M, Theorem

3.2.5 implies that X1 sim-dominates Y1 inM. There exist S, T ∈ B(`2) such that X1 = ρ(T ) and

Y1 = ρ(S). Since sim-domination is preserved under isomorphism, T sim-dominates S in B(`2).

It follows from Theorem 3.1.2 that there exists an entire function ϕ : C→ C such that S = φ(T ).

Thus

Y1 = ρ(S) = ρ(φ(T )) = φ(ρ(T )) = φ(X1).

Thus by Theorem 3.2.5, Y = φ(X).
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Theorem 3.2.16 (Shen, Hadwin [10]). SupposeM is a factor von Neumann algebra and A is a

countably generated unital AH C*-subalgebra ofM. Then A = Appr (A,M)′′ .

Corollary 3.2.17. SupposeM is a factor von Neumann algebra, T ∈M and C∗ (T ) isAH . Then

{S ∈M : T sim-dominates S inM} ⊂ C∗ (T ) .

Proof. C∗(T ) = Appr (C∗(T ),M)′′ by Theorem 3.2.16. If T sim-dominates S in M, then by

Theorem 3.2.3, S ∈ Appr (T,M)′′. But Appr (T,M)′′ ⊂ Appr (C∗(T ),M)′′. Thus S ∈ C∗(T ).

Theorem 3.2.18 (Ding, Hadwin [13]). Suppose M is a type III factor von Neumann algebra

acting on a separable Hilbert space, A is a separable unital AH C*-subalgebra of M, and π :

A → M is an injective unital ∗-homomorphism. Then there exists a sequence {Un} of unitary

operators inM such that for every A ∈ A, limn→∞ ‖U∗nAUn − π (A)‖ = 0.

Theorem 3.2.19 (Li, Shen, Shi [14]). Suppose M is a type II∞ factor von Neumann algebra

with a normal tracial weight τ acting on a separable Hilbert space, A is a separable nuclear

unital C*-subalgebra of M, and π : A → M is a unital ∗-homomorphism. Suppose for every

0 6= A ∈ A,τ (A∗A) = τ (π (A∗A)) =∞. Then there exists a sequence {Un} of unitary operators

inM such that for every 0 6= A ∈ A, limn→∞ ‖U∗nAUn − π (A)‖ = 0.

Theorem 3.2.20. Suppose M is a type III factor von Neumann algebra, S, T ∈ M, T sim-

dominates S inM and T is not algebraic. Suppose T1 ∈M such that

1. T1 is approximately similar to T and

2. C∗ (T1) is AH.

Then there exists an entire function ϕ : C→ C such that S = ϕ (T ).
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Proof. By Theorem 3.2.5, there exists S1 ∈ M such that (S, T ) is approximately similar to

(S1, T1), and T1 sim-dominates S1 inM. By Corollary 3.2.17, S1 ∈ C∗(T1). There exists an injec-

tive unital *-homomorphism γ : C∗(T ) → B(`2) by the the GNS construction. Let ρ : B(`2) →

M be as in Theorem 3.2.14. It follows that the composition map π = ρ ◦ γ : C∗(T1) → M is

an injective unital *-homomorphism. Hence by Theorem 3.2.18, there exists a sequence {Un} of

unitaries in C∗(T1), such that

lim
n→∞

‖U∗nT1Un − π(T1)‖ = 0, and,

lim
n→∞

‖U∗nS1Un − π(S1)‖ = 0.

Thus (T1, S1) is approximately similar to (π(T1), π(S1)). Since π(T1), π(S1) ∈ ρ(B(`2)), Corol-

lary 3.2.15 implies that S1 = ϕ(T1) for some entire function ϕ : C → C. Thus S = ϕ(T ), By

Theorem 3.2.5.

Theorem 3.2.21. SupposeM is a II∞ factor von Neumann algebra with a faithful normal tracial

weight τ . Suppose S, T ∈ M, T sim-dominates S in M, T is not algebraic, (S, T ) is approxi-

mately similar to (S1, T1) inM and

1. Either

(a) C∗ (S1, T1) is nuclear, or

(b) C∗ (T1) is AH

2. For every 0 6= A ∈ C∗ (S1, T1), τ (A∗A) =∞.

Then there exists an entire function ϕ : C→ C such that S = ϕ (T ).

Proof. By Theorem 3.2.5, T1 sim-dominates S1. If C∗ (T1) is AH, S1 ∈ C∗ (T1) by Corollary

3.2.17. Since every AH C*-algebra is nuclear, if 1 (b) holds, then 1 (a) holds. By Theorem 3.2.14,
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there is a unital isometric ∗-homomorphism ρ : B (`2)→M such that, for every 0 6= D ∈ B (`2),

τ (ρ (D)∗ ρ (D)) = ∞. By GNS construction, there exists a unital isometric ∗-homomorphism

γ : C∗ (S1, T1)→ B (`2) . Thus, applying Theorem 3.2.19 to π = ρ ◦ γ, provides a sequence {Un}

of unitary operators inM such that

‖U∗nT1Un − (ρ ◦ γ) (T1)‖ → 0

and

‖U∗nS1Un − (ρ ◦ γ) (S1)‖ → 0.

Following the proof of Theorem 3.2.20, we see that there exists an entire function ϕ : C→ C such

that S = ϕ (T ).
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