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A variable nonlinear splitting algorithm for reaction
diffusion systems with self- and cross-diffusion

Matthew A. Beauregard1, Joshua L. Padgett2

1Department of Mathematics & Statistics, Stephen F. Austin State University,

Nacogdoches, TX, 75962
2Department of Mathematics & Statistics, Texas Tech University, Lubbock, TX,

79409-1042

Abstract.
Self- and cross-diffusion are important nonlinear spatial derivative terms that are included
into biological models of predator-prey interactions. Self-diffusion models overcrowding
effects, while cross-diffusion incorporates the response of one species in light of the concen-
tration of another. In this paper, a novel nonlinear operator splitting method is presented
that directly incorporates both self- and cross-diffusion into a computational efficient de-
sign. The numerical analysis guarantees the accuracy and demonstrates appropriate criteria
for stability. Numerical experiments display its efficiency and accuracy.

Keywords: reaction-diffusion equations, nonlinear operator splitting, self-diffusion, cross-
diffusion

1 Introduction

This paper is motivated to develop efficient and accurate numerical approximations
to a generalized Shigesada-Kawasaki-Teramoto (SKT) model, which is a two-species
predator-prey model first developed in [22] and has been subject to much research
ever since. Here, we consider the following self- and cross-diffusion system of equa-
tions that models the interaction between the prey (u) and predator (v),

ut −∆
(
d1u+ s1u

2 + c12vu
)

= f(u, v) (1.1)

vt −∆
(
d2v + s2v

2 + c21uv
)

= g(u, v) (1.2)

defined on R+ × Ω. Here Ω = [0, L] × [0, L], ∆ is the two-dimensional Laplacian
operator, and the reactive functions f and g are in C1(R2). We define x to be the
spatial coordinate vector in two dimensions. The initial populations are given as

u(0,x) = u0(x), v(0,x) = v0(x) x ∈ Ω,

1Principal and corresponding author. Email address: beauregama@sfasu.edu. This author was
supported in part by internal research grant (No. 150030-26423-150) from Stephen F. Austin State
University.

1

ar
X

iv
:1

90
1.

06
04

9v
1 

 [
m

at
h.

N
A

] 
 1

8 
Ja

n 
20

19



and are assumed to be nonnegative and in C1(Ω). The diffusion coefficients are
given by di > 0. The parameters c12 and c21 describe the cross-diffusion response,
with the parameter c12 being nonnegative. This parameter choice encourages a prey
to move away from high concentrations of the predator. A similar description is
given for c21 > 0. In the event that c21 < 0 the species v move toward higher
concentrations of u, its primary food source. However, in this case, finite time blow-
up of the solution may occur [28], hence, we assume the c21 > 0. The nonnegative
self-diffusion coefficients si model interspecies competition and provides a severe
penalty to over-crowding of a particular species.

Since each of the coefficients are assumed nonnegative then it is known that
weak solutions exist globally in time when considering homogenous Neumann bound-
ary conditions and reactive functions of Lotka-Volterra type that satisfy f(0, v) =
g(u, 0) = 0 [6, 7, 8]. Likewise, classical solutions globally exist under various restric-
tions on the self and cross diffusion coefficients [20], namely, s1s2 ≥ 0, s2 > c12, s1 >
c21. However, if d1 < d2 then s1 maybe less than c21 and solutions will still exist
globally in time [18]. In light of these theoretical results, this paper only considers
homogeneous Neumann boundary conditions, even though our numerical analysis
extends to homogeneous Dirichlet or Neumann-Dirichlet boundary conditions in a
straightforward manner.

The inclusion of self- and cross-diffusion terms allow for realistic responses to
predator and prey movement and are often incorporated into mathematical models
in population biology [4, 11, 26, 27]. Our current efforts consider only a two species
model, yet the methods developed herein can by readily extended to more general
systems. The considered model is rich in dynamics and stems from the generaliza-
tions of the SKT model and the literature is abundant with investigations of variants
to this model [1, 7, 8, 9, 17, 18, 19, 23, 25]. However, the development and analysis
of accurate and efficient numerical approximations has not been considered.

This paper is organized as follows. In Section 2 we present the nonlinear variable
time splitting method where si = 0. The algorithm is based on a variant of a splitting
method recently developed by the authors for similar equations with self-diffusion in
[2]. Section 3 develops the nonlinear splitting algorithm for systems with both self-
and cross-diffusion. In both of these sections the methods are overall second-order
accurate and their equivalent factorizations are preferable as they allow for parallel
implementations and use of high performance computing (HPC) methods. Section 4
details further numerical analysis to provide criteria that guarantee stability. Section
5 provides examples to illustrate the efficiency and accuracy of the algorithm. We
conclude and highlight our results in Section 6.

In the following, we define a scheme as computationally efficient if it is second-
order accurate in space and time or better and the number of operations per time
step is directly proportional to the number of unknowns. In addition, all lowercase
bold letters indicate vectors, uppercase letters are used for matrices. Lastly, the
`2-norm is used throughout unless otherwise specified.
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2 Splitting algorithm with cross-diffusion only

GivenN � 0, we may inscribe over Ω the meshDδ = {(xi, yj) | i, j = 0, 1, . . . , N+1},
where δ = L/(N + 1) and xi = iδ and yi = jδ for i, j = 0, 1, . . . , N + 1. Further,
define ui,j(t) and vi,j(t) as the approximations to the exact solution u(xi, yj , t) and
v(xi, yj , t), respectively. Let

u = (u0,0(t), u1,0(t), . . . , uN+1,0(t), . . . , uN+1,N+1(t))>,

v = (v0,0(t), v1,0(t), . . . , vN+1,0(t), . . . , vN+1,N+1(t))>.

A similar notation is used for the reactive functions f and g. Second-order central
difference approximations are used to approximate the two-dimensional Laplacian
operator in Eqs. (1.1)-(1.2) which yields the semidiscretized equations,

du

dt
= (d1(P +R) + c12(PD(v) +RD(v))) u + f

dv

dt
= (d2(P +R) + c21(PD(u) +RD(u))) v + g

where P , R, and D(q) = diag(q) are M2 ×M2 matrices, where M = N + 2. The
matrices are defined as P := IM ⊗ T and R := T ⊗ IM , where IM is the M ×M
identity matrix and T is a M ×M tridiagonal matrix with main diagonal −2/δ2

and upper and lower diagonals of 1/δ2 with the exception of T12 = TM,M−1 = 2
as a result of the Neumann boundary conditions. The semidiscretized equations
are specified at every mesh point, with the Neumann boundary conditions being
incorporated via central difference approximations.

A variable time-step second-order Crank-Nicolson method [2] is used to advance
the solution in time, that is,(

I − τk
2

(
(P +R)(d1 + c12D

(v)
k+1)

))
uk+1

=
(
I +

τk
2

(
(P +R)(d1 + c12D

(v)
k )
))

uk +
τk
2

(fk+1 + fk) (2.1)(
I − τk

2

(
(P +R)(d2 + c21D

(u)
k+1)

))
vk+1

=
(
I +

τk
2

(
(P +R)(d2 + c21D

(u)
k )

))
vk +

τk
2

(
gk+1 + gk

)
(2.2)

where uk and vk are approximations to u and v at time tk =
∑k−1

i=0 τk and D
(q)
k =

D(qk) are diagonal matrices whose elements are q = u, v. Similarly, the reactive
functions fk and gk denotes the estimated values of f and g using the approximations
of uk and vk. To advance the solution in time we propose to solve Eqs. (2.1)-(2.2)
through a modified Douglass-Gunn splitting method, similar to that shown in [2],
given by(

I − d1τk
2

P

)
ũ(1) =

(
I +

τk
2

(
d1(P + 2R) + 2c12(P +R)D

(v)
k

))
uk + τkfk, (2.3a)(

I − d2τk
2

P

)
ṽ(1) =

(
I +

τk
2

(
d2(P + 2R) + 2c21(P +R)D

(u)
k

))
vk + τkgk,(2.3b)

3



(
I − d1τk

2
R

)
ũ(2) = ũ(1) − d1τk

2
Ruk, (2.3c)(

I − d2τk
2

R

)
ṽ(2) = ṽ(1) − d2τk

2
Rvk, (2.3d)(

I − c12τk
2

PD
(v)
k+1

)
ũ(3) = ũ(2) − c12τk

2
PD

(v)
k uk, (2.3e)(

I − c21τk
2

PD
(u)
k+1

)
ṽ(3) = ṽ(2) +

c21τk
2

PD
(u)
k vk, (2.3f)(

I − c12τk
2

RD
(v)
k+1

)
uk+1 = ũ(3) − c12τk

2
RD

(v)
k uk +

τk
2

(fk+1 − fk) , (2.3g)(
I − c21τk

2
RD

(u)
k+1

)
vk+1 = ṽ(3) − c21τk

2
RD

(u)
k vk +

τk
2

(
gk+1 − gk

)
. (2.3h)

Note that (2.3e)-(2.3h) involve implicit terms. In order to maintain the desired
computational efficiency, the implicit terms are approximated by taking an Euler
step, that is,

uk+1 = uk + τk

(
(P +R)(d1 + c12D

(v)
k )
)

uk + τkfk +O
(
τ2
k

)
,

vk+1 = vk + τk

(
(P +R)(d2 + c21D

(u)
k )
)

vk + τkgk +O
(
τ2
k

)
.

By employing the Euler step, we have developed a second-order accurate scheme
which remains computationally efficient using standard ADI techinques [3]. The
Euler approximation is established in the first two steps (2.3a) and (2.3b). Hence, the
overall computational cost is still O(N2). In effect, the splitting method resolves the
nonlinearity directly and advances the solution by iterating through one-dimensional
subproblems. Careful implementation only requires the use of six N × 1 vectors.
The splitting method’s solution is equivalent to the solution of Eqs. (2.1)-(2.2). We
demonstrate this equivalence in the following. First, we show that Eqs. (2.1)-(2.2)
are equivalent to a useful factorization.

Theorem 2.1. The induced error between the factorizations(
I − d1τk

2
P

)(
I − d1τk

2
R

)(
I − c12τk

2
PD

(v)
k+1

)(
I − c12τk

2
RD

(v)
k+1

)
uk+1

=

(
I +

d1τk
2
P

)(
I +

d1τk
2
R

)(
I +

c12τk
2

PD
(v)
k

)(
I +

c12τk
2

RD
(v)
k

)
uk

+
τk
2

(fk+1 + fk), (2.4)(
I − d2τk

2
P

)(
I − d2τk

2
R

)(
I − c21τk

2
PD

(u)
k+1

)(
I − c21τk

2
RD

(u)
k+1

)
vk+1

=

(
I +

d2τk
2
P

)(
I +

d2τk
2
R

)(
I +

c21τk
2

PD
(u)
k

)(
I +

c21τk
2

RD
(u)
k

)
vk

+
τk
2

(gk+1 + gk), (2.5)

and Eqs. (2.1)-(2.2), respectively, is O(τ3
k ).

4



Proof. We show the equivalency between Eq. (2.4) and Eq. (2.1). A virtually iden-
tical proof can be used to establish the result for v. For ease of exposition, we
disregard the reaction function approximations fk and fk+1. Expanding the matrix
products on the left- and right-hand sides of Eq. (2.4) yields,

I − τ

2

(
d1(P +R) + c12(P +R)D

(v)
k+1

)
+
τ2

4

(
d2

1PR+
(
c2

12PD
(v)
k+1R

+d1c12P
2 + d1c12PR+ d1c12RP + d1c12R

2
)
D

(v)
k+1

)
+O(τ3

k )

= I +
τ

2

(
d1(P +R) + c12(P +R)D

(v)
k

)
+
τ2

4

(
d2

1PR+
(
c2

12PD
(v)
k R

+d1c12P
2 + d1c12PR+ d1c12RP + d1c12R

2
)
D

(v)
k

)
+O(τ3

k ).

The desired result is obtained by expanding the O(τ2
k ) terms about vk in the left-

hand side: that is Dk+1 = Dk + O (τk). The truncated terms contribute terms of
order O(τ3). Therefore the O(τ2) terms on both sides cancel. Consequently the
factorization is equivalent up to O(τ3

k ).

The factorization in Eqs. (2.4) and (2.5) is desirable as it leads to our splitting
method given in Eqs. (2.3a)-(2.3h). This is encapsulated in the following theorem.

Theorem 2.2. The induced error between the factorizations given by Eqs. (2.4) and
(2.5) and the splitting design of Eqs. (2.3a)-(2.3h) is O(τ3

k ).

Proof. This is a straightforward calculation accomplished by multiplying (2.3g) by
the matrix product:(

I − d1τk
2
P

)(
I − d1τk

2
R

)(
I − c12τk

2
PD

(v)
k+1

)
.

Expanding and substituting into the result the definitions for ũ(1), ũ(2), and ũ(3)

results in(
I − d1τk

2
P

)(
I − d1τk

2
R

)(
I − c12τk

2
PD

(v)
k+1

)(
I − c12τk

2
RD

(v)
k+1

)
uk+1

=
(
I +

τk
2

(
d1(P +R) + c12(P +R)D

(v)
k

))
uk +

τk
2

(fk+1 + fk)

+
τ2
k

4

(
(RP +R2 + PD

(v)
k R+ P 2 + PR)D

(v)
k + PR

)
uk +O(τ3

k ),

where we have used the expansions vk+1 = vk +O (τk) and fk+1 = fk +O(τk). The
uk terms on the right-hand side can be factored to yield the desired result. A similar
proof can be established for the factorization used to advance v.

The combination of these two theorems establishes that the splitting method is
second-order accurate in time. Hence, the overall accuracy of the splitting method
combined with the spatial discretization is second-order accurate.
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3 Splitting algorithm with self and cross-diffusion

Here, we adopt the same notation as in the previous section and consider the semidis-
cretization of Eqs. (1.1)-(1.2),

du

dt
= [(P +R)(d1 + s1D(u) + c12D(v))] u + f,

dv

dt
= [(P +R)(d2 + s2D(v) + c21D(u))] v + g.

As before, we advance solution in time using a variable time-step second-order
Crank-Nicolson method,(

I − τk
2

(
(P +R)(d1 + s1D

(u)
k+1 + c12D

(v)
k+1)

))
uk+1

=
(
I +

τk
2

(
(P +R)(d1 + s1D

(u)
k + c12D

(v)
k )
))

uk +
τk
2

(fk+1 + fk) , (3.1)(
I − τk

2

(
(P +R)(d2 + s2D

(v)
k+1 + c21D

(u)
k+1)

))
vk+1

=
(
I +

τk
2

(
(P +R)(d2 + s2D

(v)
k + c21D

(u)
k )
))

vk +
τk
2

(
gk+1 + gk

)
.(3.2)

To advance the solution, just as before, a modified Douglass-Gunn splitting method
is utilized to solve Eqs. (3.1)-(3.2). The proposed method is given by(

I − d1τk
2

P

)
ũ(1) − τkfk =

(
I +

τk
2

(d1(P + 2R)

+2(P +R)(s1D
(u)
k + c12D

(v)
k )
))

uk, (3.3a)(
I − d2τk

2
P

)
ṽ(1) − τkgk =

(
I +

τk
2

(d2(P + 2R)

+2(P +R)(s2D
(v)
k + c21D

(u)
k )

))
vk, (3.3b)(

I − d1τk
2

R

)
ũ(2) = ũ(1) − d1τk

2
Ruk, (3.3c)(

I − d2τk
2

R

)
ṽ(2) = ṽ(1) − d2τk

2
Rvk, (3.3d)(

I − s1τk
2
PD

(u)
k+1

)
ũ(3) = ũ(2) − s1τk

2
PD

(u)
k uk, (3.3e)(

I − s2τk
2
PD

(v)
k+1

)
ṽ(3) = ṽ(2) − s2τk

2
PD

(v)
k vk, (3.3f)(

I − s1τk
2
RD

(u)
k+1

)
ũ(4) = ũ(3) − s1τk

2
RD

(u)
k uk, (3.3g)(

I − s2τk
2
RD

(v)
k+1

)
ṽ(4) = ṽ(3) − s2τk

2
RD

(v)
k vk, (3.3h)(

I − c12τk
2

PD
(v)
k+1

)
ũ(5) = ũ(4) − c12τk

2
PD

(v)
k uk, (3.3i)(

I − c21τk
2

PD
(u)
k+1

)
ṽ(5) = ṽ(4) − c21τk

2
PD

(u)
k vk, (3.3j)(

I − c12τk
2

RD
(v)
k+1

)
uk+1 = ũ(5) − c12τk

2
RD

(v)
k uk +

τk
2

(fk+1 − fk) , (3.3k)
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(
I − c21τk

2
RD

(u)
k+1

)
vk+1 = ṽ(5) − c21τk

2
RD

(u)
k vk +

τk
2

(
gk+1 − gk

)
. (3.3l)

An Euler step is used to approximate the implicit terms and maintain the com-
putational efficiency. The splitting method’s solution is equivalent to the solution
of Eqs. (3.1)-(3.2). The following theorems develop an equivalent factorization of
the Eqs. (3.1)-(3.2) and show that this factorization is equivalent to the splitting
in Eqs. (3.3a)-(3.3l). The proofs are omitted since they follow a similar pattern to
those of Theorems 2.1 and 2.2.

In the following, for brevity, we employ the notations

M1(τk,u,v, d1, s1) :=

(
I − d1τk

2
P

)(
I − d1τk

2
R

)(
I − s1τk

2
PD

(u)
k+1

)(
I − s1τk

2
RD

(u)
k+1

)
and

M2(τk,u,v, d1, s1) :=

(
I +

d1τk
2
P

)(
I +

d1τk
2
R

)(
I +

s1τk
2
PD

(u)
k

)(
I − s1τk

2
RD

(u)
k

)
.

Theorem 3.1. The induced error between the factorizations

M1(τk,u,v, d1, s1)
(
I − c12τk

2
PD

(v)
k+1

)(
I − c12τk

2
RD

(v)
k+1

)
uk+1

= M2(τk,u,v, d1, s1)
(
I +

c12τk
2

PD
(v)
k

)(
I +

c12τk
2

RD
(v)
k

)
uk +

τk
2

(fk+1 + fk), (3.4)

M1(τk,v,u, d2, s2)
(
I − c21τk

2
PD

(u)
k+1

)(
I − c21τk

2
RD

(u)
k+1

)
vk+1

= M2(τk,v,u, d2, s2)
(
I +

c21τk
2

PD
(u)
k

)(
I +

c21τk
2

RD
(u)
k

)
vk +

τk
2

(gk+1 + gk) (3.5)

and Eqs. (3.1)-(3.2), respectively, is O(τ3
k ).

Theorem 3.2. The induced error between the factorizations given by Eqs (3.4)-(3.5)
and the splitting design of Eqs. (3.3a)-(3.3l) is O(τ3

k ).

4 Stability and Convergence

We now establish criteria to guarantee the invertibility of specific matrices of the
proposed operator splitting method.

Theorem 4.1. Let κ = max{d1, d2, s1, s2, c12, c21}. If τk is sufficiently small,

κτk
δ2

<
1

2 max{1,maxj{(uk)j , (vk)j}}
, (4.1)

and uk,vk ≥ 0 , then, for i = 1 and 2, the matrices

I−diτk
2
P, I−diτk

2
R, I−s1τk

2
PD

(u)
k+1, I−

s1τk
2
RD

(u)
k+1, I−

s2τk
2
PD

(v)
k+1, I−

s2τk
2
RD

(v)
k+1,

I − c12τk
2

PD
(v)
k+1, I − c12τk

2
RD

(v)
k+1 I − c21τk

2
PD

(u)
k+1, I − c21τk

2
RD

(u)
k+1,

are nonsingular.
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Proof. In the case of homogeneous Dirichlet or Neumann boundary conditions we
have ‖T‖ ≤ 4/δ2. Therefore,∥∥∥∥τkd1P

2

∥∥∥∥ =
τkd1

2
‖IN+2 ⊗ T‖ =

τkd1

2
‖T‖ ≤ 2d1τk

δ2
< 1,

which gives that the matrix I − d1τk
2 P is nonsingular. A similar argument can be

established for the matrices I − d2τk
2 P and I − diτk

2 R for i = 1 and 2.

For the remaining matrices we substitute Taylor expansions of uk+1 and vk+1

into the matrices and then show that the resulting matrices satisfies the weak-row
sum criterion [13] (up to the appropriate order), that is:

1. The nonzero off-diagonal entries share the same sign and are of opposite sign
of the nonzero main diagonal entries and;

2. The row sums of the matrix are all nonnegative with at least one row sum
strictly greater than zero.

Suppose c21 > 0 and consider the matrix I − c21τk
2 PD

(u)
k+1. Taylor expanding

uk+1 shows that

I − c21τk
2

PD
(u)
k+1 = Q+O

(
τ3
k

)
,

where

Q = I − c21τk
2

PD
(u)
k −

c21τ
2
k

2
Pdiag

([
(P +R)(d2 + s2D

(v)
k + c21D

(u)
k )
]

uk + fk

)
.

Since the splitting scheme is second-order accurate we shall neglect the high-
order terms in showing that Q satisfies the weak-row sum criterion. Consider the
off diagonal entry:

Qj,j+1 = −c21τk
2δ2

(
(uk)j + τk(fk)j + τkdiag

(
(P +R)(d1 + s1D

(u)
k + c12D

(v)
k )uk

)
j+1,j+1

)
= −c21τk

2δ2
((uk)j + τk(fk)j + τk[(uk)j−1 − 4(uk)j + (uk)j+1 + (uk)j+M + (uk)j−M ]

+s1τk[(uk)2j−1 − 4(uk)2j + (uk)2j+1 + (uk)2j+M + (uk)2j−M ]

+c12τk[(uk)j−1(vk)j−1 − 4(uk)j(vk)j + (uk)j+1(vk)j+1 + (uk)j+M (vk)j+M

+(uk)j−M (vk)j−M ]) .

Utilizing Taylor expansions in the spatial coordinates, we see that for τk sufficiently
small, Qj,j+1 ≤ 0, since vk and fk are assumed to be nonnegative. A virtually iden-
tical proof can be established for the off-diagonal entries affected by the Neumann
boundary conditions. In addition, a similar calculation shows the lower diagonal of
Q is not positive. Therefore, Qi,j ≤ 0 for i 6= j.
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Next, we consider the row sums and show that these are nonnegative with at
least one row sum being strictly positive. Consider the ith row sum of Q,

M2∑
j=1

Qi,j = 1− c21τk
2δ2

((uk)i−2 − 2(uk)i−1 + (uk)i)

−
c21τ

2
k

2

M2∑
j=1

[
Pdiag

(
(P +R)(d1 + s1D

(u)
k + c12D

(v)
k )uk + fk

)]
i,j
,

for i = 1, . . . ,M2. The boundary conditions are (uk)−1 = (uk)1, (vk)−1 = (vk)1,
(uk)M2+1 = (uk)M2−1, and (vk)M2+1 = (vk)M2−1. Simplifying for i 6= 1,M2 yields,

M2∑
j=1

Qi,j >
1

2
+
c21τk
δ2

(uk)i−1

−c21τ
2
k

2

M2∑
j=1

[
Pdiag

(
(P +R)(d1 + s1D

(u)
k + c12D

(v)
k )uk + fk

)]
i,j

=
1

2
+
c21τk
δ2

[
(uk)i−1 −

τk
2

diag
(

(P +R)(d1 + s1D
(u)
k + c12D

(v)
k )uk + fk

)
i−1,i−1

+ τkdiag
(

(P +R)(d1 + s1D
(u)
k + c12D

(v)
k )uk + fk

)
i,i

− τk
2

diag
(

(P +R)(d1 + s1D
(u)
k + c12D

(v)
k )uk + fk

)
i+1,i+1

]
=

1

2
+
c21τk
δ2

(uk)i−1 +O
(
τ2k
δ2

)
Clearly, τk can be chosen sufficiently small such that theO

(
τ2
k/δ

2
)

term can be made
small enough to ensure the result is positive. A similar result can be established for
i = 1 and M2. Hence, we have that the weak row sum criterion is satisfied. Likewise,
the remaining matrices can be shown to be nonsingular and inverse positive using a
virtually identical approach.

We now study the stability of both Eqs. (2.4)-(2.4) and Eqs. (3.4)-(3.5). More-
over, we improve upon the previous methodology employed in [2] by significantly
reducing the previously imposed regularity conditions on the solution. In order to
prove stability of our proposed nonlinear splitting algorithm, we introduce a defini-
tion and some lemmas.

Definition 4.1. Let ‖·‖ be an induced matrix norm. Then the associated logarithmic
norm µ : CM×M → R of A ∈ CM×M is defined as

µ(A) = lim
h→0+

‖I + hA‖ − 1

h
,

where I ∈ CM×M is the identity matrix.
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Remark 4.1. When the induced matrix norm being considered is the `2−norm, then
µ(A) = max{λ : λ is an eigenvalue of (A+A∗)/2}.

Lemma 4.1. Let t ∈ C and A ∈ CM×M . Then for any induced matrix norm ‖ · ‖
we have

‖E(tA)‖ ≤ E(tµ(A)),

where E(·) is the matrix exponential.

Proof. See [12].

Lemma 4.2. Assume that (4.1) holds and let L := P + R, Lu := d1 + s1D
(u)
k +

c12D
(v)
k , and Lv := d2 + s2D

(v)
k + c21D

(u)
k Then we have

‖E (τkLLu))‖ ≤ 1 and ‖E (τkLLv)‖ ≤ 1.

Proof. By Lemma 4.1 we have

‖E (τkLLu)‖ ≤ E (τkµ (LLu)) ,

thus we need to show that µ (LLu) ≤ 0 to obtain the desired result. To do so, we
need to show that the eigenvalues of the matrix LLu + LuL

∗ are nonpositive.
Note that Lu is diagonal and by (4.1) its entries are positive, thus we have

LLuL
−1/2
u = LL1/2

u . Then,

1. LLu is similar to L1/2
u LL1/2

u with similarity matrix L−1/2
u and

2. L is congruent to L1/2
u LL1/2

u through the matrix L−1/2
u .

Therefore by Sylvester’s law of inertia we have that the eigenvalues of L are identical
to those of L1/2

u LL1/2
u , which due to similarity, are the same as those of LLu [15].

Clearly, eigenvalues of L are real and nonpositive [24]. Hence, so are the eigenvalues
of LLu. A similar argument gives that LLv has real and nonpositive eigenvalues.
Subsequently, the desired bounds are established.

Remark 4.2. It is worth noting that Lemma 4.2 holds independently of k, and even
uk and vk. All that is necessary is that the entries of the diagonal matrix D are
positive.

Lemma 4.3. Assume that (4.1) holds and let L, Lu, and Lv be defined as in the
previous lemma. Then

‖E (τkLLu))− E (τkLLv)‖ ≤ Cτk
∥∥∥LD(u−v)

k

∥∥∥ .
Proof. For convenience, we employ the notation X

(u)
k := LLu and X

(v)
k := LLv. By

employing the inverse Laplace transform and the second resolvent identity [14], we
have

E
(
τkX

(u)
k

)
− E

(
τkX

(v)
k

)
=

1

2πi

∫
Γ
es
[(
sI − τkX

(u)
k

)−1
−
(
sI − τkX

(v)
k

)−1
]
ds

10



=
1

2πi

∫
Γ
es
(
sI − τkX

(u)
k

)−1
τk

(
X

(u)
k −X(v)

k

)(
sI − τkX

(v)
k

)−1
ds,

where Γ is a path surrounding the spectrum of the matrices X
(u)
k and X

(v)
k . Taking

the norm of the above gives∥∥∥E (τkX(u)
k

)
− E

(
τkX

(v)
k

)∥∥∥ ≤
τk
2π

∫
Γ
|es|

∥∥∥∥(sI − τkX(u)
k

)−1
∥∥∥∥∥∥∥(X(u)

k −X(v)
k

)∥∥∥∥∥∥∥(sI − τkX(v)
k

)−1
∥∥∥∥ |ds|.

We proceed by developing separate bounds for the matrices in the above expression.
Note that by the Laplace transform and Lemma 4.2, we have∥∥∥∥(sI − τkX(u)

)−1
∥∥∥∥ =

∥∥∥∥∫ ∞
0

e−stE
(
τkX

(u)
k t

)
dt

∥∥∥∥
≤

∫ ∞
0
|e−st|

∥∥∥E (τkX(u)
k t

)∥∥∥ |dt| ≤ |s−1|.

We similarly derive the bound∥∥∥∥(sI − τkX(v)
k

)−1
∥∥∥∥ ≤ |s−1|.

Further, we have by direct calculation∥∥∥(X(u)
k −X(v)

k

)∥∥∥ ≤ ∥∥∥LD(u)
k − LD(v)

k

∥∥∥ =
∥∥∥LD(u−v)

k

∥∥∥ .
Combining the above yields∥∥∥E (τkX(u)

k

)
− E

(
τkX

(v)
k

)∥∥∥ ≤ τk
2π

∫
Γ
|es|

∥∥∥LD(u−v)
k

∥∥∥ |s−2| |ds| ≤ Cτk
∥∥∥LD(u−v)

k

∥∥∥ ,
which is the desired result.

Lemma 4.4. Assume that (4.1) holds, u, v ∈ H1(Ω), and that

uk+1 = E
(
τkL(d1 + s1D

(u)
k+1/2 + c12D

(v)
k+1/2)

)
uk +O

(
τ3
k

)
and

vk+1 = E
(
τkL(d2 + s2D

(v)
k+1/2 + c21D

(u)
k+1/2)

)
vk +O

(
τ3
k

)
.

Then ∥∥∥LD(u−v)
k+1

∥∥∥ ≤ C
for some positive constant C.
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Proof. By employing the notation from Lemma 4.3, we have

δ−2uk+1 = (δ2X
(v)
k )−1

[
E
(
τkX

(v)
)]
X

(v)
k uk

and

δ−2vk+1 = (δ2X
(u)
k )−1

[
E
(
τkX

(u)
)]
X

(u)
k vk.

Thus, it follows that ∥∥∥LD(u−v)
k+1

∥∥∥ ≤ ‖δ2L‖‖D‖ ≤ C1‖D‖,

where

D := (δ2X
(v)
k )−1

[
E
(
τkX

(v)
)]
X

(v)
k uk − (δ2X

(u)
k )−1

[
E
(
τkX

(u)
)]
X

(u)
k vk.

Taking the norm gives

‖D‖ ≤
∥∥∥(δ2X

(v)
k )−1

∥∥∥∥∥∥E (τkX(v)
)∥∥∥∥∥∥X(v)

k uk

∥∥∥
+
∥∥∥(δ2X

(u)
k )−1

∥∥∥∥∥∥E (τkX(u)
)∥∥∥∥∥∥X(u)

k vk

∥∥∥
≤ C

∥∥∥X(v)
k uk

∥∥∥+ C
∥∥∥X(u)

k vk

∥∥∥ . (4.2)

By our assumptions and [10] we have∥∥∥X(v)
k uk

∥∥∥ ≤ C1 and
∥∥∥X(u)

k vk

∥∥∥ ≤ C2. (4.3)

Applying (4.3) to (4.2) yields the desired result.

In the following theorem we employ the following product notation for non-
commuting matrices Aj ∈ CM×M :

k∏
j=m

Aj =

{
AkAk−1 · · ·Am, if k ≥ m,
I, if k < m.

Theorem 4.2. Assume that (4.1) holds, u, v ∈ H1(Ω), and let τj , j = 0, . . . , k, be
sufficiently small. Then it follows that the schemes (2.4)-(2.5) are stable in the sense
that there exists K1,K2 > 0 such that∥∥∥z(u)

k+1

∥∥∥ ≤ K1 and
∥∥∥z(v)

k+1

∥∥∥ ≤ K2,

where z
(u)
0 = u0− ũ0 and z

(v)
0 = v0− ṽ0 are initial errors, z

(u)
k+1 := uk+1− ũk+1 and

z
(v)
k+1 := vk+1 − ṽk+1 are the (k + 1)th perturbed error vectors, and K1 and K2 are

independent of k and τk.
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Proof. We first consider (2.4) and, for the time, disregard the nonlinear reaction
term. Thus, we have

uk+1 =
(
I − c12τk

2
RD

(v)
k+1

)−1 (
I − c12τk

2
PD

(v)
k+1

)−1
(
I − d1τk

2
R

)−1(
I − d1τk

2
P

)−1

×
(
I +

d1τk
2
P

)(
I +

d1τk
2
R

)(
I +

c12τk
2

PD
(v)
k

)(
I +

c12τk
2

RD
(v)
k

)
uk

:= M(τk,vk,vk+1)uk. (4.4)

It will be convenient to appeal to a Magnus-type representation of (4.4) [5, 16]. That
is, by employing the standard nonlinear Magnus-type integration and exponential
splitting theory, we have

M(τk,vk,vk+1) = E
(c12τk

2
RD

(v)
k+1

)
E
(c12τk

2
PD

(v)
k+1

)
E

(
d1τk

2
R

)
E

(
d1τk

2
P

)
× E

(
d1τk

2
P

)
E

(
d1τk

2
R

)
E
(c12τk

2
PD

(v)
k

)
E
(c12τk

2
RD

(v)
k

)
+O

(
τ3
k

)
= E

(
τkL(I +D

(v)
k+1/2)

)
+O

(
τ3
k

)
, (4.5)

where L := P + R, D
(v)
k+1/2 = D(vk+1/2), and tk+1/2 := tk + τk/2. We now consider

perturbations of the numerical solutions uk and vk, represented as

ũk+1 = E
(
τkL(I +D

(ṽ)
k+1/2)

)
ũk +O

(
τ3
k

)
(4.6)

and

ṽk+1 = E
(
τkL(I +D

(ũ)
k+1/2)

)
ṽk +O

(
τ3
k

)
(4.7)

Let z
(u)
k := uk − ũk and z

(v)
k := vk − ṽk. Iterating (4.4) by employing (4.5) yields

uk+1 =

 k∏
j=0

E
(
τjL(I +D

(v)
k+1/2

)u0 +

k∑
j=0

O
(
τ3
j

)
(4.8)

and iterating (4.6) yields

ũk+1 =

 k∏
j=0

E

(
τjL(I +D

(ṽ)
k+1/2

) ũ0 +

k∑
j=0

O
(
τ3
j

)
. (4.9)

Subtracting (4.9) from (4.8) gives

z
(u)
k+1 = Ψ1z

(u)
0 + Ψ2ũ0 +

k∑
j=0

O
(
τ3
k

)
,
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where

Ψ1 :=
k∏
j=0

E
(
τjL(I +D

(v)
j+1/2)

)
and Ψ2 :=

k∏
j=0

Fj −
k∏
j=0

Gj ,

with
Fj := E

(
τjL(I +D

(v)
j+1/2)

)
and Gj := E

(
τjL(I +D

(ṽ)
j+1/2)

)
.

We first consider Ψ1. To that end, by Lemma 4.2, we have

‖Ψ1‖ ≤
k∏
j=0

E
(
τjµ

(
L(I +D

(v)
j+1/2)

))
≤ 1.

Now we consider Ψ2. By manipulating Ψ2, we arrive at the following expression

Ψ2 =

k∑
j=0

 k∏
i=j+1

Fi

 (Fj −Gj)

[
j−1∏
i=0

Gn+1−i

]
. (4.10)

Taking the norm of both sides of (4.10) and employing Lemma 4.3 gives

‖Ψ2‖ ≤
k∑
j=0

 k∏
i=j−1

‖Fi‖

 ‖Fj −Gj‖[j−1∏
i=0

‖Gn+1−i‖

]
≤

k∑
j=0

Cτj

∥∥∥LD(z(v))
j+1/2

∥∥∥ , (4.11)

where C is a positive constant. By our assumptions and Lemma 4.4, we have

‖Ψ2‖ ≤
k∑
j=0

CτjK ≤ C1, (4.12)

where C1 is a constant independent of δ and τj , j = 0, . . . , k.
Combining the above gives

‖z(u)
k+1‖ ≤ ‖z(u)

0 ‖+ C1‖ũ0‖+

∥∥∥∥∥∥
k∑
j=0

O
(
τ3
j

)∥∥∥∥∥∥
≤ ‖z(u)

0 ‖+ C1‖ũ0‖+ C2 max
j=0,...,k

{
τ2
j

} k∑
j=0

τj

≤ ‖z(u)
0 ‖+ C1‖ũ0‖+ C3T ≡ K1,

where C2 and C3 are independent of j, τj , j = 0, . . . , k. By employing similar

arguments with (2.5), it can be shown that ‖z(v)
k+1‖ ≤ ‖z

(v)
0 ‖+C1‖ṽ0‖+C3T ≡ K2,

after possibly rescaling C1 and C3.
We now consider the nonlinear reaction term in the analysis of (2.4). Recall that

fk = f(uk,vk). Due to the differentiability of f, we have

f(uk,vk)− f(ũk, ṽk) = f(uk,vk)− f(ũk,vk) + f(ũk,vk)− f(ũk, ṽk)
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= fu(ξk,vk)z
(u)
k + fv(ũk, ηk)z

(v)
k ,

for some ξk = s1uk + (1− s1)ũk, s1 ∈ [0, 1] and ηk = s2vk + (1− s2)ṽk, s2 ∈ [0, 1].
Thus, we have

z
(u)
k+1 = Ψ1z

(u)
0 + Ψ2ũ0 +

k∑
j=0

τj
2

j+1∑
i=j

(
fu(ξi,vi)z

(u)
i + fv(ũi, ηi)z

(v)
i

)+
k∑
j=0

O
(
τ3
j

)
.

Since f is bounded, we obtain a similar stability bound as above. The same can be
done for (2.5) by using the properties of the reaction term g.

We now present the stability theorem for the scheme (3.4)-(3.5).

Theorem 4.3. Assume that (4.1) holds, u, v ∈ H1(Ω), and let τj , j = 0, . . . , k, be
sufficiently small. Then it follows that the schemes (3.4)-(3.5) are stable in the sense
that there exists K1,K2 > 0 such that∥∥∥z(u)

k+1

∥∥∥ ≤ K1 and
∥∥∥z(v)

k+1

∥∥∥ ≤ K2,

where z
(u)
0 = u0− ũ0 and z

(v)
0 = v0− ṽ0 are initial errors, z

(u)
k+1 := uk+1− ũk+1 and

z
(v)
k+1 := vk+1 − ṽk+1 are the (k + 1)th perturbed error vectors, and K1 and K2 are

independent of k and τk.

Proof. This result follows by a proof similar to that of the previous theorem, where

we use our developed bounds on u and v and employ the bound s1D
(u)
k + c12D

(v)
k ≤

max{s1, c12}D(w)
k , where wi = max{ui,vi} for X

(u)
k . The remaining arguments

follow in a similar fashion.

5 Numerical Experiments

In this section we provide illustrative the efficiency and convergence rate of the de-
veloped algorithm. All of the computations are carried out on a single HP EliteDesk
800 G1 work station with an IntelrCore(TM) i7-4770 3.40 GHz processor with 16
GB of RAM using Matlabr.

5.1 Example 1.

Consider Eqs. (1.1)-(1.2) with L = 1, homogenous Dirichlet boundary conditions,
and reaction functions

f(u, v) = g(u, v) = −4π2e−4π2t
(
cos2(πy) sin2(πx) + cos2(πx) sin2(πy)− 2 sin2(πy) sin2(πx)

)
It can be shown by direct calculation that the exact solution to this system of

partial differential equations is

u(x, y, t) = v(x, y, t) = sin(πx) sin(πy) exp(−2π2t).
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τ δ Max Error (Dirichlet) Max Error (Neumman)

2.5000× 10−5 1.0000× 10−2 1.8804× 10−8 4.4342× 10−8

1.2500× 10−5 1.0000× 10−2 4.6915× 10−9 1.0839× 10−9

6.2500× 10−6 1.0000× 10−2 1.1694× 10−9 2.4808× 10−9

Table 1: A absolute maximum error at t = 1 as we increase the resolution of the
temporal step. Each time that the temporal step is halved we see that the max error
is reduced by a fourth, which indicates a second-order convergence of the operator
splitting scheme.

Define u
(τ)
i,j and v

(τ)
i,j as the numerical solutions to u and v at time T with a temporal

step size of τ and location (iδ, jδ). Based on the analysis is the previous section, we

anticipate that the order of convergence in time is second-order. That is, max{|u(τ)
i,j −

u(ih, ij, T )|, |v(τ)
i,j − v(ih, ij, T )|} ≈ Cτp for some arbitrary constant C and p = 2.

We approximate p by,

p ≈ 1

ln(2)

1

N2
max


N∑

i,j=1

ln

∣∣∣u(τ)
i,j − u(ih, ij, T )

∣∣∣∣∣∣u(τ/2)
i,j − u(ih, ij, T )

∣∣∣ ,
N∑

i,j=1

ln

∣∣∣v(τ)
i,j − v(ih, ij, T )

∣∣∣∣∣∣v(τ/2)
i,j − v(ih, ij, T )

∣∣∣


Let δ = .01 and d1 = d2 = s1 = s2 = c12 = c21 = 1. Therefore, based on our
CFL condition, we let τ = .25 × 10−4 < .5 × 10−4. We simulate the solution until
T = 1 and estimate the approximate order of convergence to be p ≈ 2.000809. This
indicates that our nonlinear operator splitting method is converging at the desired
second-order rate.

Likewise, if we consider Neumann boundary conditions with the reaction func-
tions

f(u, v) = g(u, v) = exp(−2π2t)π2(9 exp(π2t) cos(πx) cos(πy) + 8 cos(πx)2 cos(πy)2

− 4 cos(πy)2 sin(πx)2 − 4 cos(πx)2 sin(πy)2),

then the exact solution for u and v is a + cos(πx) cos(πy) exp(−π2t), where a ∈ R.
In the simulations we let a = 1, which ensures that the initial condition remains
nonnegative throughout the computational domain. Using the same resolution as
in the Dirichlet case, we determine the order of convergence to be approximately
1.9945. In Table 1, we demonstrate the data for the maximum absolute error as we
increase the resolution in time. Notice that for a fixed δ, as we half the temporal
step the max error decreases by approximately one-fourth. This is also true if we fix
the temporal step size and then halve the spatial step sizes, which is the expected
result for a second-order numerical method.

To test the computational efficiency we determine the computational time to
complete 1000 iterations for a fixed τ as we increase the spatial resolution, N . We
determined that the computational time scales as O(N1.7568), which is an exponent
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less than the number of unknowns. Figure 1(b) shows the log-log plot of the compu-
tational time versus N . These results suggests that the procedure is computationally
efficient.

101 102 103

log(N)

100

101

102

103

lo
g

(C
P

U
 T

IM
E

)

Figure 1: A log-log plot of the computational time, in seconds, versus N after 1000
iterations. The temporal step is held constant, τ = 10−6, while δ = 1/(N − 1). A
linear least squares approximates the slope of the line to be 1.75681. This indicates
that the computational time is proportional to N1.654628. Since this is slower than
N2, then the proposed nonlinear splitting scheme is highly efficient.

5.2 Example 2.

Consider Eqs. (1.1)-(1.2) with Neumann boundary conditions and the following
Lotka-Volterra reaction functions,

f(u, v) = u(a1 − b1u+ c1v)

g(u, v) = v(a2 + b2u− c2v)

In [20] it was shown that for the above Lotka-Volterra reaction function, a global
solution exists if the parameters for diffusion satisfy the following conditions:

s1s2 ≥ 0, s2 > c12, s1 > c21

Consider a situation that violates the third condition and let d1 = .01, d2 =
.1, s1 = .05, s2 = .4, c12 = .12, and c21 = .06. These coefficients satisfy the criteria
shown in [18] for global solutions. For the reaction functions’ parameters we choose
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a1 = 1, b1 = 2, c1 = .2, a2 = .3, b2 = 1, and c2 = 4. The initial conditions are chosen
to be

u(x, y, 0) = 2 +

3∑
i=1

σi cos(nix) cos(miy)

v(x, y, 0) = 2 +
3∑
i=1

βi cos(aix) cos(biy),

where ai, bi,mi, and ni are positive integers and L = π. The amplitudes σi and
βi were chosen randomly from uniform distribution on the interval (0, 1). Regard-
less of the choice of amplitudes or frequencies the solution converges to spatially
homogenous solutions which exists globally in time.

5.3 Example 3.

Consider Eqs. (1.1)-(1.2) with Dirichlet boundary conditions and reaction functions
of the form

f(u, v) = u(a1 + b1u)

g(u, v) = v(a2 + b2v).

In [28] it was shown that finite time blow up can occur if bi > siλ and ai ≥ diλ
where λ is the first eigenvalue of the Laplacian operator and c12 = c21 = 0.

Consider the initial conditions

u(x, y, 0) = v(x, y, 0) = sin2(4x) sin2(2y)

with parameters d1 = d2 = 1, s1 = s2 = .05, a1 = a2 = 3, b1 = b2 = 4. In such a
situation the system of equations are decoupled. The parameters for u and v are
chosen to obey the criteria to guarantee blow-up. In order to satisfy Eq. (4.1) the
temporal step-size must be reduced as the populations grow in time. We terminate
the calculation when τ is adapted to a minimum of 10−10. Indeed, in our simulations
the populations are demonstrated to grow without bound. Figure 2 shows a panel
of the initial condition coupled with two snapshots of the population during the
calculation. Figure 2(b) shows the population at t = .5 for which the population has
begin to concentrate and grow in the center of the domain. Figure 2(c) shows the
population in the iteration prior to termination. At termination of the computation,
the population had reached a maximum value of approximately 1.6370× 107, while
the temporal derivative was approximately 1.0116× 1018.

6 Conclusions

In this paper a novel adaptive nonlinear operator splitting method was developed to
approximate coupled parabolic partial differential equations that contain self- and
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Figure 2: A panel showing the (a) initial condition, (b) population at t = .5 and (c)
just prior to finite time blow-up at t = .7945, from left to right, respectively.

cross-diffusion terms. The method extends the algorithm designed in [2] and pro-
vides an updated criterion to ensure the method’s stability and the invertibility of
the involved matrices. Surprisingly, the inclusion of the cross-diffusion term does
not complicate the numerical analysis any further than the inclusion of self-diffusion
terms. Hence, convergence and stability follow by employing techniques similar to
those developed in our prior work [2]. However, the current research improves upon
these techniques and employs techniques that allow for reduced regularity require-
ments on the solution. Moreover, the analysis does not depend on the boundary
conditions utilized and can be readily extended to several problems of particular
interest in the mathematical biology community such as in [18] and more recently
[21]. Our numerical experiments provide empirical evidence of the anticipated con-
vergence rate for Dirichlet and Neumann boundary conditions, further verifying the
efficacy of the proposed method. The computational experiments further provide
evidence suggesting that global solutions exist under certain parameter restrictions.
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