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ABSTRACT 

     The Canadian pulp and paper industry has been concerned with reducing annual 

emissions of pollutants into water bodies, air and landfills.  Black liquor is a major 

byproduct from pulp mills such as Kraft.  Black liquor is utilized in boilers to produce 

steam and electricity.  Black liquor is a low-value chemical and researchers have employed 

thermal and chemical processes to produce products such as oils, adhesives, and 

dispersants.  In recent years, photocatalysis has become an alternative to degrade black 

liquor into short chain carbon chemicals.  

     This study aims to optimize the performance of black liquor photocatalytic degradation 

using the TiO2/UV system.  Five practical factors were selected to develop the optimal total 

organic carbon (TOC) reduction.  A two-level 2k design was used as the preliminary study 

for examining the optimal initial concentration of black liquor and TiO2.  A three-level 

Box-Behnken design (BBD) with three factors that included pH, temperature, and particle 

size was then applied to further enhance the photocatalytic performance.  The greatest TOC 

removal of 36.2±4.0% after 4 hours UV irradiation was obtained for 230 mg TS·L-1 black 

liquor and 2 g·L-1 TiO2.  The black liquor concentration had larger impact on TOC removal 

in comparison with TiO2 concentration.  A response surface methodology (RSM) model 

was developed to predict the maximum 4-hour TOC reduction of 51.6% under optimal 

conditions of a pH of 7.87, 37 ℃, and a catalyst particle size of 5 nm.  Compared with the 

preliminary study, an additional improvement of 15% TOC removal efficiency was 

observed using the BBD.  

 

Keywords: TiO2/UV photocatalysis, 2k design, BBD, TOC reduction. 
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GENERAL INTRODUCTION  

Background 

     The pulp and paper industry is the second largest contributor to water pollution in 

Canada [1].  Pollutants in pulp mill liquid effluents include chemicals such as phenols and 

formic acid are harmful to receiving waters and toxic to aquatic life.  A major process 

stream arising from cooking wood chips with chemicals is black liquor [2].  This stream is 

characterized with large amounts of inorganic and organic chemicals.  Black liquor is a by-

product of the Kraft process, a common manufacturing technique that separates cellulose 

and hemicellulose from lignin.  Through the Kraft process, one metric ton of pulp can 

generate approximately 10 metric tons of weak black liquor [3].  In Canada, over 16 million 

metric tons of wood pulp were produced annually between 2012 and 2017 [4], including 

at least 150 million metric tons of black liquor every year. 

     One of the primary components of black liquor is lignin, which accounts for 35–45% 

w/w of the dry solids in black liquor [5].  Lignin, also referred to as “nature’s glue,” is the 

second of the three most common natural polymers, bonding hemicellulose to cellulose.  

In nature, lignin deposits in the cell walls of plants results in mechanical strength and 

oxidation resistance.  Lignin can resist chemical and biological degradation with highly 

branched and aromatic structure, and dark color and recalcitrance of lignin make black 

liquor very difficult to treat [6].  Moreover, the recalcitrance of lignin is the major cause of 

residual high levels of remaining chemical oxygen demand (COD) in treated pulp and 

paper mills wastewaters [7].  To degrade lignin, many methods have been developed, such 

as  hydrothermal liquefaction [8], and electrocoagulation [9].  Photocatalysis, an evolving 

process, has been employed to deconstruct lignin [10].  
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     Photocatalysis is widely considered an effective solution for the degradation of various 

organic compounds, including lignin in black liquor [11].  Photocatalysis is classified as 

an advanced oxidation process (AOP), which can oxidize organic matters into inorganics, 

water, and carbon dioxide using the strong oxidants produced from the photo-excited 

semiconductor catalyst.  Hence, it is advantageous as photocatalysis is a clean, efficient, 

and cost-saving technology [12].  Various metal oxides can be employed in the 

photocatalytic degradation.  The photocatalytic properties of these metal oxides are 

dependent on their band gap, surface area, and stability [13].  Metal oxides, such as those 

of zinc and titanium, are activated by either visible or UV light, forming electron-hole (e--

h+) on the surface.  Subsequently, these photo-excited pairs produce radicals with a strong 

oxidation capability.  These radicals are able to oxidize a variety of chemicals into harmless 

byproducts.  Photocatalysts such as titanium dioxide (TiO2) are very active on the 

nanoscale, but their photocatalytic performance are less effective on the micrometer scale 

[14].  Apart from particle size, the photocatalytic conversion efficiency is also dependent 

upon many other process factors, such as reaction temperature, catalyst concentration, and 

pH [15].  In order to obtain an optimum conversion efficiency, it is necessary to examine 

the effect of various factors on the photocatalysis process.  The impact of various factors 

on the efficiency of a process can be examined using response surface methodology (RSM).          

A popular RSM is the Box-Behnken design (BBD).  The BBD method is unique because 

the design is spherical with fewer experiments when compared to a full factorial design 

(FFD) [16].  Generally, the BBD is regarded as one of the efficient alternative approaches 

to labor-intensive designs such as the FFD [17].  

     RSM is one of the optimization techniques that attempt to optimize multiple variables 
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simultaneously.  With the assistance of a collection of statistical and mathematical 

algorithms, a well-fit polynomial equation can be developed to describe how the 

experimental variables affect responses.  Before RSM can be applied, it is crucial to have 

reasonable experimental design and adequate measurements of the response.  Some 

experimental design matrices were available for the RSM, such as the Doehlert design, the 

three-level factorial design as well as the BBD [18].  An appropriate design should be 

applied based on the pros and cons of each experimental design.  As the RSM is completed, 

a set of optimal parameters will be determined from the response surface generated by the 

RSM.  Furthermore, the analysis of variance (ANOVA), as statistical analysis, can be 

utilized to assess the statistical significance and relevance of each factor as well as the 

interaction effects between these factors.  

     In Chapter 1, the literature review describes the photocatalysis of black liquor through 

the following five topics: the reactants, photocatalysts, experimental factors, the products, 

and different optimization methods.  In Chapter 2, the related chemicals and experimental 

instruments are summarized and described. 

     In Chapter 3, a preliminary experimental approach based on the 2k factorial design was 

used to examine the effects of black liquor concentration and TiO2 concentration on 

photodegradation.  The significant effect of each factor on the photocatalytic efficiency 

was determined, and the optimal factor values were retained for further studies described 

in Chapter 4. 

     In Chapter 4, the primary analysis was performed using a three-factor BBD, involving 

pH, temperature, and particle size.  The RSM model was developed and conducted for the 

optimal values of these three factors. 
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     Chapter 5 presents the conclusions of this study with recommendations for future work.  
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CHAPTER 1 

LITERATURE REVIEW 

 

 

1.1.  Introduction 

 

1.1.1. The Kraft process 

     The Kraft process is a chemical pulping process which was first applied in a pulp mill 

of Sweden in 1890. The process later became the dominant method of wood cooking in the 

1930s after G. H. Tomlinson invented a recovery boiler [1, 2].  The success of the Kraft 

process can be attributed to fulfilling the recovery and reuse of inorganic pulping chemicals 

with the assistance of the recovery boiler.  The inorganic chemicals, sodium sulfide (Na2S) 

and sodium hydroxide (NaOH), are recovered and recycled during the Kraft process, while 

the organic matters are burned in recovery boilers to produce steam.  

     The Kraft process involves four main steps.  First, wood chips are cooked at a high 

temperature and pressure using white liquor (Na2S plus NaOH).  Second, the cooked chips 

are washed and the spent liquor (weak black liquor) is concentrated in evaporators to 

produce black liquor.  Third, the black liquor is burned in recovery boilers to produce steam 

and the inorganic component is retained as a molten smelt consisting of Na2S and sodium 

carbonate (Na2CO3).  Lastly, to convert Na2CO3 to NaOH, the smelt is dissolved in green 

liquor and reacted with added lime (CaO), after which the white liquor is recovered, and 

reused in the cooking process.  Subsequently, the amount of lime mud is produced, but the 

sodium carbonate (CaCO3) in the lime mud can be converted back to the CaO by heating 

to remove CO2.  

     Although the Kraft process shows excellent ability in chemical recycling and energy 
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requirements, there still exist certain inherent disadvantages that are inevitable, such as 

poor pulp color, high bleaching costs, and strong odors [3].  Moreover, the stronger pulp 

fibers produced by the Kraft process when compared to other pulp processes, is typically 

used to manufacture milk cartons, paper boxes, and brown bags [3]. 

 

 

1.1.2. Black liquor 

     In the pulp and paper industry, black liquor is a by-product of the cooking process.  The 

dark caramel color of black liquor is due to a large amount of lignin residue.  On average, 

lignin accounts for 35–45% w/w of black liquor solid [4], while the total organic matter 

only accounts for two-thirds of the solids [5].  Because of the lignin content, the organic 

matter composition in black liquor range from 10,000 to 120,000 mg COD·L-1 [6].  Other 

primary organic compounds of black liquor include organic acids of low-molecular-weight, 

hydroxy, and resins [7].  However, the variable organic matter content of black liquor 

depends primarily on the operational conditions of the pulping process and raw materials.  

For example, woody biomass black liquor generally has a higher organic-to-inorganic ratio 

than non-woody counterparts [7].  

     The black liquor is normally recycled on site through the recovery boiler.  In Canadian 

pulp and paper facilities that use Kraft process, the black liquor should be concentrated to 

at least 60% solids through evaporators before entering the boiler for adequate combustion 

[8].  However, a large amount of reduced sulfur compounds can be generated during the 

Kraft process, especially hydrogen sulfide.  The hydrogen sulfide is produced from the 

reaction between Na2S in the black liquor and CO2 in the furnace exhaust [9].  The strong 

odors in pulp mills are arising from these reduced sulfur compounds which are harmful to 
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human health.  

 

 

1.1.3. Lignin 

     Lignin is one of the three main components of lignocellulosic biomass.  The other two 

main components are cellulose and hemicellulose.  Lignin plays a crucial role because 

lignin serves as the glue to hold the lignocellulose matrix together in plant cell walls.  

Lignin can also provide plants with high mechanical strength to grow vertically upward 

and avoid attacks from microorganisms and pathogens.  The anti-oxidation characteristics 

of lignin can protect carbohydrates in plants from being oxidized.  

     All lignin functions can be associated with the complex structure of lignin, which 

consists of irregular, random, and three-dimensionally cross-linked polymers of 

phenylpropane subunits joined by various linkages [10].  Additionally, variability in the 

lignin structure between different plant species results in the different chemical 

composition.  Typically lignin contains three phenylpropane subunits denoted as p-

hydroxyphenyl (H), syringyl (S), and guaiacyl (G), as well as their respective precursors, 

such as coniferyl, p-coumaroyl, and sinapyl alcohols (Figure 1.1) [11].  However, the 

fraction of these subunits in lignin varies according to species, tissue type, and cell type, 

and the structure differs by the number and the position of methoxy groups on the aromatic 

ring [12].  
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Figure 1.1 Three phenylpropane subunits of lignin and their corresponding precursors 

[12]. 

 

     Fewer methoxy groups (H<G<S) leave more vacant reactive sites on rings, leading to 

more possible linkage options for the polymerization of monolignols.  For example, the 

reactions at number 3 or 5 position on the ring tend to form C—C bonds that are hard to 

break, while the weaker C—O bond tend to be abundant if most subunits contain one or 

two methoxy group [12].  β-O-4 alkyl aryl ether linkages (Figure 1.2), as the most abundant 

linkages derived from C—O bond, account for 45–50% linkages in softwood lignin and 

60–62% linkages in hardwood lignin [13]. 

  
 Figure 1.2 β-O-4 alkyl aryl ether linkages [12].  
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1.1.4. Lignin sources and properties 

     Several types of lignin are now commercially available in large quantities, such as 

lignosulfonates, Soda lignin, Kraft lignin, Organosolv lignin, and hydrolyzed lignin. 

Lignosulfonate is a chemically modified lignin which is derived from the traditional sulfite 

pulping process [14].  Kraft lignin is produced from cooking soft and hard woods with 

NaOH and Na2S.  Soda lignin is produced from alkali pulping, and Organosolv lignin is 

produced by employing organic solvents such as acetone, methanol, ethanol, and acetic 

acid at relatively high temperatures [15].  Hydrolyzed lignin can be produced from the acid 

hydrolysis process of straw [16].  

 

 

1.2. Photocatalysis 

 

1.2.1. Introduction 

     Photocatalysis refers to the use of photons to drive redox reactions on a photo-

illuminated catalyst surface.  Photocatalysis can be classified into heterogeneous and 

homogeneous.  In heterogeneous photocatalysis, the photocatalysts are in a different phase 

than the reactants.  The photocatalysts are semiconductors, such as TiO2 and Zinc oxide 

(ZnO), but many novel photoactive semiconductors are also proposed, including the oxides 

of transition metals, such as Nb, and main group elements, such as Ga [17].  Photocatalysis 

has attracted more attention because of excellent efficiency and low cost [18].  In contrast, 

in homogeneous photocatalysis, the photocatalysts and the reactants exist in the same phase.  

For example, the Fenton process is a typical homogeneous photocatalysis, where strong 

oxidative radical can be produced when Fe (III) is photo-reduced to Fe (II) in the liquid 

phase [19].  
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1.2.2. Mechanism of lignin photocatalysis 

     The photocatalytic degradation of lignin can be considered as an oxidative degradation 

which is also classified as an AOP.  Lignin can be degraded by several highly reactive 

radicals, which are generated during semiconductor catalysts being radiated by UV or near-

UV light.  The UV light excites electrons from the valence band (hVB
+) to the conductive 

band (eCB
-) to produce a positive hole (Eq. (1.1)) [20].  Next, water (H2O) or hydroxyl ions 

(OH−) reacts and produces hydroxyl radical (•OH) in the positive hole (equations 1.2 and 

1.3).  In this case, the oxidation potential is +2.80 V, a value slightly lower than fluorine, 

the strongest oxidizing agent [21].  The eCB
- can react with molecular oxygen to produce 

superoxide anions radical (•O2
−) (Eq. (1.4)) [20].  The e--h+ combination serve as charge 

carriers which promote redox reactions during the photocatalytic process.  However, 

recombination of the e--h+ causes the disappearance of these charge carriers without any 

chemical reaction [22] and with the rapid release of heat [23]. 

 

                               TiO2 +  ℎ𝑣 →  e𝐶𝐵
−  + h𝑉𝐵

+                                              (1.1) 

                                h𝑉𝐵
+ +  H2O →  H+ + • OH                                               (1.2)  

                                OH− +  h𝑉𝐵
+ → • OH                                                            (1.3)   

                                 O2 +  e𝐶𝐵
− → • O2

−                                                              (1.4)  

 

     With regards to the oxidative ability of •OH and •O2
− for lignin, Gierer [24] suggested 

that •OH can react with aromatic rings and olefinic groups in the lignin, both of which are 

electron-rich moieties.  Lee [25] reported that •O2
− could react with phenoxy radicals in 

lignin structure to form dioxetane.  Subsequently, the ring structures can be opened and 

further oxidized to smaller organic acids.  Once the lignin is degraded on the TiO2 surface, 
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the intermediates are able to leave the interface region and dissolve into the bulk liquid 

phase. 

 

 

1.2.3. The process of photocatalysis 

     During the UV irradiation, organic compounds undergo a series of steps.  First, the 

organic compounds in the liquid phase diffuse to the TiO2 surface region.  Next, the organic 

compounds adsorb onto the TiO2 surface.  In the following step, the photon activated TiO2 

initiates the photocatalytic degradation of the adsorbed chemical with a subsequent 

production of byproducts.  Next, the byproducts desorb from the TiO2 surface and finally, 

the byproducts leave the interface region and dissolve into the bulk liquid phase [26].  

     Before full degradation into CO2 and H2O is attained, intermediates can be produced by 

controlling the reaction (Eq. (1.5)) [27].  The determination of CO2 as well as total organic 

carbon (TOC) is useful in establishing the efficiency of the reaction [28]. 

 

  Organic compounds                          Intermediate(s)                         CO2 + H2O       (1.5) 

 

     For large molecular weight (MW) chemicals, such as lignin, the MW distribution 

pattern moves from high MW to low MW during the photocatalytic treatment [29].  This 

can be explained by the conversion of lignin into short chain carbon compounds [27].  

Intermediates from the photocatalysis of lignin and black liquor from literature are 

summarized in Table 1.1. 

 

 

 

TiO2/hv 
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Table 1.1 Intermediates examined from lignin and black liquor photocatalysis. 

 

 

1.2.4. Semiconductor materials 

1.2.4.1. Titanium dioxide (TiO2) 

     TiO2 is generally recognized as the best photocatalyst because of photochemical 

stability, low cost, and low toxicity [23].  TiO2 can decompose a variety of organic 

compounds during UV photocatalysis.  UV radiation actuates the photo-excited electrons 

in TiO2 with wavelengths below 380 nm [34].  The specific surface area (SSA) and the 

crystal structure of TiO2 are two physical characteristics of photocatalysts.  

     The nanostructures of TiO2 has been widely used and fabricated with various 

morphologies and properties.  Zero-dimensional TiO2 is spherical with a high SSA [35].  

TiO2 in one-dimensionality is manufactured into one-dimensional fibers or tubes, whose 

high surface-to-volume ratio can decrease the recombination rate of e--h+ and promote the 

transfer rate of interfacial charge carriers [36].  TiO2 in two-dimensionality is normally a 

two-dimensional nanosheet with high adhesion and smooth surface, and three-dimensional 

TiO2 has an interconnecting structure in order to increase the carrier mobility [36].  

     In nature, TiO2 exists in the following four crystal forms: anatase, brookite, rutile, and 

Substrates Intermediates  Reference 

Sodium 

lignosulfonate 

Acetic acid, muconic acid, 2-methylhexadecane  
[30] 

Lignin 

precipitate 

from black liquor 

Vanillin, coniferylic alchol, vanillic acid, p-coumanic 

acid, syringaldehyde [31] 

Kraft lignin 

Acetic acid, malonic acid, succinic acid, butylated 

hydroxytoluene, vanillin, veratric acid, and palmitic 

acid 

[32] 

Organosolv black 

liquor 

Syringol, pyrocatechol, vanillin, syringaldehde, 

sinapyladehyde 
[29] 

Commercial 

lignin 

Ethylbenzene, acetovanillone, acetosyringone, 

syringaldehyde, styrene, acetyl vanillin, vanillin, 2,6-

dimethoxybenzoquinone, and diisobutyl phthalate 

[33] 
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monoclinic-TiO2.  Among these structural forms, anatase TiO2 is the best photocatalyst, 

followed by rutile TiO2.  TiO2 was first examined by Kobayakawa [37] for lignin 

photocatalysis.  Since then, many studies have investigated TiO2’s catalytic ability to 

improve photocatalytic degradation of lignin [31, 38].  

 

 

1.2.4.2. Other semiconductor materials 

     Using TiO2 for wastewater treatment is impractical because of the cost.  Many 

researchers have explored the feasibility of other economic alternatives for lignin 

photocatalysis, such as combining with other components, doping with non-metal atoms, 

and adding metal ions.  

     Irie [39] and Yu [40] used TiO2, grafted with Cu (II) and Fe (III) to enhance the 

photocatalytic efficiency because highly charge metal ions can accept electrons and 

subsequently enhance the catalytic process.  Yuan [41] loaded activated carbon fibers (ACF) 

on the TiO2 to increase the surface area based on the pore structure of ACF; however, the 

surface area of TiO2/ACF is moderate in consideration of the synergistic effect between 

photocatalysis and adsorption.  Ma et al. [42] reported an increase in the photocatalytic 

efficiency of TiO2 by adding 1.0% w/w Pt.  These researchers also reported Pt/TiO2 

performed better under acidic conditions than alkaline conditions.  Other new catalysts 

have been useful and promising.  Li et al. [43] proposed to use Ag40-AgCl/ZnO nanorod as 

a photocatalyst to degrade lignin.  They reported the supported catalyst exhibited high 

photocatalytic activity even under solar light conditions.  
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1.2.5. Factors affecting photocatalysis 

1.2.5.1. The effect of pH 

     During the irradiation of light, the pH of photocatalyzed lignin solutions will decrease 

with the irradiation time.  This is a result of the enrichment of carboxylic acid groups during 

the photocatalysis process.  For example, Shewa et al. [30] observed a maximum reduction 

of pH value from 8.0 to 5.9 using 1 g·L-1 TiO2 and 0.5 g·L-1 lignosulfonate. 

     The effect of pH on the photocatalysis is mainly due to the acid-base equilibrium of the 

hydroxyl group.  Additionally, other aspects of explanation include the pH effect on the 

lignin solubility, linkage stability and various lignin structures [44].  However, the effect 

of pH on lignin photocatalysis is partially contradictory.  For example, Kansal et al. [45] 

attained the result that the photocatalysis of lignin was favorable at pH = 11.  These 

researchers explained high pH facilitates the formation of •OH.  Alternatively, Chang et al. 

[46] observed a higher reaction rate and a better capacity of lignin decomposition under 

acidic conditions when compared with alkaline conditions.  The maximum lignin 

degradation efficiency was observed at pH = 3, with 93% at 10 min and 99% at 960 min.   

 

 

1.2.5.2. The initial concentration of lignin 

     Lignin photocatalytic degradation also relies on the initial lignin concentration.  In 

general, an initial lignin concentration which can inhibit photodegradation leads to a low 

decomposition efficiency.  Ksibi et al. [31] reported that lowering the initial lignin 

concentration can enhance the efficiency of lignin photocatalytic degradation.  The 

inhibitory effect of the high initial concentration is mainly due to the lower exposure of the 

catalyst to the irradiation.  This results in inhibiting the production of •OH and •O2
- which 
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limits the rate of lignin decomposition. 

     In contrast, a dilute lignin solution has a less dark color and allows photons to penetrate 

the solution and subsequently reach the catalyst surface.  Kansal [45] and Li [43] observed 

the same phenomenon using ZnO/TiO2 and Ag-AgCl/ZnO, respectively.  Furthermore, 

Kansal [45] and Li [43] achieved almost 100% lignin removal at a low initial concentration 

of lignin solution.  Li et al. [43] reported that the inhibitory effect becomes more significant 

when the initial concentration of lignin reaches a threshold value of 50 mg·L-1.  They also 

offered a further explanation of this phenomenon that the surface of the photocatalyst is 

adsorbed with a large number of lignin molecules if the initial concentration is high, 

resulting in fewer active sites of catalysts. 

 

 

1.2.5.3. The effect of the photocatalyst dosage 

     The photocatalyst dosage is also a significant factor affecting photocatalysis.  The 

addition of photocatalysts can enhance the capability to decompose lignin because it can 

increase the total active surface area; however, an excessive dosage can inhibit the 

photocatalysis process.  For example, Chang et al. [46] reported that for the TiO2/UV 

system, a removal efficiency of 88% was observed for an optimum level of 10 g·L-1 TiO2 

and a pH = 7.  TiO2 levels greater than the optimum level will impair light transmission.   

This interference causes fewer photons reaching the catalytic surface coupled with 

reducing the production of e--h+.  Ma et al. [42] reported that the reaction rate constant 

increased proportionally with the TiO2 dosage until an optimal dosage of 10 g·L-1.  When 

the TiO2 dosage exceeded the optimum level, the reaction rate could not be further 

enhanced.  Li et al. [43] achieved almost complete removal of lignin using Ag40-AgCl/ZnO 
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at 4 g·L-1.  These researchers also reported that the excessive dosage of catalyst inhibited 

lignin degradation, and they attributed this phenomenon to the aggregation of catalyst 

particles at the high concentration.  Kansal et al. [45] reported the similar effect of catalyst 

dosage on lignin degradation, and they achieved the optimum dosage of ZnO at 1 g·L-1. 

 

 

1.2.5.4. The effect of temperature 

     Typically, a higher temperature will enhance the photocatalytic reaction rate.  

Increasing the temperature leads to more free radicals being produced.  Moreover, the 

oxidation rate at the catalyst surface become more faster at higher temperature [47].  

Studies by Choquette-Labbé et al. [48] demonstrated that for three temperature conditions 

at 23°C, 30°C and 37°C, 37°C was optimum condition for phenol photocatalytic 

degradation.  By increasing the temperature from 23°C to 37°C, these researchers reported 

the phenol degradation rate constant increased by approximately 60% with 5 nm TiO2.  

However, increasing temperatures leading to a reduction in the dissolved oxygen level 

causes the production of fewer radicals [47].  

 

 

1.2.5.5. The effect of the particle size 

     TiO2 particles are typically used within the nanometer range as photocatalysts, whereas 

the TiO2 particle size within the micrometer range cannot exhibit an ideal photocatalytic 

activity [49].  A smaller particle size provides a larger surface area as well as more active 

sites [50].  Thus, more active sites would be available on the TiO2 surface, which 

consequently promotes photocatalytic efficiency.  However, as the particle size is reduced 

to extremely small, the photocatalytic efficiency also decreases.  This is attributed to the 
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quantum size effect [51].  Carneiro et al. [52] investigated the effect of particle size on the 

photocatalytic activity within the range from 7 nm to 35 nm, and they reported that a 

threshold level of 15 nm exhibited a minimum activity.  Higher or lower than this threshold 

particle size is more photocatalytically active.   

 

 

1.2.6. Valuable chemical products of lignin photocatalysis 

     Lignin, as a polyphenolic chemical, can potentially serve as a sustainable feedstock for 

producing valuable aromatic compounds.  Through the oxidative lignin degradation, some 

critical linkages within the lignin structure, such as aryl ether bonds, can be selectively 

broken to produce desired chemicals.  Two types of aromatic aldehyde, vanillin, and 

benzaldehyde can be produced as the main valuable products during the oxidative 

degradation of model lignin compounds [53].  

 

 

1.2.6.1. Vanillin 

     Lignin is used as one of the main raw materials for producing vanillin (C8H8O3) [54].   

Because of the crucial role of vanillin in the food and cosmetic industries, an increasing 

number of studies on improving conversion efficiency has been reported in recent years. 

Raquel et al. [29] found that the optimum exposure time of black liquor to UV radiation 

for vanillin production is 1h.  Wang et al. [55] tested five types of lignin and proposed that 

vanillin production could be improved significantly by using lignin with a higher content 

of β-O-4 linkages.  However, the yield of vanillin was quite low because of complex lignin 

structure and a lack of knowledge of the degradation routes.  Tarabanko et al. [56] proposed 

the mechanism of lignin-to-vanillin oxidation conversion and pointed out that the key step 
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is the cleavage of a bond between the α- and β-carbon atoms of the phenylpropane unit of 

lignin. 

 

 

1.2.6.2. Benzaldehyde 

     Benzyl alcohol, the second most valuable lignin product, is produced from lignin.  

Because benzyl alcohol is the simplest aromatic alcohol and the photochemical production 

of benzyl alcohol to benzaldehyde is considered as a lignin model reaction [57].  

Higashimoto et al. [58] first revealed that benzyl alcohol can be oxidized by photocatalyst 

(TiO2) using visible light.  These researchers pointed out that the surface •OH groups on 

TiO2 can interact closely with the aromatic structure in benzyl alcohol during the 

illumination process.  Benzyl alcohol has been intensely studied as the model lignin 

compound to investigate the photocatalytic degradation of lignin.  Tanaka et al. [59] 

proposed that benzyl alcohol can be converted to benzaldehyde in almost equal quantities 

by the presence of Au/CeO2 photocatalyst under green light illumination.  Additionally, 

Feng et al. [60] proposed that Ir/TiO2 prepared by photo-deposition has a remarkable 

photocatalytic performance on the conversion of benzyl alcohol to benzaldehyde because 

iridium clusters on the modified TiO2 surface can suppress the recombination of photo-

excited holes and electrons.  

 

1.2.6.3. Biogas 

     In addition to large MW byproducts, low MW organic byproducts from lignin can be 

used to produce methane by anaerobic digestion.  At the present time, the biogas is 

normally obtained as end products, instead of a variety of phenolic products, such as 

vanillin and benzaldehyde.  These phenolic compounds with similar characteristics cause 
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the difficulty in separation and purification, so it is a challenge for mass production of these 

phenolic product from lignin [61].  Due to the recalcitrance nature of lignin, anaerobic 

digestion of lignin needs to be carried out via a pretreatment step.  Various pretreatment 

methods have been studied for improving the production of biogas.  Li et al. [43] reported 

that biogas yields from degraded lignin samples after photocatalytic treatment by Ag40-

AgCl/ZnO increased by 23.1% in comparison to untreated lignin samples. 

 

 

1.3. Current optimization methods 

 

1.3.1. One-factor-at-a-time (OFAT) 

     OFAT is a monothetic optimization method.  One factor is selected to test every time, 

and other factors are kept constant to find the optimum amount of the factor of interest. 

Many researchers have used this conventional method to optimize several parameters in 

lignin photocatalysis at the early stage.  For example, Chang et al. [46] designed their 

experiments using OFAT to optimize pH level and TiO2 dosage.  Kansal et al. [45] 

optimized the lignin percentage degradation by changing the ZnO dose, pH, oxidant 

concentration, and lignin concentration.  Li et al. [43] also designed their experiments 

based on OFAT to optimize the experimental parameters for the new photocatalyst, Ag40-

AgCl/ZnO nanorods, including initial pH value, catalyst dosage, initial lignin 

concentration, and holes/radicals scavengers.  

     Although OFAT has been used to optimize the process of lignin photocatalytic 

degradation, experimental design based on OFAT cannot be used to test several parameters 

simultaneously.  In general, the OFAT results in numerous time-consuming and costly 

experimental designs.  Moreover, the interaction between several variables cannot be 
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identified by employing OFAT.  Experimental analysis based on OFAT will lead to the 

misinterpretation of results and less predictive ability for varying operating conditions. 

When compared to OFAT, statistical modeling tools and multi-variable design of 

experiment (DOE) are preferred for the optimizing experimental design. 

 

 

1.3.2. The 2k factorial design 

     2k factorial design is used to consider an experiment that involves k factors.  Each factor 

is designed at only two levels, the “high” and “low” level.  For a three-factor 2k design, the 

factor points are located at every corner of a cube (Figure 1.3).  As is similar with other 

factorial designs, the 2k factorial design is a method which will lead to developing a 

statistical model that depicts the main factor effects and factor interaction effects.  The 

model is characterized by investigating all the factors with a minimal number of 

experiments.  This feature of the 2k factorial design is used usually in the early stages of 

experimental work.  In the case of two levels, the response is assumed linear over the range 

of factors [62].  

 
Figure 1.3 Graphical representation of a 23-factorial design. 
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     The 2k factorial design can also be applied to optimize photocatalysis. Shoko et al. [63] 

reported experiments on the basis of a 23-factorial design, where sodium lignosulfonate 

(LS) concentration, TiO2 concentration and pH were examined.  A second-order regression 

model was developed in their study, involving the second-order intersections between each 

factor and the main effect of each factor.  Through the interaction effect analysis, they 

reported that at the low-pH region, decreasing catalyst concentration and increasing 

substrate concentration can optimize the reaction rate, while at the high-pH region, 

increasing catalyst concentration and decreasing substrate concentration can optimize the 

reaction rate [63]. 

 

 

1.3.3. Box-Behnken design (BBD) 

     To minimize the number of experiments and obtain an acceptable precision level, the 

BBD is a suitable design method. The BBD is a rotatable or near rotatable second-order 

designs based on three-level incomplete factorial designs.  In terms of three-factors BBD 

design, the distribution of parameter points is graphically represented in Figure 1.4, where 

the parameter points are located at the center and middle edges of a cube [64].  

 
Figure 1.4 Graphical representation of BBD [64]. 
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     The experiments designed by using BBD can be optimized using RSM.  The RSM 

method can be summarized as a second-order model (Eq. (1.6)) [30]: 

 

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+ ∑ 𝛽𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1

+ ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑘

𝑖<𝑗=2

+ ɛ                       (1.6) 

 

where β0 is a constant, βi is the linear coefficient, βii is the squared coefficient, βij is the 

cross-product coefficient, y is the response variable, xi and xj are independent variables, 

and ɛ is the “error” in the system. 

     The BBD technique has been employed to optimize the photocatalysis process.  Ray et 

al. [51] designed four parameters of phenol photocatalysis using BBD with the following 

factors: TiO2 concentration, TiO2 size, dissolved phenol concentration, and oxygen 

concentration.  These researchers developed a quadratic model based on the RSM.  The 

model predicted a maximum degradation rate (0.083 min-1) with the optimum conditions 

set at 1.0 g·L-1 TiO2, 9.09 nm TiO2 particle size, 40 mg·L-1 phenol, and 31 mg·L-1 dissolved 

oxygen concentration.  Shewa et al. [65] selected three parameters of a model lignin 

compound based on the following BBD factors: TiO2 concentration, substrate 

concentration, and revolutions per minute (RPM).  These researchers reported developing 

a quadratic model where the response variable was the BOD5 to COD ratio.  This model 

predicted a maximum [BOD5]/[COD] ratio (0.386) with the ideal condition set at 944 

mg·L-1 TiO2 concentration, 569 mg COD·L-1 substrate concentration, and 9 RPM for the 

mixing rate.  In comparison, the optimum conditions by OFAT was 1 g·L-1 TiO2 

concentration, 683 mg COD·L-1 substrate concentration, and 10 RPM for the mixing rate 

[30].  
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1.4. Summary of research objectives 

 

     The present study aimed to optimize the black liquor photocatalytic degradation.  TiO2 

was used as a photocatalyst with UV light as the light source and TOC was selected as the 

response variable.  Five factors investigated as variables for the optimization study 

included black liquor concentration, TiO2 concentration, initial pH, operation temperature 

and TiO2 particle size.  These variables were optimized in two groups.  

     The first group is discussed in Chapter 3 and included the black liquor concentration 

and TiO2 concentration.  The two objectives for Chapter 3 are as follows: 

1) Evaluate the importance of black liquor concentration and TiO2 concentration on the 

TOC removal efficiency, and 

2) Determine the optimal composition of black liquor concentration and TiO2 

concentration as the preliminary optimization. 

     Chapter 4 offers an overview of the second group of factors that were studied as the 

primary factors.  These include initial pH, operation temperature, and TiO2 particle size. 

The objectives of this study are as follows: 

1) Evaluate the effect of the initial pH, temperature, and TiO2 particle size on the 

degradation of black liquor based on TOC removal, 

2) Develop a predictive model involving these three common factors for black liquor 

degradation based on the TOC removal, and 

3) Maximize the TOC removal efficiency by identifying the initial pH, temperature, and 

catalyst particle size.  
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CHAPTER 2 

 MATERIALS AND EXPERIMENTAL METHODS 

 

 

2.1. Introduction 
 

     In this chapter, the chemicals and instruments used in the experiments and chemical 

analysis are discussed in the following sections:  

     a) Chemicals  

     b) Characterization of experimental and analytical instruments 

Note: The chemicals, experimental and analytical instruments, and detailed experimental 

process in this chapter will be referenced in subsequent chapters. 

 

 

2.2. Chemicals 

 

     The black liquor was obtained from a pulp and paper mill located in Lakehead, Ontario, 

Canada.  Five nm and 15 nm TiO2 nanoparticles were purchased from Alfa Aesar (Ward 

Hill, Massachusetts), and 25 nm TiO2 nanoparticles were purchased from (Evonik 

Industries, Essen).  HCl (37% w/w), H3PO4 (85% w/w), and NaOH (97% purity) were 

purchased from Fisher Scientific (Ontario, Canada). 

 

 

2.3. Characterizations of experimental and analytical instruments 

 

2.3.1. Photocatalytic reactor 

     The photocatalytic experiments were conducted using 25 mm ID × 250 mm length 

quartz tubes (Technical Glass Products Inc., Painesville).  The quartz tubes were positioned 

in a modified Rayonet RPR-100 UV photocatalytic chamber (Southern New England 

Ultraviolet Co., Branford), as displayed in Figure 2.1 [1]. 
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Figure 2.1 Photoreactor schematic. 

 

     This chamber was installed with sixteen monochromatic UV lamps (Southern New 

England Ultraviolet Co., Branford) on the outer perimeter of the photoreactor and a 

centrally located rotary inner carousel.  To minimize the error of UV irradiance between 

each reaction tube, the carousel was rotated at a fixed rotating speed [2].  The UV lamps 

are able to emit 300 nm UV light with an average intensity of 9 mW·cm-2.  The intensity 

was measured using a UV-X radiometer equipped with a 300 nm UV sensor (UV Process 

Supply, Chicago).  

     The reactor tubes are placed on the rotary carousel and the reaction mixture were 

magnetically stirred.  Stirring ensure the catalyst (TiO2 particle) remain in suspension and 

also prevent particle agglomeration.  The temperature of the photoreactor in this study was 

performed at 37±2 ℃.  One hour before initiating the experiment, the photoreactor and UV 

lamps were turned on to warm up the UV lamps and obtain a stable light density during 



CHAPTER 2 

  

37 

 

the photocatalytic experiment [3].  The mixture volume contained in each tube was 50 mL, 

and the solutions were prepared by 40 mL Milli-Q® water, 5 mL TiO2 mixture and 5 mL 

catalyst solution.   

 

 

2.3.2. Total organic carbon (TOC) instrument 

     The TOC analysis was conducted using a TOC-L (Shimadzu, Kyoto) instrument.  TOC-

L is an instrument that has been used to analyze inorganic carbon (IC), total carbon (TC), 

and TOC content.  TC can be measured through the carbon dioxide generated from the 

combustion of a sample under 680 ℃ with a platinum catalyst.  Likewise, IC can be 

measured through the carbon dioxide generated from acidification and sparging under pH 

< 3 of a sample.  In addition, TOC can be determined by subtracting the IC concentration 

from the TC concentration [4]. 
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CHAPTER 3 

OPTIMAL CONDITIONS FOR BLACK LIQUOR PHOTOCATALYSIS 

 

 

3.1. Introduction 

 

     Black liquor, a major stream which is produced during Kraft pulp and paper mills, is 

characterized with a highly concentrated organic content.  Toxic chemicals  in black liquor 

includes fatty acids, resin acids, and chlorinated phenols [1].  The type of chemicals and 

concentration are important factors when considering utilizing a biological process for 

treating wastewaters or upgrading a waste stream into fuels and chemicals.  In this study, 

a photochemical method was considered as an alternative to a biological process. 

     Photocatalytic oxidation is considered as an approach for black liquor degradation.   

This approach has great potential to degrade or depolymerize organic compounds [2, 3]. 

Black liquor from the Kraft mill process can be photodegraded utilizing catalysts such as 

ZnO and TiO2 [4].  The photocatalysis process is dependent on factors such as catalyst 

concentration, substrate concentration, pH and temperature.  Optimizing these conditions 

can be accomplished by employing RSM.  RSM is a statistical process which can be 

employed to model and analyze a process in which the response variable is impacted by 

several factors. 

     The 2k factorial study can be used to determine low and high limits of different factors 

that affect the response variable, and to determine optimum conditions.  This study revealed 

the appropriate black liquor and TiO2 concentrations.  These concentrations were employed 

to conduct the BBD study.  

     As discussed in the literature review, the substrates concentration and the catalyst 
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concentration could affect the photocatalysis.  The dilute black liquor solution has a less 

dark color which will allow more photons to reach the catalyst surface.  Shewa and Lalman 

[5] used 500 mg·L-1 lignosulfonate, a model lignin chemical,  to investigate the effects of 

several parameters on the photocatalysis process.  Preliminary experimental work indicated 

high black liquor concentration such as 920 mg TS·L-1 was inhibitory towards light 

transmission to the catalyst surface.  A black liquor concentration under 460 mg TS·L-1 

was selected for conducting further studies. 

     The catalyst concentration can also impact light transmission and hence, photocatalysis.  

Shewa and Lalman [5] examined the impact of the catalyst loading on the degradation of 

lignosulfonate by changing the concentration of TiO2 between 0.5 g·L-1 and 3.5 g·L-1, and 

the highest COD reduction was observed when employing 1 g·L-1 catalyst.  In similar 

studies, Ray et al. [6] using 1 g·L-1 catalyst to examine the photocatalytic degradation of 

phenol. 

     The photocatalytic reaction time will also affect the quantity of black liquor degraded.  

With an irradiation time from 1 to 6 hours, Lalman and Shewa [7] reported a maximum 

production of biodegradable intermediates from lignin photocatalysis was achieved at 

4±0.5 hours.  Hence, in this study, all photocatalytic experiments were conducting using a 

4-hour UV irradiation time. 

 

 

3.2. Materials and methods 

 

3.2.1. Chemicals 

     Black liquor was obtained from a pulp and paper mill located in Lakehead, Ontario, 

Canada.  After weighing the TiO2 and adding it to Milli-Q® water, the stock suspensions 



CHAPTER 3 

  

41 

 

of TiO2 nanoparticles were prepared and stored at 23±2 ℃ in 100 mL serum bottles.  The 

TiO2 stock solution was sonicated using an ultrasonic bath procured from VWR 

(Mississauga, Ontario) for 15 to 20 minutes.  This process produced a homogeneous 

suspension which was used to deliver a more accurate quantity of catalyst to the diluted 

black liquor solution.  

 

 

3.2.2. Statistical design: 2k factorial design 

     A 2k factorial design is mainly used for preliminary study of the factors’ effect on the 

response variable and for determining the optimum condition.  Two levels of every factor, 

the “high” and “low”, are used to provide the smallest number of experimental runs to 

study k factors in a complete factorial design [8]. 

     In this study, the 2k factorial design is used as the experiment design basis.  Two factors, 

black liquor concentration, and TiO2 concentration, are denoted by A and B and evaluated 

at a high and low level.  Thus, this is designated as a two-square factorial design and the 

experiments under four combinations of conditions were carried out (Table 3.1).  

 

Table 3.1 Two square factorial design of black liquor and TiO2 concentration. 

    

Exp. 

# 

Factor combination Black liquor 

concentration  

(mg TS·L-1) 

TiO2 

concentration 

(g·L-1) A B 

1 Low Low 230 1 

2 High Low 460 1 

3 Low High 230 2 

4 High High 460 2 

5 Low Low 230 1 

6 High Low 460 1 

7 Low High 230 2 

8 High High 460 2 
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     In consideration of the cost of chemicals, the study based on factorial design is normally 

conducted with one replicate or known as an un-replicated factorial design [8].  However, 

in the case of only two factors involved in this study, the experiments were performed with 

two replicates for accuracy.  Minitab (Minitab Inc., State College, PA) was used to 

determine the impacts of each factor on the response.  This software can also examine the 

significance of their interaction effects on the response variable.  The percent TOC 

removed was selected as the response.  Finally, the ANOVA verified the significance of 

every term of the RSM model.  The experiments were performed in duplicate.   

 

 

3.2.3. Sampling and analytical methods 

3.2.3.1. Sample collected 

     Five mL samples were collected from the reaction tubes at 30-minute intervals and 

subsequently centrifuged (Sorvall ST 16 Thermo Scientific, Ontario, Canada) at 4500 RPM 

for 25 to 35 min to separate the TiO2 catalyst from the diluted black liquor.  Subsequently, 

the black liquor samples were stored in sealed vials for TOC determination. 

 

 

3.2.3.2. TOC analysis 

     The TOC analysis was analyzed using a TOC-L instrument (Shimadzu, Kyoto).  HCl 

(37% w/w) and H3PO4 (85% w/w) were purchased from Fisher Scientific (Ontario, 

Canada).  The black liquor samples were diluted 3-fold before analysis.  

 

 

3.2.4. Other instruments and materials 

     The black liquor and catalyst mixture were stirred under dark conditions for 45 minutes 
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in an oven set a desired temperature before photocatalysis.  This pretreatment step ensured 

the reaction mixture was thoroughly mixed.  

 

 

3.3. Results and discussion 

 

3.3.1. Statistical summary and analysis 

     The percent TOC removed during the degradation of black liquor over a 4 h period was 

used as the response variable (Table 3.2).  

 

Table 3.2 Percentage TOC removal. 

Note: The TOC measurement includes residual black liquor organics plus the degradation 

by-products. 

  BL 230 mg TS·L-1 

TiO2 1.0 g·L-1

  BL 460 mg TS·L-1 

TiO2 1.0 g·L-1

  BL 230 mg TS·L-1 

TiO2 2.0 g·L-1

  BL 460 mg TS·L-1 

TiO2 2.0 g·L-1
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Figure 3.1 Percent TOC removed for four conditions. 

Note: BL = Black liquor, and the TOC measurement includes residual 

black liquor organics plus the degradation by-products. 

 

Condition 

# 

 Factors  % TOC removed 

 

Black liquor 

concentration          

(mg TS·L-1) 

TiO2 concentration 

(g·L-1) 
 

Sample 

#1 

Sample 

#2 

1  230 1  25.3 24.6 

2  460 1  13.8 16.8 

3  230 2  34.2 38.2 

4  460 2  19.3 15.2 
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     Among the four conditions shown in Figure 3.1, the greatest TOC removal was 

observed at 36.2±4.0% for 230 mg TS·L-1 black liquor and 2 g·L-1 TiO2.  In contrast, the 

lowest TOC removal was observed at 15.3±3.0% for 460 mg TS·L-1 black liquor and 1 

g·L-1 TiO2.  Note, the percent TOC removed was approximately doubled going from the 

minimum removal value to the maximum.  Estimating the impact of every single factor on 

the percent TOC removed is a crucial component for conducting the BBD.  Increasing the 

TiO2 concentration caused an increase in the percent TOC removed when comparing 

conditions 1 and 3.  In comparison, a slight increase in the percent TOC removed was 

observed when comparing conditions 2 and 4.  The increase in the percent TOC removed 

is because 230 mg TS·L-1 black liquor allows more photons to penetrate the solution and 

subsequently to reach the TiO2 surface than 460 mg TS·L-1 black liquor, and 2 g·L-1 TiO2 

provides more catalyst active sites than 1 g·L-1 TiO2.  A normal probability plot confirmed 

the individual and interaction effects on the response variable (Figure 3.2). 

 

 

3.3.2. Preliminary effect analysis 

     The normal probability plot of two experimental factors is shown in Figure 3.2.  Points 

close or on the straight line indicate negligible effect on the response, while points showing 

large effects are situated away from the line.  As shown in Figure 3.2, all the three points 

(A = black liquor concentration, B = TiO2 concentration, and AB = interaction between A 

and B) are located away from the straight line and hence, they have a significant effect on 

the percent TOC removed [9].  
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  Figure 3.2 Normal probability plot of two experimental factors. 

Note: A = black liquor concentration, B = TiO2 concentration, AB = 

interaction between A and B, and the TOC measurement includes residual 

black liquor organics plus the degradation by-products. 

 

 

     The main effects plot (Figure 3.3a) shows the mean percent TOC removed for each 

factor.  The data indicates the black liquor concentration has an overall negative impact on 

the response, while the TiO2 concentration exhibits an overall positive effect.  A larger 

vertical displacement for black liquor concentration indicates that the black liquor 

concentration shows a greater magnitude of effect than the TiO2 concentration.  The 

interaction plot (Figure 3.3b) can assess the interaction effect between the experimental 

factors through the slope of the line.  Non-parallel lines in the interaction plot indicate a 

high degree of interaction, where a slightly positive effect by the TiO2 concentration was 

observed at high black liquor concentrations while a strongly positive effect by the TiO2 

concentration was observed at low black liquor concentrations.  This is shown by a steeper 

slope at the low-level black liquor concentration.  Eventually, the main effect of each factor 

and the interaction effect were qualified, and an ANOVA was performed to verify the effect 

significance. 
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Figure 3.3 (a) Main effects and (b) Interaction plots. 

Note: BL = Black liquor, the TOC measurement includes residual 

black liquor organics plus the degradation by-products, each point 

represents the mean value of all points at each level, and the deviation 

for a factor at one level is expressed as devfactor(level), devBL(low) = 

6.7, devBL(high)= 2.4, devTiO2(low) = 5.7, devTiO2(high) = 11.1. 

 

 

3.3.3. ANOVA analysis 

     The result of ANOVA by Minitab (Table 3.3) indicates that the black liquor 

concentration has a negative effect on the TOC removal, while TiO2 concentration has a 

positive effect.  A positive effect can also be observed for the combination of high black 

liquor concentration and low TiO2 concentration or the combination of low black liquor 

concentration and high TiO2 concentration.  The percent contribution is the percent 

contribution of each term’s sum of squares (SS) relative to the total SS.  This is a useful 

guide to the relative importance of every model term [8].  In this study, the black liquor 

concentration dominated the process and accounted for over 70% of the total variability. 
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In comparison, the TiO2 concentration and interaction effect accounted for 16% and 8%, 

respectively.  The P-values are used to confirm the magnitude of the effects.  As shown in 

Table 3.3, none of the terms has a p-value larger than 0.05.  This indicated the significant 

effects of the black liquor concentration, the TiO2 concentration and their interaction on the 

percent TOC removed.  

 

Table 3.3 Effects estimation and ANOVA for each factor. 

 

 

     In conclusion, the selected factors, black liquor concentration, and TiO2 concentration 

will impact the TOC reduction significantly.  Hence, the effect of these two factors 

combination cannot be neglected.  Based on this study, the black liquor concentration at 

230 mg TS·L-1 and the TiO2 concentration at 2 g·L-1 are the optimum condition for 

maximizing the percent TOC removed from diluted black liquor. 

  

Term Effect 
Sum of    

Squares 

Percent 

Contribution 
P-Value 

Black liquor concentration -14.3 409.0 76% 0.001 

TiO2 concentration 6.60 87.12 16% 0.015 

Black liquor × TiO2 

concentration 
-4.65 43.25 8% 0.046 
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CHAPTER 4 

OPTIMIZING THE BLACK LIQUOR PHOTODEGRADATION USING THE 

RESPONSE SURFACE METHODOLOGY 

 

 

4.1. Introduction 

 

     Black liquor is the spent liquor from the Kraft and other pulping process.  Traditionally, 

black liquor is burned in energy recovery boilers after evaporation.  From the perspective 

of energy, a recovery boiler can reach high thermal efficiencies varying between 66% and 

75% based on the percent solids in black liquor [1].  However, from the perspective of the 

environment, recovery boilers release highly volatile fugitive air contaminants to the 

atmosphere, including particulate matter, sulfur dioxide, and reduced sulfur compounds [2]. 

In addition, some organic chemicals in pulp and paper mill wastes are toxic and persistent 

chemicals, especially chlorolignins and chlorophenols [3].  These environmental 

challenges are driving the pulp and paper industry to apply various approaches as 

environmentally-friendly alternatives, such as black liquor gasification [4], membrane 

filtration [5], ozone treatment [6], and photocatalysis [3].  

     Recently, photocatalysis has become a promising treatment as an AOP because 

photocatalysis is cleaner and more effective, energy efficient, and economical.  The strong 

oxidant species produced from photocatalysis, such as •OH and •O2
−, are able to oxidize 

almost all organic pollutants.  This is expected to improve the degradability and reduce the 

toxicity of pulp and paper mill wastes [7].  For example, during photocatalysis of lignin, 

the short-chain organic acids and malonic acid which are produced are eventually 

converted to CO2 [8].  With regard to toxicity reduction, Peralta-Zamora et al. [3] used 
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TiO2/ZnO and UV irradiation to examine the impact of photochemical treatment of black 

liquor toxicity reduction.  These researchers reported approximately a 50% of toxicity 

reduction, accompanied with approximately 50% mineralization to CO2.  In a similar study 

conducted by Yeber et al. [7] on pulp and paper bleaching wastes, significant detoxification 

was achieved by TiO2 photocatalysis.  

     The efficiency and by-products of the photocatalytic degradation process is dependent 

on factors such as the catalyst type and concentration, the substrate concentration, the pH, 

reaction temperature, light intensity, ionic components in solution, mixing rate, and 

oxidizing agents/electron acceptors [9].  To optimize these parameters, a variety of studies 

have examined the impact of each factor on the photocatalysis.  For example, a smaller 

particle size of TiO2 leads to a more active photocatalytic reaction due to a larger SSA, 

especially for the particles smaller than 30 nm [10].  In the present study, the particle size 

of TiO2 was selected in the range from 5 nm to 25 nm for investigating the effect of particle 

size below 30 nm on the percent TOC removed.  Moreover, a higher temperature increases 

the reactivity of photocatalysis, but under these conditions, the lower dissolved oxygen 

level leads to reduced photocatalytic rates [11].  The effect of temperature on the 

photocatalytic degradation of phenol at 23 ℃, 30 ℃, and 37 ℃ was reported by Choquette-

Labbé et al. [12].  These researchers reported the operating temperature of 37 ℃ combined 

with 10 nm TiO2 particles achieved the optimal degradation of phenols.  In the present 

study, the temperature was selected in the range from 23 ℃ to 37 ℃ for investigating the 

interaction effects between temperature and other two factors by using BBD.   

     The effect of pH on photocatalysis has been under debate because both acidic [13] and 

alkaline [14] conditions are able to attain a high photocatalytic reactivity of lignin. 
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Interaction effects between the substrate concentration and pH or between pH and the TiO2 

concentration could play a major role in explaining the impact of pH on photocatalytic 

degradation of lignin [15].  In the present study, the pH was selected in the range from 5 to 

9 for investigating whether acidic or alkaline condition can achieve a higher photocatalytic 

degradation.  Interactions between factors could lead to the misinterpretation of results and 

hence, is worthwhile to examine the interaction effects.   

     The BBD was selected for this study because the method can avoid extreme situations, 

namely, all factors at their highest or lowest levels simultaneously [16].  If the extreme 

level response prediction is not of interest, BBD would become more efficient and require 

fewer experiments than other statistical designs, such as central composite design (CCD) 

[16].  However, compared with FFD, the BBD and CCD approaches are much more 

efficient, despite being less accurate to some extent.  

     On the basis of a specific experiment design, RSM can develop a statistical model.  This 

model can investigate the interaction effect between several independent variables on the 

response and can also simulate a response surface aiming to evaluate the peak or valley 

response.  During the RSM process, a second-order mathematical model is generated using 

a regression analysis technique.  The effect of each factor on the response is reflected by 

the coefficients in front of each factor, and the significance of multivariate combination 

can explain the interaction effect on the response.  Moreover, a reasonable prediction can 

also be made by this model as long as the model fits well [17].   

     In the present study, a BBD was used for optimizing the TOC removal efficiency of 

black liquor.  Three practical factors were selected in this BBD: pH, temperature, and 

catalyst particle size.  Subsequently, RSM was developed based on the measured percent 
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TOC removed, and an ANOVA was performed for model evaluation.  Finally, a D-

optimality analysis determined the optimal set of the selected factors and was accompanied 

by the response surface plot for the optimal conditions. 

 

 

4.2. Materials and methods 

 

4.2.1. Statistical design: Box-Behnken design 

     For the optimal TOC removal, 230 mg TS·L-1 black liquor and 2 g·L-1 TiO2 were used 

as the initial composition based on the results of the study in Chapter 3.  To degrade 

recalcitrant components in black liquor, such as lignin, Lalman et al. [18] determined that 

the irradiation time should be 4 hours.  Therefore, the current study will use a four-hour 

irradiation time.  

     A three-level, three-factor BBD was applied for the optimization of the TOC removal 

efficiency of black liquor.  In consideration of practicality, an initial pH ranging from 5 to 

9 [15], a temperature ranging from 23 ℃ to 37 ℃ [12], and a particle size ranging from 5 

nm to 25 nm [10] were sequentially denoted by X1, X2, and X3 for this optimization study.  

In addition, each of these unencoded independent variables was coded at a center level (0), 

low level (-1), and high level (+1).  The value of each variable could be determined by the 

following transformation (Eq. (4.1)) [19]: 

 

                               𝑥𝑖 = (𝑋𝑖 − 𝑋0)/∆𝑋𝑖                                    (4.1) 

 

where xi is the code level of the ith variable, X0 is the center point of the uncoded ith 

independent variable, Xi is the uncoded value of the ith variable at each code level, and ∆𝑋𝑖 

are the step change values.  Table 4.1 shows the input values of the three different factors: 
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initial pH, temperature, and catalyst particle size. 

 

Table 4.1 Box-Behnken design parameters [10, 12, 15]. 

a Step change values. 

 

     Based on the characteristics of BBD, all factors with three-levels were correspondingly 

placed at the center and the midpoints of the edges of the box.  Thus, the BBD is 

advantageous because the BBD is developed using 15 experimental points: twelve (#1 – 

#12) on the edges and three (#13 – #15) in the center, and they are all spherical and rotatable 

designs.  The BBD requires fewer experiments than the FFD of 27 experiments with three 

factors.  The center points were triplicated, designated as #13, #14 and #15, operating under 

the same experimental conditions to estimate the experimental error.  In total, 15 batch 

experiments were conducted under specific conditions and tabulated (Table 4.2).  Besides, 

all 15 experimental conditions were conducted in triplicate. 

 

 

 

 

 

 

 

Factors 
Model 

Terms 

Low 

(-1) 

Central 

(0) 

High 

(+1) 
∆𝑿𝒊

𝒂
 

pH X1 5 7 9 2 

Temperature (℃) X2 23 30 37 7 

TiO2 particle size (nm) X3 5 15 25 10 
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Table 4.2 BBD matrix. 

 

     Table 4.2 shows that within the boundary condition, there was no experimental 

conditions whose factors occurred at high or low levels simultaneously.  Moreover, BBD 

allows for the development of optimization models to determine the linear effects of the 

factors, and to assess the multivariate effects on the response [16].   

 

 

4.2.2. Chemicals 

     Black liquor was obtained from a pulp and paper mill located in Lakehead, Ontario, 

Canada.  After weighing the TiO2 and adding it to Milli-Q® water, the stock suspensions 

of TiO2 nanoparticles were prepared and stored at 23±2 ℃ in 100 mL serum bottles.  The 

TiO2 stock solutions were sonicated using an ultrasonic bath produced from VWR 

(Mississauga, Ontario) for 15 to 20 minutes to ensure thorough mixing prior to the 

Exp. # 

Initial pH of the 

solution 

 
Temperature (℃) 

 
Particle size (nm) 

x1 

(coded) 

X1 

(uncoded) 
 

x2 

(coded) 

X2 

(uncoded) 
 

x3 

(coded) 

X3 

(uncoded) 

1 +1 9  +1 37  0 15 

2 0 7  -1 23  +1 25 

3 0 7  +1 37  +1 25 

4 +1 9  -1 23  0 15 

5 +1 9  0 30  -1 5 

6 +1 9  0 30  +1 25 

7 0 7  -1 23  -1 5 

8 -1 5  +1 37  0 15 

9 0 7  +1 37  -1 5 

10 -1 5  -1 23  0 15 

11 -1 5  0 30  +1 25 

12 -1 5  0 30  -1 5 

13 0 7  0 30  0 15 

14 0 7  0 30  0 15 

15 0 7  0 30  0 15 
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preparation of reaction solutions.  This process produced a homogeneous suspension that 

was used to deliver a more accurate quantity of catalyst to the diluted black liquor solution.  

 

 

4.2.3. Photocatalysis 

     The mixture volume contained in each quartz tube was 50 mL: 40 mL Milli-Q® water, 

5 mL TiO2 solution, and 5 mL black liquor solution.  The photodegrading experiments were 

conducted using the photoreactor configuration described in Chapter 2 (Section 2.3.1).  The 

reaction mixtures were placed into the photoreactor.  The temperature-controlled system 

and cooling fan were used to maintain the photoreactor at the desired temperature.  

 

 

4.2.4. pH adjustment 

     To ensure that the desired pH was accurately achieved in each solution, the pH of the 

reaction solutions was adjusted before photocatalysis using a pH meter (VWR, Mississauga, 

Ontario), HCl (37% w/w), and NaOH (97% purity), which were purchased from Fisher 

Scientific (Ontario, Canada).  All solutions were prepared and mixed using Milli-Q® water. 

 

 

4.2.5. Sampling and analytical methods 

4.2.5.1. Sample collected 

     The samples were collected under 4h irradiation conditions, at 1h time intervals.  The 

samples were diluted, and the TOC content was measured using a TOC-L instrument.  The 

percent TOC removed was set as the response variable of BBD. 

 

 

4.2.5.2. Response Surface Methodology (RSM) 
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     RSM consists of experimental design, modeling and optimization.  In the first step, an 

appropriate experimental design such as CCD or BBD is chosen based on the features of 

each design method.  Next, an appropriate model is introduced to describe the true 

relationships between factors and their responses during the modeling step.  Finally, the 

optimization step can determine the optimal set of factors based on one or more responses.  

     An RSM model of the experimental factors (x1, x2, and x3) and percent TOC removed 

(Y) was developed using Minitab 18 (Minitab Inc., State College, Pennsylvania).  In this 

model, x1 represents the initial pH, x2 represents the temperature of the synthesis, and x3 

represents the photocatalyst particle size.  RSM can create a regression model based on all 

measured responses and can generate a response surface.  The response surface is 

commonly presented in a quadratic equation (Eq. (4.2)) [19]: 

 

Y = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+ ∑ 𝛽𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1

+ ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑘

𝑗=1

𝑘

𝑖=1

+ ɛ          （4.2） 

 

where Y is the measured response or result of experiments, i and j are the index numbers 

of each pattern, k is the number of patterns, β0 is the intercept term, βi is the linear 

coefficient of the corresponding coded variables, βii is the square coefficient of the 

corresponding coded variables, βij is the interaction coefficient between the ith and jth 

variables, x1, x2,…, xk are coded variables, and ɛ is the error that includes measurement 

error. 

     The three variables involved in this study included pH, temperature, and catalyst particle 

size, setting k = 3.  Based on the experimental results from the BBD study, there are 45 

TOC removal efficiencies for three experimental replicates, which were determined by the 
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TOC-L instrument.  These results were used as input parameters to estimate the RSM 

model (Table 4.3).  Table 4.3 shows that the input of the RSM under the percent TOC 

removed at 4-hour was set as the response (Y).  

     Subsequently, an ANOVA was used to identify significant terms in the final model of 

RSM.  If the p-values of the variables’ coefficients calculated by ANOVA are less than 

0.05, the effect of the corresponding factors on response is considered statistically 

significant and cannot be omitted.  Other statistical analysis using Minitab included the D-

optimality index and the Anderson-Darling (AD) statistic.  The D-optimality analysis can 

assist in determining an optimum design to maximize the percent TOC removed in this 

study [20].  In addition, the AD statistic is able to test whether the residuals are fitting to a 

normal distribution [20].  

 

 

4.3. Results and discussion 

 

4.3.1. Statistical summary and analysis 

     The percent TOC removed for each condition of BBD is determined based on the initial 

TOC and final TOC values.  The confidence intervals for the mean values at a 95% 

confidence level were calculated and summarized for each condition (Table 4.3).  All data 

analyses were based on experimental conditions with three replicates.  
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Table 4.3 Percent TOC removed at different factor levels. 

Note: The TOC measurement includes residual black liquor organics plus the degradation 

by-products. 

 

 

     The values of percent TOC removed varied with different conditions, ranging from 

10.9±3.0% to 49.5±3.6%.  The maximum percent TOC removed was achieved by #9 

experiment, namely, a pH of 7, 37 ℃ and a TiO2 particle size of 5 nm.  In contrast, a larger 

particle size (25 nm) in #3 experiment or a lower temperature (23 ℃) in #7 experiment 

achieved a slightly smaller percent of TOC removed, as shown in Figure 4.1.  These results 

suggest that a higher temperature and smaller TiO2 particles are preferable.   

Exp. # pH Temperature (℃) Particle size (nm) TOC removed (%) 

1 9 37 15 38.7±2.3 

2 7 23 25 35.6±3.2 

3 7 37 25 38.0±2.1 

4 9 23 15 26.1±3.5 

5 9 30 5 40.2±1.6 

6 9 30 25 42.9±2.2 

7 7 23 5 40.6±0.6 

8 5 37 15 25.3±3.9 

9 7 37 5 49.5±3.6 

10 5 23 15 10.9±3.0 

11 5 30 25 19.5±2.7 

12 5 30 5 35.0±0.8 

13 7 30 15 24.1±2.0 

14 7 30 15 24.4±2.6 

15 7 30 15 25.5±2.8 
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Figure 4.1 TOC reductions under three conditions at pH = 7. 

Note: The TOC measurement includes residual black liquor organics plus 

the degradation by-products. 

 

 

4.3.2. Main effects plot and interaction plots 

     The main effects plot was used to examine each factor’s impact, which reflects the mean 

response value at each factor level [21].  In Figure 4.2, the increase in temperature and pH 

shows an overall positive effect on TOC removal.  A low-level pH (pH = 5) is linked to 

the lowest percent TOC removed, whereas a small particle size (5 nm) is linked to the 

highest percent TOC removed.  Compared with pH and temperature, a larger vertical 

displacement was observed when the particle size varied.  The data indicate that the particle 

size has a greater effect on percent TOC removed. 
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Figure 4.2 Main effects plots. 

Note: The TOC measurement includes residual black liquor organics plus 

the degradation by-products, each point represents the mean value of all 

points at each level, and the deviation for a factor at one level is expressed 

as devfactor(level), devpH(low) = 9.4, devpH(mid) = 9.4, devpH(high)= 7.0, 

devtem(low) = 12.0, devtem(mid) = 8.7, devtem(high) = 9.3, devsize(low)= 

5.7, devsize(mid) = 8.0, devsize(high) = 9.4. 

 

 

     The non-parallel lines in the interaction plots (Figure 4.3) show the interaction between 

the different factors, and the more non-parallel lines indicate the stronger strength of 

interaction effect [22].  Accordingly, the interaction effect on the response between pH and 

particle size could not be neglected because all three lines intersect in the interaction plot 

between pH and particle size.  Despite fewer non-parallel lines in the other interaction plots, 

their effects require further discussion.  Notice that the ANOVA test should be performed 

to ensure an appropriate estimation on the significance of the interaction effects [22].    
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Figure 4.3 Interaction plots. 

 

 

     The normal plot of the effects was selected to compare the statistical significance of 

linear, square and interaction effects on TOC removal.  Points located on or near the 

straight line indicate zero effect in the normal plot [23].  As shown in Figure 4.4, three 

factors were denoted by A, B, and C (A = pH, B = temperature, and C = particle size).  All 

the effects except AB are significant at a confidence level of 95% (α = 0.05).  Hence, there 

were no interaction effects on TOC removal between pH and temperature, which was 

consistent with the results of Soares et al. [24].  Except for the interaction effects between 

pH and temperature, all the other terms are statistically significant, including the linear, 

square and remaining interaction terms.  In addition, the increase in C, AA, and BC can 

have a negative impact on TOC removal efficiency because these terms are located on the 

left side of the straight line [23].  In contrast, the terms on the right side of the straight line, 

such as CC or BB, show positive effects on the response.    
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Figure 4.4 Normal plot of the factorial linear, square and interaction effects. 

Note: A = pH, B = Temperature, C = Particle size, and AB, BC, AC = Interaction 

effects. 

 

 

4.3.3. Response surface model development 

     The ANOVA is a statistical analysis method that evaluates the model’s adequacy and 

interprets the factorial effects on the response in the full quadratic model.  The ANOVA 

(Table 4.4) of the TOC removal efficiency illustrates that this model is statistically 

significant because of p-value < 0.05 [25].  The F-value of the model was 66.3, which was 

much higher than the F-critical value of 2.16 (df1 = 9, df2 = 35, α = 0.05), indicating that 

this model was significant [26].  The insignificant interaction effect between pH and 

temperature on the response was verified because the p-value was larger than 0.05.  In 

contrast, the interaction effects between pH and particle size, and between temperature and 

particle size were verified and had p-values < 0.05.  
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Table 4.4 ANOVA for factorial linear, square and interaction effects. 

Note: a DF = degrees of freedom, b Adj SS = adjusted sum of squares, c MS = mean square. 

 

 

     To generate a fitted RSM model for TOC removal, the backward elimination method 

was performed to simplify the full quadratic model.  The backward elimination method 

considers all the potential terms first and removes one insignificant term for every step 

until all the remaining terms are significant [27].  Using this approach, this model is 

advantageous for considerable predictive capability.  In this study, all the variables and 

responses were fitted to a refined quadratic model (Eq. (4.3)), that had an F-value of 75.9, 

which was greater than F-critical (2.2 for df1 = 8, df2 = 36, and α = 0.05).  The data indicate 

the significance of this refined quadratic model.  

 

Source DFa Adj SSb Adj MSc F-Value P-Value 

Model 9 4437 493.0 66.26 0.000 

Linear 3 2098 699.3 93.98 0.000 

    pH 1 1228 1228 165.1 0.000 

    Temperature 1 549.1 549.1 73.80 0.000 

    Particle size 1 320.5 320.5 43.07 0.000 

Square 3 2054 684.7 92.01 0.000 

    pH*pH 1 98.40 98.40 13.22 0.001 

    Temperature*Temperature 1 140.5 140.5 18.88 0.000 

    Particle size*Particle size 1 1787 1787 240.2 0.000 

2-Way Interaction 3 285.1 95.04 12.77 0.000 

    pH*Temperature 1 2.520 2.520 0.340 0.564 

    pH*Particle size 1 250.3 250.3 33.63 0.000 

    Temperature*Particle size 1 32.34 32.34 4.350 0.044 

Error 35 260.4 7.440   

Total 44 4697    
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Y = 55.5 + 10.58A − 3.33B − 5.07C − 0.745A2 + 0.073B2 + 0.127C2 + 0.228 AC

− 0.024 BC                                                                                  (4.3)   

 

where Y is the TOC removal (%), A represents the initial pH, B represents the temperature 

(℃), and C represents the TiO2 particle size (nm). 

 

 

4.3.4. Response surface and contour plots 

     According to the predictive model from Minitab, two-dimensional contour plots were 

embedded into three-dimensional surface plots using MATLAB (MathWorks, Natick, 

Massachusetts), as shown in Figures 4.5, 4.6 and 4.7.  These combined plots show how the 

response surfaces vary with the factors and directly identify the location of the maximum 

TOC removal and the corresponding set of factor values.  The iso-lines in each contour 

plot were labeled at intervals of 5, which illustrates the distribution of the response surface 

gradient.  

     The response surface under the dimensions of pH and temperature was plotted in Figure 

4.5, which shows the percent TOC removed raised along the diagonal, and the maximum 

percent TOC removed value was achieved at a pH of 9 and at 37 ℃.  The gradient in the 

ascending direction of the diagonal was relatively uniform due to the absence of interaction 

disturbance between pH and temperature.  
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Figure 4.5 Response surface plot of pH and temperature at the 15 nm particle size. 

Note: The TOC measurement includes residual black liquor organics plus the 

degradation by-products. 

 

 

     The response surface under the dimensions of pH and particle size is plotted in Figure 

4.6.  A clear valley can be observed at 15 nm TiO2, illustrating the negative effect of TiO2 

with a particle size of approximately 15 nm on TOC removal efficiency.  This effect was 

consistent with the result of Carbeiro et al. [28].  These researchers reported that TiO2 

particles at 15 nm showed a minimum of photocatalytic activities within a particle size 

range of 7 to 35 nm.  They attributed the decrease in photocatalytic activity to the decline 

of OH-groups within the size range of 7 to 15 nm [28].  In addition, the maximum percent 

TOC removed was estimated at a pH of 9 and a TiO2 particle size of 25 nm.  Almquist et 

al. [29] reported that 25 nm TiO2 particles exhibited the most apparent photoactivity in the 

range of 25 to 40 nm.  In addition, a greater photocatalytic activity was observed when the 

particle size increased or decreased from 15 nm.  Moreover, increasing particle size can 

obtain a more effective increase in percent TOC removed than decreasing particle size at 

high-level pH values at 30 °C.  
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Figure 4.6 Response surface plot of pH and particle size at 30 ℃. 

Note: The TOC measurement includes residual black liquor organics plus the 

degradation by-products. 

 

 

     The response surface under the dimensions of temperature and particle size was 

demonstrated in Figure 4.7.  This response surface is characterized by a concave area 

around the center.  The iso-lines are in a quasi-circular pattern due to the dominance of the 

positive square terms of these two factors.  In addition, the concentric contour illustrates 

the location of a minimum response point, which was at approximately 15 nm of particle 

size and 25 ℃.  A larger response can be observed at the points farther away from the 

lowest response.  The maximum percent TOC removed was observed at 5 nm TiO2 and 

37 ℃ because of the interaction effect between the temperature and catalyst particle size 

on TOC removal efficiency.  
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Figure 4.7 Response surface plot of TiO2 particle size and temperature at pH = 7. 

Note: The TOC measurement includes residual black liquor organics plus the 

degradation by-products. 

 

 

4.3.5. Verification of the response model and optimization 

     The regression coefficient R-squared value of 94.4% for Eq. (4.3) demonstrates that the 

model can describe 94.4% of the variation of the measured TOC removal efficiency, so 

this model has a reasonable fit with the observations.  The predicted R-squared value of 

91.2% indicates the accurate predictive ability of this refined model. 

     The residuals were calculated using Minitab to determine the difference between the 

experimental results and the corresponding predicted values.  The residuals plotted with 

the experiment order are shown in Figure 4.8.  Note the experimental order is the same as 

in Table 4.3 with three replicates.  This plot shows that the residuals are varied around the 

center line randomly, so the residuals are not dependent on the experimental order [30].  
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Figure 4.8 Residuals versus experimental order plot. 

 

 

     To estimate whether the residuals follow the normal distribution, the AD statistic was 

performed and the results shown in Figure 4.9.  The observed AD value (0.314) was less 

than the critical AD value (0.738) in the case of a sample size of 45 at a 95% confidence 

level.  The p-value (0.533) above 0.05 further confirmed that the residual distribution 

followed the normal distribution [31, 32]. 

 
Figure 4.9 AD normality plot. 
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     The D-optimality was used to locate the maximum percent TOC removed.  In this study, 

the D-optimality result (Figure 4.10) was generated using the response optimizer function 

in Minitab software.  The D-optimality provides a D index to explain the extent to which 

the combination of optimal factor values achieves the goal of maximizing the percent TOC 

removed, and the D value varies between 0 (undesirable) and 1 (ideal) [33].  The curve in 

each cell shows how the percent TOC removed varies with the corresponding factor, when 

the other two factors remain at their optimal values [34].  In each cell, the y-axis represents 

the percent TOC removed, and the x-axis represents each factor.  The maximum percent 

TOC removed (51.6%) was determined by the largest D-optimality index (0.986) and 

predicted by the fitted model under the conditions of a pH of 7.87, 37 ℃, and a TiO2 particle 

size of 5 nm.  Three surface plots at the optimum factor values (Figure 4.11) indicate the 

location of maximum responses in the corresponding spaces.  In this case, an overall 

elevation of response surfaces in each space was observed compared to the mid-level 

surface plots.  This indicates that using any optimal factorial value can improve efficiency. 

 
Figure 4.10 D-optimality plot for maximizing TOC removal efficiency. 

Note: The TOC measurement includes residual black liquor organics plus the 

degradation by-products. 
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Figure 4.11 The optimum TOC removal point at a) pH = 7.87, b) 37 ℃, and c) 5 nm. 

Note: The TOC measurement includes residual black liquor organics plus the 

degradation by-products. 

 

 

     In conclusion, the RSM provided a reasonable estimation within the selected range of 

each factor.  According to the model in RSM, the percent TOC removed from black liquor 

has no interaction effect between pH and temperature.  The maximum TOC removal 

efficiency was calculated be achieved under the conditions of a pH of 7.87, 37 ℃, and a 

TiO2 particle size of 5 nm.  Moreover, the 15 nm catalyst was not recommended because 

of low photocatalytic performance. 

  

c) 
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CHAPTER 5 

GENERAL CONCLUSIONS AND RECOMMENDATIONS 

 

 

     This work attempted to optimize the TOC removal efficiency of UV/TiO2 

photocatalytic degradation of black liquor by controlling five factors.  In consideration of 

up to five factors, the whole process of optimization was divided into two phases.  The first 

phase was considered the preliminary study (Chapter 3), during which the black liquor 

concentration and the TiO2 concentration were taken as variables to determine a better 

initial condition with the assistance of a two-level 2k design.  Based on the initial condition 

of outstanding TOC removal efficiency, the remaining three factors: pH, temperature, and 

particle size were optimized simultaneously in Chapter 4 by applying a three-factor, three-

level BBD. 

     According to the results in Chapter 3, the optimal set of conditions was 230 mg TS·L-1 

black liquor and 2 g·L-1 TiO2.  Under this optimal condition, the TOC reduction percentage 

can be as high as 36.2±4.0%, which is more than twice the lowest TOC reduction 

percentage under the condition of 460 mg TS·L-1 black liquor and 1 g·L-1 TiO2.  This result 

complied with the trend proposed by Shoko et al. [1] that decreasing substrate 

concentration and increasing catalyst concentration can optimize the photocatalytic 

performance at a high pH level.  The statistical analysis of the 2k design indicates the 

significance of the interaction effect between black liquor and TiO2 concentration on the 

TOC reduction efficiency.  In addition, a high black liquor concentration had a negative 

effect on the TOC reduction efficiency and dominated the effect on photocatalytic 

efficiency when only these two factors were considered.  
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     According to the results in Chapter 4, the optimal conditions were a pH of 7.87, 37 ℃, 

and a catalyst particle size of 5 nm.  Under these optimal conditions, the TOC reduction 

was expected to reach 51.6%, predicted using an RSM quadratic model. ANOVA was 

performed and indicated that all the linear and square terms were statistically significant, 

while the interaction terms except for the interaction between pH and temperature were 

significant.  A TiO2 particle size of 15 nm was not recommended due to a negative effect 

on TOC reduction.  In addition, the optimization of RSM can be proven when compared to 

the optimum results of Chapter 3 (36.2%), with an additional 15% TOC removal efficiency. 

     Although the optimal condition of five factors was identified, a more comprehensive 

optimization can be performed in the future.  A wider range of each factor can also be 

considered, particularly a higher pH and a wider range of temperatures.  As the factors’ 

values are examined intensively, the cost of each condition could also be taken into 

consideration as the second response during optimization.  In addition, phenolics are one 

of the abundant byproducts of photocatalysis, and the phenolics could also be taken into 

consideration because of their ability to affect the process of bio-degradability when used 

in conjunction with other elements, such as co-digestion with glucose for biogas production 

[2]. 
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List of steps for TS and VS measurements: 

1. Wash crucibles, and putting them at 550 ℃ overnight in a muffle furnace 

2. Place crucibles into the desiccator for cooling down 

3. Measure the weight of graduated cylinder  

4. Bring sample (black liquor bottle) in room temperature before analysis 

5. Stir the sample adequately  

6. Pipette sample from the black liquor bottle 

7. Deliver sample to the graduated cylinder up to 3 mL. Rinse the pipette if there is 

visible residue in it.  

8. Measure the total weight of the graduated cylinder containing 3 mL sample  

9. Measure the weight of crucible (empty mass) 

10. Pour the sample into the crucible from graduated cylinder  

11. Rinse the graduated cylinder couple times, and pouring the rinsed liquid into the 

crucible  

12. Place the crucible into the 105 ℃ oven overnight  

13. Place the crucible into the desiccator for cooling down 

14. Measure the total weight (mass 105 ℃) of crucible + residue1  

15. Turn on the muffle furnace up to 550 ℃ 

16. Place the crucible into the muffle furnace for 2 hours 

17. Place crucible into the desiccator for cooling down 

18. Measure the total weight (mass 550 ℃) of crucible + residue2 until constant weight 

19. Turn off the muffle furnace 

All TS and VS measurement were in triplicate. 

 

References:  

• TAPPI/ANSI T 650 om-15 

• METHOD 1684 
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Calculations for TS and VS: 

𝐓𝐨𝐭𝐚𝐥 𝐬𝐨𝐥𝐢𝐝𝐬 = 𝐓𝐒 (
𝒎𝒈

𝑳
) =

𝒎𝒂𝒔𝒔 𝟏𝟎𝟓 ℃ (𝒈) − 𝒆𝒎𝒑𝒕𝒚 𝒎𝒂𝒔𝒔 (𝒈)

𝒗𝒐𝒍𝒖𝒎𝒆 (𝒎𝑳)
× 𝟏𝟎𝟔 

𝐕𝐨𝐥𝐚𝐭𝐢𝐥𝐞 𝐬𝐨𝐥𝐢𝐝𝐬 = 𝐕𝐒 (
𝒎𝒈

𝑳
) =

𝒎𝒂𝒔𝒔 𝟏𝟎𝟓 ℃ (𝒈) − 𝒎𝒂𝒔𝒔 𝟓𝟓𝟎 ℃ (𝒈)

𝒗𝒐𝒍𝒖𝒎𝒆 (𝒎𝑳)
× 𝟏𝟎𝟔 

Empty mass (g) = weight of crucible  

Volume (mL) = amount of black liquor added to the crucible 

Mass 105 ℃ (g) = weight of dried residue after 20 hours (to make sure all water is driven 

off samples) in 105 ℃ oven and cooling + crucible  

Mass 550 ℃ (g) = weight of dried residue after 2 hours in 550 ℃ muffle furnace and 

cooling + crucible  

Data: 

Empty mass(g) Volume (mL) Mass 105 ℃ (g) Mass 550 ℃ (g) 

41.6632 3.00 43.4366 42.9159 

43.3360 3.00 45.0827 44.5371 

43.5366 3.00 45.2823 44.7552 

Note: All TS and VS measurements were conducted in triplicate.   

Sample calculation: 

𝐓𝐒 =
𝟒𝟑. 𝟒𝟑𝟔𝟔𝐠 − 𝟒𝟏. 𝟔𝟔𝟑𝟐𝐠

𝟑. 𝟎𝟎𝐦𝐋
×

𝟏𝟎𝟑𝐦𝐠

𝐠
×

𝟏𝟎𝟑𝐦𝐋

𝐋
= 𝟓𝟗𝟏𝟏𝟑𝟑 (

𝐦𝐠

𝐋
) 

𝐕𝐒 =
𝟒𝟑. 𝟒𝟑𝟔𝟔𝐠 − 𝟒𝟐. 𝟗𝟏𝟓𝟗𝐠

𝟑. 𝟎𝟎𝐦𝐋
×

𝟏𝟎𝟑𝐦𝐠

𝐠
×

𝟏𝟎𝟑𝐦𝐋

𝐋
= 𝟏𝟕𝟑𝟓𝟔𝟕 (

𝐦𝐠

𝐋
) 

In this study, the TS of black liquor is equal to 585089±1950 mg TS·L-1, which is 585.1±

2.0 g TS·L-1 on average. The VS of black liquor volatile solids is equal to 177044±584 mg 

VS·L-1, which is 177.0±0.6 g TS·L-1 on average. 

Diluting 0.50 g (0.39 mL) black liquor into 1.0 L solution, the TS and VS were calculated 

as:  

𝐓𝐒 = 𝟓𝟖𝟓. 𝟏
𝐠

𝐋
×

𝟏𝟎𝟑𝐦𝐠

𝐠
×

𝟎. 𝟑𝟗𝐦𝐋

𝟏𝟎𝟎𝟎𝐦𝐋
= 𝟐𝟑𝟎 (

𝐦𝐠

𝐋
) 

𝐕𝐒 = 𝟏𝟕𝟕. 𝟎
𝐠

𝐋
×

𝟏𝟎𝟑𝐦𝐠

𝐠
×

𝟎. 𝟑𝟗𝐦𝐋

𝟏𝟎𝟎𝟎𝐦𝐋
= 𝟔𝟗 (

𝐦𝐠

𝐋
) 
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