
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

9-9-2019 

Development of a Standalone Pedestrian Navigation System Development of a Standalone Pedestrian Navigation System 

Utilizing Sensor Fusion Strategies Utilizing Sensor Fusion Strategies 

Matthew Straeten 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Straeten, Matthew, "Development of a Standalone Pedestrian Navigation System Utilizing Sensor Fusion 
Strategies" (2019). Electronic Theses and Dissertations. 7845. 
https://scholar.uwindsor.ca/etd/7845 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7845&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7845?utm_source=scholar.uwindsor.ca%2Fetd%2F7845&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


 

 

 

Development of a Standalone Pedestrian Navigation System Utilizing Sensor 

Fusion Strategies 

By 

Matthew Straeten 

 

A Thesis  

Submitted to the Faculty of Graduate Studies  

through the Department of Mechanical, Automotive and Materials Engineering 

in Partial Fulfillment of the Requirements for 

the Degree of Master of Applied Science 

 at the University of Windsor 

 

 

Windsor, Ontario, Canada 

2019 

© 2019 Matthew Straeten 

  



Development of a Standalone Pedestrian Navigation System Utilizing Sensor 

Fusion Strategies 

by 

Matthew Straeten 

APPROVED BY: 

______________________________________________ 

J. Urbanic 

Department of Mechanical, Automotive and Materials Engineering 

 

______________________________________________ 

J. Johrendt 

Department of Mechanical, Automotive and Materials Engineering 

  

______________________________________________ 

J. Ahamed, Advisor 

Department of Mechanical, Automotive and Materials Engineering  

 

 

 

 

September 9th, 2019 



 

iii 

 

DECLARATION OF CO-AUTHORSHIP / 

PREVIOUS PUBLICATION 

I hereby declare that this thesis incorporates material that is result of joint 

research, as follows: 

Portions of chapters 4 and 5 of this thesis were authored under the 

supervision of Dr. M. J. Ahamed. In this thesis, the key ideas, experimental 

designs, data analysis and interpretation and writing were performed by the author. 

I am aware of the University of Windsor Senate Policy on Authorship and I 

certify that I have properly acknowledged the contribution of other researchers to 

my thesis, and have obtained written permission from each of the co-author(s) to 

include the above material(s) in my thesis.  

I certify that, with the above qualification, this thesis, and the research to 

which it refers, is the product of my own work. 

I. Previous Publication 

This thesis includes 1 original paper that have been previously 

published/submitted for publication in peer reviewed journals, as follows: 

Thesis Chapter Publication title/full citation Publication status* 

Chapter 4-5 M. Straeten, M. J. Ahamed, “Intuitive 

Ultrasonic INS Augmentation for 

Pedestrian Path Tracking and 

Navigation”, Sensors and Actuators A: 

Physical, 2019 

Submitted 

 

I certify that I have obtained a written permission from the copyright 

owner(s) to include the above published material(s) in my thesis. I certify that the 

above material describes work completed during my registration as a graduate 

student at the University of Windsor. 



 

iv 

 

II. General 

I declare that, to the best of my knowledge, my thesis does not infringe 

upon anyone’s copyright nor violate any proprietary rights and that any ideas, 

techniques, quotations, or any other material from the work of other people 

included in my thesis, published or otherwise, are fully acknowledged in 

accordance with the standard referencing practices. Furthermore, to the extent that 

I have included copyrighted material that surpasses the bounds of fair dealing 

within the meaning of the Canada Copyright Act, I certify that I have obtained a 

written permission from the copyright owner(s) to include such material(s) in my 

thesis.  

I declare that this is a true copy of my thesis, including any final revisions, 

as approved by my thesis committee and the Graduate Studies office, and that this 

thesis has not been submitted for a higher degree to any other University or 

Institution. 

 

  



 

v 

 

ABSTRACT 

Pedestrian inertial navigation systems yield the foundational information 

required for many possible indoor navigation and positioning services and 

applications, but current systems have difficulty providing accurate locational 

information due to system instability. Through the implementation of a low-cost 

ultrasonic ranging device added to a foot-mounted inertial navigation system, the 

ability to detect surrounding obstacles, such as walls, is granted. Using these 

detected walls as a basis of correction, an intuitive algorithm that can be added to 

already established systems was developed that allows for the demonstrable 

reduction of final location errors. After a 160 m walk, final location errors were 

reduced from 8.9 m to 0.53 m, a reduction of 5.5% of the total distance walked. 

Furthermore, during a 400 m walk the peak error was reduced from 10.3 m to 1.43 

m. With long term system accuracy and stability being largely dependent on the 

ability of gyroscopes to accurately estimate changes in yaw angle, the purposed 

system helps correct these inaccuracies, providing strong plausible implementation 

in obstacle rich environments such as those found indoors.  
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Chapter 1: INTRODUCTION 

1.1 BACKGROUND 

1.1.1 INERTIAL NAVIGATION SYSTEM 

Inertial Navigation is the concept of using inertial sensors to provide the 

information required to make observations about an object’s movement and current 

location [1]. All Inertial Navigation Systems (INS) require at least a gyroscope for 

sensing angular velocity and an accelerometer for measuring acceleration which are 

generally packaged together in a device called an Inertial Measurement Unit (IMU). A 

process flow for a basic INS algorithm is shown in Figure 1.1. First, the devices are 

sampled for their information (angular velocity and acceleration), which is then used to 

calculate the current orientation of the object being tracked. This is generally done by 

calculating the amount of rotation that has occurred since the last sample using the 

angular velocity information, producing a current attitude of the object being tracked. The 

accelerations are then rotated from the body frame determined by the gyroscopes, to the 

navigation frame, where accelerations are then integrated to produce velocity and 

position [1]. Given knowledge about the starting location, and measurements of all 

subsequent changes in position, an estimation of the current location can be produced; a 

process called dead reckoning.  

 

Figure 1.1: Basic inertial navigation process flow- adapted from [1]. 

While this basic process flow works well in theory, problems arise due to the 

errors within the sensors that are being used. Inertial devices come in multiple grades; 

Figure 1.2 shows various grades of gyroscopes with their corresponding bias stability. 

Accelerometers

Gyroscopes Orientation

Correct gravity Velocity Position

Gravitational 
field model

Accelerations

Rotations
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While gyroscopes capable of high-performance navigation exist, their cost, as well as 

their size, directly prohibit most navigation cases, especially for pedestrian navigation 

cases. A high-performance gyroscope alone can cost tens of thousands of dollars, making 

it generally impractical for all except the most elite of tasks.  

 

 

Figure 1.2: Schematic showing a comparison of gyroscope grade to bias stability and cost - adapted 

from [2]. 

With the requirement for cost-effective solutions, industrial grade (commonly 

referred to as consumer-grade) sensors are generally used for more common applications. 

Since these sensors contain less accuracy and lower precision in measurements, they are 

natively poorly suited to inertial navigation problems. Due to integration, position errors 

caused by acceleration measurement errors grow cubically with time [3], meaning that 

unbounded or unresolved errors in the sensors become detrimental to the system very 

quickly. Gyroscope drift is another common type of error and occurs when unaddressed 

errors within gyroscope measurements are integrated, producing measurements of 

angular rotation that are not occurring. This drift largely comes from two types of error, 

bias instability and angle random walk, with the latter being a far smaller contributor [4]. 

Due to the slow-changing, and random nature of bias instability, it is difficult to estimate 

and remove from measurements [4]. Figure 1.3 shows the effect of integrating gyroscope 

samples without any correction methods. The most sensitive access to gyroscope drift is 

the yaw axis of the system in the navigation frame, as roll and pitch errors can be 

Gyroscope 
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Tactical
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High performance 
Navigation
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removed through combination with an accelerometer and the determination of the gravity 

vector. This makes yaw correction methods desirable for inertial navigation systems.        

 

Figure 1.3: An example of gyroscope drift (earth’s rotation has been removed). 

1.1.2 PEDESTRIAN INERTIAL NAVIGATION 

Pedestrian inertial navigation is a system designed with the purpose of tracking or 

navigating an individual in an indoor or outdoor environment through the use of inertial 

sensors. In pedestrian INSs, the IMU is generally placed on the foot, resulting in the 

determination of location through the movements of that foot which is generalized to 

include the person. Systems can also be chest mounted [5] or hip-mounted [6]. Pedestrian 

navigation poses several challenges including the size of the hardware used, variations in 

user gait patterns and the inability to use traditional GPS solutions in indoor 

environments. Accurate indoor positioning yields the foundation for a number of services 

and applications that could utilize the information provided by such a system. 

Applications such as navigation of the visually impaired in complex indoor environments 

such as malls and airports, navigation of emergency personnel in situations with reduced 

visibility such as those due to smoke, and even marketing potential with targeted 

advertising based on proximity to vendor location.    
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Currently, indoor pedestrian systems research is driven by a lack of accuracy and 

stability in long term navigation due to errors in the used sensors. The desire for wide use 

pedestrian navigation requires the use of inexpensive sensors such as those used in 

smartphones or other smart devices. Since these sensors generally have lower accuracy 

and higher error than their navigation grade counterparts, intelligent solutions for error 

reduction are created and tested. These solutions come in two forms, those made through 

algorithmic corrections such as filtering and zero velocity updating, and those made 

through the application of other sensors or devices to help ascertain accurate estimations 

of position. 

1.2 LITERATURE REVIEW 

In typical digital navigation systems, location information is determined from a 

Global Positioning System (GPS) which gives an accuracy of around 5 m in open-sky 

scenarios [7], [8]. For typical vehicular navigation, this can be acceptable as fine details 

provide no significant importance, but in navigation that requires higher accuracy, or in 

areas where GPS signals are weak decreasing accuracy, another solution is required. A 

potential solution to this problem are inertial navigation systems, which are systems that 

use onboard inertial sensors to provide the required information to the system, instead of 

outside signal-based approaches [1]. In these systems, inertial sensors are often combined 

with other sensors to reduce error and improve stability as many inertial sensors have 

errors that result in inaccuracy very quickly. In this section, some background into micro-

electro-mechanical-systems (MEMS) based inertial sensors will be given, followed by a 

brief overview of currently implemented error reduction strategies such as filtering, and 

sensor augmentations. 

1.3 MEMS DEVICES 

Micro-Electro-Mechanical-Systems (MEMS) based inertial sensors are microscale 

devices (10-6 m) that utilize both mechanical and electrical systems to provide sensing 

ability. These devices have found implementation in a number of applications ranging 

from electronic devices such as smartwatches and cellphones to wearable electronic 

platforms for personal data discovery [9], [10]. These new implementations come from 
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constant and consistent improvements to the sensors in the form of cost, size, accuracy, 

stability and power consumption [11], [12]. MEMS sensors were first physically 

conceptualized in 1991 by the Draper Laboratory [13], sparking interest in different 

design shapes, sensing modes, actuations, and fabrication processes [14]–[16]. 

Due to the microscale nature of these sensors, fabrication is done utilizing several 

techniques specific to the MEMS industry. Fabrication is done through the use of 

lithography, allowing for the patterning of the device layers onto a material, typically 

some form of ultraviolet (UV) resist, which can then be used as a mask for the device 

material, typically silicon. By utilizing this type of fabrication, hundreds to thousands of 

sensors can be manufactured at a time on a single silicon wafer, lowering fabrication 

costs and time.  

MEMS-based inertial sensors work through the employment of a mass, which is 

driven to resonance by an electrical circuit [17]. In the case of a gyroscope, a device that 

measures angular velocity, the resonating mass is displaced by the Coriolis force. This 

displacement is then measured by electrodes, typically through the change in capacitance 

caused by the reduction in the distance between the electrodes on and off the mass [17]. 

Since this change in capacitance is directly related to the change in displacement 

proportional to the Coriolis force caused by the angular velocity, these devices provide 

angular velocity sensing ability. 

Within this work, two types of inertial sensors will be utilized, the gyroscope as 

mentioned, and an accelerometer. These devices provide information about angular 

velocity and acceleration respectively, and when combined generate a great deal of 

potential in orientation sensing, and object tracking. These devices are packaged together 

into a single sensor module called an IMU which will typically contain three 

accelerometers and three gyroscopes, with one of each in three mutually orthogonal 

direction. In IMUs, accelerometers and gyroscopes are sometimes combined with other 

sensors such as a barometer which for altitude sensing, and a magnetometer to supply 

information regarding absolute heading.     

 



 

6 

 

1.3.1 ZUPT 

Zero velocity updating (ZUPT) is a core component of pedestrian based inertial 

navigation systems, allowing for the use of human gait patterns to reduce errors within an 

INS [18], [19]. During normal walking patterns, a step can be broken into two separate 

phases: stance phase and swing phase which are shown in Figure 1.4 [20]. The swing 

phase is the part of the step that causes translational and rotational movement of the foot 

while during the stance phase, the foot of the pedestrian remains in contact with the 

ground while either remaining planted fully or rotating with only partial contact. It is 

during the stance phase that a zero-velocity update can be performed due to the foot 

remaining planted, and thus having a zero velocity. With the knowledge that the foot 

must have a zero velocity, the INS system can be queried for the current estimated 

velocity. If the velocity estimated is not zero, the value can be reset to zero and the 

difference between the zero velocity and the estimated velocity can be used to estimate 

positional errors that have accumulated since the last step.  

 

Figure 1.4: Diagram showing phases of walking -adapted from [20]. 

In order to implement ZUPT methods within an INS, the ability to differentiate 

between a stance and a swing phase is first required. Since the most basic INS includes 

only an accelerometer and gyroscope, differentiation between these phases typically uses 

this information. It has been shown that using acceleration data yields better results for 

running [21] while using angular velocity data yields better results for walking [22]. Both 

methods rely on thresholding, with accelerometer threshold being the magnitude of the 

acceleration equal to gravity plus the noise from the sensor. When using the gyroscope 

data, the magnitude of the angular velocities should be less than the threshold of noise as 

during the middle of the stance phase, no rotation of foot would be occurring.   
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1.3.2 FILTERING  

In addition to error reduction methods that can be applied based on event-driven 

corrections such as zero-velocity updating, another common method of error reduction is 

signal filtering. Filtering is the act of applying a mathematical formula or a physical 

circuit to remove unwanted or unnecessary information from a signal. Filters can be 

analog, where the electrical signal is filtered using physical components, or digital, where 

the filter is applied to the data mathematically using a processor. Digital filters are 

generally regarded as superior due to their significant performance improvement over 

their analog counterparts [23]. In inertial navigation, digital filters are used to help 

remove noise from desired signals, such as those from accelerometers and gyroscopes. 

Some common filters used in INSs are the complementary filter and the Kalman filter.  

1.3.2.1 COMPLEMENTARY FILTER 

A complementary filter is a simple filter that combines two or more sensor 

measurements to produce information with less error. The measurements from the 

sensors that are being combined are generally first converted into a common variable, 

then a weighted sum of these measurements is combined to produce an estimate of the 

desired value. A simple and common example of a complementary filter is using 

accelerometers and gyroscopes to produce an estimate of orientation. Gyroscopes 

measure rotational velocity which can be integrated to produce angular displacement 

since initialization, while accelerometers measure acceleration, and thus gravity, which 

when no other accelerations exist will point directly downward. After determining the 

orientation angle from the accelerations, it can be combined with the current angular 

estimation from the gyroscopes through a weighted multiplier. Since accelerometers will 

measure accelerations other than gravity, the data from this sensor is less reliable short 

term than that of the gyroscope, which, while generally higher in noise, will be more 

reliable in short term. Applying a weight of 90% to the gyroscope angle measurement 

effectively applies a high-pass filter, while applying a 10% weight to the accelerometer 

measurement effectively applies a low-pass filter. Since the sum of their weights is equal 
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to 1, these complementary measurements produce a full measure of the desired 

information.  

INS systems will typically use a complementary filter to determine orientation 

similar to that of the example above. In addition to using the gyroscope and 

accelerometer data, many IMUs contain a magnetometer which also provides a measure 

of orientation that can be used with the complementary filter. Researchers in [24] use an 

IMU consisting of accelerometers, gyroscopes, and magnetometers as well as a 

complementary filter to achieve a final location error of 0.4% after 1100 m of walking. 

More complex implementations of this filter have been explored such as dynamically 

adjusting the filter weight parameter [25]. These filters are computationally inexpensive 

and require no information about process or measurement noise.  

1.3.2.2 KALMAN FILTER 

A Kalman filter is a recursive linear filtering method developed by Rudolf Emil 

Kalman in 1960 [26]. A Kalman filter is used to provide an estimate of a state (desired 

information) from related measurements that contain noise, combined with information 

regarding the measurement noise and the process noise characteristics. Since the Kalman 

filter is a recursive algorithm, previous estimates are combined with current 

measurements through a dynamic weighting factor called the Kalman gain. The value of 

this gain is determined based on the noise covariance, the error covariance, and the 

process noise covariance. The general Kalman filter algorithm is shown in Figure 1.5. 
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Figure 1.5: Kalman filter algorithm - adapted from [27]. 

Since the Kalman filter assumes a linear relationship between the measurements 

and the desired states, adaptations of the Kalman filter have been developed to address 

this, namely the extended Kalman filter and the unscented Kalman filter which remove 

the linear limitation allowing for non-linear relationships. An extended Kalman filter 

generates the covariance through the linearization of a non-linear function while an 

unscented Kalman filter instead generates a number of sample points around the mean 

which then generate a new mean and covariance after applying the non-linear function 

[28]. The benefit of an unscented Kalman filter over that of an extended Kalman filter 

arises when the function being linearized is highly non-linear causing errors in the 

covariance of the model. Since an unscented Kalman filter does not rely on linearization, 

higher performance is possible for non-linear relationships [28].   

Another significant benefit of the Kalman filter is its ability to fuse data from 

various sensors to provide the desired state. A model is created that relates the sensor 

information to the desired state, intrinsically fusing the data to provide an estimate of the 

state. This is highly useful in many sensor-based applications allowing for error reduction 

through the collection of co-related noise laden data, strengthening the estimation of the 

noise-free measurement. Sensor fusion is used commonly in inertial navigation allowing 

1) Project the state ahead
𝑥  
   𝑥    

       

2) Project the error covariance 
ahead

  
        

   

4) Update estimate with 
measurement   

𝑥   𝑥  
        𝑥  

 

3) Compute the Kalman gain
     

      
       

5) Update the error covariance
          

 

Time Update (“Predict”)

Measurement Update 
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for multiple sensors to provide information related to the position estimate, improving 

accuracy and reducing errors.  

1.3.3 SENSOR FUSION 

Given that most navigation solutions lack the capital requirement for high-

performance navigation, there exists a strong desire to make Industrial/consumer-grade 

devices capable of acceptable positional estimation. This is done through algorithmic 

corrections in the form of filtering (see 1.3.2), or through sensor fusion that can provide 

more information with which to eliminate errors. My different types of sensor fusion 

strategies have been explored including signal-based fingerprinting, GPS combination, 

computer vision solutions and Light Detection and Ranging (LIDAR) devices.  

1.3.3.1 FINGERPRINTING 

Signal Based Fingerprinting utilizes a pre-collected database of signal strengths to 

various beacons at multiple locations in the area of interest. During INS operation, the 

system uses the Received Signal Strength (RSS) to the various beacons and compares to a 

database of stored premeasured signal strengths relative to location. This allows for the 

determination of a unique location within the area. This can be applied to many types of 

signals including Wi-Fi, Bluetooth, and others [29]–[32]. In [30] researchers were able to 

achieve positional accuracy of 2.7 m using Bluetooth beacons, while in [32] maximum 

positional errors were reduced to as low as 2 m using Wi-Fi signals.  

 The main disadvantages of this type of correction method come from the time 

requirement of setting up the fingerprinting database which requires significant time to 

measure and database RSS to each beacon at many locations [33]. This method also 

requires infrastructure (i.e. beacons) established in the area, meaning that this solution is 

only possible in areas that have these beacons established.  

1.3.3.2 GPS FUSION 

Another method of error correction for outdoor INSs is to fuse information 

collected from a GPS. While GPS has been shown to have lower resolution than an INS 
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[7], [8], GPS errors do not increase with time, and results with this type of error 

correction have been promising for bounding errors that can grow exponentially with 

time [3], [34], [35]. The main disadvantage of this approach is the requirement of a good 

GPS signal, which is not possible indoors or in dense urban environments due to building 

materials blocking the signal, and the multipath effect [36]. The multipath effect is a term 

used to describe the effect of signal reflections due to the environment which can cause a 

receiver to capture the same signal via multiple paths. Signal reflections can also cause 

changes in signal phase as well as constructive and destructive interference, the latter of 

which can cause fading. This makes it a poor candidate for sensor fusion in indoor 

environments.  

1.3.3.3 COMPUTER VISION 

Computer Vision (CV) solutions have shown strong promise when combined with 

IMUs to form an INS [37]–[39]. These types of systems use a mounted camera to acquire 

images that can be used to aid the system and reduce error. In [38], images are analyzed 

to compare the movement of markers between subsequent frames which was shown to 

reduce error from 3740 m to 12.9 m, after 180 seconds of walking. Estimation of step 

length during walking by using a foot mounted marker on one foot, and a foot mounted 

camera on the other was also shown to reduce errors by 78% during slow speed walking 

scenarios [39].  These systems provide more accurate results than a purely IMU-based 

INS but require a camera mounted to an appropriate part of the body, increasing the cost 

and size while decreasing the mobility of the user.  

1.3.3.4 LIDAR 

LIDAR methods of error correction use a distance sensor to provide a measure of 

distance from an obstacle to the INS. LIDAR devices have very high sampling rates, with 

common consumer grade devices capable of 500 Hz sampling rate, with a range of 40 m 

and accuracy of 0.01 m [40]. Due to the high sampling rate, LIDAR devices can be 

mounted on a rotating platform for environmental scanning. This allows for the 

resolution of environmental features, which can be used to determine position changes 

between subsequent scans through matching the features [41], [42].  
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LIDAR has also been used to determine objects alongside the system user, 

allowing for the correction of position and heading based on detected walls alongside the 

user. The distance data was updated upon each ZUPT and combined with a Kalman filter 

[43]. Unfortunately, LIDAR devices are costly, and bulky, increasing the cost and 

reducing the feasibility of the device in pedestrian navigation implementations. 

1.3.4 ULTRASONIC 

Ultrasonic sensors are small sensors that typically utilize an emitter and receiver 

setup to send and capture sound pulses, with a short-range of up to several meters [44]–

[46]. The pulse is emitted by the emitter, and after reflecting off an object, is captured by 

the receiver. Using the temperature of the air, the speed of the sound can be determined 

by supplying necessary information for the calculation of the total distance travelled by 

the sound pulse. Sending and receiving multiple ultrasonic pulses grants the ability the 

gather information about the surroundings that are located in front of the sensor. 

Ultrasonic sensors are used in many situations involving resolving distance from an 

obstacle to prevent collisions, especially in automotive [47] and robotic applications [44]. 

Ultrasonic sensors can also be used to determine the location of obstacles and reconstruct 

the environment digitally [48], [49]. Various types of ultrasonic setups have been 

explored, including single-emitter-dual-receiver setups and setups that employ pinnae 

similar to that of humans [50], [51].  

Ultrasonic sensors have recently come to find various uses in inertial navigation 

systems, although they are far less common than other sensor augmentations. Researchers 

in [52] placed two emitters, one forward and one rear facing, on one shoe, while the other 

shoe held five forward and five rear-facing receivers providing information about step 

length. Other implementations include using a side facing sensor setup to gather 

information about adjacent obstacles to straighten walking paths [53], and reconstructing 

obstacles relative to the estimated position from the INS [54]. Ultrasonic sensors, because 

of their compact size, as well as their use in obstacle rich environments such as would be 

found indoor, they present a strong candidate for error reduction of pedestrian INSs.  
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1.4 PROBLEM STATEMENT 

Navigation systems are now an innate part of society, with powerful navigation 

solutions being available on smartphones. While automotive-grade navigation is well 

suited to GPS based solutions, pedestrian level navigation indoors or in dense urban 

environments lack the accuracy to perform appropriately [36]. The ability to provide 

pedestrian navigation indoor provides a plethora of opportunities including assisting 

visually impaired persons, tracking emergency personal in emergency situations and even 

marketing.  

Current GPS solutions are not plausible for indoor navigation due to the accuracy 

being too low for an indoor positional estimate. Typical integrated GPS accuracy in 

optimal conditions is reported to be around 5 m [7], [8], with a significant degradation in 

accuracy being expected indoors where signal strength is greatly reduced due to building 

materials attenuating the signals. Furthermore, GPS signals can suffer from the multipath 

effect where features of the surrounding environment cause reflections in the signal and 

subsequently reduce the accuracy of the GPS positional estimate, with errors of over 100 

m reported [36]. Even under optimal conditions, 5 m accuracy could still estimate that a 

pedestrian is in a different room than their actual position, making navigation with this 

solution implausible indoors.   

Inertial navigation systems show significant promise in indoor navigation due to 

their lack of need to use satellite signal-based solutions. These systems are intrinsically 

only as good as the sensors that are providing their information, but navigation grade 

sensors are far too expensive for pedestrian navigation solutions. Thus, less expensive 

and consequently less accurate sensors are desired for this purpose. Filtering the signal 

provides some improvement, but further information is required to reduce errors such as 

drift to obtain high enough accuracy for pedestrian navigation. Combining inertial 

sensors with other sensors and fusing their information yields much better solutions, but 

many of these sensors bulky, reducing user mobility and comfort, computationally 

expensive or too bulky for proper pedestrian mounting.  
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Within this document, system augmentations will be investigated to reduce 

navigation system errors without the use of bulky or computationally expensive sensors, 

and without the requirement of prior infrastructure. An investigation into machine 

learning for step detection will be described, discussing its strengths in the field and the 

caveats experienced in its implementation. Next, the addition of a shoe-mounted 

ultrasonic sensor will be described along with an intuitive algorithm that uses corrections 

based on detected walls to strengthen system stability and improve positional accuracy. 

Finally, the proposed system will be validated through several experiments, showing 

improvements that have been made over a baseline INS without any additional sensors 

proving the power of using sensor-based system augmentations for the improvement of a 

pedestrian inertial navigation system.  
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Chapter 2: DEVELOPMENT OF BASELINE 

INERTIAL NAVIGATION SYSTEM 

2.1 PHYSICAL SYSTEM DESIGN 

Prior to testing the feasibility of machine learning or ultrasonic augmentation in an 

INS for reducing error, a foot-mounted system needed to be designed. The first iteration 

of the device design is shown in Figure 2.1 where the IMU can be seen attached to a 

shoe. This design provided a proof of concept, but the errors that were introduced due to 

the mounting of the device to such a shoe were debilitating. The requirement for rigid 

attachment of all sensors to the shoe was discovered with this proof of concept and was a 

primary design requirement moving forward.  

 

Figure 2.1: Proof of concept for foot-mounted INS. 

Figure 2.2 shows the first iteration of the experimental setup. The components are 

attached to the shoe through the use of a mounting L-bracket that is epoxied into the heel 

of the shoe, where a trench was carved out into which the bracket was recessed. This 

provides a platform that can be assumed to rotate the same as the foot on which the shoe 
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is worn. Care was taken to ensure that mounting portion of this bracket was perpendicular 

to the walking surface to ensure appropriate axial alignments, although this is 

unnecessary and can be accounted for programmatically.  

 

Figure 2.2: Experimental device consisting of IMU and Raspberry Pi.  

All data is collected by the Raspberry Pi using i2c communication protocol 

allowing for multiple device connections on a single pin. Collected data consists of the 

time elapsed since initiation and the values from each axis of the respective sensors. An 

example of the dataset saved during experimentation is shown in Table I. This data is 

then imported into MATLAB where the algorithms defined herein are implemented. 
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Table I: Example of dataset output from IMU data collection.  

Time  

(s) 

Accel X 

(m/s2) 

Accel Y 

(m/s2) 

Accel Z 

(m/s2) 

Gyro X 

(rad/s) 

Gyro Y 

(rad/s) 

Gyro Z 

(rad/s) 

20.6145 1.5993 1.0533 -7.8307 0.4414 5.4255 0.0167 

20.6253 1.5993 1.0533 -7.8307 0.3806 5.5409 -0.0771 

20.6359 -0.4585 1.6853 -8.3842 0.2572 5.5831 -0.2454 

20.6467 -0.4585 1.6853 -8.3842 0.0611 5.5272 -0.5022 

20.6574 -2.2410 1.6853 -9.2144 -0.1915 5.3748 -0.7787 

20.6681 -2.2410 1.6853 -9.2144 -0.5009 5.1173 -1.0380 

20.6790 -2.3906 0.9129 -10.9441 -0.8451 4.8751 -1.1721 

20.6896 -2.3906 0.9129 -10.9441 -1.0671 4.7028 -1.1485 

For the development of the INS algorithms, a dataset was collected by walking on 

a marked path providing a ground truth with which to compare the ability of the various 

methods providing a basis for consistent quantitative comparison. The ground truth 

walking path is shown in Figure 2.3 and the corresponding dataset is used for each of the 

INS methods defined below an provided a basis for comparison and proven advancement 

as the filtering algorithms improved.  

 

Figure 2.3: Ground truth walking path for algorithm testing. 
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2.2 CALIBRATION 

Prior to all testing, the gyroscopes and accelerometers were calibrated to ensure 

the greatest possible accuracy for the devices. Both the gyroscopes and accelerometers 

biases were removed, and in the case of the accelerometers, the scale factor error was 

estimated and corrected.  

The bias of the sensors was determined during zero movement scenarios, where 

the expected output of the gyroscopes was zero, and the expected output of the 

accelerometers was zero, excepting the downward direction affected by gravity where the 

output was expected to be the gravitational constant. Sampling for a short period of time, 

generally around 5 seconds, would yield approximately 500 data points which are then 

averaged with the difference between the expected output and the actual output being the 

axis bias. These values are then removed from all subsequent measurements.  

Scale factor information for the accelerometers was determined using gravity as 

the known constant. After ensuring that bias has been removed, each axis of the IMU was 

orientated downward and slowly rotated, deviating the axial alignment with gravity by a 

few degrees in all directions to capture the maximum measure of gravity. This allows for 

small errors in accelerometer orthogonality to be captured. This was done for both the 

positive and negative directions of each accelerometer axis, providing positive and 

negative measures of gravity. The measured positive and negative values from each axis 

are then divided by the gravitational constant, yielding a coefficient that can be multiplied 

to each axial measurement to rescale measurements, reducing scale factor errors. Care 

needs to be taken during this test to ensure that rotating the accelerometers to find the 

maximum and minimum readings does not induce accelerations that are measured, which 

would introduce significant error in all subsequent measurements. 

 

 

 



 

19 

 

2.3 INS ALGORITHMS 

2.3.1 NAIVE IMPLEMENTATION 

The most basic form of inertial navigation discussed in 1.1.1, typically called a 

naïve implementation, uses no error correction methods. In this method, the angular 

velocities from the gyroscope are used to determine rotations since the initial starting 

conditions which provide current orientation. Acceleration information is then 

transformed from the body frame to the navigation frame, where gravity is removed, and 

the accelerations can then be integrated for velocity and displacement respectively. A 

flowchart depicting the algorithm can be seen in Figure 2.4.  

 

Figure 2.4: Flowchart of naïve implementation algorithm. 

First, the temporary fixed frame and current orientation of the device are 

initialized. The fixed frame is determined by the direction of the user at initialization, but 

this fixed frame is generally rotated to make walking path visualization easier, or in the 

case of more advanced algorithms, to match a more specific frame such as an earth 

frame. Initial device orientation is determined by the Euler angles calculated from the 

stationary accelerometer data using: 

[

𝛼
𝛽
𝛾
]  [

𝑦𝑎𝑤
𝑝𝑖𝑡𝑐ℎ
𝑟𝑜𝑙𝑙

]  

[
 
 
 
 

0

 sin  (
𝑎𝑥

𝑔
)

tan  (
𝑎𝑦

𝑎𝑧
)
]
 
 
 
 

 , 
(2.1) 

 

where: 𝑎𝑖  is the acceleration in axis 𝑖, and g is the acceleration due to gravity at the 

geographical location of the sensor. With the Euler angles determined, the current 

orientation matrix can be calculated by: 

Accelerations

Angular 
Velocities

Orientation

Transform to 
navigation frame 

Velocity Position
Remove 
gravity
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𝐶𝑖𝑛𝑖𝑡

 [

cos𝛼 cos 𝛽 cos 𝛼 sin 𝛽 sin 𝛾  sin 𝛼 cos 𝛾 cos 𝛼 sin 𝛽 cos 𝛾  sin 𝛼 sin 𝛾
sin 𝛼 cos 𝛽 sin 𝛼 sin 𝛽 sin 𝛾  cos 𝛼 cos 𝛾 sin 𝛼 sin 𝛽 cos 𝛾  cos𝛼 sin 𝛾
 sin 𝛽 cos 𝛽 sin 𝛾 cos𝛽 cos 𝛾

] 
 

which simplifies to:  

𝐶𝑖𝑛𝑖𝑡  [
cos 𝛽 sin 𝛽 sin 𝛾 sin 𝛽 cos 𝛾

0 cos 𝛾  sin 𝛾
 sin𝛽 cos 𝛽 sin 𝛾 cos𝛽 cos 𝛾

] 

(2.2) 

 

 since 𝛼  0 during initialization.  

With the orientation initialized, all subsequent samples will first update the 

current orientation using: 

𝐶  
𝐶   (2𝐼3𝑥3  𝛺 ∆𝑡)

(2𝐼3𝑥3  𝛺 ∆𝑡)
 [55] 

(2.3) 

) 

where:  

𝛺  [

0  𝜔𝑧 𝜔𝑦

𝜔𝑧 0  𝜔𝑥

 𝜔𝑦 𝜔𝑥 0
], 

(2.4) 

 

and 𝜔𝑖  is the angular velocity about each respective 𝑖  axis read from the gyroscope. 

Accelerations are then transformed into the fixed frame by: 

�⃗� ,𝑛𝑎𝑣  0.5(𝐶  𝐶   ) �⃗� ,𝑠𝑒𝑛𝑠𝑒 . 
(2.5) 

 

where,  �⃗�  is the acceleration in the labelled frame and the 0.5 multiplier gives the 

average orientation between the two consecutive measurements. Velocity is then 

calculated by removing the gravity vector and integrating the accelerations in the fixed 

frame using (2.6) while the position is found by integrating the velocity using (2.7). 
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�⃗�  �⃗�    {(�⃗� ,𝑛𝑎𝑣  [
0
0
𝑔
])  �⃗�   ,𝑛𝑎𝑣  [

0
0
𝑔
]}

∆𝑡

2
 

(2.6) 

 

�⃗�  �⃗�    (�⃗�  �⃗�   )
∆𝑡

2
 

(2.7) 

 

This algorithm provides no error correction, meaning that any errors within the 

sensor measurements directly affect the output. The position output of this algorithm on 

the dataset collected from walking Figure 2.3 is shown in Figure 2.5. It can easily be seen 

that errors from the sensors dominate the system, resulting in an output that provides no 

useable information or navigation potential. 

 

Figure 2.5: Naïve implementation walking path. 

 Inspecting the system further, it can be seen in Figure 2.6(A) that velocity is 

continually increasing while walking, with the estimated velocity of the foot not returning 

to zero during stance phase resulting in an estimated walking velocity of over 40 m/s 

after 40 seconds. The distance walked plotted against time is shown in Figure 2.6(B), and 

the impact of incorrect velocity information on estimated distance can easily be seen. 
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Figure 2.6: Naïve implementation (A) Speed, (B) Distance. 

 Since the naïve implementation contains no methods to reduce error, poor quality 

output was expected. In this method, noise within the acceleration will be directly 

integrated to provide an estimate of the velocity of the user. If the noise and other errors 

do not have a zero mean during the time span of use, then the integration of this noise 

will produce a velocity that does not increase and decrease with the phases of walking. In 

this case, the integration of acceleration is causing the speed to continually increase 

which then directly affects the distance walked with a subsequent integration. To assist in 

the reduction of errors caused by the lack of zeroing of velocity, a zero-velocity update 

can be implemented which will assist in reducing the impact of the noise in the 

accelerometer measurements.  

2.3.2 ZUPT IMPLEMENTATION 

Implementing a zero-velocity update method first requires a method of 

distinguishing between then phases of gait. As described in section 3.2, gyroscope 

thresholding will be implemented as researchers have shown that this method is better 

suited for walking than accelerometer thresholding. Adding zero-velocity updating 

(A)

(B)
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requires that on detection of a stance phase, the estimated velocity of the system user is 

extracted from the INS, and this value is compared to the known value of zero. A 

flowchart depicting this algorithm can be seen in Figure 2.7.  

 

Figure 2.7: Flowchart of the ZUPT implementation algorithm. 

The ZUPT algorithm sits on top of the naïve implementation algorithm outlined in 

2.2. Upon detection of a stance phase using: 

‖𝜔 ‖  √𝜔𝑥
2  𝜔𝑦

2  𝜔𝑧
2, 

(2.8) 

 

the estimated velocity by the INS can then be used to remove errors that have developed 

since the last ZUPT. This error velocity can then be integrated to provide the position 

errors in each respective axis since the last ZUPT. This can be done using (2.9), where 𝜖 

is the error in each axis, �⃗� is the estimated velocity by the INS and ∆𝑡 is the time elapsed 

since the last update. These positional errors can then be subtracted from the current 

position to provide a better estimate of the current location.  

[

휀𝑥
휀𝑦
휀𝑧

]   
 

2
(�⃗� × ∆𝑡𝑍𝑈𝑃 ) 

(2.9) 

 

Implementing the ZUPT algorithm depicted in Figure 2.7 on the dataset collected 

by walking the path shown in Figure 2.3 yields the walking path shown in Figure 2.8. 

The walking path now shows a path similar to that of the ground truth. The updates done 

by the algorithm appear in the walking path as sharp movements by the user causing a 

jagged appear to the line, this is addressed in the full implementation through the use of a 

narrow width moving averaging filter.  
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Figure 2.8: ZUPT implementation walking path. 

Inspecting the walking speed and walking distance shows a significant 

improvement compared to that of the naïve implementation. Figure 2.9(A) shows the 

walking speed compared to the time, where velocity is being corrected back to zero on 

each established ZUPT preventing the exponential growth of positional errors. Figure 2.9 

(B) plots the distance walked compared to time and shows a distance walked of 36 m.  
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Figure 2.9: ZUPT implementation (A) Speed, (B) Distance. 

While the ZUPT method reduces the errors imposed by the accelerometer noise, it 

does nothing to correct errors from the noise caused by the gyroscope. The walking path 

shown in Figure 2.8 exemplifies this, showing that straight walking sections contain drift 

and the angular estimate of turns are not accurate resulting in a final location that does 

not match that of the ground truth. These errors must be corrected to allow for increased 

accuracy and prolonged stability of the system thus requiring the use of a more advanced 

filtering algorithm. Section 2.3.3 describes the implementation of a Kalman Filter, an 

intelligent algorithm with the ability to address gyroscope sensor errors in addition to 

accelerometer errors.  

2.3.3 KALMAN FILTER IMPLEMENTATION 

The Kalman Filter is a widely used algorithm in sensor fusion systems due to its 

ability to estimate a desired state based on noisy measurements, see Section 1.3.2 for a 

full description of Kalman Filters. The Kalman Filter implemented is an error-state 

Kalman Filter created by Fischer et al. in [22], a flowchart of the algorithm is shown in 

(A)

(B)



 

26 

 

Figure 2.10. First, the algorithm employs standard inertial navigation principles such as 

determining the orientation of the sensors and transforming the sensor measurements to 

the fixed frame before integration. After integration, the Kalman Filter updates the error 

covariance matrix before checking for a ZUPT. If a swing phase is detected, then the 

algorithm simply moves on to the subsequent sensor measurements but if a stance phase 

is detected, then the errors in orientation, position, and velocity are estimated. These 

estimated errors are then used to correct the current estimated orientation of the sensors 

as well as the current position of the sensors in the fixed frame.   

 

Figure 2.10: Flowchart of error-state Kalman filter algorithm- adapted from [22]. 
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2.3.3.1 INS PHASE 

The INS phase of the Kalman filter implementation is similar to that of the naïve 

implementation in 2.2, but will be outlined again in this section for clarity of the entire 

algorithm. First, the orientation of the device is determined during the initialization phase 

using (2.1) and (2.2). During the INS phase, on each subsequent reading after 

initialization, a skew-symmetric angular velocity matrix is calculated from the gyroscope 

measurements using:  

𝛺  [

0  𝜔𝑧 𝜔𝑦

𝜔𝑧 0  𝜔𝑥

 𝜔𝑦 𝜔𝑥 0
], 

 

(2.4) 

where  𝜔𝑖 is the angular velocity about each respective axis. Next the current orientation, 

C, is computed by:  

𝐶  
𝐶   (2𝐼3𝑥3  𝛺 ∆𝑡)

(2𝐼3𝑥3  𝛺 ∆𝑡)
 . (2.3) 

With an updated sensor orientation, accelerations can then be transformed from 

the sensor frame to the navigation frame which is fixed based on starting orientation. This 

is done using:  

�⃗� ,𝑛𝑎𝑣  0.5(𝐶  𝐶   )�⃗� ,𝑠𝑒𝑛𝑠𝑒 (2.5) 

where,  �⃗�  is the acceleration in the labelled frame and the 0.5 multiplier gives the 

average orientation between the two consecutive measurements. With measurements now 

transformed to the navigation frame, gravity can be subtracted, and accelerations can be 

integrated for velocity and position using (2.6) and (2.7) respectively.  

�⃗�  �⃗�    {(�⃗� ,𝑛𝑎𝑣  [
0
0
𝑔
])  �⃗�   ,𝑛𝑎𝑣  [

0
0
𝑔
]}

∆𝑡

2
 (2.6) 
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�⃗�  �⃗�    (�⃗�  �⃗�   )
∆𝑡

2
 (2.7) 

2.3.3.2 KALMAN FILTER PREDICTION PHASE 

Next, during the Kalman Filter prediction stage, the skew-symmetric cross-

product matrix is constructed using (2.10). This matrix is used to correlate errors in 

velocity from errors that arise in orientation [22].   

𝑆  [

0  𝑎𝑧,𝑛𝑎𝑣 𝑎𝑦,𝑛𝑎𝑣

𝑎𝑧,𝑛𝑎𝑣 0  𝑎𝑥,𝑛𝑎𝑣

 𝑎𝑦,𝑛𝑎𝑣 𝑎𝑥,𝑛𝑎𝑣 0
] (2.10) 

A state transition matrix is then constructed using (2.11) that relates the sensor 

measurements to the desired states, where are the errors in orientation, position, and 

velocity. 

𝐹  (
𝐼3𝑥3 03𝑥3 03𝑥3

03𝑥3 𝐼3𝑥3 03𝑥3

 𝑆 ∆𝑡 03𝑥3 𝐼3𝑥3

) 
(2.11) 
 

A process noise covariance matrix,   , is then generated where the diagonals of 

the 9x9 matrix are ([𝜎𝜔,𝑥 𝜎𝜔,𝑦 𝜎𝜔,𝑧 0 0 0 𝜎𝑎,𝑥 𝜎𝑎,𝑦 𝜎𝑎,𝑧]∆𝑡)2 . The error 

covariance matrix of the Kalman Filter can now be calculated using (2.12) which 

concludes the Kalman prediction phase.   

   𝐹     𝐹 
     

(2.12) 

 

2.3.3.3 ZERO-VELOCITY UPDATE 

When the system detects a stance phase, a zero-velocity update can be performed 

(a complete discussion regarding the description and determination of optimal ZUPT 

parameters can be found in chapter 3. First, the Kalman gain must be computed using: 

   
   

 

(       )
 , 

(2.13) 
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where H is the observation model that connects the states to the measurements and R is 

the covariance of the observation noise. Both are constants in this model and their values 

are shown in Table II. With the Kalman gain computed, the state errors are calculated 

using:   

휀  [

휀𝑐
휀 
휀𝑣

]    �⃗�  

(2.14) 

 

where, 휀  is the vector containing the errors in orientation (roll, pitch, yaw), position 

(x,y,z) and velocity (x,y,z), respectively. Errors in velocity and position can then be 

corrected using:  

�⃗�  �⃗�  휀  
(2.15) 

 

�⃗�  �⃗�  휀𝑣 . 
(2.16) 

 

With positional and velocity errors corrected, orientation errors can be addressed. 

First, a matrix is created for correcting the angular errors by: 

𝜗 ,  [

0 휀𝑦𝑎𝑤  휀 𝑖𝑡𝑐ℎ

 휀𝑦𝑎𝑤 0 휀𝑟𝑜  
휀 𝑖𝑡𝑐ℎ  휀𝑟𝑜  0

] . 
(2.17) 

 

With this matrix, the orientation matrix can then be corrected using:  

𝐶  
(2𝐼3𝑥3  𝜗 , ∆𝑡)

(2𝐼3𝑥3  𝜗 , ∆𝑡)
𝐶  . 

(2.18) 

 

Finally, the error covariance is corrected by: 

   (𝐼9𝑥9     )   . 
(2.19) 

 

 



 

30 

 

2.3.3.4 TUNING PARAMETERS 

Within the Kalman Filter there are a number of parameters that are tunable to 

improve the performance of the system based on the sensors used. These tunable values 

were determined through tracked trial and error variations across several experimental 

walking paths. These values will vary depending on the sensors used, and in the case of 

the process noise, the user of the system. It should be noted that in this algorithm the 

values of the accelerometer noise and the gyroscope noise account for all sensor noise in 

the system (short term and long term), and thus cannot be extracted from datasheets or 

easily determined through targeted experiments [22]. The constant values used within the 

Kalman Filter are shown in Table II.  

Table II: Constant values used in the Kalman Filter. 

Parameter Description Value 

g Magnitude of gravity 9.81 m/s 

𝜎𝜔,𝑥, 𝜎𝜔,𝑦, 

𝜎𝜔,𝑧 
Gyroscope noise 0.04 rad/s 

𝜎𝑎,𝑥, 𝜎𝑎,𝑦, 𝜎𝑎,𝑧 Accelerometer noise 0.01 m/s2 

𝜎𝑍𝑈𝑃  ZUPT measurement noise 0.02 m/s 

𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜 𝑑 ZUPT threshold (See section 3.2) 0.6 rad/s 

H Observation model [
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

 0 0
0  0
0 0  

] 

R Covariance of the observation noise [

𝜎𝑍𝑈𝑃 
2 0 0

0 𝜎𝑍𝑈𝑃 
2 0

0 0 𝜎𝑍𝑈𝑃 
2

] 

 

2.3.3.5 VALIDATION 

Using the aforementioned algorithm on the dataset collected from walking the 

path shown in Figure 2.3 results in the walking path in Figure 2.11. This walking path has 

the closest similarity to the ground truth since errors caused by both the accelerometers, 

as well as the gyroscope, have been reduced.  
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Figure 2.11: Kalman filter implementation walking path. 

Sharp corrections exist due to the error-state corrections being applied at each 

stance phase. These corrections reduce the acceptability of the appearance of the walking 

path and increase the difficulty of comparison to ground truth. A narrow width moving 

average filter was applied to the data in both dimensions, smoothing the corrections and 

creating a more natural-looking path. The results of this filter are shown in Figure 2.12.  
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Figure 2.12: Kalman filter implementation walking path after applying the moving average filter. 

The walking distance and walking speed plots, shown in Figure 2.13, show little 

difference compared to that of the ZUPT implementation. This is expected as the noise 

errors caused by the accelerometer were addressed in the ZUPT method, but the 

gyroscope noise was not. The biggest improvement from method comes from the 

improved accuracy of the gyroscopic estimates, as well as the tunability of the system.  
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Figure 2.13: Kalman filter implementation (A) Speed, (B) Distance. 

 This concludes the development of the baseline algorithm with which the 

ultrasonic sensor information can be augmented. It provides the modern approach of a 

Kalman Filter along with the useful ability of the zero-velocity update. Unfortunately, 

because the filtering cannot remove all error with the system, system stability degrades as 

walking length increases, as exhibited by Figure 2.14. This is the principal reason for 

utilizing other sensors in INSs. Because of this filtering algorithm construction, namely 

its error-state approach, this algorithm is easily altered to incorporate the ultrasonic 

methods herein.  

(A)

(B)
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Figure 2.14: 70 m walk showing stability degradation in longer use cases. 
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Chapter 3: STEP DETECTION AND ZERO 

VELOCITY UPDATING 

3.1 SENSOR QUANTIFICATION 

The selected IMU for experimentation is the LSM9DS0 IMU from 

STMicroelectronics. This IMU was selected as it has specifications that place it in the 

category of industrial/consumer-grade, a requirement for the design. It is also available 

on a printed integrated circuit (IC) that makes for an easier connection between the 

microprocessor and the sensors removing the need to redundantly design an IC. The 

LSM9DS0 IMU accelerometers have adjustable full-scale ranges of ±2/±4/±6/±8/±16g 

while the gyroscopes measure angular rates of ±245/±500/±2000 degrees per second 

(dps). From the device datasheets, the relevant sensor specifications are listed in Table 

III. 

Table III: Relevant LSM9DS0 Sensor Specifications 

Parameter Setting Typical 

Value 

Unit 

Acceleration Sensitivity ±2g 0.061 mg/LSB 

Acceleration Sensitivity ±4g 0.122 mg/LSB 

Acceleration Sensitivity ±6g 0.183 mg/LSB 

Acceleration Sensitivity ±8g 0.244 mg/LSB 

Acceleration Sensitivity ±16g 0.732 mg/LSB 

Angular Rate Sensitivity ±245 8.75 mdps/digit 

Angular Rate Sensitivity ±500 17.50 mdps/digit 

Angular Rate Sensitivity ±2000 70 mdps/digit 

Angular Rate Zero-Rate ±245 ±10 dps 

Angular Rate Zero-Rate ±500 ±15 dps 

Angular Rate Zero-Rate ±2000 ±25 dps 

 

In order to further quantify the sensors outside of the information provided in the 

datasheet, the Allan Variance Plots were generated for the accelerometers and 

gyroscopes. Allan variance is a method developed by David Allan with which to measure 
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the frequency stability of oscillators and is commonly used in measuring the stability of 

MEMS devices [56]. First, the output angle, or velocity, is defined by [57]:      

𝜃(𝑡)  ∫ 𝛺(𝑡)𝑑𝑡
𝑡

 

(3.1) 

 

where 𝛺(𝑡) is the instantaneous output rate of the sensor. No lower integration limit is 

used as only the angle, or the velocity differences are used. The Allan Variance can then 

be determined using [57]: 

𝜎2(𝜏)  
 

2𝜏2(𝑁  2𝑛)
∑ (𝜃 +2𝑛 2𝜃 +𝑛 𝜃 )

2

𝑁 2𝑛

 = 

 

(3.2) 

 

where 𝜏 is the fixed cluster length, and 𝑛 is the number of samples in the cluster, and N is 

the total number of samples.  

To create the Allan Variance plots, data was collected for 195 minutes at an 

assumed constant temperature resulting in over one million samples from each sensor 

axis. (3.1) was used on the data resulting in angles for the gyroscope output, and velocity 

for the accelerometer output. (3.2) was then employed, resulting in the Allan Variance 

data. Figure 3.1(A) shows the Allan Variance of the gyroscope, while Figure 3.1(B) 

shows the Allan Variance from the accelerometers.  
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Figure 3.1: Allan variance plots (A) Gyroscopes, (B) Accelerometers. 

With the Allan Variance plots now constructed, several pieces of information can 

be inferred regarding the stability of the sensors in use. First, the angle random walk 

coefficient of three axes of gyroscopes, as well as the three axes of accelerometers, can 

be calculated. This is determined from the intersection of the -1/2 slope line with the 𝜏  

  value on a log-log scale. The determination of this value is shown in Figure 3.2. 

(A)

(B)
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Figure 3.2: Angle Random Walk of the x-axis of the gyroscope ( 𝒙). 

Next, the bias instability is determined. Bias instability can be found at the point 

where the slope of the function is zero on a log-log scale; this is the first minimum on the 

Allan Variance plot. The location of the bias instability value for the X-axis of the 

gyroscope is shown in Figure 3.3. 

 

Figure 3.3: Bias instability of X-axis gyroscope ( 𝒙). 

A summary of the results of calculating the Angle Random Walk (Velocity 

Random Walk for the accelerometers) and Bias Instability for each axis of the sensors has 

been tabulated in Table IV.  
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Table IV: Sensor errors determined from Allan variance plot. 

Sensor Type Axis Angle (Velocity) 

Random Walk 

Unit Bias 

Instability 

Unit 

Accelerometer 

X 0.001292 m/s/h0.5 0.000632 m/s2 

Y 0.001201 m/s/h0.5 0.000585 m/s2 

Z 0.001242 m/s/h0.5 0.000504 m/s2 

Gyroscope 

X 0.000143 rad/h0.5 0.000214 rad/s 

Y 0.012323 rad/h0.5 0.000321 rad/s 

Z 0.000297 rad/h0.5 0.000297 rad/s 

 

3.2 ZERO-VELOCITY UPDATING 

In order to implement the ZUPT algorithm, or the Kalman filter approach being 

used, the phases of walking must be correctly determined from the data being collected. 

This is done using gyroscope thresholding, accelerometer thresholding, or some other 

sensor that allows for the detection of a step such as a pressure sensor [58], [59]. It has 

been shown that gyroscope thresholding yields better results during walking, while 

accelerometer thresholding is better for running applications [21]. This work focuses on 

indoor walking applications and as such will be utilizing gyroscope thresholding 

methods.   

3.2.1 GYROSCOPE THRESHOLDING 

Gyroscope thresholding involves using the output of the 3-axis gyroscopes to 

determine when a stance phase is occurring. When in a stance phase, the foot is not 

rotating which allows for a threshold value to be set. Simply, when the axial rotations fall 

below a set value, a stance phase can be assumed. This value needs to be tuned based on 

both the system user’s gait patterns and the noise parameters of the sensors. Figure 3.4 

shows the output from the gyroscopes during a simple walk. Several visualized stance 

phase regions are labelled in green, showing that the determination of a stance is possible 

from gyroscope output. 
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Figure 3.4: Labelled stance phases in gyroscope data. 

The most common way to apply angular rotation thresholding is to first calculate 

the norm of the gyroscope outputs using: 

‖𝜔 ‖  √𝜔𝑥
2  𝜔𝑦

2  𝜔𝑧
2 . (2.8) 

This provides a measure of the amount of rotation that is occurring at sample k. If this 

value falls below the tuned threshold, a stance phase is occurring. Figure 3.5(A) shows 

the calculated norm for the data shown in Figure 3.4, Figure 3.5(B) shows the norm 

overlaid over the samples that were used in the calculation.  
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Figure 3.5: (A) Calculated norm of gyroscope samples, (B) Norm overlaid on gyroscope samples. 

With the norm calculated the threshold values can be set. To determine the 

optimal value of the threshold, a microswitch was added to the system shown in Figure 

2.2 to provide a ground truth of stance and swing phases. The switch was manipulated to 

trigger at the heel collision of the stance phase and release upon rotation of the foot, 

indicating the start of the swing phase. This switch was powered with 3.3 V from the 

raspberry pi, and upon triggering, would return the voltage to a pin that was queried on 

every IMU sample.  A stance phase sample would return a value of 1, while a swing 

phase sample would return 0. It should be noted that the microswitch is used only for 

system calibration and will not be used in the final system design. This is due to desire to 

keep the system limited to only necessary devices and since this switch can be effectively 

eliminated with proper calibration, its use becomes redundant driving up cost and weight 

of the designed system. 

(A)

(B)
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Figure 3.6: Microswitch attached to the experimental device. 

 Plotting the microswitch output over the norm data allows for the acquisition of 

this gyroscope threshold value. Figure 3.7 shows the results of this. The microswitch 

consistently showed that norm values less than 0.6 rad/s yield a proper threshold for 

stance phase detection.  

 

Figure 3.7: Microswitch data showing threshold value. 

Even with calibrated gyroscope thresholding, some false detections will still 

occur. This happens when the angular velocity of the foot drops below the threshold 

outside of a stance phase, or when the angular velocity is above the threshold even 

though the foot velocity is zero. Figure 3.8 highlights a false detection in orange caused 

by the norm of the gyroscopes falling below the threshold during a swing phase. 
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Comparing the microswitch ground truth to the detected stances via a threshold value 

over a 90-second walk yields a correct detection of 92%.  

 

Figure 3.8: Threshold false detection highlighted in gyroscope norm data.  

Since these false detections are rare, and typically occurred near a stance phase, 

their impact on the algorithm was found to be minimal (see Figure 3.9 for quantification). 

In order to reduce the number of false detections during zero-velocity updating, advanced 

methods have been researched, such as acceleration-moving variance detector [60]–[62] 

and Hidden Markov Model (HMM) [63], but similar stance detection rates are shown 

across the various methods. In an attempt to further improve the accuracy of zero-

velocity updating, machine learning was investigated.  

3.2.2 MACHINE LEARNING 

Little research has been done in the area of using machine learning as a step 

detection method. Machine learning is an area of computer science where an algorithm is 

trained to perform a specific task, learning from examples or datasets that provide the 

necessary information to infer statistical significance [64]. There are two main types of 

machine learning: supervised machine learning, and unsupervised machine learning [65]. 

Supervised machine learning algorithms will learn from data that has been labelled with a 

correct answer, allowing it to find the patterns that coincide with the labelled data points. 

Unsupervised machine learning algorithms are trained on data that is not labelled, thereby 
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allowing the algorithm to categorize the data based on patterns inferred from the dataset 

[65].   

The data used to train the algorithms is divided into features. These features are 

categories of data that provide relevant information to the algorithm to learn the patterns 

for their application. These applications are typically either classification, where the 

trained model decides which finite category the data belongs to, or regression, where the 

target output can take on an infinite number of numeric values [64]. Training is done 

separately from the application; this is where the algorithm extracts the information from 

the datasets that allows it to make the prediction. During implementation, the model is 

given new data in the same format as the training data, and from this it will provide its 

output, a classification, or an estimate of future values. Because of the nature of machine 

learning to classify data, this provides powerful potential in the case of zero-velocity 

updating, a binary classification problem. The power of machine learning comes from the 

removal of the need to hardcode these recognizable patterns into the system; the 

algorithm will learn the patterns embedded in the features to make a decision.   

Since a large number of data was collected for the calibration of threshold values, 

these datasets provide the basis for training a machine learning algorithm. In this case, a 

supervised machine learning model will be used since the dataset has been labelled with 

the solution desired, a labelled stance phase from the microswitch. First, all the data sets 

from various testing types are aggregated together to form one large dataset, consisting of 

approximately 360 000 samples, each consisting of six discrete pieces of data. These six 

discrete pieces of data are accelerations and angular velocities in three-dimensions and 

make up the 6 features used for training the algorithms. These features are placed into a 

matrix, with an additional vector of equal length consisting of the ground truth for stance 

phase determination where stance and swing phases are denoted with 1 and 0 

respectively. Table V shows a sample of the matrix being used for training.     
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Table V: Excerpt of matrix used for machine learning training. 

Accel X Accel Y Accel Z Gyro X Gyro Y Gyro Z 

-1.7157 -1.4825 -14.3214 -1.1221 4.5657 -1.2576 

-1.4913 -1.4825 -16.2586 -0.9920 4.4307 -1.1776 

-1.4913 -1.4825 -16.2586 -0.9077 4.2731 -0.9833 

-0.8926 -1.7296 -16.1895 -0.8732 4.2145 -0.6433 

-0.8926 -1.7296 -16.1895 -0.8090 4.3046 -0.3135 

-2.5389 -0.7413 -15.9127 -0.7748 4.4127 -0.0526 

-2.5389 -0.7413 -15.9127 -0.8234 4.4105 0.0827 

-4.6341 -0.5765 -15.0133 -0.9508 4.3104 0.0851 

-4.6341 -0.5765 -15.0133 -1.1249 4.1769 -0.0276 

-5.0831 -1.1531 -15.4284 -1.2910 4.0938 -0.1947 

-5.0831 -1.1531 -15.4284 -1.3588 4.0541 -0.3520 

-3.7362 -1.2354 -16.7429 -1.3396 4.0138 -0.4250 

-3.7362 -1.2354 -16.7429 -1.2901 3.9338 -0.4244 

-4.0355 -0.4118 -16.8121 -1.2116 3.8421 -0.3908 

-6.1307 1.0802 -15.2209 -1.1288 3.7325 -0.3843 

-6.1307 1.0802 -15.2209 -1.0815 3.6308 -0.4103 

-9.0491 1.1504 -12.9377 -1.1075 3.5278 -0.5053 

 

Next, the data is normalized to remove the effect of the range of the units on the 

machine learning algorithms. Many machine learning algorithms, such as support vector 

machines [66], or K-nearest neighbour (KNN) [67], utilize distance between points in 

multiple dimensions, requiring that data be normalized to remove the effect of range. In 

the training data set, the maximum range for acceleration is nearly 70 m/s2, while the 

maximum range for angular velocity is 17 rad/s, showing a significant difference between 

in magnitude between units. The data is normalized using:  

 𝑖  
𝑥𝑖  min (𝑥)

max(𝑥)  min (𝑥)
 

(3.3) 

 

where  𝑖 is the ith normalized data, and x is the feature column data. Due to the large 

training dataset size, it is assumed that all future data will fall within the range of its 

respective trained feature. The minimum and maximum values of each feature are then 

saved for future normalization on new data.  
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This data was then tried in a number of different machine learning algorithms 

using MATLAB to determine the ability of each algorithm on the binary classification of 

the data. The algorithms were trained on the aforementioned dataset, with five-fold-cross-

validation providing an initial estimate of the efficacy of the algorithm. A list of the 

algorithms tested with their validation results tabulated in Table VI. The highest 

performing algorithm was the KNN with 10 Neighbours using Euclidean distance 

calculation. This model yielded approximately a 5% better detection rate than the 

thresholding method.  

Table VI: Machine Learning Model Accuracy 

Machine Learning Algorithm Method Specification Validation 

Accuracy (%) 

Complex Tree (100 Splits) 100 Splits 96.7 

Medium Tree (20 Splits) 20 Splits 95.0 

Simple Tree (4 Splits) 4 Splits 89.1 

Fine K-Nearest Neighbour  1 Neighbour/Euclidean Distance 97.8 

Medium K-Nearest Neighbour 10 Neighbours/Euclidean Distance 97.9 

Coarse K-Nearest Neighbour 100 Neighbours/Euclidean Distance 97.5 

Cubic K-Nearest Neighbour 10 Neighbours/Euclidean Distance 97.8 

Support Vector Machine Linear 97.1 

Support Vector Machine Quadratic 97.2 

Support Vector Machine Cubic 96.0 

 With a trained model, the Kalman Filter outlined in 2.3.3 was altered to make the 

stance phase determination using the trained model. A new dataset was collected, and the 

input data samples were normalized using the range from training prior to a prediction by 

the model, with any possible instances of new minimum or maximum values being forced 

to 0 and 1, respectively. Upon running the Kalman Filter with the machine learning 

prediction, it was quickly discovered that the machine learning predictions were too slow 

to be implemented in real-time. While all data is being analyzed in postprocessing, the 

desire to keep the work within the scope of real-time implementation still exists. Machine 

learning predictions occurred at a rate of 65 predictions per second on a 3.4 GHz 

processor, but with samples being collected at 100 Hz, the speed of processing 

bottlenecked the system entirely. Implementing machine learning on a portable computer, 

such as a smart device, would yield an even greater bottleneck due to lower 

computational power resulting in further reduced plausible applicability.  
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Testing was then done to determine the impact of a 5% improvement in stance 

detection on system stability and accuracy. This was done by comparing the walking 

paths from the Kalman Filter method using thresholding detection (yielding 92% 

accuracy), and microswitch detection (ground truth). The results of this comparison are 

seen in Figure 3.9. The difference between generated walking paths is negligible, with the 

only noticeable improvement being a small reduction in inaccuracy during the first turn. 

This shows that the trade-off in the computational requirement for higher accuracy is not 

mandatory for system ability. It is possible that the prediction rate could be improved 

through batch processing, but this would require a redesign of the Kalman Filter 

algorithm to be implemented. Since the improvement of stance detection over 92% 

yielded negligible returns, it was decided that work in this area of investigation would not 

be continued.  
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Figure 3.9: Comparison of stance detection rates on the walking path (A) 92% (B) 100%. 

(A)

(B)
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Chapter 4: ULTRASONIC AUGMENTATION 

With the baseline system developed which provides the ability to generate a 

walking path with reasonable accuracy, the ultrasonic sensor can now be added to 

determine its ability to further reduce errors that still exist after Kalman filtering. The 

sensor used is the Devantech SRF10, a small 40kHz ultrasonic sensor measuring 32 mm 

in length and 15 mm in width. This sensor provides i2c communication connections for 

returning the distance from the obstacle. The onboard microcontroller processes the 

returning signal and calculates the distance based on the user-selected specifications 

before returning the value. The sensor has several ranging modes, returning values of 

distance in inches, distance in centimeters, or time elapsed in microseconds. The device 

also has a gain selection register that allows for setting a wait duration for the returning 

signal, upon this time elapsing without a returned signal, another pulse is sent. The 

SRF10 also outputs a conical pulse common with consumer ultrasonic sensors and has an 

official range of up to 6 m.  

A three-dimensionally (3D) printed holder was created to allow for the ultrasonic 

sensor to mount alongside the other required devices pointing 90 degrees to the direction 

of the user. The mounting bracket that holds the ultrasonic sensor was made angularly 

adjustable to help mitigate the chances of ground reflections generating a false distance to 

an obstacle, or false detection of an obstacle entirely. The mounted sensor was then 

connected to the i2c pin as well as the required power pins. All used hardware 

components are tabulated in Table VIII. 
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Figure 4.1: Experimental device used for data collection (A) Raspberry Pi, (B) Ultrasonic sensor, (C) 

Inertial measurement unit. 

Table VII: Components used in the experimental device. 

Device Model Description 

Inertial 

Measurement Unit 

STMicroelectronics - 

LSM9DS0 

Provides information regarding angular 

velocity, acceleration, and magnetic 

field readings (unused) 

Ultrasonic Sensor Devantech – SRF10 
Provides distance information with 

onboard signal processing 

Microprocessor Raspberry Pi 3 
A single-board computer (SBC) that 

executes the programming required 

Battery 4400 mAh – 3.7v 

Lithium-Ion (Li-ion) battery providing 

the power required for the electronic 

devices 

Power Booster/ 

Battery Charger 

DFROBOT - 

MP2636 V1.0 

IC for increasing voltage from 3.7v to 

5v required by the electronics. Also 

serves as a charger for the Li-ion battery 

Microswitch 
Honeywell - 

V3L-145-D8 

Used for ground truth data collection 

during machine learning testing 

 

 

C

B

A
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The data collection script was then altered to include the sensor within the output 

table. Collected data is formatted using an identifier of data type (IMU, or ultrasonic), 

followed by the time elapsed since initiation and the values from that device. An example 

of the formatted output is shown in Table VIII. This dataset can then be imported and 

easily separated into datatypes with a timestamp identifier to preserve order.  

Table VIII: Example of dataset output from data collection showing data type segregation. 

Data 

Type 

Time Accel X/ 

Distance 

Accel Y Accel Z Gyro X Gyro Y Gyro Z 

IMU 271.6539 -1.1171 0.628908 -13.1453 -0.17533 -2.51198 0.222023 

IMU 271.6647 -1.1171 0.628908 -13.1453 -0.12921 -2.83727 0.207667 

IMU 271.6752 -1.71574 1.202816 -14.1831 -0.09958 -3.20409 0.162769 

Ultrasonic 271.6757 52 
     

IMU 271.6861 -1.71574 1.202816 -14.1831 -0.06537 -3.63078 0.103209 

IMU 271.697 -1.64091 1.624142 -16.8813 0.028699 -4.13535 0.032044 

IMU 271.7077 -1.64091 1.624142 -16.8813 0.223871 -4.73186 -0.05226 

IMU 271.7183 -1.41642 1.834805 -19.2336 0.426983 -5.3748 -0.1335 

 

4.1 INERTIAL NAVIGATION SYSTEM COMBINATION 

With the ability to collect real-time data regarding obstacles 90 degrees to the 

system user, the data can now be combined with the current INS system with the goal of 

wall reconstruction relative to the walking path of the user. The INS system will estimate 

the current location while the ultrasonic sensor will detect if obstacles exist within the 

ultrasonic path. If the ultrasonic sensor detects an obstacle, the distance of the obstacle is 

returned to the system. If a time of flight value is returned by the utilized ultrasonic 

sensor, then the distance to the detected point can be calculated using: 

𝑙  (
𝑡

2
) 20.05√𝑇𝑐  273. 5 

(4.1) 
 

where t is the returned time-of-flight of the ultrasonic pulse and Tc is the temperature of 

the air in Celsius. The SRF10 device used in this experiment has the ability to do this 

calculation, removing the need for this calculation by returning distance instead of the 

time of flight.  
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As seen in Figure 4.1, the ultrasonic sensor’s attitude can be adjusted to reduce 

the risk of ground reflections causing a false detection of an obstacle. This is particularly 

imperative due to the low mounting height of the sensor. Various angles were tested with 

∅   5° providing no invalid ground reflection readings. Distance correction for this 

attitude adjustment can be done using (4.2).  

𝑑  𝑙 cos∅ 
(4.2) 

 

It should be noted that the effective sensor range is reduced because of the attitude 

deviation, with ∅   5°  the maximum range based on the value report by the 

manufacturer becomes 5.8 m (down from 6 m).  

Assuming that while walking, the ultrasonic sensor is only going to rotate and 

translate in a plane perpendicular to the ground, the measured point location can be 

determined using the instantaneous direction vector of the system user. The normalized 

user direction vector is determined using: 

   
 ⃗⃗

‖ ⃗⃗‖
 𝑤ℎ𝑒𝑟𝑒,  

(4.3) 
 

 ⃗⃗  [
𝑥  𝑥  4

𝑦  𝑦  4
]  

where k is the current index of the data, x and y are the user position in their respective 

axis, and  ⃗⃗  is the unnormalized vector. A sample a few data points previous is used 

instead of the directly prior measurement to help mitigate noise. Four data points (∆𝑡  

0.04 𝑠) was found to be a large enough span to prevent short-term noise from dominating 

the current heading vector while being short enough to provide a near-instantaneous 

heading. The normalized direction vector is then rotated by 90 degrees and the point 

location is solved by: 

 𝑝𝑖  (  [
𝑐𝑜𝑠𝜃  𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

]) 𝑑 
(4.4) 
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where 𝜃  90 degrees. Figure 4.2 shows a walking path with the results of using (4.4) 

with the ultrasonic data collected during walking.    

 

Figure 4.2: Raw obstacle data plotted relative to the walking path. 

Next, the data needs to be divided into partitions of walls, requiring the ability to 

determine walls from the plotted data. There are two conditions that would dictate a 

change of wall, the first is simply a break in the wall data, such as would occur if walking 

through an intersection of hallways. This is easy to determine as measurement data would 

not exist for these samples, with a not-a-number (NAN) value being recorded in the 

dataset. The second condition for wall segregation would be a high angle of rotation 

between two subsequent wall faces dictating a corner. To check for this condition 

occurring, a vector representing the current wall direction is compared to a vector that 

represents the early portion of the wall. Once a wall is recognized, the first set number of 

points determines the direction of the wall that the current wall direction will be 

compared to. The current wall vector is made up similarly using the most recent set 

number of points. Equations (4.5) and (4.6) show the initial wall vector and the current 

wall vector respectively. Variables 𝛿  and 𝛿2  represent the number of points that are 

spanned to create each vector, these are tunable parameters, and k is the current index.  
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�⃗⃗⃗�𝑖𝑛𝑖𝑡𝑖𝑎  [
𝑥𝑖𝑛𝑖𝑡𝑎 +𝛿1

 𝑥𝑖𝑛𝑖𝑡𝑎 

𝑦𝑖𝑛𝑡𝑖𝑎 +𝛿1  𝑦𝑖𝑛𝑖𝑡𝑎 
] 

(4.5) 

 

�⃗⃗⃗�𝑐𝑢𝑟𝑟𝑒𝑛𝑡  [
𝑥  𝑥  𝛿2

𝑦  𝑦  𝛿2
] 

(4.6) 

 

Next, the angles between these two vectors are compared on every ultrasonic data sample 

to determine if a change in walls has occurred. This is done using (4.7).   

𝜗  cos  (
(�⃗⃗⃗�𝑖𝑛𝑖𝑡𝑎 ∙ �⃗⃗⃗�𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

‖�⃗⃗⃗�𝑖𝑛𝑖𝑡𝑎 ‖ ∙ ‖�⃗⃗⃗�𝑐𝑢𝑟𝑟𝑒𝑛𝑡‖
) 

(4.7) 

 

Due to errors in the INS system not accurately estimating the number of degrees 

turned during a corner, this angle may not be exactly 90 degrees as would be the 

anticipated ground truth. Therefore, a threshold value should be applied where when the 

angle increases above the set amount, then rotation has occurred. It was found that using 

75 degrees proved to provide good wall discernment in corners. Another tested method 

was to use the yaw angle from the INS system to determine when a corner was taken. 

Using (4.7) with points from the INS path providing a current vector, as well as one that 

is sufficiently back yielded similar results.    

With the ultrasonic device added to the INS to provide wall locations relative to 

estimated walking path, a method to use this information was devised. First, the wall data 

needed to be filtered to remove any noise, or small obstruction information that could 

affect performance such as indents for doorways, or even support columns that protruded 

from the wall face. This can be done using a low pass filter, or an averaging filter, with 

acceptable results from either method. Results herein are from the use of a moving 

average filter, with a window width of 15 samples. Using this method on the obstacle 

data in Figure 4.2 yields Figure 4.3 where ultrasonic sensor noise and small wall 

protrusions have been minimized. Since the ultrasonic sensors sampling rate is dependent 

on the distance the device is from an obstacle, this value could be too high in some 

instances. This could be mitigated by setting a set sampling rate for the ultrasonic device, 

but this would reduce the number of possible data points collected in instances where the 

sensor is close to an obstacle minimizing return time. In general, walls were kept between 
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1 and 3 meters away from the user during testing and a 15-sample window width value 

was sufficient for adequate filtering.   

 

Figure 4.3: Filtered obstacle data from Figure 4.2 showing reduction of noise and wall protrusions.  

Next, the walls were converted into a vector representation by: 

𝑤𝑎𝑙𝑙𝑖  [
𝑥𝑒𝑛𝑑  𝑥 

𝑦𝑒𝑛𝑑  𝑦 
]  [

𝑥𝑖

𝑦𝑖
] . 

(4.8) 

 

The angle between the two walls to be corrected can then be solved using four-quadrant 

inverse tangent allowing for a solution of values in the range of [ 𝜋, 𝜋] using: 

𝛼  𝑎𝑡𝑎𝑛2(𝑦𝑖, 𝑥𝑖)   𝑎𝑡𝑎𝑛2(𝑦𝑖+ , 𝑥𝑖+ ) 
(4.9) 

 

where i represents the current wall index. For values less than 0,  2𝜋 is added to provide 

an angular range between 0 and 2𝜋, but this is not necessary and was only done for 

clarity of angle.  

With the angle between walls calculated, the walls can then be rotated by the 

amount determined to provide the correction. Concurrently, all walking paths and walls 
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occurring after this point are rotated by the same amount, with the initial point of rotation 

being the first index that the wall was detected. This could be done in real-time, most 

simply upon the detection of a wall break as outlined, correcting only the data from the 

beginning of the wall to be corrected, and the sample identifying a wall break of the 

presence of a corner. A simplified flowchart of the presented method is presented in 

Figure 4.4.  

 

Figure 4.4: Flow chart of the simplified ultrasonic algorithm. 

4.2 PROOF OF CONCEPT 

To test the ability of this wall correction method, several datasets were collected. 

Figure 4.5 shows a 70 m walk which shows the lack of long-term stability that plagues 

many INS algorithms when combined with consumer-grade sensors. The overall distance 

travelled shows a low error, less than 3% of the walked distance, but measurements of 

angular rotation were not robust enough to result in a reconstruction of the path that 

shows the user returning to the starting location, as occurred during the test.  
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Figure 4.5: 70 m walk highlighting issues with baselines INS due to gyroscope sensor errors.  

Applying (4.3) to (4.7) on the data corresponding to Figure 4.5 allows for the 

visualization of the detected walls relative to the walking path. Figure 4.6 plots the walls 

using the starting location of the wall, and the wall vector extracted from the (4.8) with 

each wall numbered for reference.  
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Figure 4.6: 70 m walk from Figure 4.5 showing detected walls and lack of parallelism and 

perpendicularity. 

Wall pairs 1 and 2, as well as 3 and 4, should be perpendicular, clearly showing 

error in the gyroscope measurements resulting in inaccuracy in the estimation of the 

number of degrees turned and thus final location. Using the knowledge that these walls 

should be perpendicular, or alternately that walls 1 and 4 should be parallel, the 

highlighted portion of the purposed algorithm shown in Figure 4.4 was implemented. The 

walls should be rotated in chronological order, starting with the first wall being detected 

as the ground truth. The corrections required are: 

1. Walls 1 and 2 are perpendicular 

2. Walls 2 and 3 are parallel 

3. Walls 3 and 4 should be perpendicular 

4. Walls 4 and 1 should be parallel* 

*Walls 1 and 4 will be parallel without explicit intervention if walls 1 through 3 

are corrected. 
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Figure 4.6 was then iteratively corrected using the aforementioned observations 

combined with the purposed method. It can be seen that greater stability was obtained by 

using the walls as references for walking path corrections, reducing the effects of errors 

in the estimation of angular displacement from gyroscope data when turning 

 

Figure 4.7: 70 m walk from Figure 4.5 with correction algorithm applied reducing system error 

caused by poor angular displacement estimation. 

Figure 4.7 shows much higher stability and a strong proof of concept for the 

proposed method of error correction. Figure 4.8 shows how much each point was moved 

by correcting the wall angles. The samples containing wall information are plotted across 

the top in green and numbered for reference.  
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Figure 4.8: Distance of walking path point movement after applying wall corrections. 

 It can be seen that the final location still differs slightly from the starting location, 

this is due to scale factor errors in addition to potential accelerometer bias that was not 

fully removed during calibration before the experiment. During validation stages, 

calibration of the sensors will be strongly verified prior to the collection of each dataset 

as small accelerometer bias, especially in the forward-facing axis, will cause elongated 

walking paths, causing inaccuracy not addressed by any of the presented filtering 

techniques. With a working proof of concept, experimental validations were undertaken.    
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Chapter 5:  EXPERIMENTAL VALIDATIONS 

After establishing a viable proof of concept, the algorithm was quantitatively 

assessed to determine stability and accuracy improvements to the baseline inertial 

navigation system. A series of experiments were conducted that allows for the various 

measures of improvements, these experiments include a comparison to a marked ground-

truth path, as well as numerous laps around a known shape targeting a high error scenario 

in the baseline INS. 

5.1 GROUND TRUTH BASED VALIDATION 

5.1.1 U-SHAPED PATH 

The first validation experiment that occurred was a comparison between the 

ultrasonic augmented INS and a ground truth walking path. First, a walking path was 

marked in the area to be walked, and a number of key points were recorded with the 

measurement datum being (0,0) to allow for graphical reconstruction of the path after 

data collection. The marked path was approximately 110 m long, with 5 turns totaling 

approximately 540 degrees of rotation. The average recorded walking speed was 1.48 

m/s, with a total walking time of 74 seconds. Upon completion of the experiment, the 

presented INS methods output was plotted, and the recorded ground truth overlaid, the 

results are shown in Figure 5.1. The final location error that resulted was 0.15 m proving 

a strong estimate of the final location. It can be seen that walking path errors still exist in 

the form of minor deviations that are occurring mostly during longer straight sections. 

Due to the algorithm estimating wall location from filtered endpoints, the presented 

ultrasonic algorithm does not address these inaccuracies relying on the Kalman filter to 

reduce these errors.      
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Figure 5.1: Comparison between corrected walking path using the presented algorithm and the 

ground truth. 

5.2 FIGURE 8-SHAPED PATH 

Next, a figure-eight walking path was established with 10 randomly positioned 

points measured similarly to that of section 5.1. The walk began at (0,0) proceeding in the 

negative x-direction before turning left. While walking, care was taken to step on each 

marked location at which point the dataset was marked to allow for comparison between 

the actual point and the systems estimated location at that time. Figure 5.2(A) shows the 

uncorrected walking path with the estimated location points marked in red and the ground 

truth locations marked in green. Figure 5.2(B) shows the corrected path walked in blue, 

with the actual ground truth points plotted in green and the location estimated by the 

system when crossing that point marked in red.  
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Figure 5.2: Estimated walking path with measured points and estimated points marked (A) 

Uncorrected, (B) Corrected. 

A comparison was then done between the actual measured ground truth points and 

those estimated by the system in both the uncorrected case and the corrected case. Figure 

5.3(A) shows the errors between the measured and estimated points for the uncorrected 

walking path, while Figure 5.3(B) shows errors for the corrected case. In the uncorrected 

case, the mean total distance error for the points estimated is 4.3 m, with a peak distance 

(A)

(B)
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error of 12.75 m. After correction, the mean error was reduced to 0.72 m with a peak 

error of 1.22 m, a reduction of 83.2% and 90.4% respectively.  

 

Figure 5.3: Errors in estimated points compared to the ground truth points.  

  

 

(A)

(B)
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5.3 CIRCUIT BASED VALIDATION 

With the knowledge that a large amount of instability and inaccuracy comes from 

the estimation of the number of degrees turned, following a path that requires a higher 

number of turns will highlight these issues, presenting a case requiring significant 

improvement to walking path estimation. To create such a scenario, a square feature 

within an indoor environment was used to permit a lap-based experiment. With side 

lengths of approximately 9 m, a single lap presents approximately 40 m of travel 

consisting of four turns of 90 degrees.  While walking around the square, the ultrasonic 

sensor can easily be kept within range of the continuous walls creating the square feature. 

Two experiments ensued, a 3-lap experiment as well as a longer 10-lap experiment.  

5.3.1 3 LAPS 

During the 3-lap experiment, 120 m were traversed consisting of twelve 90-

degree turns. A comparison was done between the baseline INS and the ultrasonic INS 

augmentation approach. Figure 5.4 shows the baseline INS output form the collected 

data. The ground truth ending location was (0,0) but the baseline INS estimated a final 

location of (-8, 3.9), meaning an error distance of 8.9 m or 5.9 % of the total distance 

walked. 
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Figure 5.4: 120 m walking path around a square using baseline INS showing compounding errors 

from angular displacement estimation. 

Utilizing the ultrasonic information to generate the wall locations and applying the 

possible corrections to the same data set, the data was corrected and the results are shown 

in Figure 5.5. The final location was estimated by the purposed system to be (0.47, 0.24), 

a total error distance of 0.53 m, or 0.35 % of the total distance walked. This shows over a 

5.5% reduction in final location estimation error.  
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Figure 5.5: 120 m walking path around a square after wall-based correction showing significant 

error reduction. 

5.3.2 10 LAPS 

To further validate the proposed system over a longer walk, a 10-lap experiment 

was undertaken. The 10-lap walking path consisted of approximately 400 m of walked 

distance, with forty 90-degree turns. This presents a difficult scenario for the INS due to 

the difficulty in maintaining positional accuracy due to inaccuracy in turning angle 

estimation. The starting location was marked on the floor, and upon the conclusion of 

each lap, care was made to step on the marker. Upon stepping on the marker, a mark was 

made within the dataset to allow for the extraction of data on a per lap basis.  

The output of the baseline INS system is presented in Figure 5.6 showing a 

convoluted walking path making the pattern walked indecipherable from the estimated 

walking path results. The ground truth final location was (0,0), but the resulting final 

position estimate was (5.4, 8.8). This equates to a final distance error of 10.3 m, or 2.6 % 

of the total distance walked but given the circuitous nature of the walking path, this error 

result is ingenuine. The furthest radial point in the ground truth walking path was just 

over 13 m, meaning that this total distance error is 79.2 % of the maximum radial 
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distance of the walking path, perhaps providing a more genuine perspective of the 

walking path estimation errors.  

 

Figure 5.6: 400 m walking path around a square with baseline INS. 

Applying the ultrasonic information to generate the wall locations and applying 

the possible corrections to the required walls, the data was iteratively corrected and the 

results are shown in Figure 5.7. The estimated walking path now closely resembles that 

of the square that was walked, with a final position estimate of (1.4, -0.3), resulting in a 

total distance error of 1.43 m, or 0.36 % of the total distance walked. Slight variation in 

walking path can be seen with each lap, this is partially due to the user walking a natural 

lap pattern without a required path, while also avoiding other pedestrians using the space. 

In addition to this, some scale factor error may still exist due to the generalization of the 

scale factor error based on a measurement of up to 9.8 m/s, this could also be contributing 

to the deviation of the walking path in the X-axis.  
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Figure 5.7: 400 m walking path around a square after wall-based corrections showing long term 

stability and accuracy. 

With each lap completion marked in the data set, the error per lap could be ascertained. 

Figure 5.8 shows the error in the x-position, y-position as well as the total error distance. 

It also shows that while error still exists even with the ultrasonic methods presented, the 

error has been largely reduced, increasing system stability. After 10 laps totaling 

approximately 400 m, the error is 1.43 m, with a peak error during the walk to be 1.79 m 

at the conclusion of the 6th lap (approx. 240 m of walking). 
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Figure 5.8: Lap errors in x, y, and total distance for the walking path shown in Figure 5.7. 
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Chapter 6: SUMMARY, CONCLUSIONS AND 

FUTURE WORK 

Pedestrian inertial navigation systems provide users the ability to navigate without 

the requirement of outside signal-based assistance, providing information regarding the 

position of the user relative to a known starting location. Unfortunately, inertial 

navigation systems suffer from inaccuracies caused by sensor errors which are 

compounded by the desire to use low-cost and consequently less accurate sensing 

devices. Current error solutions for inertial navigation rely on complex filtering combined 

with information from other sensors to reduce the inaccuracies and instabilities that 

plague naïve inertial navigation systems. Some examples of these sensors include 

cameras, GPS, Bluetooth and Wi-Fi, but in many cases these solutions are either bulky, 

computationally expensive, require prior infrastructure, or are not compatible with indoor 

environments. There exists a strong desire to design an error correction method that 

involves small, low-cost sensors that can be integrated into a system easily worn by the 

system user. 

Within this thesis is the definition, and validation of such a method that utilizes a 

small, inexpensive ultrasonic sensor to gather environmental information around the user. 

This information can then be used to estimate wall locations relative to the user and 

provide a basis of correction through assumptions based on general building practices. 

Drastic reductions in final location inaccuracies are exhibited through increased stability 

in the system, preventing the degradation of location estimation during increased walking 

distance. During 400 m of circuitous walking, total distance error was reduced to 0.35% 

of the total distance walked, while during a figure-8 walking path, peak error was reduced 

by 90.4%. All sensors and hardware are mounted on a shoe, increasing system ease-of-

use and range of user applicability.  
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6.1 CONCLUSIONS 

This thesis provides a foundation for the design and programming of a method of 

pedestrian inertial navigation system augmentation using low-cost components. A 

method was presented that uses information collected from an ultrasonic sensor mounted 

to a shoe-based inertial navigation system to improve system stability, and consequently 

accuracy when in range of a wall. The method presented herein can be added to existing 

INSs for improvements in long term stability using wall information without the 

requirement of area knowledge prior to use. Even though ultrasonic sensors are short in 

range compared to LIDAR devices, the sensors are low-cost and small in size showing 

potential for indoor pedestrian navigation systems augmentation, reducing problematic 

errors in long term indoor navigation situations.  

This paper shows a system addition that has the potential to bring indoor navigation 

platforms closer to plausible implementation. With these systems being a basis for 

services and applications requiring user location indoors, long term accuracy with such 

systems provides a foundation for the holistic improvement of personal navigation. 

Services could be developed that allow for navigation of complex public spaces, 

including malls, airports or universities, where building layout could yield confusion. In 

addition to general personal navigation, applications could be developed that improve the 

lives of visually impaired individuals, making navigation in unknown buildings easier, 

with the potential for routing to required accessibility devices such as elevators. 

Emergency service personnel could also benefit, with the potential to navigate buildings 

without prior knowledge of the area to quickly access rooms, especially in low visibility 

environments such as those created by smoke.   

In addition to pedestrian navigation systems, this method could be applied to other 

inertial navigation systems that require error correction or mapping ability in indoor 

environments, such as robotic vehicles. The algorithm presented does not require a 

pedestrian user, keeping a wide scope of implementation in obstacle rich environments.  
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6.2 FUTURE WORK 

To advance the work outlined in this document, further investigation into other uses 

of the ultrasonic information that was collected is recommended. Since wall information 

relative to the user walking path is generated, a map matching algorithm could be 

developed and implemented that allows the system to extract further information based 

on known wall locations and estimated user location from the system. This could allow 

for better error attenuation given knowledge of the location of key discernible features 

such as corners, providing insight into errors such as scale factor errors, or bias errors. In 

addition to map matching, real-time map generation is plausible given that the system 

generates wall information relative to a starting location, which if known, could provide 

data for the wall data.  

Further information could be gathered during walking through the addition of 

another ultrasonic sensor on the opposing shoe, allowing for the collection of wall data in 

both lateral directions. This could permit the development of further error reduction 

methods such as in situations where walls are detected in both lateral directions 

simultaneously.  

To provide a better holistic coverage of wall shapes, the use of this system on 

curved walls could be explored. This could provide a challenge given that curved walls 

will cause a reflection of the ultrasonic pulse away from the user in the case of angles 

exceeding 90 degrees. The implementation of a binaural system instead of an emitter-

receiver setup could significantly reduce this challenge, but binaural systems are more 

costly due to the increased number of sensors as well as larger in size, making attachment 

to a shoe difficult.  

Finally, the machine learning investigation that was undertaken could be adapted 

for use in step detection for inertial navigation systems for people who have highly 

unusual gait patterns. Due to the nature of step detection in inertial navigation systems, 

users with limps, or significant pronation or supination (rolling of the foot during 

stepping) would have reduced performance, especially with gyroscope thresholding. 

Machine learning would allow the system to gleam insight into the user’s gait, and adapt 
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accordingly, increasing the population size of the individuals who could use the system. 

Redesign of the Kalman filter algorithm to allow for batch processing as mentioned prior 

may yield increased prediction performance, reducing or possibly eliminating the 

bottleneck that was discovered from its use.  
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