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ABSTRACT 

 

ALIENS, AIRCRAFT, AND ACCURACIES: SURVEYING FOR UNDERSTORY INVASIVE 

PLANTS USING UNMANNED AERIAL SYSTEMS 

by 

Kathleen A. Moran 

University of New Hampshire, September 2019 

 
Invasive (alien) plants are introduced species that can cause harm to native ecosystems, 

industries, or human health. Managing invasive species requires knowing where they are, and 

early detection of new populations increases the likelihood of local eradication. Unmanned aerial 

systems (UAS) are an emerging remote sensing technology that can capture very high spatial 

resolution imagery, are easily deployed, and may offer a more efficient alternative to extensive 

ground surveys to locate invasive plants. Imagery collected with UAS has been used to map 

invasive plants in open canopy habitats, but has yet to be tested for mapping invasive plants in 

forest understories.  My aim was to explore the feasibility of UAS as an understory invasion 

monitoring tool, including tests of season, sensor type, and image classification method for 

reliable invasive detection. I collected imagery from a 21-hectare mixed and deciduous New 

Hampshire forest during spring and fall periods of phenology mismatch between native 

vegetation and two focal invasive plants, Berberis thunbergii (Japanese barberry) and Rosa 

multiflora (multiflora rose). I achieved up to 82% classification accuracy by grouping B. 

thunbergii and R. multiflora as an Invasive class. There were no significant differences in 



	 viii 

invasive detectability between sensors or classification methods, but spring imagery yielded the 

highest accuracies overall. Simpler pixel-based classifications are sufficient for achieving over 

70% classification accuracy, though object-based segmentation can improve accuracy. UAS are 

promising technology with potential to reduce and target invasive plant ground surveys for 

temperate forest management.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	 1 

 
CHAPTER I: 

Background on Invasive Plants and Remote Sensing 
 
 
Invasive Plant Impacts and Management 
 

Invasive (alien) plants are non-nativespecies that cause ecological or economic harm to 

their new ecosystems (Executive Order 13112, 1999). Many invasive plants are escaped 

ornamental species, while others were introduced accidentally through contaminated seed or soil 

(Lehan et al., 2013; Reichard and White, 2001). Once introduced, if a plant thrives under its new 

conditions, the species can establish and spread, with varied consequences. Invasive plants can 

have scale-dependent effects on native vegetation richness, diversity, and evenness (Hejda et al., 

2009; Powell et al., 2013; Pyšek et al., 2012; Vilà et al., 2011), and threaten rare native plant 

species (Farnsworth, 2004). They can also accelerate carbon and nitrogen cycles (Ehrenfeld, 

2003; Liao et al., 2008) and decrease the fitness and abundance of native wildlife, particularly 

birds and insects (Ballard et al., 2013; Schirmel et al., 2016; Vilà et al., 2011). Invasive plants 

cause negative ecological impacts throughout entire ecosystems, which impairs important 

ecosystem services (Vilà et al., 2011).  

 Changes caused by invasive plants negatively affect multiple industries, including 

agriculture, forestry, transportation, and recreation (Eiswerth et al., 2005; Lym and Nelson, 2000; 

Martin and Blossey, 2012; Pimentel et al., 2005). Impacts are largely represented by control 

costs and product losses, yet also include other effects that are less quantifiable. In 2005, the 

estimate for annual crop losses and control costs for invasive weeds in the U.S. was $27 billion 

dollars (Pimentel et al., 2005). One example is Berberis vulgaris (European barberry), which 

serves as a host for Puccinia striiformis (stripe rust), a fungus that causes yield losses of up to 

25% in cereal crops (Wellings, 2011). Invasive shrubs can also inhibit regeneration of tree 
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seedlings by more than 200%, and they hinder forestry surveys and movement of harvesting 

equipment through forests (Binggeli, 2001; Fagan and Peart, 2004; Ward et al., 2018). 

Furthermore, the transportation industry incurs control costs through mechanical and herbicidal 

management of railroad and roadside infestations (Lommen et al., 2018; Lym and Nelson, 2000). 

Lastly, outdoor enthusiasts negatively regard invasive plants, because dense vegetation typical of 

some invasive plants hinders movement over terrain (Binggeli, 2001). When people are 

unenthusiastic about trail conditions, the recreation industry experiences financial losses 

(Eiswerth et al., 2005). Considering all the sectors impacted, there is strong financial and 

ecological incentive to better manage current plant invasions and minimize future ones.  

Invasive plants also pose risks to human health. Some species are toxic, while others 

increase habitat for disease-carrying vectors (Derraik, 2007; Elias et al., 2006; Williams et al., 

2009). The sap of Heracleum mantegazzianum (giant hogweed) can cause severe blisters and 

even blindness (Derraik, 2007), while Ambrosia artemisifolia (ragweed) causes allergies 

throughout North America and Europe (Heberling and Fridley, 2013; Richter et al., 2013).  There 

are approximately 300,000 cases of Lyme disease each year in the U.S. (Nelson et al., 2015), and 

Berberis thunbergii (Japanese barberry), a woody invasive shrub, provides habitat for Lyme-

carrying Ixodes scapularis (“black-legged” or “deer” ticks) and their rodent hosts (Elias et al., 

2006; Williams et al., 2009). Forest plots with invasive plants such as B. thunbergii have twice as 

many adult I. scapularis as plots with native-only vegetation. Similarly, Allan et al. (2010) found 

that removing Lonicera maackii (Amur honeysuckle) decreases occurrences of Erlichia disease 

by reducing browse for deer, which carry the host vector for Erlichia, Amblyomma americanum 

(“lone star tick”). Tick-borne diseases are expected to increase across North America and Eurasia 

(Ostfeld and Brunner, 2015), making invasive plant management critical. 
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Accurate location information is necessary for every stage of invasive plant management. 

Prevention is the most effective strategy for mitigating the effects of invasive species, but new 

introductions are inevitable (Hulme, 2006).  Early Detection and Rapid Response (EDRR), in 

which invasive plants are located and removed shortly after entering a new area, is the next line 

of defense (Hulme, 2006; Westbrooks, 2004). The sooner a plant is detected, the greater the 

likelihood for eradication and minimization of impact (Leung et al., 2002). Once a species has 

become widespread and eradication is not feasible or justifiable, management strategies focus on 

containment by monitoring for plants that have spread beyond their accepted locales (Hulme, 

2006). Distributon models of invasive species are useful for predicting future invasions at a 

regional scale, but targeted local monitoring is still necessary for both EDRR and containment 

(Allen and Bradley, 2016). 

Ground surveys are an important component of invasive plant management because they 

confirm or deny the presence of targeted species at local scales. However, professional ground 

surveys are time consuming and therefore expensive. While citizen scientists are valuable for 

many invasive plant projects, they might overlook invasive species that would otherwise be 

obvious to professionals, or misidentify species (Bois et al., 2011; Jordan et al., 2012). 

Furthermore, recruiting, training, and organizing volunteers to survey can cost more than paying 

staff to accomplish the same task (Graff, 2006). As a result, if resources are limited, ground 

surveys should be prioritized for areas that have the highest local invasion risk. To determine 

those priorities, precursory exploration of an area is required to target suspect locations, and 

remote sensing is an attractive option to bridge the gap between regional models and ground 

surveys.  
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Collecting Remotely Sensed Data  

Remote sensing is the process of gathering data about objects or landscapes without being 

in physical contact with them (Jensen, 2016). The advantages of remotely sensed imagery include 

capture of a synoptic landscape view, large spatial coverage, and in the case of multispectral 

sensors, detection of wavelengths not visible to the human eye (Jensen, 2016). Three major 

platforms are used to collect digital imagery today: satellites, manned aircraft, and unmanned aerial 

systems (UAS). Sensors on remote platforms vary in spatial, spectral, radiometric, and temporal 

resolution, as well as image extent (Bradley, 2014; Jensen, 2016).  

Spatial resolution refers to the pixel size of the imagery, also known as the ground sampling 

distance. Landsat Thematic Mapper (TM) satellite imagery has a spatial resolution of 30 m, while 

commercial satellite imagery has spatial resolutions of up to 0.5 m. Aerial imagery can have a 

spatial resolution that ranges from multiple meters to less than 1 m, similar to commercial satellite 

imagery. UAS currently offer the highest spatial resolution with pixels as small as 1 cm, depending 

on the height at which the imagery is captured (Bradley, 2014; Whitehead and Hugenholtz, 2014; 

Jensen, 2016). 

Spectral resolution describes the number and width of the wavelength bands detected by 

the sensor (Jensen, 2016). In vegetation monitoring, normal color (red, green, blue bands, or RGB), 

multispectral, or hyperspectral sensors are used. Normal color detects bands in the visible light 

spectrum and can be used to detect vegetation because chlorophyll in plants absorbs red 

wavelengths and reflects green wavelengths. Consequently, healthy vegetation has high 

reflectance in the green band and low reflectance in the red band (Jensen, 2016). Multispectral 

sensors detect two or more normal color (usually red and green) bands as well as bands in the near 

infrared (NIR), middle infrared (MIR), thermal infrared (TIR), and/or red-edge range, which can 
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provide information on vegetation type and stress (Li et al., 2013; Whitehead and Hugenholtz, 

2014). Hyperspectral sensors collect data in hundreds of narrow bands across a continuous 

spectrum, which can be used to create representative signatures for particular plant species (Jensen, 

2016). Spectral bands are commonly analyzed in combinations known as indices to provide 

additional information in the imagery. The green chromatic coordinate (GCC) index can measure 

the relative greenness in imagery by normalizing the green band by the RGB bands with the 

formula GCC = Green / (Red + Green + Blue (Leduc and Knudby, 2018). The Normalized 

Difference Vegetation Index (NDVI), calculated using the formula NDVI = (NIR-

Red)/(NIR+Red), is useful for assessing vegetation health, as well as discriminating between land 

cover types (Jensen, 2016; Li et al., 2013).  

Platforms also vary in temporal resolution, or how frequently a sensor revisits a designated 

location (Jensen, 2016). Satellites are limited by their orbits, while manned and unmanned aerial 

flights can be deployed as needed, as long as weather and funding allow. Landsat 8 orbits over the 

same area only once every 16 days (USGS, 2016). Commercial satellite sensors can be pointed to 

capture off-nadir imagery of a specific location, but are still restricted by their orbits. While 

manned aerial flights are theoretically deployable at short notice, government-provided aerial 

imagery such as NAIP is only collected once every five years, and contracted aerial imagery is 

expensive (Bradley, 2014; Jensen, 2016). Out of all the remote sensing platforms, unmanned aerial 

systems (UAS) are capable of the highest temporal resolution, and can be deployed any time that 

flying conditions are safe and government regulations are heeded (FAA, 2017). Once imagery is 

collected, it can be processed into information products.  

Two other ways in which remote sensing systems can differ are radiometric resolution and 

extent. Radiometric resolution refers to the sensitivity of the sensor to varying intensities of 
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reflectance (i.e., how many different shades of grey it can distinguish). Most sensors, whether 

satellite or UAS, collect data in either 8-bit or 16-bit storage formats. Eight-bit resolution can 

distinguish 256 shades of grey for each band sensed. At present, 12-bits or 4,096 shades is the 

maximum data a sensor can collect, which still requires the use of 16-bit storage (Jensen, 2016). 

Sensors also vary in the area they can capture in a single image, called the extent or footprint. 

Many satellite sensors can capture hundreds to thousands of square kilometers in one scene, while 

a single UAS flight under FAA part 107 is restricted by a 400m flying height, maintaining line of 

sight with the UAS, and limited battery life (FAA, 2017). However, UAS can cover numerous 

square kilometers of area when flown in successive missions (Fraser and Congalton, 2018), or if 

exemption from FAA part 107 rules is granted (FAA, 2017).  

 

Remote Sensing Image Processing 

Remotely sensed imagery can be classified, or labeled, into thematic maps showing the 

location and extent of user-defined classes (Lillesand et al., 2015). First, a classification scheme 

is defined. Classification schemes must be hierarchical, totally exhaustive, and mutually 

exclusive in order to label every thematic class within an image (Congalton and Green, 2019). 

Users may choose a pre-existing land cover classification scheme or a custom classification 

scheme to meet the needs of a particular project (Jensen, 2016). Once the classification scheme is 

clearly defined, the imagery is processed into a final map. For digital imagery, classification is 

mainly performed using digital image processing software such as ERDAS Imagine (Hexagon, 

Norcross, GA, USA), but manual image interpretation is still an option. An analyst manually 

interprets imagery using the elements of image interpretation: size, shape, texture, pattern, 

shadow, tone, and site (Jensen, 2016). Manual image interpretation is the original means of 
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classifying imagery, which relies on the interpreter’s knowledge of an area and potential land 

cover types or species. Because it is limited to what the eye can see, manual image interpretation 

is limited in terms of distinguishing vegetation types (Jensen, 2016).  

Image processing software labels imagery based on spatial and spectral pattern 

recognition, which incorporates a defined number of bands in the imagery and groups similar 

pixels (Lillesand, 2015). The two primary methods of classification are pixel-based classification 

(PBC) and object-based image analysis (OBIA) (Blaschke, 2010).  PBC labels individual pixels 

based on their reflectance values across the imagery bands, and it can be either supervised or 

unsupervised. Supervised PBC uses training data, which are areas of the image where the land 

cover types are known, in order to create data representative of each map class in an image. 

Unsupervised PBC classification clusters pixels into groupings purely on spectral response given 

a user-specified number of map classes, and it is up to the user to subsequently label those 

groupings (Jensen, 2016).  

Object-based image analysis (OBIA) has outperformed PBC in a number of studies, 

particularly when classifiying high and very high resolution imagery (Mafanya et al., 2017; Yu et 

al., 2006). OBIA works by first segmenting the imagery, or grouping pixels into homogenous 

polygons called objects, prior to classification, mimicking the manual image interpretation 

process (Blaschke, 2010). Multi-scale segmentation is a common segmentation approach, which 

works by sequentially and repeatedly dividing the image into smaller and smaller objects (Kim et 

al., 2011).  Multiresolution Segmentation (MRS) is a frequently used segmentation algorithm 

proprietary to eCognition software (Trimble, Westminster, CO). MRS first requires 

parameterization of scale, which determines the spectral heterogeneity of the resulting objects. A 

high scale parameter means that a high level of heterogeneity is allowed within objects, meaning 
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larger objects composed of more pixels (Baatz and Schäpe, 2000; Drǎguţ et al., 2014). Other 

built-in MRS parameters are shape and compactness (Lu and He, 2017), which are typically 

adjusted along with scale using a supervised, trial and error approach, until the segments 

satisfactorily match known classes in the imagery (Duro et al., 2012; Gao et al., 2011; Grybas et 

al., 2017). Automated parameterization is possible, however, and a growing movement (Drǎguţ 

et al., 2014; Grybas et al., 2017).  

Once segmented, objects can be classified by a variety of algorithms, including machine 

learning. Machine learning is a growing subset of classification methods, and includes Support 

Vector Machines (SVM), and Random Forest (RF) algorithms (Blaschke, 2010; Burges, 1998; 

Husson et al., 2016). SVM is a supervised, binary classification method, which uses training data 

to build a model, set a threshold or hyperplane, and then label validation samples based on 

whether they exceed that threshold or not (Tzotsos and Argialas, 2008). Despite the required 

extra computing steps, this method is highly regarded for land cover classification due to its 

ability to incorporate a large number of input variables. For OBIA, there can be many different 

variables, such as object size, shape, and heterogeneity, along with spectral values (Tzotsos and 

Argialas, 2008). Random Forest is also used for land cover classification and utilizes decision 

trees to determine the optimal class label (Jensen, 2016). OBIA and machine learning methods 

are increasingly used for high resolution imagery classification, but PBC methods are more 

accessible to a wider audience. Open source PBC software such as MultiSpec, with 

accompanying user guides (Purdue Research Foundation, 2019), enable users with limited 

training to apply PBC techniques.  
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Assessing the Accuracy of Thematic Maps 

Accuracy assessment quantifies the quality of a thematic map by comparing classified 

samples to validation reference data (Congalton and Green, 2019). Validation data are samples 

labelled with the correct class for each land cover type, although there is always some degree of 

uncertainty and thus these samples cannot be referred to as “ground truth.” Validation data can 

be collected on the ground, interpreted from higher resolution imagery, or extracted from pre-

existing maps. There are a number of important considerations when deciding the size of the 

sample unit with which to collect validation data. One must consider the minimum mapping unit 

(MMU), or smallest mapped element, and the positional accuracy of the resulting thematic map 

(Congalton and Green, 2019).  The sample unit size used for validation data must be large 

enough to encompass the MMU, often 3 pixels by 3 pixels, while also accounting for positional 

error. The analyst must be confident that every validation sample unit overlaid on a thematic map 

encompasses the intended area, allowing for a direct comparison between thematic and 

validation classes. The comparison of thematic map to validation data results in an error matrix, 

which serves as the basis for quantitative assessment of classification accuracy (Congalton and 

Green, 2019).  

An error matrix, or contingency table, is a cross-classification that tallies the agreement 

and disagreement between the thematic map and the validation data Congalton and Green, 2019).  

Three accuracy metrics are derived from an error matrix: user’s, producer’s, and overall accuracy 

(Congalton and Green, 2019). User’s accuracy (UA) represents errors of commission, or how 

likely a map class is to be labelled in the wrong map category, while producer’s accuracy (PA) 

represents errors of omission, or the likelihood a map class will be excluded from the class to 

which it belongs (Story and Congalton, 1986). Overall accuracy (OA) is the total number of 
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correctly identified samples divided by the total number of discrete validation samples 

(Congalton, 1991). Reporting and comparing the user’s, producer’s, and overall accuracies 

between error matrices of different thematic maps is a common method for analyzing 

classification performance. To test whether a classification performed significantly better than 

random, or if one error matrix is significantly different from another, one can perform Kappa 

analysis (Congalton and Green, 2019). A Kappa analysis of a single error matrix indicates 

whether a classification was significantly better than random, while a pairwise Kappa analysis 

between two error matrices determines whether two error matrices are significantly different 

from one another (Congalton and Green, 2019). Reporting the accuracies for error matrices is 

still valuable, but a Kappa analysis can reveal whether one classification is significantly different 

from another. 	

Remote Sensing of Invasive Plants 

 The use of remote sensing provides an opportunity to enhance invasive plant monitoring 

and has already been used successfully in select situations. Landsat satellite imagery, with a 30 

m spatial resolution, is effective for mapping some rangeland and desert invasive plants such as 

Bromus tectorum (cheatgrass) and Pennisetum clilare (buffelgrass) across landscapes when 

target species are highly abundant (Olsson et al., 2011; Singh and Glenn, 2009). High resolution 

satellite and aerial imagery provide the spatial resolution necessary for detecting sparser 

populations of invasive plant species, at a high financial cost (Müllerová, Pergl, & Pysek, 2013). 

Very high spatial resolution satellite imagery (Rapid Eye, 5 m) is sufficient for mapping regional 

levels of invasion of Heracleum mantegazzianum (giant hogweed) and Fallopia spp. (knotweed) 

in open canopy settings, but very high spatial resolution imagery (< 0.5 m, RGB, aerial 

orthophotos) is necessary for early detection and monitoring (Müllerová et al., 2017a, 2013).    
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 Remotely sensed satellite and airborne imagery has also been used to map invasive plant 

species in forested landscapes. Landsat satellite imagery is adequate for identifying large extents 

of Rhamnus cathartica (common buckthorn), Frangula alnus (glossy buckthorn), and Lonicera 

maackii (Amur honeysuckle) in temperate forests (Becker et al., 2013; Resasco et al., 2007). 

Higher spatial resolution imagery, such as 0.3 m aerial orthoimagery, is necessary to map smaller 

incursions of understory L. maackii (Shouse et al., 2013). As in open settings, thematic accuracy 

in understory settings increases as imagery pixel size decreases, with very high resolution 

imagery recommended for monitoring local-scale invasions (Shouse et al., 2013). The financial 

cost of commercial satellite and aerial imagery, however, severely inhibits the realistic 

application of these methods to invasive plant management efforts, particularly EDRR. 

Phenology is critical for deciding when to collect imagery for invasive plant mapping. 

For invasive plants in open settings, collecting imagery during flowering is ideal because that is 

when spectral responses are most unique (Mullerova et al., 2013). Other rangeland and desert 

species are best imaged and classified during early season green up or shortly after a rain event 

(Olsson et al., 2011; Singh and Glenn, 2009). Remotely sensing understory invasive plants in 

deciduous forests is more difficult because the forest canopy leafs out in spring, obscuring 

vegetation below. However, due to asynchrony in leaf out and leaf off timing, it is possible to 

detect understory invasive plants in early spring or late fall if populations are sufficiently large 

for the sensor resolution (Resasco, 2007; Becker et al., 2013). Remote detection of understory 

invasive plants remains comparatively underutilized due to lack of affordable, accessible, and 

timely very high spatial resolution imagery, but UAS provide a means to quickly collect detailed 

imagery during brief phenological windows.  
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Despite success using satellite and aerial imagery to map invasive plants, the spatial and 

temporal resolution may be too coarse or the costs too high for certain applications (Bradley, 

2014). Landsat imagery is free, but the 30 m resolution can only detect large extents of invasive 

plants (Jensen, 2016). Commercial 1 m resolution imagery, such as GeoEye-1, shows much more 

detail, but costs thousands of dollars per scene and is therefore not practical for tracking 

phenological changes across numerous dates (Bradley, 2014). Furthermore, specific scenes of 

commercial satellite imagery must be ordered ahead of time and are limited temporally by orbits 

(Bradley, 2014). For collecting imagery of understory invasive plants during canopy leaf-off, 

there is a short phenological window that varies from year to year that could easily be missed if 

relying on satellite imagery. EDRR and containment rely on being able to find small clusters of 

unwanted plants before they become widespread. Therefore, in order for remote sensing to be a 

viable monitoring tool, the system must have a high spatial resolution (< 1 m) to detect 

individual plant patches or shrubs, be relatively inexpensive, and be easily deployable. 

 

Unmanned Aerial Systems for Invasive Plant Mapping 

UAS provide an opportunity to resolve many previous issues with remote detection of 

invasive plants.  UAS can be deployed with high temporal frequency on a flexible schedule to 

take advantage of short phenological windows needed to differentiate target species from 

surrounding vegetation (Mullerova et al., 2017b). UAS can support a variety of sensors, and even 

the most inexpensive UAS have spatial resolution superior to commercial satellite imagery. The 

result of higher resolution is less spectral mixing per pixel, which should aid in detecting small 

groups of plants instead of large infestations. One of the most expensive components to UAS are 

high accuracy GPS units, which use real time kinematic (RTK) or post processing kinematic 
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(PPK) corrections to differentially correct GPS coordinates of the imagery using a known base 

station (Whitehead and Hugengoltz, 2014). High GPS accuracy is important for research to 

ensure low positional error, but lower cost moderate GPS accuracy (5-10 m) may be sufficient 

for locating areas for targeted ground surveys. When considered on a per-use cost, UAS are more 

economical than commercial or commissioned imagery, even when adding in the cost of 

processing software (Bradley, 2014; Mullerova et al., 2017b; Whitehead and Hugengoltz, 2014). 

The cost of one moderately priced UAS is approximately the same as ordering 1-3 scenes of 

commercial satellite imagery, but the UAS can be deployed to collect imagery repeatedly 

(Bradley, 2014; Whitehead and Hugengoltz, 2014). For purposes such as monitoring, especially 

in phenologically sensitive systems with annual variability in leafing transition dates, a remote 

sensing system that can be deployed at a moment’s notice and numerous times in a single week 

is advantageous.   

One unique advantage that UAS imagery has over satellite sensing platforms is Structure 

from Motion (SfM). SfM is achieved by collecting imagery with high levels of overlap, which 

can then be relatively positioned based on common key points between numerous images 

(Dandois and Ellis, 2013). The overlap allows the creation of point clouds, and while not a direct 

substitute for LiDAR, they can be used for height models that are particularly helpful in 

classifying forest vegetation (Lefsky et al., 2002). Using SfM, UAS imagery can be separated 

into canopy points and understory points. By filtering out canopy points, the understory 

vegetation points remain, which can lead to higher invasive plant detection accuracies (Leduc 

and Knudby, 2018). When SfM is combined with high accuracy image geotagging, this results in 

a georeferenced orthomosaic from which measurements can be made (Dandois and Ellis, 2013).  

	



	 14 

Woody Invasive Plants in New England 

New England is a heavily forested and heavily invaded landscape with active invasive 

plant management programs. Woody shrubs are the dominant invasive flora of New England 

(Bois et al., 2011; Lehan et al., 2013) and most were first introduced as landscaping or erosion 

control plants and subsequently expanded beyond their intended confines (Lehan et al., 2013; 

Reichard and White, 2001). Infrastructure, particularly roads, as well as forest fragmentation 

have assisted in the spread of woody invasive plants by creating disturbance and/or microclimate 

variation at forest edges (Allen et al., 2013; Brothers et al., 2009; Christen and Matlack, 2009; 

Matlack, 1993). Invasive plants can take advantage of edge effects, and frequently establish on 

forest peripheries and migrate into the interior (Brothers et al., 2009). Most woody invasive 

plants in New England are able to establish in new areas quickly due to common invasive traits: 

invasive elsewhere in the world, fast growth rate, and a match of their native latitudinal range to 

New England (Herron et al., 2007).   

Some woody understory invasive plants also exhibit extended leaf phenology (ELP), 

which enables them to have a longer growing season than native tree and understory species 

(Dreiss and Volin, 2013; Fridley, 2012; Smith, 2013). Invasive plants with ELP can leaf out 

earlier and/or hold their leaves longer into fall than natives, which can lead to more growth and 

better establishment (Smith, 2013). While ELP understory species overall have a longer growing 

season than northeastern canopy species, asynchrony is a complex dynamic that varies by season 

and species (Fridley, 2012; Dreiss and Volin, 2013). Native trees vary in phenology, with Acer 

species leafing out early, and Quercus and Fagus species holding their leaves later in the fall and 

sometimes well into winter (Kosmala et al., 2016; Otto and Nilsson, 1981; Richardson et al., 

2006).   
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Berberis thunbergii (Japanese barberry) and Rosa multiflora (multiflora rose) are 

common woody invaders of northeastern temperate forests (USDA, 2018; Fridley, 2012). 

Berberis thunbergii originated in Asia and was introduced to the U.S. as an ornamental, and is 

desirable for landscaping because thorns make it resistant to deer grazing and it overwinters well 

(USDA, 2018). Rosa multiflora also originated in Asia and was popularly used to create 

hedgerows due to its height of up to 6 ft and dense growth habit (USDA, 2018). It is a common 

invader of roadsides, which facilitate the spread of the shrub (Christen and Matlack, 2009; Flory 

and Clay, 2006) and can tolerate a range of light and soil fertility conditions within temperate 

deciduous forests (Dlugos et al., 2015; Huebner et al., 2014). Both B. thunbergii and R. 

multiflora exhibit ELP which results in increased carbon gain in spring for B. thunbergii and fall 

for R. multiflora (Dlugos et al., 2015; Fridley, 2012; Polgar et al., 2014). Both shrubs leaf out 

earlier than other native and woody invasive species, making them ideal candidates for early 

spring imagery collection with UAS. Berberis thunbergii and R. multiflora are not EDRR species 

because they are abundant across the Northeast, but they are actively managed for containment.  
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Summary 

 Invasive plants negatively affect numerous facets of society and nature, with substantial 

environmental, economic, and human health costs. Woody invasive plants are particularly 

abundant in temperate deciduous forests of the northeastern U.S., due in part to extended leaf 

phenology. The asynchrony between native canopy and understory invasive species provides the 

opportunity to use remote sensing for invasive plant surveys during periods of canopy leaf off. 

Unmanned aerial systems offer high spatial and spectral resolution, relatively low cost, and quick 

deployability.  The resulting imagery can be compiled into detailed, classified maps showing the 

locations of target species. These maps would allow land managers to better focus their invasive 

plant control efforts, and allow for more time managing infestations, rather than searching for 

them on the ground.   
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CHAPTER II:  
ALIENS, AIRCRAFT, AND ACCURACIES: SURVEYING FOR UNDERSTORY 

INVASIVE PLANTS USING UNMANNED AERIAL SYSTEMS 
 
 

INTRODUCTION 
 
Invasive plants are non-native species that cause ecological or economic harm in their 

recipient ecosystems (Executive Order 13112, 1999). The negative impacts of invasive plants 

influence multiple industries, including agriculture, forestry, transportation, and conservation 

(Eiswerth et al., 2005; Lym and Nelson, 2000; Martin and Blossey, 2012; Pimentel et al., 2005). 

Invasive plants also affect the intrinsic value of native ecosystems by accelerating carbon and 

nitrogen cycles (Ehrenfeld, 1997; Liao et al., 2008) and decreasing the fitness and abundance of 

native wildlife, particularly birds and insects (Ballard et al., 2013; Schirmel et al., 2016; Vilà et 

al., 2011). Additionally, invasive plants pose significant risk to human health. Some species 

increase habitat for disease-carrying vectors (e.g., increased Lyme-carrying ticks in invasive 

Japanese barberry; Williams et al., 2009), while others are toxic (Elias et al., 2006; USDA, 2018; 

Williams et al., 2009). In order to mitigate the detrimental effects of invasive plants, we must be 

able to track and manage their presence within a landscape.  

Accurate location information is necessary for every stage of invasive plant management. 

Early detection and rapid response (EDRR), in which invasive plants are located and removed 

shortly after establishing in a new area, is the most effective post-introdution management 

strategy and requires detection of small, isolated populations (Hulme, 2006; Westbrooks, 2004). 

Containment aims to restrict the further spread of an already established invasive species by 

quickly locating and removing new incursions (Hulme, 2006). Species distribution models are 

useful for predicting future invasions at a regional scale, but ground surveys remain necessary 

for confirming identifications and removal of invasive plants (Allen & Bradley 2016). However, 
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professional field work is costly and while citizen scientists contribute valuable data, they may 

overlook new invasive species that are not yet well-known on the landscape (Bois et al., 2011; 

Jordan et al., 2012). More efficient monitoring methods can facilitate more effective invasive 

plant management by focusing resources on controlling plants rather than looking for them.  

 Remote sensing provides an opportunity to enhance invasive plant monitoring. Satellite 

and near surface remote sensing, such as unmanned aerial systems (UAS), have potential to 

expand the spatial extent and/or temporal frequency of invasive plant monitoring compared to 

ground surveys. Publicly available satellite imagery (e.g., Landsat, MODIS) provide 

multispectral imagery with extensive spatial coverage, but they have medium to coarse spatial 

and temporal resolution. This imagery is useful in some cases for mapping expansive coverages 

of invasive plants, particularly rangeland and desert plants (Olsson et al., 2011; Singh and Glenn, 

2009). Very high resolution (0.5 m) satellite imagery has been successfully used to map regional 

invasions (e.g., giant hogweed), but is not optimal when trying to quickly collect data during 

short phenological windows (Mullerova et al., 2017b).  

UAS provide a unique opportunity for understory invasive plant monitoring due to their 

capability for very high spatial, spectral, and temporal resolution. UAS can be piloted from the 

ground both manually or autonomously using mission planning software (Whitehead and 

Hugengoltz, 2014). UAS can support a variety of imaging systems, including red-green-blue 

(RGB) and multispectral (MSP) sensors. MSP sensors, while more expensive, are desirable for 

deriving vegetation indices, which can increase classification accuracy. MSP sensors are 

especially helpful in determining the difference between senescing and healthy vegetation which 

would be useful in separating invasive plants with extended leaf phenology from declining native 

vegetation (Bradley, 2014), Komarek et al. (2018) highlighted the increase in accuracy achieved 
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using a MSP sensor over RGB for vegetation classification from UAS imagery. However, RGB 

imagery has proven sufficient in detecting both native and invasive species, in addition to being 

less expensive than MSP sensors (Hill et al., 2017; Leduc and Knudby, 2018). Furthermore, 

some MSP sensors also lack sensitivity to blue bands of light (Bradley, 2014), which are helpful 

for cutting through shadows, common in forest understories.  

Regardless of spectral resolution, even the most inexpensive UAS have spatial resolution 

superior to commercial satellite imagery. For example, UAS multispectral imagery outperformed 

WorldView 2 commercial satellite imagery (2 m spatial resolution, multispectral) in mapping 

Robinia pseudocaccia (invasive black locust tree, Mullerova et al. 2017a). In addition to high 

spatial resolution, UAS can be deployed as needed to capture short phenological windows 

critical for differentiating species (Bradley and Mustard, 2006; Mullerova et al., 2017b). When 

considered on a per-use cost, UAS are more economical than commercial or commissioned 

imagery, and they can be deployed more frequently (Bradley, 2014; Mullerova et al., 2017b; 

Whitehead and Hugengoltz, 2014).  

 Detection of forest understory invasive plants pose unique challenges due to the forest 

canopy cover above them. The leaves in the canopy are a physical barrier against capturing 

understory imagery for the majority of the growing season, but short windows of phenological 

mismatch provide some opportunity for understory invasive plant imaging. Asynchronous 

phenology refers to understory invasive plants in temperate forests leafing out earlier and/or 

droping leaves later than native understory plants and canopy trees (Dreiss and Volin, 2013; 

Fridley, 2012). The relative phenologies of different species in deciduous forests provide a short 

temporal window in spring and fall for mapping using remote sensing, in which the canopy is 

largely open, but invasive plants below are in leaf-on stage. Most remote sensing studies have 



	 20 

focused on species that hold their leaves long into fall. Rhamnus cathartica (common 

buckthorn), Frangula alnus (glossy buckthorn), and Lonicera maackii (Amur honeysuckle) are 

invasive species that exhibit fall extended leaf phenology, and expansive populations have been 

identified using Landsat scenes (Resasco, 2007; Shouse et al., 2013).  However, high resolution 

imagery is more accurate for mapping at a local scale (Becker et al., 2013) and, we expect, for 

lower density and small populations. There are also a number of understory invasive species that 

leaf out early in spring, such as Berberis thunbergii and Rosa multiflora (Polgar et al., 2014). 

There have not yet been any remote sensing studies—satellite or UAS—on the best season to 

detect these species. Overall, UAS provide the quick deployment and high spatial resolution 

needed to detect individual plant patches or shrubs in short windows of asynchronous phenology, 

yet their efficacy in mapping understory invasive plants has not yet been tested. 

 Object-based image analysis (OBIA) methods are growing in frequency amongst high 

spatial resolution remote sensing studies (Blaschke, 2010; Komárek et al., 2018; Lu and Weng, 

2007), but they may not be the best classification method for every situation. OBIA classification 

requires either expensive segmentation software and an analyst trained in using it, or an analyst 

with programming knowledge to run models in open source settings. If UAS are to be a widely 

applied management tool, users must be able to effectively analyze the imagery. Pixel-based 

classification (PBC) methods are generally simpler and available through open source software 

(e.g., MultiSpec, 2018). On occasion, simple pixel-based classifications (PBC) such as 

Maximum Likelihood have even outperformed sophisticated machine learning OBIA methods 

(Mullerova et al., 2017b). There is a possibility that PBC may outperform OBIA understory 

classification if vegetation shapes are indistinct and pixelated, in which case the additional 

information provided by OBIA may not be beneficial. 
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I aimed to test the feasibility of using UAS for understory invasive plant mapping in 

temperate deciduous forest. Using imagery collected in spring and fall, and with RGB and 

multispectral sensors, I focused on mapping two woody invasive species common to New 

England forests that exhibit extended leaf phenology to ask 1) how accurately can understory 

invasive plants be detected? and 2) what sensor type, season, and classification method produce 

the most accurate detections? Identifying the capabilities and limitations of using UAS to map 

invasive understory plants will guide recommendations for the adoption of this emerging 

technology by land managers looking for more efficient ways to manage invasive plants.  

 
METHODS 
 
Study Area and Focal Species 
 

The study area is a 750 m x 300 m site located at Kingman Farm, a part of the University 

of New Hampshire (UNH) Agricultural Experiment Station in Madbury, NH. The site is 

completely forested with deciduous and mixed stands, which provide seasonal leaf cover, and 

appropriate adjacent launching and landing sites for UAS pursuant to FAA regulations (FAA, 

2017). The understory contains populations of the target invasive plants (Appendix A), Berberis 

thunbergii (Japanese barberry) and Rosa multiflora (multiflora rose), both of which are 

widespread and common New England invasive plants (USDA, 2018) that display extended leaf 

phenology (Fridley, 2012). 

Berberis thungbergii (Japanese barberry) is a perennial shrub that was introduced to the 

U.S. from Asia in the late 1800s as an ornamental and has since become invasive throughout the 

northeastern U.S. and Midwest (Silander and Klepeis, 1999; USDA, 2018). Berberis thunbergii 

is undesirable because it impedes recreation, increases habitat for black-legged ticks that carry 

Lyme disease (Williams et al., 2009), suppresses native tree recruitment (Link et al., 2018), and 
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alters microbial communities by increasing soil pH and nitrification rates (Kourtev et al., 2003). 

Rosa multiflora (multiflora rose) is another introduced perennial shrub that forms dense thickets, 

reducing native plant species richness (Yurkonis et al., 2005). Like B. thunbergii, R. multiflora is 

native to Asia and was introduced to the U.S. in the mid 20th century as a living fence for 

livestock (Evans, n.d.). It grows well in disturbed areas such as roadsides and pastures, but is 

also capable of thriving under closed canopy conditions (Huebner, 2003), which has led to 

widespread invasion across both the eastern and western U.S. (USDA, 2018). After years of 

being sold as an ornamental, R. multiflora is on the Prohibited Species List for New Hampshire 

(NH Dept. Agriculture, 2017) and banned in a number of other states (USDA, 2018). Control of 

B. thunbergii and R. multiflora is possible, but requires persistent management (Evans, 1983; 

Ward, 2013).  

 

Imagery Collection 

I flew two UAS for this study: a fixed wing eBee Plus (senseFly, Cheseaux-sur-

Lausanne, Switzerland) and a quadcopter Eagle XF (UAV America, Nottingham, NH). The eBee 

Plus held two sensors: a Parrot Sequoia multispectral camera (MicaSense, Seattle, WA), 

consisting of green, red, red-edge, and near-infrared bands; and a 20 megapixel RGB Sensor 

Optimized for Drone Applications (S.O.D.A.; senseFly, Cheseaux-sur-Lausanne, Switzerland). 

The Eagle XF was outfitted with an a7R 36 megapixel RGB sensor (Sony, Tokyo, Japan). 

Prior to collecting imagery, I set out ground control points in a defined area to mark 

known populations of B. thunbergii and R. multiflora for later use as classification training data. 

I then constructed mission plans using the flight planning software eMotion (senseFly, 

Cheseaux-sur-Lausanne, Switzerland) for the eBee Plus and Mission Planner (ArduPilot, 
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ArduPilot Dev Team v1.3, 2018) for the Eagle XF. The flight block covered the entire 750 x 300 

m study area and included 85% sidelap and endlap to maximize image overlap for orthomosaic 

processing (Figure 1). I flew missions at heights of 80 m, 100 m, and 120 m to ensure adequate 

image calibration and orthomosaic creation (Table A2).  

I collected normal color (RGB) and multispectral (MSP) sensor imagery in spring and 

fall of 2018. Spring image acquisition included six flights from 12 April 2018 to full canopy leaf 

out on 23 June 2018. I selected 23 April 2018 for MSP (100 m height) and 4 May 2018 for RGB 

(80 m height) as the best dates of spring imagery based on visual inspection of species phenology 

both on the ground and in the imagery (Appendix A, Table A1, Table A2). The 4 May 2018 

flight covered a smaller area than the others due to a technical malfunction, resulting in 4 

validation plots, Other and B. thunbergii, left uncovered by the resulting imagery. However, 

invasive species were most visually apparent in this date of imagery so I retained it for analysis. 

To account for the lost validation plots on this date of imagery, and to better balance the 

accuracy assessment for all dates of imagery, I augmented the original number of Other samples 

to a total of 30 for 4 May 2018 and 32 for all other dates of imagery (see Reference Data). I 

collected one date of fall imagery using both RGB (100 m) and MSP (120 m) sensors on 9 

November 2018, after waiting as long as possible for adequate canopy leaf drop (Appendix A).  
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Figure 1: Study site location (star) in New Hampshire with inset showing mission block in 
Mission Planner. Flight block (red polygon), flight lines (yellow lines and arrows), and 
waypoints (green points). 
   

Reference Data Collection 

I collected training and validation reference data in July 2018 for use in later accuracy 

assessments. I delineated areas, “patches,” dominated by B. thunbergii and R. multiflora using 

waypoints taken during random haphazard surveys (Appendix A).  Berberis thunbergii patches 

were mostly homogeneous, but all patches containing R. multiflora also contained non-dominant 

populations of B. thunbergii and other vegetation. I created polygons of each invasive plant patch 

in ArcMap (ESRI, Redlands, CA) by processing perimeter vertex points collected with a 

GPSMap76CS (Garmin, Olathe, KS; horizontal accuracy: 5-10m; coordinate system: WGS84; 

WAAS enabled). I delineated training data areas prior to collecting imagery, to ensure that the 

flight block covered an area with dominant B. thunbergii and R. multiflora for training sample 

selection. I set out ground control points (GCPs) around the perimeter of homogenous patches of 

the two invasive species, so that the GCPs would be visible in the imagery. I selected training 

data for the Other class in the vicinity of the B. thunbergii and R. multiflora training location, in 

750 m 
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areas where where I was confident on the absence of the two invasive species.  I then used three 

B. thunbergii and two R. multiflora patches for validation data based on their proximity (within 

1000 ft.) to the only feasible base station location for survey-grade GPS (Topcon HiperLite, 

Tokyo, Japan; 10mm Real-Time Kinematic standard horizontal accuracy; NAD83 New 

Hampshire State Plane coordinate system). I transformed each validation patch into a rectangular 

validation sampling area with a 6 m buffer to ensure validation plot locations would fall within 

the rectangle using the ArcMap Buffer tool (Figure 2). 

 

Figure 2: Sampling design of validation data. Includes patches of B. thunbergii and R. multiflora 
delineated using Garmin GPS and rectangular, buffered validation areas with randomly 
generated validation plots within each map type (20 B. thunbergii, 20 R. multiflora, and after 
augmentation, 32 total Other).  
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Within the buffered validation sampling areas, I generated stratified random samples for 

each of three map classes (B. thunbergii dominant, R. multiflora dominant, Other) to characterize 

ground vegetation to use as validation data in my classification accuracy assessments (Figure 2). 

I generated 20 samples to serve as validation plot locations for both the B. thunbergii and R. 

multiflora map classes and 10 plots for the Other class, for a total of 50 plots. I ensured at least a 

1 m buffer between each B. thunbergii and R. multiflora-dominant validation plot. To maximize 

spacing between Other validation plots, I divided the study area into four quadrants, took the 

diagonal of one quadrant, and divided it into eighths. This sampling method is modified from 

Congalton and Green (2019) and resulted in random plots at least 38 m apart. 

Additional Other validation plots were later chosen to augment the original samples and 

yield a more statistically balanced accuracy assessment. To select these samples, I generated 30 

random points, at least 40 m apart, in ArcMap. Then, out of the 30 random points, I manually 

interpreted 22 new Other validation plots from the 4 May 2018 imagery. I placed plots in areas 

free of understory invasive species, not overlapping any areas used for Other training samples, 

and as close to the corresponding generated random point as possible. I confidently interpreted 

the imagery due to the high spatial resolution, clear difference in native and invasive species 

phenology, and my general understanding of the area. I then used the combined original and new 

Other validation plots in all accuracy assessments.  

 Each random plot generated within the B. thunbergii and R. multiflora validation areas 

represented a 3 m radius validation plot with three nested 1m2 subplots (Figure 3). The purpose 

of the 3 m radius plots was to characterize and confirm the general vegetation composition, 

canopy composition and closure, and ground type within the plot (Appendix A, Table A3). I 

recorded the center location of each plot using a HiperLite Plus survey grade GPS system 
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(Topcon, Tokyo, Japan; 10mm Real-Time Kinematic standard horizontal accuracy; NAD83 New 

Hampshire State Plane coordinate system) fixed to a Topcon base station collecting static 

positional data. I estimated canopy closure using a modified Braun-Blanquet scale, with 

categories of <5%, 5-25%, 25-50%, 50-75%, and 75-100%. I also recorded composition (e.g., 

75% red maple, 25% black birch), and included all trees and saplings taller than 2 m. I visually 

estimated the total percent coverage of understory vegetation in the plot, as well as B. thunbergii, 

R. multiflora, herbaceous, shrub, and fern coverage using the same modified Braun-Blanquet 

scale. Other physical and ecological data that might affect classification accuracy were also 

collected, including density in the 1 m2 subplots, but not used in data analysis (Appendix A). 

  

 

Figure 3: Schematic of a 3 m radius plot with 1 m2 nested subplots used to characterize canopy 
and vegetation of each stratified random sampling location used for validation data.  
 
 
  
Image Processing and Classification 

I processed imagery using Pix4D software (senseFly, Cheseaux-sur-Lausanne, 

Switzerland) to create georeferenced orthomosaics of the study area. To ensure high positional 

accuracy of the resulting models, I Post-Process Kinematic (PPK) corrected the GPS-tagged 

imagery using the local NHUN Continuously Operating Reference Station (CORS) (National 

Geodetic Survey, 2018; Pix4D, 2018). There are a number of orthomosaic processing options 
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within Pix4D, notably keypoints image scale, point cloud image scale, point cloud density, 3D 

textured mesh resolution, and sample density divider (Pix4D, 2018). I selected optimal settings 

for each date of imagery (Table 1) based on systematic trial and error and assessment of the 

number of calibrated images and point cloud density (Pix4D, 2018), as well as qualitative visual 

assessment of the resulting orthomosaic models.  

Table 1: Parameters used in Pix4D processing software that generated the highest quality 
orthomosaic for each season and sensor type of imagery. Additional settings included point density 
(high), 3D Textured Mesh (high resolution), geometrically verified matching, and no surface 
smoothing, which remained constant across models.    

Season Sensor Keypoints Image 
Scale 

Point Cloud Image 
Scale 

Spring RGB 1 ½ 
Spring MSP 1 ¼ 

Fall RGB 1 ½ 
Fall MSP 1 ¼ 

 

For each of the resulting orthomosaics, I also created additional vegetation indices in R 

3.5 (R Core Team, 2018). For RGB imagery, I calculated the Green Chromatic Coordinate 

(GCC), which measures the relative greenness in an image and is helpful in distinguishing 

vegetation types, calculated by GCC = Green / (Blue + Green + Red) (Harris Geospatial, 2017; 

Leduc and Knudby, 2018). I calculated a Normalized Difference Vegetation Index (NDVI) for 

each MSP orthomosaic, calculated by (NIR – Red)/(NIR + Red), which is sensitive to stages of 

plant health and is useful in vegetation classification (Jensen, 2016). I experimented with a 

number of other vegetation indices but ultimately selected GCC and NDVI due to their ability to 

increase separation between training data spectral responses.  

I performed supervised pixel-based (PBC) and object-based image analysis (OBIA) 

classifications on each of the final orthomosaics to determine which provided the most accurate 

maps of the target invasive species. For PBC, I used a maximum likelihood classification 
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algorithm for spring imagery and non-parametric parallelepiped for fall in ERDAS IMAGINE 

(Hexagon Geospatial, Madison, AL, 2018). Parallelepiped classification uses the outer bounds 

(i.e., minimum and maximum) of the training data pixel values to determine whether unclassified 

pixels fall in—and will be labeled with the training data class—or out. Using the maximum 

likelihood algorithm for the fall imagery would have been ideal, but because training samples 

were highly heterogeneous and not invertible, I was unable to calculate necessary sample 

statistics (ERDAS IMAGINE, 2018). For spring imagery, I used the region growing tool to 

select training data samples, which expands a region of neighboring pixels within a designated 

Euclidean distance threshold (ERDAS IMAGINE, 2018). I was unable to use the region growing 

tool with the fall imagery, and instead selected polygonal training samples where the understory 

was visible, which was different in some cases from the spring training samples. For each PBC 

classification, I selected at least 10 training samples comprised of no less than 20 pixels for both 

B. thunbergii and R. multiflora invasive classes using areas of vegetation in the training ground 

data area that I was confident on vegetation species. I also visually selected at least 10 samples of 

no less than 20 pixels for each of the following classes: deciduous tree canopy, tree stem, leaf 

litter, grass, skunk cabbage, water, and bare ground which I later collapsed into Other following 

classification.  

After running the supervised, PBC classification, I applied a 3 x 3 majority filter on the 3 

cm spatial resolution RGB spring and fall imagery to achieve a spatial resolution comparable to 

the 13 cm resolution of the spring and fall MSP imagery. Then, I performed the accuracy 

assessment with a minimum mapping unit (MMU) of 1 m2, where each classified plot needed at 

least 1 m2 of invasive species in order to be considered Invasive, otherwise it was Other. The 

MMU of 1 m2 covers the growth habit of both R. multiflora and B. thunbergii, while filtering out 
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false positives for invasives that may otherwise occur due to chance with a much smaller MMU.    

Both the MMU of 1 m2 and the 3 m radius validation plot account for the horizontal positional 

error of the orthomosaics (all RMSE < 0.3 m) and the GPS unit (<0.1 m).  

OBIA classification first segments imagery into homogenous polygons, which are then 

labeled based on spectral and spatial properties (Blaschke, 2010). I performed Multiresolution 

segmentation (MRS) for each orthomosaic in eCognition (Trimble, Westminster, CO) using an 

iterative qualitative approach, choosing optimal parameters as those that resulted in segmentation 

that most resembled the natural shape of objects in the imagery. The major parameters 

determining segmentation are shape, scale, and compactness. For RGB imagery, a scale of 30, 

shape of 0.1, and compactness of 0.1 yielded optimal segmentation. For MSP imagery, 

parameters scale: 30, shape: 0.5, and compactness: 0.5 were optimal. Following segmentation, I 

selected and labeled at least 10 training data objects for each class from within my known ground 

data training area and ran a Support Vector Machine (SVM) classification in eCognition 

(Trimble, Westminster, CO). I used the following object variables in the SVM: means and 

standard deviations for each band and index, brightness, pixel area, roundness, and compactness. 

SVM, a supervised machine learning method, has been used to classify vegetation types down to 

individual species from UAS collected imagery (Komarek et al., 2018). I ran the SVM 

classification numerous times for each classification by adjusting the kernel and gamma 

parameters, which determine the sensitivity of the classification, and visually assessing the 

classification within my training areas.  

I conducted accuracy assessments for each classification by comparing each validation 

sample to the class of that same sample area on the thematic map. The accuracy assessment 

resulted in an error matrix for each classified map, with user’s, producer’s, and overall 
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accuracies, as well as Kappa coefficient values (Congalton and Green, 2019). Kappa is a 

measure of agreement between the classification and validation data, ranging from less than 0 

(poor agreement) to 1 (almost perfect agreement) (Landis and Koch, 1977). The test statistic for 

Kappa analysis is a Z statistic, with a 95% confidence critical value of 1.96, in which case a 

classification can be considered significantly better than chance. Kappa coefficients were then 

compared between maps using the R 3.5 irr package (R Core Team, 2018; v0.84.1; Gamer et al., 

2019) to yield a Z statistic, which in this case indicates whether two error matrices are 

significantly different (Congalton and Green, 2019).  

 
 
RESULTS 

 
The most accurate classification across all image types, seasons, and classification 

methods was spring RGB imagery classified with OBIA (Figure 4a-b, Table1, Table 2). This 

classification was one of eight that had statistically significant Z statistics, but it was the only 

classification to achieve a Kappa greater than 0.61 (0.64), indicating “substantial agreement” 

between the classification and validation data (Table 1; Landis and Koch, 1977). The spring 

RGB PBC classification had the second highest overall accuracy and significant Kappa (Fig. 4c-

d, Table 1, Table 3. The only classifications that did not achieve a significant kappa (Z > 1.96) 

were those resulting from fall RGB imagery (Table 1). Fall MSP OBIA and fall MSP PBC were 

statistically significant (Kappa = 0.39, 0.32), whereas fall RGB OBIA and fall RGB PBC were 

not (Table 1). Overall accuracies calculated using the B. thunbergii, R. multiflora, and Other 

classes were below 40% (Table B1), with the exception of fall RGB with OBIA classification 

(overall accuracy = 65.30%), therefore all comparisons were conducted with the combined 

Invasive class. 
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Table 2: Comparison of overall (OA), user’s (UA), and producer’s accuracy (PA) for the 
Invasive class in each thematic map, with Kappa statistics, Z statistics, and p-values. Rows with 
significant Kappa statistics are in bold. 

Classification Season Sensor OA UA PA Kappa z p 
OBIA Spring MSP 69.44 80.00 60.00 0.40 3.53 4.00e-4 

OBIA Spring RGB 82.35 80.95 89.47 0.64 5.29 1.21e-07 

OBIA Fall RGB 59.72 58.21 97.50 0.11 1.66 0.097 
OBIA Fall MSP 70.83 69.39 85.00 0.39 3.45 0.001 
PBC Spring MSP 70.83 67.27 92.50 0.38 3.60 3.00e-4 
PBC Spring RGB 76.47 84.38 71.05 0.53 4.46 8.14e-06 

PBC Fall RGB 59.72 59.02 90.00 0.13 1.39 0.164 
PBC Fall MSP 68.06 64.91 92.50 0.32 3.11 0.002 

 
 
 
 
 
 
Table 3: Error matrix comparing spring RGB OBIA classification to validation reference data.  

  Reference Data   
 

 Invasive Other User's Accuracy  

Map Data Invasive 34 8 80.95%  
Other 4 22 84.62%  

 Producer's Accuracy 89.47% 73.33% 82.35% Overall Accuracy 
 
 
 
 
 
 
 
 
 
Table 4: Error matrix comparing spring RGB PBC classification to validation reference data. 

  Reference Data   
  Invasive Other    User's Accuracy  

Map Data Invasive 27 5 84.38%  
Other 11 25 69.44%  

 Producer's Accuracy 71.05% 83.33% 76.47% Overall Accuracy 
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Figure 4: Imagery of study area and corresponding classifications a) from 5/04/2018 imagery 
with RGB sensor, b) OBIA classification of the 5/04/18 RGB imagery, c) from 5/04/2018 
imagery with RGB sensor, d) PBC classification of the 5/04/18 imagery, e) from 4/23/18 
imagery collected using MSP sensor, f) OBIA classification of 4/23/18 MSP imagery, g) from 
11/09/18 MSP imagery and, h) OBIA classification of 11/9/18 MSP imagery.	
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Spring classifications overall outperformed fall classifications. Both spring RGB OBIA 

and spring RGB PBC were significantly better than their fall counterparts, fall RGB OBIA (Z = 

3.71) and fall RGB PBC (Z = 2.82; Table 4). Spring classifications on average had higher kappa 

values than fall classifications (Table 4). No sensor type was universally superior. Fall MSP 

OBIA (Kappa = 0.39, OA = 70.83% ) was the only classification to perform significantly better 

(Z = 1.99) than its RGB counterpart (Fall RGB OBIA, Kappa = 0.11 , OA = 59.72%, Table 4).  

There were no significant differences between any spring RGB and spring MSP classifications. 

OBIA classification methods outperformed PBC methods in terms of average Kappa values and 

overall accuracies (Table 1), but there were no significant differences between spring RGB 

OBIA and spring RGB PBC, spring MSP OBIA and spring MSP PBC, or Fall RGB OBIA and 

Fall RGB PBC (Table 4).  

 

  

 

 

 

 

 

Figure 5: Example of an Other plot, totaling 28.27 m2 in area. Despite the inclusion of both 
Other and Invasive pixels within the plot, there are not enough Invasive-labeled pixels to exceed 
the 1 m2 MMU threshold. Therefore, the plot is correctly labelled as Other. The Invasive class 
includes both B. thunbergii and R. multiflora pixels. 
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Table 5: Pairwise comparison of error matrices represented by the Z statistic, generated through 
Kappa analysis between each pair of error matrices. Statistically significant Z statistics are in 
bold.  Overall accuracy for each classification is reported on the diagonal in parentheses.  

 
Spring 
MSP 
OBIA 

Spring 
RGB 
OBIA 

Fall 
RGB 
OBIA 

Fall 
MSP 
OBIA 

Spring 
MSP 
PBC 

Spring 
RGB 
PBC 

Fall 
RGB 
PBC 

Fall  
MSP 
PBC 

Spring 
MSP 
OBIA 

(69.44)        

Spring 
RGB 
OBIA 

1.423 (82.35)       

Fall 
RGB 
OBIA 

2.092 3.705 (59.72)      

Fall 
MSP 
OBIA 

0.085 1.504 1.984 (70.83)     

Spring 
MSP 
PBC 

0.180 1.647 1.987 0.092 (70.83)    

Spring 
RGB 
PBC 

0.803 0.609 2.975 0.884 1.006 (76.47)   

Fall 
RGB 
PBC 

2.002 3.495 0.121 1.904 1.893 2.822 (59.72)  

Fall 
MSP 
PBC 

0.395 1.867 1.749 0.305 0.222 1.221 1.674 (68.06) 
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DISCUSSION 

 UAS collected imagery yielded classified maps that were up to 82% accurate, 

comparable to previous studies classifying invasive species using UAS imagery in open canopy 

habitats (Komarek et al., 2018; Mullerova et al., 2017a,b). Spring RGB imagery resulted in maps 

significantly more accurate than fall RGB imagery, regardless of classification method. Berberis 

thunbergii and Rosa multiflora were chosen for this study due to their tendency to leaf out early 

in spring, and the imagery reflected asynchronous phenology with canopy trees. High spring 

classification accuracies are consistent with previous remote sensing studies that took advantage 

of early spring green up to map widespread understory invasive species using satellite imagery 

(Becker et al., 2013; Singh et al., 2018; Wilfong et al., 2009) and are the first to demonstrate how 

well invasive plants in forest understory can be detected with UAS imagery. 

 My success in identifying invasive species from certain imagery has strong implications 

for UAS as an invasive management tool, with some caveats. In early May, B. thunbergii and R. 

multiflora were well into leaf elongation phase, while most native species were still in bud form 

or just breaking bud. This asynchrony in phenology was expected since both species are known 

to leaf out very early, but the visual distinction between native and invasive species was even 

more obvious than anticipated. The distinct differences in green vs no green in the understory 

allowed for confident training data selection by the analyst through manual image interpretation, 

but this was not the case for the fall imagery. Selecting training data in the fall imagery was very 

difficult due to both canopy and understory phenological status. Oak species held their leaves 

long into the fall, which was anticipated, blocking the view of species below. In addition, visible 

leaf litter closely resembled senescing B. thunbergii and R. multiflora leaves, which for R. 

multiflora was unexpected since it is cited to senesce late in autumn, and its stems are semi-
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evergreen (Dlugos et al., 2015). Fall multi-temporal imagery can improve understory invasive 

classification (Resasco et al., 2007; Shouse et al., 2013), but due to technological difficulties, I 

was only able to collect one date of fall imagery. Anecdotally, honeysuckle (Lonicera spp.) and 

glossy buckthorn (Frangula alnus) remained green into November, and may be apparent within 

the imagery. Both of these invasive species are known for their autumn extended leaf phenology 

(Fridley, 2012), and have been mapped using non-UAS remote sensing methods (Resasco et al., 

2007; Becker et al., 2013). The relative differences in canopy and understory species phenology 

indicates that collecting optimal understory UAS imagery is species specific and depends on 

knowing the dominant canopy composition of the intended area.  

 There were no significant differences overall between RGB and MSP sensors, although 

MSP imagery was required in fall to obtain significant classification results. RGB imagery 

yielded the highest spring classification accuracies and the three best classifications overall. The 

spatial resolution of the RGB imagery was greater than the MSP (3 cm as opposed to 13 cm), 

which qualitatively made the imagery easier to interpret and select training data. The majority of 

invasive plant remote sensing studies focus on multispectral satellite imagery (Bradley, 2014), 

though some have used RGB aerial and UAS imagery (Hill et al., 2017; Müllerová et al., 2017, 

2013). MSP sensors are generally more expensive than RGB sensors, so high classification 

accuracies with an RGB sensor is promising for UAS as a cost-effective management tool. The 

blue wavelengths in RGB imagery can also penetrate shadows, which are almost inevitable in 

understory settings (Jensen, 2016). Many MSP sensors, such as the Sequoia I used, lack 

sensitivity to blue wavelengths, which increases the difficulty of classifying in and around 

shadows. Regardless of sensor, the optimal flying conditions are a calm day with consistently 

overcast sky, which removes or minimizes shadows, and results in a more even illumination.  
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 Results indicated that OBIA classification does not achieve higher accuracies than PBC, 

contrary to the increasing literature recommending OBIA for UAS and high resolution image 

classification (Blaschke, 2010; Komarek et al., 2018; Mafanya et al., 2017). There was no 

significant difference between the spring RGB OBIA classification, which did have the highest 

overall accuracy, and any PBC classification other than Fall RGB PBC, which performed very 

poorly. OBIA classification is a commonly used classification method, particularly with UAS 

imagery (Komarek et al., 2018; Mullerova et al., 2017b; Singh and Frazier, 2018), but PBC may 

still be suitable for understory invasive mapping. Qualitative assessment of the imagery indicated 

that during orthomosaic creation, understory pixels can become blurred, resulting in less distinct 

shapes. In such a case, PBC may be advantageous since it only relies on spectral characteristics, 

whereas OBIA methods may get confused by branches overlaying invasive patches with 

indistinct margins. Furthermore, like MSP sensors, OBIA image analysis software such as 

eCognition is expensive, and requires more training than PBC methods before an analyst can 

effectively use it. Open source PBC classification programs such as Multispec (Purdue Research 

Foundation, 2019) are simple and require little training, which could increase the application of 

UAS by land managers or even private land owners.   

 Classifications could not distinguish between B. thunbergii and R. multiflora, leading 

them to be grouped into one Invasive class for analyses. There are a number of possibilities for 

this spectral confusion, the largest being that training data was limited and taken from one area in 

the imagery. It is generally recommended to take training samples from across the extent of the 

study area (Congalton and Green, 2019), but I chose to focus the Invasive training samples from 

one known area to better mimic how this technology would realistically be applied for land 

management. Another possibility for spectral confusion, particularly in the spring RGB imagery, 
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is the presence of inconsistent illumination across the study area over the course of the flight. 

Some sections of the orthomosaic were noticeably collected under cloud cover, while others are 

brightly illuminated. MSP sensors can remedy this issue since they incorporate a sunlight sensor, 

allowing for radiometric calibration so that the resulting orthomosaic is more uniformly 

calibrated than with an RGB sensor. However, while being able to distinguish between different 

invasive species would be ideal for prioritizing management, the distinction of the invasive 

species from the natives was successful and the ultimate priority of this study.  

 Other factors to consider for the applicability of UAS to invasive species management are 

user’s and producer’s accuracies. With respect to the Invasive class, user’s accuracies indicate 

errors of commission, or false positives, while producer’s accuracies indicate omission errors, or 

false negatives (Congalton and Green, 2019). When modelling invasive plant distributions, a low 

omission error (high producer’s accuracy) is more important than a low commission error (high 

user’s accuracy), meaning a false positive is less critical than a false negative (Ward, 2007). For 

instance, labelling an area with no invasive plants as Invasive is preferable to falsely labelling an 

invaded area as being uninvaded, because the species could be overlooked and continue to 

spread further. However, large numbers of false positives are undesirable as well, since the 

purpose of remote sensing for management is to focus and prioritize ground efforts. Spring MSP 

OBIA had a moderately high user’s accuracy (80%), but a low producer’s and overall accuracy 

(60% and 69%), meaning there were few false positives but many Invasive plots incorrectly 

labelled as Other. Conversely, spring RGB PBC 0.01 m2 had a high producer’s accuracy (100%), 

but a lower user’s accuracy (68%), meaning that areas were frequently labelled both correctly 

and incorrectly as invasive. The commission errors found in spring RGB PBC are preferable to 

having higher omission errors, but there may be applications where the opposite may be more 
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helpful for management. For example, if a classification falsely labels nearly an entire property 

as invasive, that classification is not helpful for prioritizing management. 		

 There are a number of improvements that could be made to this study. The investigation 

was approached as a proof of concept study, with the main goal to answer the overarching 

question of feasibility. The most obvious improvement would be to collect more data and across 

a larger study area or numerous properties. Having more training and validation data would 

allow for a more statistically robust study. Testing for optimal flight parameters would also 

likely improve results. A limited window for data collection, one spring and one fall, did not 

leave room for fine-tuning flying heights, spatial resolutions, and orthomosaic qualities. Multiple 

dates of imagery each season could also be used in a multi-temporal analysis, which, has 

increased classification accuracies in other invasive remote sensing studies (Resasco et al.,2007; 

Becker et al., 2013). Furthermore, I only used one OBIA machine learning algorithm, and one 

PBC algorithm per season. Other UAS studies have used numerous algorithms (Komarek et al., 

2018; Mullerova et al., 2017b) to determine the best classification for a specific date of imagery, 

so it is possible that there are more suitable classifications that could be used.  

 A last aspect of UAS remote sensing not explored in this study is the use of classified 

point clouds. Through Structure from Motion, achieved by taking images of a single area from 

numerous angles, photogrammetric point clouds can be built using software such as Pix4D or 

Agisoft (St. Petersburg, Russia). These point clouds are not a substitute for Lidar, but they do 

have elevation and spectral data attached to each point, which can be separated into ground, 

canopy, and subcanopy. Leduc and Knudby (2018) successfully used a classified point cloud to 

map a native understory species prior to canopy leaf out by first separating out the canopy points. 

Berberis thunbergii and R. multiflora are both plants that grow low enough to the ground that 
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they may be easily separable from the canopy and also the ground. Furthermore, R. multiflora 

typically grows taller than B. thunbergii, which could aid in distinguishing the two from one 

another. In early spring, point cloud classification could be very helpful in distinguishing green 

understory plants from green canopy leaves.  

 I have shown that invasive understory plants can be classified using both RGB and MSP 

sensors, as well as PBC and OBIA classification. RGB imagery achieved higher classification 

accuracies than MSP imagery in spring, which has implications for invasive plant management 

applications, because RGB sensors are less expensive and more common in basic UAS kits. 

Accuracies over 70% were possible in fall if a MSP sensor was used, but collecting spring RGB 

imagery would be less costly and more accurate. While some individual OBIA classifications 

outperformed some individual PBC classifications, and vice versa, there was no clear 

classification method winner. The two classifications with the highest overall accuracies were 

spring RGB OBIA and spring RGB PBC, with no significant difference. OBIA does not 

necessarily increase classification accuracy, and effective maps for invasive plant management 

can be created using simple PBC classifications. Considering the lesser expense of RGB sensors 

and accessibility of open-source PBC software, UAS are a promising tool for invasive plant 

mapping.  
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APPENDIX A: Data Collection Details 
 
Site Selection and Imagery 
 

I chose Kingman Farm as the study area after analyzing previously collected vegetation 

data and confirming with ground surveys. The UNH College Woodlands Continuous Forest 

Inventory (CFI) dataset, updated approximately every 5 years to reflect changes in tree and 

understory vegetation in permanent plots, indicated that Kingman Farm, among other properties, 

had numerous areas with abundant invasive plant coverage. Through random haphazard surveys, 

I confirmed that Kingman Farm contained patches of dominant B. thunbergii and R. multiflora 

coverages. I visually estimated these patches to be 10 m2 or larger and under deciduous and 

mixed canopies. The distribution of these two species was enough to designate several replicate 

areas, which distinguished Kingman Farm from other properties as an ideal study site. I marked 

all candidate invasive patches as I encountered them with a waypoint on a Garmin 

GPSMap76CS (Garmin, Olathe, KS; horizontal accuracy: 5-10 m; coordinate system: WGS84; 

WAAS enabled) over the course of five dates between February and July 2018. The property is 

also close to the University of New Hampshire’s (UNH) Durham campus, which is necessary for 

traveling to the study site at short notice to take advantage of favorable flying conditions.  

 To ensure that I would not miss my phenological window, I monitored indicator plots of 

B. thunbergii and R. multiflora at anticipated periods of phenological change weekly early March 

through late May, and again in early October through mid-November.  These indicator plots 

were located off-trail at Kingman Farm, in an easily accessible location but with light exposure 

that upon visual assessment appeared average to Kingman stands. I flagged one B. thunbergii 

and one R. multiflora shrub and monitored them for phenological changes. I tracked phenology 

using the established standards set by the National Phenology Network (USA National 



	 51 

Phenology Network, 2017), including phenophases of bud presence, budburst, leaf out, leaf 

elongation, flower bud presence, and open flowers. As changes occurred, I recorded them as a 

percentage of the individual shrub. For example, when my B. thunbergii tagged individual hit 

budburst, I described it as 40% budburst, with 60% unburst buds. I also tracked general 

phenological changes of canopy species in both early spring and late fall to assess levels of 

canopy leaf out and leaf off. Between 5/8/18 and 6/20/18 I continued flights in the chance that 

invasive shrub flowering was visible through canopy gaps. However, the canopy was too closed 

in to see the ground in the imagery in these dates and this imagery was not used in the final 

analysis.  

Table A1: Phenology tracking sheet for invasive understory plants and canopy tree species. 

 

 Recent UAS studies found that higher flying heights results in more successful image 

calibration and resulting orthomosaic creation (Fraser and Congalton, 2018). However, since my 

intent was to assess UAS as a tool for early invasion monitoring, I focused on collecting imagery 

that would yield the highest possible resolution, so that the smallest plant units possible could be 

classified. Lower flying heights did result in less than optimal orthomosaic creation, so I 

experimented with increasing flying height from 80m to 100m, which yielded better results. 

Another factor in determining flying heights was the specific UAS used. I collected the spring 

RGB imagery using the Eagle XF, which could safely fly at heights of 80m above the ground. 

However, after June 2018, I had to switch to using the eBee for both RGB and MSP imagery due 



	 52 

to technical difficulties. Due to a sensitive ground sensor system on the eBee, I had difficulty 

collecting imagery at 80m because the system thought it was too close to the tree canopy. Flying 

at 100 m resolved this issue and still resulted in very high resolution imagery.  

 I selected imagery to classify based on the relative phenology of the native tree species 

and B. thunbergii and R. multiflora. By studying the known training area where I had put out 

target points marking patches of the invasive species, it was straightforward to determine which 

date of imagery I could see the invasive species the best without being obscured by leafing out 

tree species in the spring. Since I only collected one date of fall imagery, I used what I had. 

Although I waited as long as possible for canopy leaf drop to advance, it was much more 

difficult to visually identify invasive species in the fall imagery due to their resemblance in color 

to fallen leaves.  

 
Table A2: Date, UAS model, camera model, sensor type, and flying height of imagery collected 
in 2018. Sensors types are multispectral (MSP) and red-green-blue (RGB). Dates included in the 
main text are indicated in bold. 

 

 
 
 
 
 
 
 
 

Date UAS Camera Sensor Type Flying Height (m) 
4/12/18 EBee Plus Sequoia MSP 100 and 120 
4/23/18 eBee Plus Sequoia MSP 100 
5/4/18 Eagle XF a7R RGB 80 
5/8/18 Eagle XF a7R RGB 80 and 120 
5/23/18 EagleXF a7R RGB 80 and 120 
6/4/18 Eagle XF a7R RGB 120 
6/20/18 Eagle XF a7R RGB 120 
11/9/18 EBee Plus S.O.D.A, Sequoia RGB, MSP 100 and 120 
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Vegetation Plot Sampling Details 
 

I used 1 m2 subplots to estimate the average density of B. thunbergii and R. multiflora 

using the following scale: <5, 5-25, 25-50, 50-75, 75-100. For B. thunbergii, the scale numbers 

refer to the number of lateral stems, while for R. multiflora I counted the number of compound 

leaves. I performed several calibration counts, but overall these were rough estimates to measure 

ordinal invasive density in the plot. Density assessments were separate for adult plants—those 

with woody stems—and “young shoots”, which were suckers or other non-woody first year 

growth. The distinction in plant age is pertinent because only adult stems are present and leafing 

in early spring, but young shoots could influence fall classification. 

In addition to the vegetation composition and coverage measurements, I characterized the 

general distribution of B. thunbergii and R. multiflora in the 3m radius plot based on presence by 

quadrant—northeast, southeast, southwest, and northwest. This was presence/absence data only. 

For example, if B. thunbergii was present in the northeast and southeast quadrants, I recorded it 

as present in those two quadrants and absent in the others. If R. multiflora also happened to be in 

those same quadrants, that was recorded as well. I also recorded presence data for Symplocarpus 

foetidus (skunk cabbage) and Frangula alnus (glossy buckthorn). Symplocarpus foetidus was in 

an active growth state at the time early spring imagery was collected—as such, it was important 

to note in case of classification confusion in the imagery. Frangula alnus was another invasive 

plant species present in the study area that could also be confused with other early leaf-out 

vegetation. I classified ground type(s) as wet, bare, litter, rock, and/or grassy in case that 

interfered with imagery classification.  

 

 



	 54 

Table A3: Ground data plot sampling field sheet used to collect validation reference data. 
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APPENDIX B: Species-Specific Accuracy Assessment Results 

I first classified my imagery and ran accuracy assessments with B. thunbergii and R. 

multiflora as separate classes, but the overall accuracies were very low across all classifications, 

with the highest being Fall RGB OBIA at 65.31% overall accuracy. These low overall accuracies 

led to me combining the two species-level classes into one invasive class for accuracy 

assessment.  

Table B1: Comparison of overall accuracy (OA), user’s accuracy (UA), and producer’s accuracy 
(PA) for classifications generated using separate B. thunbergii (barberry), R. multiflora (rose), and 
Other map classes. Sensor designtions include red, green, blue (RGB) and multispectral (MSP). 
Object based image analysis (OBIA) is the second classification type. 

Season Sensor Class. OA Barberry 
UA 

Barberry  
PA 

Rose 
UA 

Rose 
PA 

Spring MSP OBIA 0.33 0.30 0.14 0.33 0.28 
Spring RGB OBIA 0.34 0.38 0.15 0.36 0.56 

Fall RGB OBIA 0.65 0.67 0.64 0.58 0.83 
Fall MSP OBIA 0.45 0.50 0.68 0.55 0.33 

Spring MSP PBC 0.38 0.46 0.86 0.25 0.11 
Spring RGB PBC 0.39 0.19 0.15 0.67 0.56 

Fall RGB PBC 0.57 0.64 0.45 0.60 0.95 
Fall MSP PBC 0.24 .24 0.23 0.32 0.44 

 


