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Quenching estimates for a non-Newtonian filtration

equation with singular boundary conditions
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Nacogdoches, TX, 75962, USA
bDepartment of Computer Engineering, Karabuk University, Balıklarkayası Mevkii,
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Abstract

In this paper, the quenching behavior of the non-Newtonian filtration equa-
tion (φ(u))t = (|ux|

r−2 ux)x with singular boundary conditions, ux (0, t) =
u−p(0, t), ux (a, t) = (1−u(a, t))−q is investigated. Various conditions on the
initial condition are shown to guarantee quenching at either the left or right
boundary. Theoretical quenching rates and lower bounds to the quenching
time are determined when φ(u) = u and r = 2. Numerical experiments
are provided to illustrate and provide additional validation of the theoretical
estimates to the quenching rates and times.

Keywords: non-Newtonian filtration equation, singular boundary
condition, quenching

1. Introduction

In this paper, we study the quenching behavior of the following nonlinear
heat equation with singular boundary conditions:







(φ(u))t = (|ux|
r−2 ux)x, 0 < x < a, 0 < t < T,

ux (0, t) = u−p(0, t), ux (a, t) = (1− u(a, t))−q, 0 < t < T,
u (x, 0) = u0 (x) , 0 ≤ x ≤ a,

(1.1)

where φ(s) is an appropriately smooth and strictly monotone increasing func-
tion with φ(0) = 0, φ(1) = 1 and φ′(s) ≤ 0. p, q are positive constants, r ≥ 2
and T ≤ ∞ and the initial function u0(x) is a non-negative smooth function
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satisfying the compatibility conditions:

u′0 (0) = u−p
0 (0), u′0 (a) = (1− u0(a))

−q.

In the case, φ(u) = u1/m (0 < m < 1), Eq. (1.1) is known as the classical
non-Newtonian filtration equation that attempts to model non-stationary
fluid flow through a porous medium where the tangential stress of the fluid’s
displacement velocity, u, has a power dependence under thermodynamic ex-
pansion and compression as a result of heat transfer [12, 13, 19]. The sin-
gular boundary flux terms represent a nonlinear radiation law at the bound-
ary and is common to polytropic filtration equations [11, 12, 13, 19]. This
mathematical model may exhibit finite-time quenching, defined as a time
T = T (u0) <∞ such that

lim
t→T−

min{u(x, t) : 0 ≤ x ≤ a} → 0 or lim
t→T−

max{u(x, t) : 0 ≤ x ≤ a} → 1.

In the following, the quenching time of Eq. (1.1) is denoted as T .
As is well known, when φ(u) = u and r = 2, the equations reduce to the

heat equation. In [15] Selcuk and Ozalp considered the problem:






ut = uxx, 0 < x < a, 0 < t < T,
ux (0, t) = u−p(0, t), ux (a, t) = (1− u(a, t))−q, 0 < t < T,
u (x, 0) = u0 (x) , 0 ≤ x ≤ a,

(1.2)

It shown that if u0 satisfies uxx(x, 0) ≤ 0 then lim
t→T−

u(0, t) → 0 and ut(0, t)

blows up in finite time and the quenching location is at x = 0. Likewise, it
was shown that if u0 satisfies uxx(x, 0) ≥ 0 then quenching will occur at
x = a.

In this paper, new estimates are derived for quenching rates. In addi-
tion, we provide necessary conditions that guarantee quenching at one of the
boundary locations for a more general φ(u) and r ≥ 2.

In the following, the initial condition may satisfy either of the two condi-
tions:

uxx(x, 0) ≥ 0, 0 < x < a, or (1.3)

uxx(x, 0) ≤ 0, 0 < x < a, (1.4)

and the following condition:

ux(x, 0) ≥ 0, 0 < x < a. (1.5)
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These assumptions will be shown to guarantee that quenching will occur in
finite time.

Quenching problems have a long history in applied mathematics litera-
ture, dating back to pioneering work of Kawarada [10], which examines the
one-dimensional heat equation with a nonlinear source term with Dirichlet
boundary conditions. The Kawarada equations and extensions have been a
subject of interest of both numerical [1, 8, 16] and theoretical [6, 7, 5, 14, 18,
20]. In many situations, the location that quenching occurs may be difficult
to obtain. Here, the situation of a singular boundary condition enables the-
oretical predications to happen since the quenching location is known based
on simple requirements on the initial conditions.

Chan and Yuen [5] investigated a slightly different left boundary condi-
tion:

ut = uxx, in Ω,
ux (0, t) = (1− u(0, t))−p, ux (a, t) = (1− u(a, t))−q, 0 < t < T,

u (x, 0) = u0 (x) , 0 ≤ u0 (x) < 1, in D,

where a, p, q > 0, T ≤ ∞, D = (0, a),Ω = D×(0, T ). In [5], they showed that
x = a is the unique quenching point in finite time if u0 is a lower solution,
and ut blows up at quenching time. In [14], Selcuk and Ozalp considered the
problem

ut = uxx + (1− u)−p, 0 < x < 1, 0 < t < T,
ux (0, t) = 0, ux (1, t) = −u−q(1, t), 0 < t < T,
u (x, 0) = u0 (x) , 0 < u0 (x) < 1, 0 ≤ x ≤ 1.

They showed that x = 0 is the quenching point in finite time, limt→T− u(0, t) →
1, if u (x, 0) satisfies uxx(x, 0)+ (1− u(x, 0))−p ≥ 0 and ux(x, 0) ≤ 0. Further
they showed that ut blows up at quenching time. Furthermore, they ob-
tained a quenching rate and a lower bound for the quenching time. In [12],
Li and et.al. considered the quenching problem for non-Newtonian filtration
equation with a singular boundary condition







(ψ(u))t = (|ux|
r−2 ux)x, 0 < x < 1, 0 < t < T,

ux (0, t) = 0, ux (1, t) = −g(u(1, t)), 0 < t < T,
u (x, 0) = u0 (x) , 0 ≤ x ≤ 1,

(1.6)

where ψ(u) is a monotone increasing function with ψ(0) = 0, p > 1, g(u) >
0, g′(u) < 0 for u > 0, and limu→0+ g(u) = ∞. They showed that x = 1 is the
only quenching point in finite time under proper conditions, Further, they
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obtained a quenching rate and gave an example of an application of their
results.

In this paper, the quenching problem, Eq. (1.1), exhibits two types of
singularity terms; the boundary outflux terms u−p and (1−u)−q as Eq. (1.2).
Motivated by problems (1.2) and (1.6), we investigate the quenching behavior
of Eq. (1.1). Further, in such case, several questions remain open for Eq. (1.2)
in [15], in particular:

1. What are the quenching rates?

2. What are the estimated quenching times?

This paper is arranged as follows. In Section 2, it will be shown that the
solution quenches in finite time T and lim

t→T−

u(a, t) → ∞ or lim
t→T−

u(a, t)−∞

blows up at quenching time at the only quenching point x = a or x =
0 under the conditions (1.3) or (1.4), respectively, for r > 2. In Section
3, quenching rates are obtained of the solution near the quenching time for
φ(u) = u and r = 2. Lower bounds to the are then given. Section 4 details
the development of the finite difference numerical approximation. Section
4 provides numerical experiments that provide experimental validation to
our theoretical results shown in Section 3. We highlight our main results in
Section 4.

2. Quenching for the non-Newtonian filtration equation

Firstly, we rewrite Eq. (1.1) into the following form:







ut = B(u)(|ux|
r−2 ux)x, 0 < x < a, 0 < t < T,

ux (0, t) = u−p(0, t), ux (a, t) = (1− u(a, t))−q, 0 < t < T,
u (x, 0) = u0 (x) , 0 ≤ x ≤ a,

(2.1)

where r ≥ 2, B(u) = 1/φ′(u) and φ′(u) 6= 0 for u > 0.

Lemma 2.1.

(a) Assume that (1.5) holds. Then, ux(x, t) > 0 in (0, a)× (0, T0).

(b) Assume that (1.4) holds. Then, ut(x, t) < 0 in (0, a)× (0, T0).

(c) Assume that (1.3) holds. Then, ut(x, t) > 0 in (0, a)× (0, T0).
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Proof.

(a) Let z(x, t) = ux(x, t). Then, z(x, t) satisfies

zt = B(u)(|z|r−2 z)xx +B′(u)z(|z|r−2 z)x, 0 < x < a, 0 < t < T0,
z (0, t) = u−p(0, t), z (a, t) = (1− u(a, t))−q, 0 < t < T0,
z (x, 0) = u

′

0(x).

From the Maximum Principle, it follows that z > 0 and hence ux(x, t) >
0 in (0, a)× (0, T0).

(b) Let w(x, t) = ut(x, t). Then, w(x, t) satisfies on 0 < x < a and 0 < t <
T0:

wt = B′(u)(|ux|
r−2 ux)xw + (r − 1)B(u)(|ux|

r−2wx)x,

and
wx (0, t) = −pu−p−1(0, t)w(0, t), 0 < t < T0,
wx (a, t) = q(1− u(a, t))−q−1w (a, t) , 0 < t < T0,

w (x, 0) = B(u0 (x))
(

∣

∣u
′

0(x)
∣

∣

r−2
u

′

0(x)
)

x
, 0 ≤ x ≤ a.

From the Maximum Principle, it follows that w < 0 and hence ut(x, t) <
0 in (0, a)× (0, T0).

(c) Similarly, u0(x) assumes (1.3), then from the above proof we have
ut(x, t) > 0 in (0, a)× (0, T0). The proof is complete.

Theorem 2.2.

(a) Assume that (1.4) and (1.5) hold. Then, the solution u of Eq. (2.1)
quenches at time T . Then quenching occurs only at the boundary x = 0
and ut(0, t) blows up at the quenching time.

(b) Assume that (1.3) and (1.5) hold. Then, ut(x, t) > 0 in (0, a)× (0, T0)
and there exists a finite time T , such that the solution u of Eq. (2.1)
quenches at time T . Then quenching occurs only at the boundary x = a
and ut(a, t) blows up at the quenching time.

Proof.
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(a) Assume that (1.4) holds. Then, by Lemma 2.1(b), we get ut(x, t) < 0
in (0, a)× (0, T0). In addition, by (1.4):

ω3 = −(1− u (a, 0))−q(r−1) + u−p(r−1) (0, 0) > 0.

We shall introduce a mass function:

m3 (t) =

∫ a

0

φ(u (x, t))dx, 0 < t < T.

Then

m′

3 (t) = (1− u (a, t))−q(r−1) − u−p(r−1) (0, t) ≤ −ω3,

by ut(x, t) < 0 in (0, a) × (0, T0). Thus, m3 (t) ≤ m3(0) − ω3t; which
means that m3 (T0) = 0 for some T0, (0 < T ≤ T0) which means u
quenches in finite time.

Since r ≥ 2, φ(u) is an increasing function, ut(x, t) < 0 and ux(x, t) >
0 in (0, a)× (0, T0), we get

(φ(u))t = (|ux|
r−2 ux)x → φ′(u)ut = (r − 1)ur−2

x uxx

→ uxx =
φ′(u)ut

(r − 1)ur−2
x

< 0.

Namely, ux is a decreasing function and since ux(a, t) = (1−u(a, t))−q >
1, ux(x, t) > 1 in (0, a) × (0, T ). Let η ∈ (0, a). Integrating this with
respect to x from 0 to η, we have

u(η, t) > u(0, t) + η > 0.

So u does not quench in (0, a].

Suppose that ut is bounded in [0, a)× [0, T ). Then there is a positive
constant M , ut > −M . Therefore,

B(u)(|ux|
r−2 ux)x > −M.

Because of φ′′(s) < 0, φ′(s) is not increasing. So, there are σ and
τ, which make 0 < τ ≤ v < 1 in [0, σ] × [0, T ), thus, B(u) = 1

φ′(u)
≥

B(τ). Thus,

(|ux|
r−2 ux)x >

−M

B(u)
≥

−M

B(τ)
,

(ur−1
x )x >

−M

B(τ)
,
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from ux(x, t) > 0 in (0, a)× (0, T0). Integrating this with respect to x
from 0 to a, we have

(1− u(a, t))−(r−1)q − u−(r−1)p(0, t) >
−Ma

B(τ)
.

As t → T−, the left-hand side tends to negative infinity, while the
right-hand side is finite. This contradiction shows that ut blows up at
the quenching time for x = 0.

(b) Similarly, assume that (1.3) and (1.5) hold. From (a), we have quench-
ing occurs only at the boundary x = a and ut blows up at the quenching
time for x = a. The proof is therefore complete.

3. Quenching rates of the heat equation

In this section, we investigate the case where φ(u) = u and r = 2 and
determine quenching rates and lower bounds to the quenching time under
certain conditions on the initial condition in Eq. (1.2). In the following we
may either assumption on the spatial derivative of the initial condition:

ux(x, 0) ≥
x

a
(1− u(x, 0))−q, 0 < x < a, or (3.1)

ux(x, 0) ≥
(a− x)

a
u−p(x, 0), 0 < x < a. (3.2)

Theorem 3.1. If u0(x) satisfies condition (1.3), that is, the initial condition
is not concave down, then there exists a positive constant C1 such that

u(a, t) ≤ 1− C1(T − t)1/(2q+2),

for t sufficiently close to the quenching time T .

Proof. Define
M(x, t) = ut − δq(1− u)−q−1ux,

in [0, a]× [τ, T ) where τ ∈ (0, T ) and δ is a positive constant to be specified
later. It was shown in [15], that since ut > 0 and ux > 0 in (0, a) × (0, T ),
then M(x, t) satisfies

Mt −Mxx = δq(q + 1)(q + 2)(1− u)−q−3u3x + 2δq(q + 1)(1− u)−q−2uxut > 0,
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for (x, t) ∈ (0, a)×(τ, T ). Furthermore, if δ is small enough thenM(x, τ) ≥ 0
for x ∈ [0, a], and M(0, t) > 0,M(a, t) > 0 for t ∈ [τ, T ).

Therefore, by the maximum principle, we obtain that M(x, t) ≥ 0 for
(x, t) ∈ [0, a]× [τ, T ). This means that

ut(x, t) ≥ δq(1− u)−q−1ux(x, t), (x, t) ∈ [0, a]× [τ, T )

Evaluating at x = a yields,

ut(a, t) ≥ δq(1− u(a, t))−2q−1.

Integrating over t from t to T gives,

u(a, t) ≤ 1− C1(T − t)1/(2q+2),

where C1 = (2δq(q + 1))1/(2q+2).

If we provide the additional condition on the spatial derivative of the
initial condition then we can obtain a lower bound to the value at the right
hand wall. This is encapsulated in the following theorem.

Theorem 3.2. If u0(x) satisfies conditions (1.3) and (3.1) then there exist
positive constant C2 such that

u(a, t) ≥ 1− C2(T − t)1/(2q+2),

for t sufficiently close to the quenching time T .

Proof. Define

J(x, t) = ux −
x

a
(1− u)−q, (x, t) ∈ [0, a]× [0, T ).

Then, J(x, t) satisfies

Jt − Jxx =
1

a

(

2q(1− u)−q−1ux + xq(q + 1)(1− u)−q−2u2x
)

.

J(x, t) cannot attain a negative interior minimum since ux(x, t) > 0. On the
other hand, by our condition (3.1) we have J(x, 0) ≥ 0 and

J(0, t) = u−p(0, t) > 0, J(a, t) = 0,
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for a ≤ 1 and t ∈ (0, T ). By the maximum principle, we obtain that J(x, t) ≥
0 for (x, t) ∈ [0, 1]× [0, T ). Therefore,

Jx(a, t) = lim
h→0+

J(a, t)− J(a− h, t)

h
= lim

h→0+

−J(a− h, t)

h
≤ 0.

Subsequently,

Jx(a, t) = uxx(a, t)−
1

a
(1− u(a, t))−q − q(1− u(a, t))−2q−1

= ut(a, t)−
1

a
(1− u(a, t))−q − q(1− u(a, t))−2q−1 ≤ 0

and

ut(a, t) ≤
(qa+ 1)

a
(1− u(a, t))−2q−1.

Integrating over t from t to T yields

u(a, t) ≥ 1− C2(T − t)1/(2q+2),

where C2 =
[

(qa+1)(2q+2)
a

]1/(2q+2)

.

Corollary 3.1. The results of the Theorems (3.1) and (3.2) suggest as the
quenching time is approached that the quenching rate of the solution can be
estimated as

u(a, t) ∼ 1− (T − t)

1

2(q + 1) .

Equivalently,
ln(1− u(a, t))

ln(T − t)
∼

1

2(q + 1)

In addition, a lower bound for the quenching time can be calculated. From
Theorem (3.2), we have

Tq =
a(1− u0(a))

2q+2

2(qa+ 1)(q + 1)
≤ T.

In the following, we assume the initial condition satisfies condition (1.4).
This condition guarantees quenching will occur at the left boundary, x = 0.
Hence, we seek quenching estimates to the quenching rate of the solution.
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Theorem 3.3. If u0(x) satisfies condition (1.4), that is, the initial condition
is not concave up, then there exists a positive constant C3 such that

u(0, t) ≥ C3(T − t)1/(2p+2),

for t sufficiently close to the quenching time T .

Proof. Define

M(x, t) = ut + δpu−p−1ux, (x, t) ∈ [0, a]× [τ, T )

where τ ∈ (0, T ) and δ is a positive constant to be specified later. It was
shown in [15] that since ut < 0 and ux > 0 in (0, a) × (0, T ) then M(x, t)
satisfies

Mt −Mxx = −δp(p+ 1)(p+ 2)u−p−3u3x + 2δp(p+ 1)u−p−2uxut < 0,

for (x, t) ∈ (0, a)×(τ, T ). Furthermore, if δ is small enough, thenM(x, τ) ≤ 0
for x ∈ [0, a] and M(0, t) < 0, M(a, t) < 0 for t ∈ [τ, T ). Therefore, by the
maximum principle, we obtain that M(x, t) ≤ 0 for (x, t) ∈ [0, a] × [τ, T ).
Subsequently, ut(x, t) ≤ −δpu−p−1ux(x, t) for (x, t) ∈ [0, a] × [τ, T ). This
means, at x = 0 we have:

ut(0, t) ≤ −δpu−2p−1(0, t).

Integrating over t from t to T yields,

u(0, t) ≥ C3(T − t)1/(2p+2),

where C3 = (2δp(p+ 1))1/(2p+2).

Theorem 3.4. If u0(x) satisfies both (1.3) and (3.2) then there exist positive
constant C4 such that

u(0, t) ≤ C4(T − t)1/(2p+2),

for t sufficiently close to the quenching time T .

Proof. Define

J(x, t) = ux −
(a− x)

a
u−p, (x, t) ∈ [0, a]× [0, T ).
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Then, J(x, t) satisfies

Jt − Jxx =
1

a

(

2pu−p−1ux + (a− x)p(p+ 1)(1− u)−p−2u2x
)

.

Since ux > 0, then J(x, t) cannot attain a negative interior minimum. On
the other hand, by the assumed condition (3.2), then J(x, 0) ≥ 0 and

J(0, t) = 0, J(a, t) = (1− u(a, t))−q > 0,

for t ∈ (0, T ). Therefore, by the maximum principle, we obtain that J(x, t) ≥
0 for (x, t) ∈ [0, 1]× [0, T ). As a result,

Jx(0, t) = lim
h→0+

J(h, t)− J(0, t)

h
= lim

h→0+

J(h, t)

h
≥ 0.

This yields

Jx(0, t) = uxx(0, t) +
1

a
u−p(0, t) + pu−2p−1(0, t)

= ut(0, t) +
1

a
u−p(0, t) + pu−2p−1(0, t) ≥ 0

and

ut(0, t) ≥ −
(pa + 1)

a
u−2p−1(0, t).

Integrating from t from t to T gives

u(0, t) ≤ C4(T − t)1/(2p+2),

where C4 =
[

(pa+1)(2p+2)
a

]1/(2p+2)

.

Corollary 3.2. The results of the Theorems (3.3) and (3.4) suggest as the
quenching time is approached that the quenching rate of the solution is esti-
mated as

u(0, t) ∼ (T − t)1/(2p+2)

Equivalently,
ln(u(0, t))

ln(T − t)
∼

1

2(p+ 1)

In addition, a lower bound for the quenching time is established from Theorem
(3.4), namely,

Tp =
au0(0))

2p+2

2(pa+ 1)(p+ 1)
≤ T.

for quenching time T .
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3.1. Initial Conditions Examples
It is clear, that the estimates for the quenching rates and times rely heav-

ily on properties of the initial condition. Here, we provide initial functions
that satisfy the boundary conditions while simultaneously satisfying either
conditions (1.3) and (3.1) or (1.4) and (3.2).

Consider the initial condition,

u0(x) =
1

4
+ 4x+ 4x2, 0 ≤ x ≤ a. (3.3)

where a = 1/8. Let p = 1 and q = log16/3(5). Since the initial condition is
concave up throughout its entire domain then clearly condition (1.3) is satis-
fied. In addition, a straightforward calculation shows that the left boundary
condition is satisfied, namely,

u′0(0) = 4 =
1

u0(0)p

At the right boundary we have u′0
(

1
8

)

= 5 and

1
(

1− u0
(

1
8

))q =

(

16

3

)q

= 5

In Fig. 1(a) it is seen that the condition (3.1) is satisfied.

In light of the initial condition (3.3) then, by Corollary (3.1) we have a
lower bound to quenching time. Namely:

Tq =
(3/16)2q+2

16
(

1
8
q + 1

)

(q + 1)
≈ 4.0002× 10−5.

Similarly, if the initial condition is

u0(x) =
1

4
+ 4x− 2x2, 0 ≤ x ≤ a. (3.4)

where a = 1/8. Let p = 1 and q = log32/9
(

7
2

)

. Since the initial condition
is concave down throughout its entire domain then clearly condition (1.4) is
satisfied. It is clear that the left boundary condition is satisfied. At the right
boundary we have u′0

(

1
8

)

=
(

1− u0
(

1
8

))−q
= 7

2
. In Fig. 1(b), we see that

condition (3.2) is satisfied. Furthermore, by Corollary (3.2) we have a lower
bound to quenching time. Namely:

Tp =
1

9216
≈ 1.0851× 10−5.
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Figure 1: (a) A graph of u′

0(x) (RED) and x
a (1−u0(x))

q (BLUE) for u0(x) =
1
4 −4x−4x2.

It is clear that u′

0(x) ≥
x
a (1 − u0(x))

−q is satisfied throughout the domain 0 ≤ x ≤ 1/8.
(b) A graph of u′

0(x) (RED) and a−x
a (u0(x))

−p (BLUE) for u0(x) =
1
4 + 4x − 2x2. It is

clear that u′

0(x) ≥
a−x
a (u0(x))

−p is satisfied throughout the domain 0 ≤ x ≤ 1/8.

4. Numerical Approximation and Experiments

Let xj = jh for j = 0, . . . , N +1 and h = a/(N +1). Let tk = tk−1+ τk−1,
where τk−1 is the temporal step. Let uj(t) be the approximation to u(xj , t).
Define the vector ~u(t) = (u0(t), u1(t), . . . , uN(t), uN+1(t))

⊤, where ~u(0) is
created from evaluating the initial condition at the grid points. Central dif-
ference approximations are utilized at each grid point to create the semidis-
cretized equations approximating Eq. (1.2), namely,

h2~̇u(t) = ~F (~u(t)), (4.1)

where ~F = (F0, . . . , FN+1) with components defined as

Fk =























2u1 +
2h

(u0)p
− 2u0 k = 0

uk−1 − 2uk + uk+1 k = 1, 2, . . . , N

2uN +
2h

(1− uN+1)q
− 2uN+1 k = N + 1

(4.2)

Define ~vm as the approximation to ~u(t) at time t = tm. Then, the solution is
advanced through a second order accurate Crank-Nicolson scheme [17]:

~vm+1 = ~vm + µm(~F (~vm+1) + ~F (~vm)), (4.3)
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where µm = τm/(2h
2). The scheme is overall second order accurate, however,

due to the singular boundary conditions the equations are stiff and it is
known that unless τk is sufficiently then the method may manifest a reduction
in the order of temporal convergence [9]. With this in mind, we expect the
method to overall first order accurate modest temporal steps. It is common to
approximate ~vm+1 in the right hand side by a first order Euler approximation,
~vm+1 ≈ ~vm + 2µm

~F (~vm). This maintains the overall accuracy of the scheme
will creating a semi-explicit scheme for efficiency in computations [2]. The
spatial grid is fixed throughout the computation, however, adaptation may
occur in the temporal step. Temporal adaption for quenching problems is
critical to ensure accuracy in the quenching time. An arc-length monitoring
function for ~̇u is used to adapt the temporal step. Define

mi

(

∂ui
∂t
, t

)

=

√

1 +

(

∂2ui
∂t2

)2

, (x, t) ∈ [0, a]× (0, T ]

for i = 0, . . . , N+1. The monitoring functions, mi, monitor the arc-length of
the characteristic at node xi. Subsequently, as quenching is approached the
temporal derivative grows beyond exponentially fast, therefore the arc-length
will grow [3]. Therefore, we choose the temporal step such that the maximal
arc-length between successive approximations at [tk−2, tk−1] and [tk−1, tk] are
equivalent. Pragmatically, this leads to the equation for the temporal step:

τ 2k = τ 2k−1 +min
i

{

[(

∂ui
∂t

)

k−1

−

(

∂ui
∂t

)

k−2

]2

−

[(

∂ui
∂t

)

k

−

(

∂ui
∂t

)

k−1

]2
}

,

for k = 2, . . . , and given the initial times steps of τ0 and τ1.
In the following experiments, we look to verify the second order conver-

gence rate of the numerical routine. Assume that t ≪ T . Let ~vτ be the ap-
proximation to ~u(τ) for a fixed temporal step τ. Then, the maximum absolute
difference between the numerical solution and ~u at time is max |~vτ−~u| ≈ Cτ p,
where C is some positive constant and p is the order of accuracy of the tem-
poral scheme. Consider creating a new approximation with a temporal step
τ/2, then at each grid point,

|(~vτ/2 − ~u)i| ≈ C

(

h

2

)p

=
Chp

2p

≈
|(~vτ − ~u)i|

2p
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for i = 0, . . . , N +1. Rearranging, yields an expression to estimate the order
of accuracy,

p ≈
1

ln(2)
ln

(

|(~vτ − ~u)i|

|(~vτ/2 − ~u)i|

)

This generates an approximate convergence rate at each grid point xi. In the
majority of applications ~u is unknown. Hence, a numerical solution with a
relatively fine temporal step is used to estimate the rate of the underlying
cauchy sequence [4].

Consider the initial condition Eq. 3.3, where a = 1/8, p = 1, and q =
log16/3(5). We choose τ = 10−4 and h = .01. In such case, we estimate the
convergence rate of 1.013. Therefore, a reduction in the temporal order of
convergence is manifested. To estimate the quenching time and rates, we run
the simulation with h = .001 and τ0 = τ1 = 10−6. We adapt the temporal
step but require τk ≥ 10−9. The quenching time is numerically determined
to be approximately T ≈ 1.9037× 10−3 which is greater than our estimated
lower bound of 4×10−5. A loglog plot of 1−u(1/8, t) versus T − t is shown in
Fig. 2(a). A least squares approximation suggests a slope of approximately
0.253286153170844. The theoretical estimate was predicated to be 0.255.

10-8 10-6 10-4 10-2

ln(T-t)

10-2

10-1

100

ln
(1

-u
(1

/8
,t)

10-8 10-6 10-4 10-2

ln(T-t)

10-2

10-1

100

ln
(u

(0
,t)

(a) (b)

Figure 2: Loglog plots of the numerical observed (a) 1 − u(a, t) and (b) u(0, t) versus
T − t. The red curves in each subplot provide a loglog of (a) (T − t)1/(2(q+1)) and (b)
(T − t)1/(2(p+1)) .
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Next, consider the initial condition Eq. 3.4, where a = 1/8, p = 1, and q =
log32/9(7/2). Again, we run the simulation with h = .001 and τ0 = τ1 = 10−6.
We adapt the temporal step but require τk ≥ 10−9. The quenching time
is numerically determined to be approximately T ≈ ×10−3 which is greater
than our estimated lower bound of 1.0851 × 10−5. A loglog plot of u(0, t)
versus T − t is shown in Fig. 2(b). A least squares approximation suggests
a slope of approximately 0.244301262418202. The theoretical estimate was
predicated to be 0.25.

5. Conclusions

In this paper, a quenching problem with nonlinear boundary conditions
are investigated. Certain conditions on the positivity, concavity, and the
first derivative of the initial condition lead to theoretical lower bound to the
quenching time, in addition to asymptotic estimates to the quenching rate.
Numerical experiments provided additional validation of the pragmatic appli-
cation of the theoretical analysis. We found that the experimental quenching
time, T , was later than our predicted lower bound. Further, the experiments
suggested quenching rates that were within 1% of the predicted asymptotic
quenching rates.
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