
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

9-20-2019 

Cultural Algorithm based on Decomposition to solve Optimization Cultural Algorithm based on Decomposition to solve Optimization 

Problems Problems 

Ramya Ravichandran 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Ravichandran, Ramya, "Cultural Algorithm based on Decomposition to solve Optimization Problems" 
(2019). Electronic Theses and Dissertations. 7835. 
https://scholar.uwindsor.ca/etd/7835 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/250624188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7835?utm_source=scholar.uwindsor.ca%2Fetd%2F7835&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


 
 

 

Cultural Algorithm based on 
Decomposition to solve 
Optimization Problems 

 

By 

Ramya Ravichandran 

 
A Thesis  

Submitted to the Faculty of Graduate Studies  
through the School of Computer Science  

in Partial Fulfillment of the Requirements for 
the Degree of Master of Science 

 at the University of Windsor 
 

 

Windsor, Ontario, Canada 

2019 

©  Ramya Ravichandran, 2019 

  



 

Cultural Algorithm based on 
Decomposition to solve 
Optimization Problems 

 

By 

Ramya Ravichandran 

APPROVED BY: 

______________________________________________ 
K. Tepe 

Department of  Electrical and Computer Engineering 

 

______________________________________________ 
S. Samet  

School of Computer Science 

 

______________________________________________ 
Z. Kobti, Advisor 

School of Computer Science 
 

 

 

September 20th, 2019  



 

iii 
 

DECLARATION OF CO-AUTHORSHIP 
/ PREVIOUS PUBLICATION 

 
 
 

1. Co-authorship 

 

 I hereby declare that this thesis incorporates material that is the result of 

research conducted under the supervision of Dr. Ziad Kobti. In all cases, the key 

ideas, primary contribution, experimental designs, data analysis, and 

interpretation were performed by the author, and the contribution of the co-

author was primarily through the proofreading of the published manuscripts. 

 I am aware of the University of Windsor Senate Policy on Authorship, and 

I certify that I have properly acknowledged the contribution of other researchers 

to my thesis, and have obtained written permission from each of the co-author(s) 

to include the above material(s) in my thesis. 

 I certify that, with the above qualification, this thesis, and the research to 

which it refers, is the product of my work. 

 

2. Previous Publication 

 

 This thesis includes one original paper that has been previously submitted 

for publication in peer-reviewed journals, as follows: 

 



 

iv 
 

Section Publication title/ Full citation Publication status 

3, 4 Ramya Ravichandran and Ziad Kobti “ 

Solving Dynamic Multi-Objective 

Optimization Problem Using Cultural 

Algorithm based on Decomposition.” In 2019 

International Symposium on Computing and 

Artificial Intelligence (ISCAI 2019), 

Vancouver, Canada.  

Accepted 

  

 I certify that I have obtained a written permission from the copyright 

owner(s) to include the above published material(s) in my thesis. I certify that the 

above material describes work completed during my registration as a graduate 

student at the University of Windsor. 

  

3. General 

 

  I declare that, to the best of my knowledge, my thesis does not infringe 

upon anyone's copyright nor violate any propriety rights and that any ideas, 

techniques, quotations, or any other material from the work of other people 

included in my thesis, published or otherwise, are fully acknowledged in 

accordance with the standard referencing practices. Furthermore, to the extent 



 

v 
 

that I have included copyright material that surpasses the bounds of fair dealing 

within the meaning of Canada Copyright Act, I certify that I have obtained 

written permission from the copyright owner to include such material in my 

thesis. 

  

 I declare that this is a true copy of my thesis, including any final revisions, 

as approved by my thesis committee and the Graduate Studies Office, and that 

this thesis has not been submitted for a higher degree to any other University or 

Institution. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 
 

ABSTRACT 

 

 Decomposition is used to solve optimization problems by introducing 

many simple scalar optimization subproblems and optimizing them 

simultaneously. Dynamic Multi-Objective Optimization Problems (DMOP) have 

several objective functions and constraints that vary over time. As a consequence 

of such dynamic changes, the optimal solutions may vary over time, affecting the 

performance of convergence. In this thesis, we propose a new Cultural Algorithm 

(CA) based on decomposition (CA/D). The objective of the CA/D algorithm is to 

decompose DMOP into a number of subproblems that can be optimized using the 

information shared by neighboring problems. The proposed CA/D approach is 

evaluated using a number of CEC 2015 optimization benchmark functions. When 

compared to CA, Multi-population CA (MPCA), and  MPCA incorporating game 

strategies (MPCA-GS), the results obtained showed that  CA/D outperformed 

them in 7 out of the 15 benchmark functions. 

 

 

 

 

 

 



 

vii 
 

DEDICATION 

 

 

I would like to dedicate this thesis to my family 

Father: Ravichandran Egappan 

Mother: Janagi Ravichandran 

Sister: Aishwarya Ravichandran 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

viii 
 

ACKNOWLEDGMENTS 

 

 There are many people I would like to thank for the successful completion 

of my master thesis. First and foremost, I would like to express my sincere 

gratitude to my supervisor, Dr. Ziad Kobti, for his continuous support of my 

research study, for his patience, motivation, enthusiasm, and immense 

knowledge. He helped me in accomplishing my goals and has provided valuable 

guidance in improving research skills. It was a great pleasure to work and discuss 

with him. I would also like to appreciate the time he dedicated for me and the 

funding he provided me to complete this thesis. Without his support, this thesis 

would not be complete.  

 

 I would also like to thank my committee members – Dr. Tepe and Dr. 

Samet – whose inputs and suggestion have given a better shape to my research. I 

also would like to thank the support of Mrs. Melissa, Mrs.Christine, and Mrs. 

Gloria for helping with various academic issues.  

 

 I am very thankful to my parents and friends who gave me the strength, 

moral support, and unconditional love, which kept me motivated to pursue my 

research. Last but not least, I would like to thank God for giving this excellent 

opportunity. 



 

ix 
 

TABLE OF CONTENTS 

 

DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION ... iii 

ABSTRACT .................................................................................................................... vi 

DEDICATION .............................................................................................................. vii 

ACKNOWLEDGMENTS ......................................................................................... viii 

LIST OF TABLES ........................................................................................................ xii 

LIST OF FIGURES .................................................................................................... xiii 

LIST OF ABBREVIATIONS .....................................................................................xv 

Chapter 1 ..........................................................................................................................1 

Introduction ...................................................................................................................1 

1.1 Background ..................................................................................................................... 1 

1.2  Problem Definition ............................................................................................................. 3 

1.2.1 Dynamic Multi-Objective Optimization .................................................................... 5 

1.3 Evolutionary Computation ................................................................................................. 8 

1.4 Decomposition ................................................................................................................... 11 

1.5 Research Motivation.......................................................................................................... 12 

1.6 Thesis Statement................................................................................................................ 13 

1.7 Thesis Contribution ........................................................................................................... 14 

1.8 Thesis Outline .................................................................................................................... 15 

Chapter 2 .......................................................................................................................16 



 

x 
 

Literature Review ......................................................................................................16 

2.1 Traditional methods to solve DMOPs ............................................................................. 16 

2.1.1 The weighted sum ....................................................................................................... 19 

2.1.2 The ℇ-constraints method ......................................................................................... 19 

2.1.3 The goal programming method ................................................................................ 20 

2.2 Evolutionary methods ...................................................................................................... 21 

2.2.1 Convergence-based methods .................................................................................... 22 

2.2.2  Diversity-based methods ......................................................................................... 23 

2.2.3  Prediction-based approaches .................................................................................. 23 

2.2.4 Other Evolutionary Methods .................................................................................... 25 

2.2.5 Culturally evolved methods ...................................................................................... 26 

Chapter 3 .......................................................................................................................29 

Evolutionary Computation .....................................................................................29 

3.1   Evolutionary Algorithm .................................................................................................. 30 

3.2 Genetic Algorithms ........................................................................................................... 32 

3.2.1    Selection .................................................................................................................... 33 

3.2.2    Crossover Operation ............................................................................................... 35 

3.2.3    Mutation Operation ................................................................................................ 36 

3.3 Cultural Algorithms .......................................................................................................... 38 

3.3.1   Belief Space................................................................................................................ 40 

3.3.2   Population Space ...................................................................................................... 41 

Chapter 4 .......................................................................................................................43 

Proposed Approach ...................................................................................................43 

4.1 Cultural Algorithm to solve DMOPs ............................................................................... 43 

4.1.1 Structure of Belief Space ............................................................................................ 44 

4.1.2 Influence Functions ....................................................................................................... 47 

4.1.3 Mutation Operator ..................................................................................................... 48 



 

xi 
 

4.1.4 Selection Operator ...................................................................................................... 49 

4.1.5 Environmental Change Detection ............................................................................ 50 

4.2 Decomposition Strategy ................................................................................................... 50 

4.2.1 Tchebycheff Method ................................................................................................... 50 

4.2.3 Reference Point Method (RP) .................................................................................. 54 

Chapter 5 ........................................................................................................................57 

Benchmark Functions and Experiments ..........................................................57 

5.1 Benchmark Optimization Functions ............................................................................... 57 

5.1.1 Unimodal Functions ................................................................................................... 60 

5.1.2 Simple Multi-Modal Functions ................................................................................. 62 

5.1.3 Hybrid Functions ........................................................................................................ 65 

5.1.4 Composite Functions ................................................................................................. 67 

5.2 Experimental Setup........................................................................................................... 71 

5.3 Results and Analysis ......................................................................................................... 74 

Chapter 6 .......................................................................................................................82 

Discussion, Comparisons, and Analysis ...........................................................82 

6.1 Comparison between M2, M3, and M4 .......................................................................... 82 

6.2 Comparison between M1, M3, and M4 .......................................................................... 83 

6.3 Comparison between M2, M3, and M5 .......................................................................... 84 

6.4 Comparison between M1, M2, and M5 .......................................................................... 86 

6.5 Time Complexity ............................................................................................................... 87 

Chapter 7 ........................................................................................................................88 

Conclusion and Future Work ................................................................................88 

REFERENCES ..............................................................................................................90 

VITA AUCTORIS .........................................................................................................99 



 

xii 
 

 

LIST OF TABLES 

 

Table 5.1: Summary of the CEC 2015 Benchmark problems [21]. . . . . . . . . . . . . .56 

Table 5.2 Parameter values for the algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 

Table 5.3: M1-M5 on F1-F7 for 10D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 

Table 5.4: M1-M5 on F8-F15 for 10D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 

Table 5.5: M1-M5 on F1-F7 for 30D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 

Table 5.6: M1-M5 on F8-F15 for 30D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 

 

  



 

xiii 
 

LIST OF FIGURES 

 

Figure 1.1 Pseudo-code for EA [23] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

Figure 3.1: Relation between Genomes and Phenomes [46] . . . . . . . . . . . . . . . . . 32 

Figure 3.2: Types of crossover operations [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

Figure 3.3: Types of Mutation [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

Figure 3.4: Architecture of CA [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40 

Figure 4.1: Phenotypic normative part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46 

Figure 4.2: Flowchart of the Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

Figure 5.1: 3D-Map for Rotated Bent Cigar Function [29] . . . . . . . . . . . . . . . . . . 57 

Figure 5.2: 3D – Map for Rotated Discus Function [29] . . . . . . . . . . . . . . . . . . . . 58 

Figure 5.3: 3D – Map for Rotated and Shifted Schwefel’s Function [29] . . . . . . .59 

Figure 5.4: 3D -Map for Rotated and Shifted Katsuura Function [29]. . . . . . . . . 60 

Figure 5.5: 3D – Map for Rotated and Shifted HappyCat Function [29]. . . . . . . 60 

Figure 5.6: 3D – Map for Rotated and Shifted HGBat Function [29]. . . . . . . . . . 61 

Figure 5.7: 3D – Map for Shifted and Rotated Scaffer’s F6 Function [29]. . . . . . 62 

Figure 5.8: 3D – Map for Composite Function 1 [29] . . . . . . . . . . . . . . . . . . . . . .  66  



 

xiv 
 

Figure 5.9: 3D – Map for Composite Function 2 [29] . . . . . . . . . . . . . . . . . . . . . . .67 

Figure 5.10: 3D – Map for Composite Function 3 [29] . . . . . . . . . . . . . . . . . . . . .  68 

Figure 6.1: Convergence performance of M2, M3 and M4 for F4 (30D) . . . . . . . 83 

Figure 6.2: Convergence performance of M1, M3 and M4 for F11 (30D) . . . . . . .84 

Figure 6.3: Convergence performance of M2, M3 and M5  for F6 (30D) . . . . . . .85 

Figure 6.4: Convergence performance of M1, M2 and M5  for F10 (30D) . . . . . . 86 

 

 

 

 

  



 

xv 
 

LIST OF ABBREVIATIONS 

 

EA Evolutionary Algorithms 

CA Cultural Algorithms 

SOP Single Optimization Problem 

MOP Multi-Objective Problem 

DMOP Dynamic Multi-Objective Optimization Problem 

DOP Dynamic Optimization Problem 

GA Genetic Algorithms 

DE Differential Evolution 

POS Pareto Optimal Solutions 

POF Pareto Optimal Front 

CR Convergence Ratio 

NSGA-II Non-Dominated Sorting Genetic Algorithm – II 

FPS Feed-Forward Population Strategy 

PPS Prediction-based Population Strategy 

MOEA/D-DP Differential Prediction incorporated by Multi-Objective 

Optimization Evolutionary Algorithm based on Decomposition 

KF Kalman Filter 

SGEA Steady-State and Generational Evolutionary Algorithm 

MRP-MOEA Multiple Reference Point – MOEA 

CAEP Cultural Algorithm with Evolutionary Programming 

GPM Genotype Phenotype Mapping 



 

xvi 
 

MPCA Multi Population Cultural Algorithm 

HMPCA 

TM 

RP 

Hetrogeneous Multi Population Cultural Algorithm 

Tchebycheff Method 

Reference Point Method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 
 

 

Chapter 1 

 

Introduction 

 

1.1  Background  

 Optimization problems involve finding one or more effective and efficient 

solution(s) from a pool of feasible solutions. In other words, it involves finding 

the best solution by maximizing the desired factors and minimizing undesired 

factors [30]. Evolutionary Algorithms (EA) have been widely used by researchers 

to solve complex optimization problems. EA contains a search space which 

focuses on the optimization of the problem and searches for the best possible 

solution [14]. The search space in EA comprises exploration and exploitation 

operators. Exploration means finding new points in different areas of the search 

spaces, which has not been investigated before. On the other hand, exploitation is 

the process of improving and combining the traits of the currently known 

solutions [31]. The solutions generated can be near-optimal or optimal. While 

EAs are successfully applied to various types of optimization problems, they 

undergo specific issues such as immature convergence and diversity over 



 

2 
 

generations. Diversity can be maintained between the population by using 

Cultural Algorithms (CA). CA is a class of EA which is most likely used to solve 

multi-objective problems (MOP). Introducing decomposition of the MOP in CA 

can address the issue of immature convergence (finding solutions as close as 

possible to Pareto optimal front) as decomposing the problem into many 

subproblems, enhances the search for best solutions which shows good potential 

for better results. 

 

 Decomposition is a traditional and primary method used to solve multi-

objective problems. As the name suggests, it decomposes a multi-objective 

optimization into many simple scalar optimization subproblems, and also 

optimizes these problems simultaneously [1]. Using Decomposition strategies in 

CA can provide a balance between the exploration and exploitation in the 

Evolutionary algorithms. It can make efficient use of the knowledge obtained 

from the sub-problem(s) to decide whether to co-operate with another sub-

problem and generate excellent results. The combination of these two different 

fields can cover the significant aspects of diversity, immature convergence, 

escaping from local optima, exploration, and exploitation. This combination can 

lead to better results and efficiently solve optimization problems. 

 

 



 

3 
 

1.2  Problem Definition  

 Ongoing research focuses on solving optimization problems which have a 

single objective function commonly known as Single-Objective Optimization 

Problem (SOP). Formally, consider an optimization problem denoted as follows 

[1]: 

   𝑚𝑖𝑛 𝑚𝑎𝑥⁄                𝑓 (𝑥),                                 (1.1) 

   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          𝑔𝑗  (𝑥) ≥ 0,  j = 1,2, . . . , J; 

            ℎ𝑘 (𝑥) = 0,   k = 1,2, . . . , K.  

where,    𝑥 = (𝑥1, 𝑥2, .  .  .  , 𝑥𝑛)𝑇  is a vector of n decision variables, 

𝑔𝑗  (𝑥) and ℎ𝑘 (𝑥)are equality and inequality constraints respectively. However, 

real-world problems usually involve one or more objectives to be optimized, and 

this is termed: Multi-Objective Optimization Problem (MOP) [2]. A typical 

example of MOP is the problem of buying a car [3]; we tend to select one which 

has maximum comfort and minimum cost; these issues considered here are 

called objective functions. A car with maximum comfort usually has a higher cost; 

whereas a car with minimum cost sacrifices comfort. Objective functions conflict 

with each other making this problem exciting and challenging to solve.  

 

 MOPs have to solve these conflicting and competing objectives. The 

solutions obtained are known as Pareto Optimal Solutions (POS) or Non-



 

4 
 

Dominated Solutions. A set of POS is called a Pareto Front (PF), if it is 

represented graphically and forms a clear-cut curve by joining all the optimal 

solutions in the objective space. Mathematically, an MOP is expressed as [3]: 

   𝑚𝑖𝑛 𝑚𝑎𝑥⁄         𝑓𝑚 (𝑥),            m = 1,2, . . . , M;                         (1.2) 

   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜       𝑔𝑗(𝑥) ≥ 0,      j = 1,2, . . . , J; 

            ℎ𝑘(𝑥) = 0 ,     k = 1,2, . . . , K. 

where, 𝑥 = (𝑥1, 𝑥2, .  .  .  , 𝑥𝑛)𝑇is a vector of n decision variables, 𝑔𝑗(𝑥) and ℎ𝑘(𝑥) are 

equality and inequality constraints, respectively, m is the number of objectives 

(m ≥ 2). The MOP finds multiple optimal solutions which have a wide range of 

values for the objective functions, and later choosing one optimal solution with 

the help of higher-level information. If there is no further information about the 

problem; then it will be challenging to choose one solution over all other optimal 

solutions which are now equally important.  

 

  Therefore, there are two goals in solving MOP, namely: Convergence and 

Diversity. Thus, Convergence. Finding a set of solutions as close as possible to 

the POF and  Diversity. Finding a set of solutions as diverse as possible. There 

are other basic concepts of optimization problems such as [4]: 

 

 



 

5 
 

 Pareto dominance: A solution 𝑥 = (𝑥1, 𝑥2, .  .  .  , 𝑥𝑛) dominates (denoted by 

≺) another solution 𝑦 = (𝑦1, 𝑦2, .  .  .  , 𝑦𝑛) if and only if f (x) is comparatively less 

than f (y). That means, ∀𝑚 ∈  {1, . . . , 𝑀} , we have 𝑓𝑚(𝑥) ≤ 𝑓𝑚(𝑦)  and ∃𝑚 ∈

 {1, . . . , 𝑀}, where 𝑓𝑚(𝑥) < 𝑓𝑚(𝑦). 

 Pareto optimal solutions: A solution 𝑥 = (𝑥1, 𝑥2, .  .  .  , 𝑥𝑛) is said to be an 

optimal solution if and only if there is no 𝑦 = (𝑦1, 𝑦2, .  .  .  , 𝑦𝑛) that y dominates x. 

 Pareto optimal set: Given MOP f (x),  the Pareto optimal set 𝑃 = {𝑥 ∈

 𝛺 |∄𝑦 ∈  𝛺, 𝑓(𝑦) ≺ 𝑓(𝑥)}, which is also known as non-dominated solutions as 

discussed. 

 Pareto front: Given MOP f (x) and its Pareto Optimal set P, the Pareto 

front PF is { f (x), 𝑥 ∈  𝑃}. 

 

1.2.1 Dynamic Multi-Objective Optimization 

 In the real world, a dynamic change to an optimization problem should be 

taken into account; where the objective functions, constraints, as well as the 

decision variables may change with respect to time [5]. Furthermore, considering 

our car purchasing problem mentioned earlier, it is possible that some desirable 

cars may not be available for sale at the moment or anymore; or there are newer 

car models available in the market; or the price of your desired car has gone up 

over time, etc. All these culminate to Dynamic Optimization Problems (DOPs). 



 

6 
 

 When numerous competing objective functions and constraints change 

with respect to time simultaneously in real-world DOPs [3], the problem is called 

a Dynamic Multi-Objective Optimization Problem (DMOP). As a result, the POS 

and PF may vary with regard to time. In this thesis, we consider the following 

DMOPs  [6]: 

    𝑚𝑖𝑛 𝐹 (𝑥, 𝑡) = (𝑓1(𝑥, 𝑡), 𝑓2(𝑥, 𝑡) , . . , 𝑓𝑚(𝑥, 𝑡))T              (1.3) 

                  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ Ω 

where m is the number of objectives, t = 0, 1, 2… is the discrete-time instant, x = 

(x1, x2 , . . . , xn)T is the decision variable vector, and Ω represents the decision 

space. The objective function F (x, t) have m time-dependent objective functions 

that vary periodically.  

 

 There exist a variety of algorithms or optimization techniques used in 

solving DMOPs such as (1.3). Some of the classical methods to solve a MOP is to 

group all the objective functions into a single function. In other words, the 

conversion of MOP to SOP. A few traditional methods are the weighted-sum 

method [4], the ℇ-constraint method [41], and the goal-programming method 

[4]. There are specific difficulties which may accompany the classical 

optimization methods. In the weighted-sum method, the shape of the curve for 

the Pareto Optimal front is sensitive. The required knowledge concerning the 

problem for these traditional methods is not available. Also, there are other 



 

7 
 

optimization methods to solve DMOPs, such as particle swarm optimization  [9] 

and artificial immune systems [10]. 

 

 Another method for solving the optimization problems is using the 

Evolutionary Algorithms (EAs). An advantage of EA over traditional methods for 

a MOP is that the former operates over a set of solutions at a time. This method 

performs satisfactorily well when dealing with DMOP. Therefore, applying EAs 

has grabbed the attention of researchers. In 1966, the first method to solve the 

application of dynamic environments using EA was introduced. However, it 

became widely known and used in the late 80′𝑠 Dealing with DMOP is 

complicated and as a result of the dynamism, algorithm design for a DMOP is 

different from that of a static MOP. As discussed the goals of the MOP algorithm 

is to have fast convergence as well as be able to track the loss in diversity during 

an environmental change. Therefore, many other new additional techniques were 

introduced to maintain diversity in the population-based methods. When dealing 

with DMOPs, the main goal is not only to converge to a well-diversified Pareto 

Front but also to rapidly track down the PF as it changes over time. The proposed 

algorithm should have a high convergence rate. 

 



 

8 
 

1.3 Evolutionary Computation 

 Evolutionary Computation (EC) is a set of algorithms which are inspired 

by the evolution of the biological model. EC is one of the branches of artificial 

intelligence, which is used for metaheuristic and stochastic optimization of 

complex problems [14]. Evolutionary algorithm (EA) is a subset of EC; hence, 

they are also known as optimization algorithms. There is numerous algorithm 

which comes under EA, such as: 

 

1.      Genetic Algorithms 

2.     Differential Evolution 

3.     Cultural Algorithms 

4.     Coevolution 

  

 The standard underlying concept in all the evolutionary algorithm is the 

same: given a set of the population, which in environmental pressure causes 

natural selection. The fitness function evaluates each candidate, and only the 

better candidate survive the next generation, eliminating the worst ones. Each 

individual is evolved by using mutation and recombination operators. Mutation 

is applied to only on one individual and as a result, we get a new candidate 

whereas in recombination two individuals (called parents) are selected and it 



 

9 
 

results in the new generation of one or more new candidates (called offsprings). 

Mutation and recombination operators generate a new set of candidates 

(offsprings) which replace the existing old individuals for the next generation. 

This process repeats until the stopping criteria are met (number of generations, 

CPU time).  Figure 1.1 represents the pseudo-code for the evolutionary algorithm 

[23]. 

 

 When an algorithm incorporates genetics in the process of evolution is 

known as Genetic Algorithms (GA). GAs are a heuristic search algorithm which is 

based on evolutionary ideas of natural selection. GA was first proposed by 

Holland [24], which is inspired by the Darwin theory of evolution and biological 

genetics. GA was used by many researchers to solve optimization problems. 

However, a simple GA converges into a single optimum, and it is not suitable for 

multi-objective optimization. GA evolves complex problems by coevolution, 

which also includes explicit notions of modularity to provide a fair chance to 

complex problems to evolve in the form of co-adopted subcomponents. The 

structure for complex problems is noted when there is a need for rule hierarchies 

in classifier systems and subroutines in genetic programming [25]. When two or 

more individuals reciprocally affect each other in evolution, then it is known as 

Coevolution. The main disadvantage of coevolution is that it has a good chance of 

losing diversity among the population. 



 

10 
 

 

Figure 1.1 Pseudo-code for EA [23] 

 Differential Evolution (DE) is also an EA which was introduced by Storn 

and Price [25] to solve global optimization problems. DE was designed to solve 

continuous problems but also works excellent in combinatorial optimization 

problems. Even on the continuous domain, it cannot be applied directly, but 

overall, it shows good performance on optimization problems and some 

permutation problems [27, 28]. DE is popular among the EA due to its robust 

search space exploration. In DE, the differential formulation mechanism is used 

to generate offspring from the population. All of the above-discussed EAs are 

used to solve complex optimization problems, but none of them uses knowledge 

of the individual to solve. To apply the knowledge possessed by the individual or 

population, Reynolds [12] designed the Cultural Algorithms (CA).  

 



 

11 
 

 Cultural Algorithms extracts knowledge and uses them to direct the search 

process. A huge number of successful applications of CA exhibits the performance 

of knowledge-based EA. The search mechanism is improved by amending the 

extracted knowledge into a CA. Therefore it leads CA to find better solutions with 

excellent quality and also improves the convergence rate. The inspiration for CA 

is from human cultures and beliefs. Unlike the other EAs, CA has two search 

spaces: the population space and belief space. Population space consists of 

individuals in the population, and belief space consists of the knowledge of the 

best individual in the population of the current generation. There are five 

knowledge components of CA, such as situational, topographical, historical, 

normative, and domain. It is discussed briefly in Chapter 2. 

 

1.4 Decomposition 

 There are several approaches for converting a MOP for the approximation 

of the Pareto Front into a number of scalar optimization problems. 

Decomposition is similar to the traditional and primary method used to solve 

multi-objective problems. As the name suggests, it decomposes a multi-objective 

optimization into many simple scalar optimization subproblems and also 

optimizes these problems simultaneously [1]. Information of several neighboring 

subproblems is used to solve a subproblem. The idea of decomposition has been 

started to involve in the current state-of-the-art in DMOPs algorithm. For 

example, a decomposition algorithm consists of a set of scalar optimization 



 

12 
 

problems in which the objectives are the aggregation of the objectives in DMOP. 

A scalar optimization algorithm is applied to these scalar optimization problems 

in a chain based on the coefficients of aggregation, the solution obtained from the 

previous problem is set as the starting point for the next subproblem to be solved. 

This is done because the next aggregation objective is just slightly different from 

the previous one. 

 

 In 1979, Hwang and Masud presented the classification of decomposition 

methods according to the participation of the decision-maker [15]. There are four 

classes, namely, no-preference methods, priori methods, posteriori methods, and 

interactive methods. Interactive methods are the most advanced class out of the 

four methods mentioned. Interactive methods are believed to produce the most 

satisfactory results. The detailed discussion about the types of decomposition 

methods is presented in Chapter 2. 

 

1.5 Research Motivation 

 The primary motivation of this research has come from observing the 

techniques to solve complex optimization problems. While working on the 

optimization problems, we found there are many algorithms which can be used. 

The main problem with most of the algorithm was that they were less general and 

more problem-specific. Mostly the existing algorithm tries to solve these 



 

13 
 

problems in static rather than a dynamic way. After working in this topic, we 

realized the Cultural Algorithms, shows many potentials to solve complex 

optimization problems, and they also resemble the human culture.  Exchange of 

knowledge between the individuals in the environment can help them to explore 

and exploit conditions around them more precisely. We implement this idea by 

introducing specific strategies such as breaking the DMOP into many 

subproblems for achieving a better quality of results and convergence 

performance. In this thesis, we focus on implementing different decomposition 

strategies in CA for better performance. Convergence based approaches try to 

make use of past information for thriving better tracking performance. 

 

1.6 Thesis Statement 

 In this thesis, the goal is to improve the convergence performance and 

track the optima. We are aiming to achieve this objective by introducing 

Decomposition strategy into Cultural Algorithm, which uses belief space to store 

past information about each individual. This past information is used to thrive in 

better performance for the convergence. These algorithms also use domain 

knowledge that will lead to faster convergence. Complexity in DMOPs makes it 

challenging to handle them. The decomposition strategy will help to handle the 

complexity of the problem. We will evaluate our method using the CEC 2015 

Benchmarks and analyze the results.  

 



 

14 
 

1.7 Thesis Contribution 

 In our work, we aim to develop and evaluate different decomposition 

strategies to improve the results of Dynamic Multi-Objective Optimization 

Problem. Different decomposition techniques are compared with each other to 

evaluate and identify the better method on its performance on optimizing the 

complex problems. In our work, we hypothesize that decomposition techniques 

incorporated in CA will lead to improving the performance in DMOP through 

accelerating the convergence. In our study, we hypothesize when a DMOP is 

decomposed into many subproblems by using one of the specific strategies 

proposed that will affect the whole population and improve the performance. In 

order to evaluate the efficiency of the proposed algorithm, the Convergence Ratio 

(CR) measure is incorporated. We have developed our framework based on the 

work done by Cao [6], Parikh [19] and implemented different decomposition 

techniques incorporated by cultural algorithms. CEC  2015 [29] expensive 

benchmark functions have been used to test our framework and compare it with 

existing algorithms. Testing is done on both 10 and 30-dimensional functions of 

CEC. The function consists of different types of simple, multimodal, hybrid, and 

composite functions. 

 

 

 



 

15 
 

1.8 Thesis Outline 

 The rest of the thesis/research work is organized as follows 

 In Chapter III, I discuss the related work/literature review in the field of 

optimization problems using different techniques. 

 In Chapter III, I introduce Evolutionary Computation and explain its 

working in detail. We also introduce CA and types of Decomposition methods 

that are used in this research. 

             In Chapter IV, I explain the proposed approach, which makes it possible 

to utilize evolutionary techniques in complex optimization problems. 

             In Chapter V, I present the experimental setup and results with its 

assumption.  

             In Chapter VI, I compare our methods with state-of-the-art techniques 

and deeply analyze the results. We also compare the results of different 

decomposition techniques. 

             In Chapter VII, I conclude the research by providing insights for future 

work. 

 

 

 

 



 

16 
 

 

Chapter 2 

 

Literature Review 

 

 This chapter consists of all the related work obtained for the establishment 

of fundamental ideas, developing our framework, and the structure of our thesis. 

In this section, we explain the literature related to Dynamic Multi-Objective 

Optimization Problem (DMOP), Cultural Algorithms, and Decomposition 

strategies. The first section consists of the traditional methods used to solve 

DMOPs. The second section of this chapter consists of evolutionary methods to 

solve DMOPs. The third section consists of literature for cultural algorithms 

solving DMOPs. 

 

2.1 Traditional methods to solve DMOPs 

 In general, for Multi-Objective Optimization Problem (MOP), it is intuitive 

to propose the aggregation of the different objective functions into a single one. 

In order to generate an emblematic approximation of the whole PF, the user must 

perform several runs with different parameter settings. In the following, we will 



 

17 
 

explain some classic methods for handling MOPs. Cohen [41] classified them into 

the following two types: 

1. Generating methods 

2. Preference-based methods 

 

In the generating methods, a handful of non-dominated solutions are 

produced, and one solution from the obtained non-dominated solutions is 

chosen. No prior knowledge about the relative importance of each solution is 

given. On the other hand, preference-based methods, some known 

information/preference for each objective function is used in the optimization 

process. Meitten [1] further fine-tuned the above classification into four different 

classes. 

 

1. No-preference methods 

2. Posteriori methods 

3. A priori methods 

4. Interactive methods 

 

 The no-preference methods do not obtain any information about the 

importance of the objective function, but intuition is used to find a single optimal 

solution. It is vital to note that although no preference information is used, these 

methods do not make any attempt to find multiple Pareto Optimal Solution 

(POS). 



 

18 
 

 Posteriori methods utilize preference information of each objective 

function and iteratively process a set of Pareto Optimal Solution (POS).  The 

classical method of generating POS requires some knowledge on algorithmic 

parameters which ensure us in a finding a POS. This method is expensive and 

computationally demanding. It is challenging to represent POS if the objective 

functions are two or more. Some of the techniques include the weighted sum 

method, the ℇ-constraint method, and the hybrid method. 

 

 Priori methods use more preference information about the objective 

function and also finds one preferred POS. The expected solution may be too 

optimistic or pessimistic. It is hard to express a preference without knowing the 

problem well. One of the most common methods in this class is goal 

programming. 

 

 Interactive methods use the preference information progressively or 

iteratively throughout the optimization process. A minimum knowledge is needed 

in advance. The main aspect of this approach is that during the optimization 

process, the user is required to provide some information about the direction of 

search, weight vectors, reference points, and other factors. Since the information 

is collected iteratively, these techniques are becoming popular in practice. There 

are many types of interactive methods; we use the Tchebycheff method and 

Reference point method in this thesis, which will be discussed in detail later. 



 

19 
 

2.1.1 The weighted sum  

  The weighted sum method [4] converts the MOP to SOP (Single 

Optimization Problem) by forming a linear aggregation of the objectives as 

follows:  

   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒        𝐹(𝑥)  = ∑ 𝑤𝑚 𝑓𝑚(𝑥),𝑀
𝑚=1                                    (2.1)    

   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      𝑔𝑗(𝑥) ≥ 0,       𝑗 =  1,2, . . . , 𝐽; 

       ℎ𝑘(𝑥) =  0,   𝑘 =  1,2, . . . , 𝐾; 

where 𝑤𝑚  ( ∊ [0,1] ) is the weight of the m-th objective function. Solving 2.1 with 

varying weighted-coefficient sets provides a set of Pareto Optimal Solutions 

(POS).  The weight of an objective function is usually chosen in proportion to the 

objective’s relative significance in the problem considered. The major strength of 

this method is its efficiency and its simplicity, whereas the main disadvantage of 

this method is its difficulty in determining the significant weights for the 

corresponding problem.  

 

2.1.2 The ℇ-constraints method  

 In 1971, Haimes [41] reformulated the MOP by just keeping one of the 

objectives and restricting the other objectives within the user-specified values. 

The problem is as follows:  



 

20 
 

                       𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒          𝑓𝜇(𝑥),                   (2.2) 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜         𝑓𝑚(𝑥) ≤ 𝜀𝑚, 𝑚 = 1,2, … , 𝑀 𝑎𝑛𝑑 𝑚 ≠ 𝜇 

                    𝑔𝑗(𝑥) ≥ 0,       𝑗 =  1,2, . . . , 𝐽; 

                ℎ𝑘(𝑥) =  0,   𝑘 =  1,2, . . . , 𝐾; 

where, 𝜀𝑚 represents an upper bound of the value of  𝑓𝑚 also, need not necessarily 

mean a small value close to zero. This method is done by optimizing an 

individually selected Subjective function (𝑓𝜇) while keeping the remaining (M-1) 

objectives values less than or equal to some user-specified thresholds (𝜀𝑚 ). 

Different POS values can be obtained for different threshold values. The solution 

for 2.2 mostly depends on the chosen ε vector. The chosen value should lie within 

the maximum and minimum values of the individual objective function. 

 

2.1.3 The goal programming method  

 The primary idea in goal programming [7] is to find solutions which 

achieve a predefined target (goal) for one or more objective functions. Let f(x) be 

the objective function, x be the solution vector.  In goal programming, a target 

value G  is selected for every objective function by the user, and the task is to find 

a solution of the objective, which is equal to G. The problem is formulated as 

follows: 

   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥)  =  ∑ 𝑤𝑖
𝑀
𝑖=1 |𝑓𝑖(𝑥) − 𝐺𝑖|   (2.3) 



 

21 
 

where 𝑤𝑖  represents the weighting coefficient of the 𝑖𝑡ℎ  objective such that                

∑ 𝑤𝑖  =  1 𝑀
𝑖=1 𝑎𝑛𝑑 𝑤𝑖  ≥  0, ∀𝑖 =  {1, . . . , 𝑀}. The implementation of this method is 

simple, but its major drawback is its sensitivity to the weighting coefficients and 

the target value defined by the user. 

 

2.2 Evolutionary methods  

 As mentioned earlier, Evolutionary Algorithms (EA) are population-based 

methods that are inspired by biological evolution. Finding and maintaining 

multiple solutions in one single simulation is a unique nature of evolutionary 

optimization methods. In this thesis, we are dealing with the presence of 

dynamism, the design for dynamic multi-objective optimization problem 

(DMOP) is different from that of multi-objective optimization (MOP) for static 

problems. The algorithm should not only have a fast convergence performance 

but also be able to address diversity loss when there is an environmental change 

in order to explore the new search space. In literature, many approaches have 

been proposed to handle the environmental changes, and they can be categorized 

into three approaches as follows: 

 

1. Convergence-based approaches 

2. Diversity-based approaches  

3. Prediction-based approaches 



 

22 
 

2.2.1 Convergence-based methods 

 The main goal of these approaches is to achieve a fast convergence 

performance so that the tracking ability of the algorithm is guaranteed. For better 

tracking ability, these approaches make use of the past information, mainly when 

the new Pareto Optimal Solution (POS) is similar to the past POS or the 

environment change exhibits some regular patterns [6]. Making a note of 

relevant past information might help track the new POS as soon as possible [8]. 

The reuse of past information is closely related to the type of environmental 

change involved and hence, can be helpful for various purposes. These are also 

known as memory-based methods because past information is used and helps in 

evolving population when needed. In 2010 Wang and Li [32] proposed new 

DMOP test problems and also a new multi-strategy ensemble Multi-objective 

Evolutionary Algorithm (MS-MOEA) where the convergence speed is accelerated 

using a new offspring generation mechanism based on adaptive genetic and 

differential operators. The algorithm also uses a Gaussian mutation operator and 

a memory-like strategy to reinitialize the population when change occurs. Several 

memory-based dynamic environment techniques have been introduced in [33]. 

The major drawback of this approach is that memory is very dependent on 

diversity, and hence, it should be used with the combination of diversity-based 

techniques. 

 



 

23 
 

2.2.2  Diversity-based methods 

 It mainly focuses on maintaining the population diversity. Generally, the 

diversity of the population can be handled by increasing diversity using mutation 

of selected old solutions or some random generation of new solutions upon 

detection of environmental change or deploying multi-population methods [13], 

[16]. Good diversity helps obtain promising search regions. In [53], Deb 

presented an extended version of the Nondominated Sorting Genetic Algorithm 

(NSGA-II) [54] by introducing diversity at each environmental change detection. 

There were two approaches discussed in the paper; the first version introduced 

the diversity by replacing the population with new randomly created solutions. In 

the second version, diversity is promised by replacing the population with 

mutated solutions. In 2015 Azzouz [2], proposed a different version of the above 

algorithm to deal with dynamic constraints by replacing the constraint-handling 

mechanism with a much elaborated and self-adaptive penalty function. The 

major drawback of diversity-based methods is the difficulty to determine the 

useful amount of diversity needed. Because when the diversity high, it will 

resemble restarting the optimization process, whereas less diversity leads to slow 

convergence. 

 

2.2.3  Prediction-based approaches 

 When the behavior of the dynamic problem follows a regular pattern, a 

prediction model is usually used to exploit the past information and anticipate 



 

24 
 

the location of the new optimal solutions.  In [34], the authors proposed a new 

technique known as Feed-forward Prediction Strategy (FPS) to estimate the 

location of the optimal solution in DMOPs. In this method, a  prediction set is 

placed in the neighborhood to accelerate the discovery of the next optimum. This 

set is formed by selecting two points as vertices and tracking and predicting them 

as the next step optimum. In FPS, only two points of the optimal solutions are 

predicted. In [20], the authors proposed to predict the number of Pareto optimal 

solutions in the decision space once changes are detected. Then, the individuals 

in the reinitialized population are generated around these predicted points. Later 

in [35], the authors proposed a new prediction strategy known as the dynamic 

predictive gradient strategy to predict the direction and magnitude of the changes 

in location of the Pareto optimal solutions.  

 

 More recently, in [36], the authors proposed a prediction model to predict 

the whole population rather than some isolated points. This approach is known 

as the Population Prediction Strategy (PPS) consists of dividing the optimal 

solutions into two parts: a center point and manifold. When a change is detected, 

the next center point is predicted using a sequence of center points maintained 

throughout the search progress, and the previous manifold is used to predict the 

next manifold. Then, the new population consists of the predicted center point 

and manifold. In 2018, [6] proposed a differential prediction model which is 

incorporated into MOEA based on decomposition (MOEA/D-DP) to solve 

DMOPs. The differential prediction model is used to forecast the shift vector in 

the decision space of the centroid in the population. This method uses only three 



 

25 
 

historical locations of the centroid. After the detection of environmental change, 

half of the population is forecasted their new location in the decision space by 

using the DP model and the others retain their old position. In [16], the authors 

propose a new approach to predict the POS in DMOPs called dynamic MOEA 

based on Kalman Filter (KF).  KF is a set of mathematical equations which 

provides a well-ordered computational means to predict the state of a process, 

and also it minimizes the mean of the squared error. The efficiency of all the 

mentioned models relies on the accuracy of the predicted POS locations. If the 

actual locations and predicted locations are far in the decision space, then the 

prediction model will not be valued.  

 

2.2.4 Other Evolutionary Methods 

 In [37], presented an artificial life inspired EA for DMOP in the case of 

unpredictable parameter changes. Contrast to the classical EAs such as Genetic 

Algorithms (GA) where Darwinian theory is considered as a type of intelligence, 

the proposed method that life and interactions among the individuals in the 

population in a changing environment are itself a type of intelligence to be 

exploited. The major drawback of this method is the slow convergence speed 

because the algorithm progresses individual by individual. In [17], a new 

algorithm was proposed by the authors known as the Steady-state and 

Generational Evolutionary Algorithms (SGEA), which is the combination of fast 

and standard tracking ability of steady-state algorithms and proper diversity 

maintenance of generational algorithms. When an environmental change is 



 

26 
 

detected, the proposed algorithm responds to the change in a steady-state 

manner. If there is environmental change detection, it reuses a portion of 

outdated solutions with good distribution and relocates many solutions close to 

the new Pareto Front (PF). The relocation is based on the information collected 

from the previous environments and new environment. Thus adaptability of this 

algorithm is expected to bring good tracking ability. In [38], the authors 

proposed multiple reference point-based MOEA (MRP-MOEA) that deals with 

dynamic problems with undetectable change. This algorithm does not detect 

changes. It uses the new reference point-based dominance relation, ensuring the 

guidance of the search towards the optimal PF. 

 

2.2.5 Culturally evolved methods  

 The first CA to solve MOP was developed by Caello and Becerra [39]. The 

proposed algorithm was known Cultural Algorithm with Evolutionary 

Programming (CAEP). The belief space of MOP is constructed using the 

normative component and a grid. The number of non-dominated solutions for 

each cell is recorded in the grid. This information is utilized so that the non-

dominated solutions are distributed uniformly along the Pareto front. The 

normative component is updated at regular intervals, whereas the grid is updated 

every generation. Updating the grid means simply recalculating the number of 

non-dominated solutions each cell. Selection of the new population in the 



 

27 
 

population space is adapted to make use of the grid information. Tournament 

selection is used and applied to the parents and offspring.  

 

 

 On the other hand, Saleem and Reynolds [42] presented us that  CAs 

naturally contain self-adaptive components. The belief space in CA is dynamic, 

which makes CA suitable for tracking optima in dynamically changing 

environments. The belief space stores information from previous and current 

environmental states. Environmental history is stored in a table that consists of 

the following information about each environment: the location of the best 

solution, the fitness value of that solution, and the change magnitude in each 

dimension. This information is used by the dynamic influence function to 

introduce diversity in the population, proportional to the magnitude of change. 

In [44], the authors proposed a method to enhance the migration efficiency in 

Multi-Population Cultural Algorithm (MPCA). A novel MPCA adopting 

knowledge migration was proposed. Knowledge extracted from the evolution 

process of each sub-population directly reflects the information about dominant 

search space. By migrating knowledge among the sub-population at regular 

intervals, the algorithm realizes effective communication with low cost.  

 

 In [43], the authors proposed two new dynamic dimension approaches to 

improve the efficiency of the Heterogeneous Multi-Population Cultural Algorithm 

(HMPCA). The two approaches are Top-Down Strategy and Bottum-Up Strategy. 



 

28 
 

The first one starts with the local CA designed to optimize all the dimensions of 

the problem and recursively split the dimensions between two newly generated 

local CA. The second one starts with the idea of merging the dimensions of two 

local CAs when they reach to the no improvement threshold. This approach 

begins with the number of local CAs, and each CA is designed to optimize only 

one dimension. The number of initially generated local CAs is equal to the 

number of problem dimensions. Recently [19], provided us with knowledge 

migration strategies in MOP. It provides a variety of migration strategies which 

are inspired by the game theory model. This strategy was incorporated to 

increase diversity and avoid premature convergence. It also provides us with a 

significant migration to the population in the environment. Migration can 

depend on the individual choice; the decision of best individuals in the 

subpopulation or also by negotiating among the population. Game theory 

strategies were integrated with the MPCA. The proposed approach has two belief 

space, namely local and global belief space.  

 

 Recently [55], the authors proposed a method to tackle the distance 

between the parents to produce offspring in MOP, because it is not easy to 

produce an offspring in high-dimensional objective space. They proposed an elite 

gene-guided (EGG) reproduction operator. This was designed by three models: 

disturbance (Dr), exchange (Er) and inheritance to generate offsprings. To tackle 

MOPs,  a small value of Dr and a large value of Er showed overall better 

performance.  



 

29 
 

 

Chapter 3  

 

Evolutionary Computation 

 

 Optimization is a process which is used to minimize or maximize an 

objective function until an optimum or a satisfactory solution is found [3]. There 

exist many optimization problems where the computational time required to find 

the optimal solution is exponentially high. Evolutionary Computation contains a 

set of evolutionary algorithms (EA) that can find optimal or near-optimal 

solutions in polynomial time [14]. There are several Evolutionary Computation 

algorithms such as: 

 

1.           Evolutionary algorithm 

2.           Genetic algorithm 

3.           Cultural algorithm 

 



 

30 
 

3.1   Evolutionary Algorithm 

 Evolutionary algorithms are metaheuristic optimization algorithms which 

use mechanisms inspired by Darwin’s theory of biological evolution[31]. 

Evolutionary algorithms (EAs) are a subset of those methods which has been 

successfully used in the past for optimization problems. They are population-

based algorithms using the concepts of mutation, crossover, natural selection, 

and survival of the fittest, to refine a set of candidate solutions iteratively in a 

cycle [46]. In EAs the population is randomly initialized over specific search 

space which is called the initial population. Then it incorporates evolutionary 

operators which include mutation and crossover. This operator creates new 

offsprings (children) from the parent in the population. The selection operator 

selects the people with higher fitness from the parent and offspring, which serves 

as the population for the next generation. The leftover individuals are discarded 

from the people. This process continues, until the termination criteria are 

fulfilled, which can be either reaching a maximum number of predefined 

generations or CPU time. EA is based on the simplified model of biological 

evolution [47]. While solving a problem, a particular environment can be created 

where potential solutions can evolve. Parameters of the problem shape up the 

atmosphere, which helps to develop the right answer. EAs are a group of a 

probabilistic algorithm which is similar to the biological systems and artificial 

systems. Optimization using evolutionary algorithms also involves understanding 

the concepts of phenotypes, genotypes, objective function, fitness function, and 

search operations. The following definitions are stated below [46]. 



 

31 
 

Definition 1. (Phenome) 

The set of all the elements 𝑥 that can be the solution of the optimization problem 

is known as the problem space or the phenome 𝑋. 

Definition 2. (Phenotype)  

The elements 𝑥 ∈ 𝑋 of the phenome are known as the phenotypes. 

 Although we need to find the optimal phenotypes, the phenotypes are 

represented in mathematical terms so that it is possible to compute their score 

and execute different search operations. This representation of phenomes is 

known as genomes. 

Definition 3. (Genome) 

The set of all elements 𝑔 which can be processed by the search operations in an 

optimization problem is known as the search space or the genome 𝐺. 

Definition 4. (Genotype) 

The elements 𝑔 ∈ 𝐺 of the genome are known as genotypes. 

 A genotype may consist of many parameters, where each parameter may 

represent a specific property of the genotype. These parameters are known as 

genes. Genes can be binary, where its values can be either 0 or 1, or real coded, 

where its value is an actual number. The cost of a gene is known as an allele. 



 

32 
 

 

Figure 3.1: Relation between Genomes and Phenomes [46] 

 The phenomes (problem space) contains a set of a point on the Cartesian 

plane from which the optimum position is to find for a particular optimization 

problem. This problem space represents through genomes (search space), which 

is computationally easier to optimize. Each genotype present in the genome has 

binary genes. Once the optimal genotype is found, it is mapped into the 

corresponding optimal phenotype using a genotype-phenotype mapping (GPM) 

function. 

 

3.2 Genetic Algorithms 

 One of the most standard evolutionary algorithms is Genetic Algorithms 

(GA). Genetic Algorithms, first proposed by John Holland [24] and popularized 

by the works of Goldberg [48], can find the right solutions to problems that were 

otherwise computationally intractable. They are heuristic search techniques that 



 

33 
 

start with a random population and, based on the fitness evaluation, selects 

individuals that will produce the successor population. This process iterates until 

a stopping criterion reached. GA helps in searching for solutions, even when the 

domain knowledge is minimum [47]. 

 

3.2.1    Selection  

 Selection is one of the main operators in EAs, and it directly relates to the 

Darwin theory of survival of the fittest. Selection is applied to the population for 

two reasons: (1) Selection of the new population – At the end of each generation a 

new population of candidate solutions is selected to serve as the population of 

next generation.  The new population can be from the offspring or the 

combination of both parent and offspring. (2) Offsprings are produced from the 

application of crossover and mutation operators. In terms of crossover, ‘superior’ 

individuals will have more opportunities to reproduce to ensure that the offspring 

have the genetic material of the best individuals. On the other other hand 

mutation, selection mechanism focuses on ‘weak’ individuals. The hope is that 

the mutation of weak solutions will result in better traits to weak individuals, 

which increases their chances of survival [14]. They select the best individuals in 

the current generation based on their fitness. The individuals who are fitter are 

chosen, and the weaker are discarded from the production. The fitter individuals 

have a high chance of passing knowledge from the current generation to the next 



 

34 
 

generation. Many selection operators have been developed. Let us discuss some 

essential operators in detail. 

 

 Random Selection is the most straightforward selection operator. Each 

individual has the same probability to be selected: 1/ns, where ns is the population 

size. Fitness information is not needed, which makes that the best and worst 

individuals have the same probability of selection for the next generation. 

 

 Proportional Selection was proposed by Holland [24]; the selection is 

based on the most-fit individuals. A probability distribution proportional to the 

fitness is created, and the individuals are selected through sampling the 

distribution [14]. 

                     (3.1) 

where ns is the population size, and 𝜑𝑠(𝑥𝑖)  is the probability that 𝑥𝑖  will be 

selected; 𝑓𝛾(𝑥𝑖) is the scaled fitness of 𝑥𝑖 , it produces a positive floating-point 

value. There are two popular sampling methods used in proportional selection: 

roulette wheel sampling and stochastic universal sampling. Roulette wheel 

sampling is an example of a proportional selection operator where fitness values 

are normalized. Then the probability distribution can be visualized as the roulette 

wheel, where the size of each slice is directly proportional to the normalized 

selection probability of an individual. Selection can be similar to the rotation of a 



 

35 
 

roulette wheel and recording which slice ends up at the top, and then the 

corresponding individual is selected. Since the selection is directly proportional 

to the fitness, a strong individual may dominate in producing offspring, and this 

limits the diversity of the new population.  

 

 Tournament Selection selects a group of individuals 𝑛𝑡𝑠 randomly from the 

population where 𝑛𝑡𝑠 <  𝑛𝑠 (𝑛𝑡𝑠 is the size of tournament selection population). 

The performance of the selected 𝑛𝑡𝑠  individuals are compared, and the best 

individual is selected from the group. For crossover with two parents, the 

selection is carried out twice, one for each parent. When the tournament size is 

not too large, tournament selection prevents the best individual from 

dominating. Whereas if the tournament size is too small, there are chances that 

corrupt individuals are selected.  

 

3.2.2    Crossover Operation 

               In a crossover operation, specific genes of one individual are exchanged 

with the genes present in the same position as the other individual to produce 

two new individuals. A segment of genes is swapped between the parents to 

create their offspring and not single genes. The simplest of all is the single point 

crossover where a random crossover point is selected, and the bitstrings after 

that point are swapped between the two parents. In the multi-point crossover, 



 

36 
 

two or more crossover points are selected randomly, and every alternate bitstring 

sequence is swapped. In the uniform crossover [50], there exists a probability 

distribution for each gene. This distribution indicates the probability with which 

a gene should be exchanged. Here px is the bit-swapping probability. If px = 0.5 

then each bitstring as an equal chance to be swapped.  

 

Figure 3.2: Types of crossover operations [14] 

 

3.2.3    Mutation Operation 

 The main goal of mutation is to introduce genetic material into the existing 

individual; this adds diversity to the genetic characteristics of the population. The 

mutation is applied at a specific probability pm, to each gene of the offspring, 

which produces the mutated offspring.  It is also known as the mutation rate, 

which is generally a small value, pm ∊ [0,1], this is to ensure some good solutions 

are not biased too much.  Some of the mutation operators are developed [24]. 



 

37 
 

Uniform (Random) mutation, where the bits are chosen randomly, and 

corresponding bits are negated. Inorder mutation,  two points are selected 

randomly, and only the bits between these points undergo random mutation. The 

Gaussian mutation was proposed mainly for binary representation of the 

floating-point value. The bitstring, which represents a decision variable, can be 

converted back to floating-point value and mutated with Gaussian noise. Poisson 

distribution is used to draw chromosomes randomly to determine to mutate the 

genes. The bitstring of these genes is converted. To each of the floating-point 

value, the step size is added 𝑁 (0, 𝜎𝑗), where 𝜎𝑗  is 0.1 of the range of that decision 

variable. Gaussian mutation showed superior results in bit flipping. 

 

Figure 3.3: Types of Mutation [14] 

 



 

38 
 

3.3 Cultural Algorithms 

 The search process in the standard EAs is unbiased; it uses only a little or 

no domain knowledge to direct the search process [50]. The performance of the 

EAs can be improved considerably by using domain knowledge; it makes the 

search process biased. In 1994 Reynolds [12], proposed Cultural Algorithm (CA). 

CA is one of the popular types of EA which incorporates knowledge to guide the 

search process. A vast number of successful applications of CA exhibits the 

performance of knowledge-based EA. The search mechanism is improved by 

amending the extracted knowledge into a CA. Therefore it leads CA to find better 

solutions with high quality and also improves the convergence rate. In [14] 

Engelbrecht defines culture as “Culture is the sum total of the learned behavior 

of a group of people that are generally considered to be the tradition of that 

people and is transmitted from generation to generation.” 

 

 Fig. 3.4 illustrates the underlying architecture of CA. As depicted in the 

figure, CA maintains two search spaces: the population space like all the other 

EAs is represented by the individuals. Each individual will have a set of features 

independent from each other, which is used to determine its fitness. This space 

will be managed by an EAs such as GA or DE. CA has one more space known as 

the belief space. The belief space stores and updates all the extracted knowledge 

over generations. At each generation, these two spaces communicate with each 

other using a communication protocol. The protocol defines two communication 



 

39 
 

channels. One is the acceptance function which selects a group of individuals to 

adapt the set of beliefs and the second one is influence function, which defines a 

way that all the individuals in the population are influenced by the beliefs. The 

knowledge circulation is carried out as follows: 

 

i. The belief space will receive the top best individuals from the generation g 

in the population space using acceptance function. 

ii. The belief space knowledge is updated 

iii. In the following generation g+1, the knowledge updated in the belief space 

is sent through the influence function to the population space.  

iv. The population space integrates the knowledge to generate offspring from 

generation g and creates the next generation g+1. 

v. Now, the best individuals of g+1 are sent to the belief space and update its 

knowledge.  

This routine continues until the algorithm ends. It seems like the population 

space of a CA works like any other EA, but it uses knowledge-based evolutionary 

operators than random ones. 

  



 

40 
 

 

Figure 3.4: Architecture of CA [12] 

 

3.3.1   Belief Space 

 The belief space is the central component where knowledge or beliefs of 

the individuals in the population space is stored. This knowledge searches biased 

towards a particular direction, resulting in a significant reduction of the search 

space. The belief space is updated after each iteration by the fittest individuals. 

The belief space has been classified into five basic categories [12]: 



 

41 
 

 Situation knowledge component tracks the best solution found at every 

generation. 

 Normative knowledge component provides specific standards for 

individual behavior, which are used as guidelines for mutational adaptation to 

individuals. It also maintains a set of intervals, one for each dimension of the 

problem solved. 

 Domain knowledge component, it differs from the situational knowledge 

in that knowledge is not re-initialized at every generation but archives all the best 

solutions since the evolution began. 

 History knowledge component, it maintains a sequence of information 

about the environmental changes. It is mostly used in problems where search 

landscapes may change. 

 Topographical knowledge component, the search space is represented as 

a multidimensional grid. Information such as the frequency of the individual that 

occupies the cell is stored. 

 

3.3.2   Population Space 

 Population component is the space which consists of the individual in the 

population. The population space of CA is similar to that of GA. There are two 

functions which allow the individual to communicate between population space 



 

42 
 

to belief space and vice versa. The acceptance function transfers the best 

individual of the population space into belief space. After that, the belief space 

updates its knowledge and updates the population space by making use of 

influence function. The individuals in the population space make use of this 

knowledge to generate individuals for the next generation [51]. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

43 
 

 

Chapter 4 

 

Proposed Approach 

  

 In this section, we have introduced the pseudo-code and framework of our 

proposed algorithm. We will discuss the design, belief space, and population 

space of the algorithm.  

 

4.1 Cultural Algorithm to solve DMOPs 

 We propose the use of Cultural Algorithms (CA) combined with 

decomposition strategies to solve DMOPs. We have incorporated two different 

decomposition strategies with the CA. Implementing these strategies can improve 

the performance in DMOP through accelerating the convergence. Now we will 

discuss the Cultural Algorithms to solve DMOPs. The problems we focused on 

solving have n decision variables and k objective functions. The population space 

consists of a set of individuals, which contains n decision variables of the problem 



 

44 
 

to be solved. The population is initialized randomly, which consists of p 

individuals. There is an external memory introduced into the algorithm which 

collects all the non-dominated individuals found along the process. The final 

content of this file is the set of solutions produced by the algorithm. The size of 

the external memory is q, which is the number of non-dominated we aim to 

obtain. Next, we will discuss the structure of belief space and the remaining steps 

of the algorithm.  

 

4.1.1 Structure of Belief Space 
 

 The belief space consists of three parts: Situational Knowledge, Normative 

Knowledge, and Environmental History to adjust the belief space and influence 

the population. Mathematically, belief space can be represented as: 

          𝐵(𝑡)  =  [𝑁(𝑡), 𝑆(𝑡), 𝐸(𝑡)]       (4.1) 

where B(t) represents the belief space at generation t  N(t), S(t) and E(t) 

represent the Normative, Situational, and Environmental History knowledge 

respectively. Each of these components is updated simultaneously and influence 

each individual of the next generation. 

 



 

45 
 

 Situational Component: Let 𝑥𝑏𝑒𝑠𝑡(𝑡) represent the individual having the 

best fitness value at generation t. The situational component is updated as 

follows: 

   𝑆(𝑡 + 1)  =  {
𝑥𝑏𝑒𝑠𝑡(𝑡)      𝑖𝑓 𝑥𝑏𝑒𝑠𝑡(𝑡) >  𝑆(𝑡) 
𝑆(𝑡)                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (4.2) 

 The property of storing the individual is known as elitism. Elitism 

guarantees that the EA will converge.  

 

 Normative Component: It consists of two parts, namely - the phenotypic 

normative part and a grid which is used to prioritize the generations of non-

dominated solutions that are uniformly distributed along the Pareto front.  

 The phenotypic normative part consists of the lower and upper bounds, 

𝑙𝑓𝑖𝑎𝑛𝑑 𝑢𝑓𝑖, for each objective function (i = 1,…, k) within which the grid will be 

built. The grid is used to place each non-dominated solution in some coordinate 

system where the values of the objective function are used to place each solution. 

Once we have the intervals, we need to know the number of identical sub-

intervals to apply to each of the objective function si  with i = 1,…,k so now the 

grid can be built in the objective space. For each cell, the number of non-

dominated solutions within that cell is recorded.  

 

 



 

46 
 

𝑙𝑓1 𝑢𝑓1 𝑙𝑓2 𝑢𝑓2 … 𝑙𝑓𝑘 𝑢𝑓𝑘 

Figure 4.1: Phenotypic normative part 

 In order to initialize the belief space, we need to have an initial population, 

because we will use the non-dominated individuals from the population. It has 

been proven that any population with a size greater than zero; there will be at 

least one non-dominated individual [52]. The initialization of the phenotypic part 

of the belief space includes finding the extreme of each objective function for the 

non-dominated solutions of the initial population. These extremes are stored in 

𝑙𝑓𝑖𝑎𝑛𝑑 𝑢𝑓𝑖 , so that the grid is constructed in the location of non-dominated 

solutions. The initialization of the grid part of the belief space involves 

setting/initializing the number of non-dominated solutions within each cell is to 

0.  

 

 In order to update the belief space, the grid is updated at each generation, 

whereas the phenotypic normative part is updated at regular intervals, gnormative, 

where gnormative (20) is a parameter defined by the user. The grid is updated by the 

increase in the number of non-dominated solutions by the number of individuals 

added to the external memory in the current generation. The update of the grid is 

very simple, and that is why we update it every generation. The acceptance 

function is used to update this part of the belief space; it uses the population of 

the external memory and only chooses the new individuals within the population. 

The update of phenotypic part is not done at every generation because it involves 



 

47 
 

the reconstruction of the grid, and which will affect the computational efficiency 

of the algorithm. The population of the external memory is used to implement 

this update.  

 

 Environmental History Component: Since we are dealing with dynamic 

problems, the belief will include the environmental history component. This is a 

data table for each environment, and it consists of the information such as the 

location of the best solution, the fitness value of the solution, the change in 

magnitude in each dimension, and the following change in the fitness value.  

 

4.1.2 Influence Functions 
 

 Once the belief is updated, it is used to influence the population for the 

next generation. To allow CA to adjust rapidly to environmental changes, we use 

an influence function, which introduces diversity to the population by mutating 

the population proportional to the magnitude of the change. The step size is 

calculated as follows [42]: 

                   (4.3) 

 



 

48 
 

where f represents landscape before the change 𝑓  represents the changes in 

landscape, 𝑓(𝑡) is the best fitness value stored in the history table. This indicates 

a large step size for large environment changes; thereby increasing the diversity. 

 

4.1.3 Mutation Operator 

 

 The information stored in the belief space belongs to the objective space of 

our problem. The mutation parameters are given as the input to the algorithm, 

which is provided by the user. The Gaussian mutation operator adopted in our 

algorithm is as follows [39]:  

    𝑥𝑖
′  =  [𝑥𝑖  +  𝑁 (0, 𝜎)]  ∗ 𝐹     (4.4)  

where: 𝑥𝑖  is the i-th variable of the individual x, 𝑥𝑖
′ is the i-th variable of new 

individual 𝑥′ obtained after applying the mutation operator and  F is the scalar 

factor. 𝑁 (𝜇, 𝜎) is a normal distribution of the random variable that has mean 𝜇 

and a standard deviation 𝜎 . In our case, 𝜇  will always be zero, and 𝜎  be the 

parameter provided by the user. Mutation is applied to i = 1 , . . . , n, and operates 

on the main population. At the end of this  process, the population size will 2p. 

 

 



 

49 
 

4.1.4 Selection Operator 

 

 Tournament selection is carried out using the main population of size 2p. 

Each individual is confronted against c individuals who are randomly chosen 

from the main population. The rules for tournament selection are as follows: 

• If an individual dominates its competitor (contender c), then the 

dominating individual wins. 

• If none of the competitors are non-comparable or if their objective 

values of the function are same, then: 

- If one of the individuals lie outside the grid, then that individual is 

selected. 

- If both lie within the cell, then the individual which lies in the less 

populated cell is selected. 

• If none of the above cases satisfy, then the fittest individual is selected. 

 

 The first rule is straightforward; we are just giving preference to the non-

dominated individuals. In the second rule, the influence of the belief space in 

decisions is appreciated during the tournament. Once the tournaments are done, 

we select the individual with maximum victories to be part of the next generation. 

The decisions taken in the tournament selection will be influenced by the 

information stored in the belief space. 

 



 

50 
 

4.1.5 Environmental Change Detection 

 

 When the problem changes, 10% of the population are chosen randomly 

for re-evaluation to detect environmental changes [20]. This is carried out by 

computing the average objective function values and comparing them with the 

previous and current generations. If they differ, then an environmental change 

has occurred. Therefore, the system responds to the change by reconstructing the 

population for only randomly chosen 50% individuals [6]. 

 

4.2 Decomposition Strategy 

 

 There is a wide variety of methods for accomplishing MOP, but none can 

be said to be superior to all the others. When selecting a method, the specific 

features of the problem to be solved should be taken into consideration. 

Consequently, the input from the decision-maker is essential. Therefore, Hwang 

(1979), classified the different methods according to the participation of the 

decision-maker which has been discussed in Chapter 2.4 

 

4.2.1 Tchebycheff Method 

  

  This method was proposed by Steur (1989), it is one of the types of 

interactive methods. The design of this method is to be user-friendly for the 



 

51 
 

decision-maker. To find a set of Pareto optimal solutions or non-dominated 

solutions, preference information from the decision-maker should be obtained 

iteratively. The preference information is distinguished by two user-specified 

inputs. One is known as the utopian objective vector or ideal solution (z*) to the 

DMOP. The second one is the weight vector  (𝜆𝑖: i = 1,2,…,n) which assigns the 

relative preferences to n objectives. The mathematical model is represented as 

follows [1]: 

  Minimize          𝑀𝑎𝑥𝑖...,𝑛[𝜆𝑖|𝑧𝑖
∗ − 𝑧𝑖|]    (4.5) 

              subject to        𝑔𝑗(𝑥) ≤ 0 ∀𝑗 = 1,2, … , 𝑚                    

               𝜆𝑖 ∈ 𝑅𝑛|𝜆𝑖 ∈ {0,1} 

                        ∑ 𝜆𝑖𝑖∈𝑛 = 1 

              x  ∈ X 

 

where zi  is one of the n-objectives being maximized and zi*  is the corresponding 

i-th utopian objective vector value or the ideal solution, 𝜆𝑖 is the i-th weight vector 

value. gj (x) is the j-th constraint of the original problem, m is the total number of 

constraints, Rn is the objective space. X is the decision space and x is the decision 

vector. For each Pareto optimal point x* , there is a weight vector λ such that x* is 

the optimal solution of (4.5) and each optimal solution of (4.5) is also a POS of 

(1.3). Therefore, we are able to obtain different Pareto optimal solutions by 

simply altering the value of the weight vector. Different solutions can be obtained 

with different weight vectors. 

 



 

52 
 

 The problem considered for our approach is defined here as follows: let λ1, 

. . . ,λN be considered the set of evenly spread weight vectors, a MOP will be 

decomposed into N scalar optimization subproblems, and the  j-th subproblem is 

as follows [6]: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑔(𝑥|𝜆𝑗 , 𝑧∗) = 𝑚𝑎𝑥
1≤𝑖≤𝑚

{𝜆𝑖
𝑗 |𝑓𝑖(𝑥) − 𝑧𝑖

∗} 

                                          subject to 𝑥 ∈ 𝑋                  (4.6) 

where 𝜆𝑗  =  𝜆1
𝑗
, . . . , 𝜆𝑚

𝑗
 and objective vector is 𝑧∗ = (𝑧1

∗, . . . , 𝑧𝑚
∗ )T for a minimization 

problem 𝑧𝑖
∗ = 𝑚𝑖𝑛{𝑓1(𝑥)}, 𝑥 ∈ 𝑋, for each i = 1, . . . ,m. The proposed approach 

CA/D minimizes the N-scalar subproblems simultaneously. In CA/D a 

neighborhood 𝜆𝑗 is defined by a set of closest weight vector in  λ1, . . . ,λN. The j-th 

subproblem neighborhood consists of all the subproblems with the weight vectors 

from the neighborhood 𝜆𝑗. The population of the subproblem consists of the best 

solution found so far for every subproblem. This is the modified version of 

MOEA/D-DP [6]. We explicitly use cultural algorithm (CA) which aims at 

providing better results by using the belief space component and also the history 

knowledge component which was mentioned earlier to keep track of the 

environmental changes occurred. Our algorithm for CA/D-TM works as follows: 

Algorithm 1: CA/D-TM 

Step I: Initialization 

1. Set the generation counter, T = 0. 

2. Initialize a population x1, . . . , xN and the population space P(0). 

3. Generate and initialize the belief space B(0). 

4. Select the neighborhood (subproblem) 𝑆(𝑖)  = {𝑖1, . . . , 𝑖𝐻}, where H are close 



 

53 
 

to the weight vectors 𝜆𝑗. 

5. Compute the Euclidean distance between any two weight vectors and work 

out the R closest weight vectors for each weight vector. For each i = 1, ... , N, 

set C(i) =  {i1 , . . . , iR} where 𝜆𝑗1 , … , 𝜆𝑗𝑅  are the R closest weight vectors to 𝜆𝑗. 

6. Initialize an objective vector z* = (z1, . . . , zm). 

7. Initialize the external memory q. 

 

Step II: Environmental change detection 

1. Re-examine 1/10 * N individuals which are randomly chosen from the 

population and calculate their average objective function value �̅� =

{𝑓1̅, . . . , 𝑓𝑚
̅̅ ̅} and have a comparison of these with the previous generation. If 

the values of objective function are different continue; otherwise go to Step 

III. 

2. Responding to the change, reconstruct the population P for randomly chosen 

50% individuals in the objective space. 

3. Output the population P, objective functions F and increment T = T+1. 

4. Re-examine the new population and update their objective vector 𝑧∗  

 

Step III: Update 

For i = 1, . . . N, do 

1. Reproduction – Select two indexes a, b from C(i) and then output the new 

solution y from xa and xb by using the genetic operators. (Mutation and 

Crossover). 

2. Evaluate the new solution y, if it is out of the boundary of the decision space 

and produce y’ 

3. Apply Tournament selection – Randomly choose c contenders and do 

tournaments. 

4. Select p individuals with max victories to produce the population of next 

generation. 

5. Update the population space P(T), if 𝑔(𝑦|𝜆𝑝, 𝑧∗) < 𝑔(𝑥𝑝|𝜆𝑝, 𝑧∗) then xp = y. 

6. Add the new non-dominated individuals to the external memory of size q 

7. Update the belief space B(T) using the individuals added to external memory. 

8. Update the objective vector z* for every i = 1, . . . , m,  zi > fi (y’) then set , zi  =  
fi (y’). 
 

Step IV: Stopping criterion 

1. If the stopping conditions are met then stop and output the population 

otherwise go to step II. 



 

54 
 

4.2.3 Reference Point Method (RP) 

 

 This method was proposed by Wierzbicki (1981); it is also a part of 

interactive methods. The reference point is a feasible or infeasible point in the 

objective space which will be reasonable or desirable to the decision-maker. The 

reference point is based on aspiration levels. In this method, the pareto optimal 

solutions are based on the reference points, not on function values or weighting 

vectors. It should be noted that RPs are not used to present user preference or to 

guide the search process but to predefine the search directions covering the entire 

search spaces in order to accelerate the convergence speed [38]. The goal of the 

RP method is to derive achievement functions having minimal solutions at 

weakly, ε-properly or Pareto optimal solution closest to a given aspiration level 

based on solving a scalarizing problem. Given a reference point 𝑧̅ for an M-

objective optimization problem 𝑓1(𝑥), . . . , 𝑓𝑖(𝑥) with 𝑥 ∈  𝑆 , the following is the 

mathematical representation [40]: 

        𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒          𝑀𝑎𝑥𝑖=1
𝑀 [𝑤𝑖(𝑓𝑖(𝑥) − 𝑧𝑖)]                 (4.4)  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 ∈ 𝑆 

where, 𝑤𝑖  is the i-th component of a chosen weight vector, which is used for 

scalarizing the objectives. An appropriate form of achievement function must also 

be selected. For an RP, the closest Pareto solution is the target solution for this 

method. The location of the RP makes the algorithm to focus on a specific region 

in the Pareto front, where the use of a weight vector is to make a fine trade-off 



 

55 
 

among the objectives and focuses the algorithm to obtain a single POS and 

trading-off the other objectives. Thus, the RP provides higher-level information 

about the region to focus; and on the other hand, the weight vector provides more 

detailed information about what to converge on the Pareto front. Our algorithm 

for CA/D-RP is stated below: 

Algorithm 1: CA/D-RP 

Step I: Initialization 

1. Set the generation counter, T = 0. 

2. Initialize a population x1, . . . , xN and the population space P(0). 

3. Generate and initialize the belief space B(0). 

4. Compute the Euclidean distance between any two weight vectors and work 

out the R closest weight vectors for each weight vector. For each i = 1, ... , N, 

set C(i) =  {i1 , . . . , iR} where 𝜆𝑗1 , … ,  𝜆𝑗𝑅  are the R closest weight vectors to 𝜆𝑗. 

5. Initialize a reference point 𝑧̅ = (z1, . . . , zm). 

6. Initialize the external memory q. 

 

Step II: Environmental change detection 

1. Re-examine 1/10 * N individuals which are randomly chosen from the 

population and calculate their average objective function value �̅� =

{𝑓1̅, . . . , 𝑓𝑚
̅̅ ̅} and have a comparison of these with the previous generation. If 

the values of objective function are different continue, otherwise go to Step 

III. 

2. Responding to the change, reconstruct the population P for randomly chosen 

50% individuals in the objective space. 

3. Output the population P, objective functions F and increment T = T+1. 

4. Re-examine the new population and update their reference point 𝑧̅. 

 

Step III: Update 

For i = 1, . . . N, do 

1. Reproduction – Select two indexes a, b from C(i) and then output the new 

solution y from xa and xb by using the genetic operators. (Mutation and 

Crossover). 

2. Evaluate the new solution y, if it is out of the boundary of the decision space 



 

56 
 

and produce y’ 

3. Apply Tournament selection – Randomly choose c contenders and do 

tournaments. 

4. Select p individuals with max victories to produce the population of next 

generation. 

5. Update the population space P(T). 

6. Add the new non-dominated individuals to the external memory of size q. 

7. Update the belief space B(T) using the individuals added to external memory. 

8. Update the reference point 𝑧̅ for every j = 1, . . . , m,  zj = 𝑧̅ + (z′ −  z̅) . ej (j-th 
unit vector) 

Step IV: Stopping criterion 

1. If the stopping conditions are met then stop and output the population; 

otherwise go to step II. 

 

 

 

 
 

Figure 4.2: Flowchart of the Algorithm 

 

 

 



 

57 
 

 

Chapter 5 

 

Benchmark Functions and Experiments 

  

 In this chapter, we will discuss the benchmark functions used in testing 

the proposed algorithm in comparison to existing algorithms, and describe the 

details of the experimental setup. 

 

5.1 Benchmark Optimization Functions 

 Benchmark optimization problems are often used to evaluate the 

performance of any optimization algorithm. The are used to evaluate the 

characteristics of the algorithms such as convergence, robustness, precision, and 

general performance. For our proposed algorithm, we have used the CEC 2015 

benchmark functions to evaluate and compare them with the existing algorithms 

[29]. These functions are briefed in the following section 1 . There are 15 

minimization functions. Functions may be either convex or non-convex. The test 

 
1 These content are taken from https://al-
roomi.org/multimedia/CEC_Database/CEC2015/RealParameterOptimization/ExpensiveOptimization/CEC2
015_ExpensiveOptimization_TechnicalReport.pdf 

https://al-roomi.org/multimedia/CEC_Database/CEC2015/RealParameterOptimization/ExpensiveOptimization/CEC2015_ExpensiveOptimization_TechnicalReport.pdf
https://al-roomi.org/multimedia/CEC_Database/CEC2015/RealParameterOptimization/ExpensiveOptimization/CEC2015_ExpensiveOptimization_TechnicalReport.pdf
https://al-roomi.org/multimedia/CEC_Database/CEC2015/RealParameterOptimization/ExpensiveOptimization/CEC2015_ExpensiveOptimization_TechnicalReport.pdf


 

58 
 

functions are dimension-wise scalable. For our experiments, the different 

functions used are as follows: 

 

1. Unimodal Functions 

2. Multi-modal Functions 

3. Hybrid Functions 

4. Composite Functions 

 

Table 5.1: Summary of the CEC 2015 Benchmark problems [29]. 

 

Categories No. Functions Related Basic Functions 

Unimodal 

Functions 

F1 Rotated Bent Cigar 

Function 

Bent Cigar Function 

F2 Rotated Discus 

Function 

Discus Function 

Simple 

Multi-modal 

Functions 

F3 Shifted and Rotated 

Weierstrass Function 

Weierstrass Function 

F4 Shifted and Rotated 

Schwefel's Function 

Schwefel's Function 

F5 Shifted and Rotated 

Katsuura Function 

Katsuura Function 

F6 Shifted and Rotated HappyCat Function 



 

59 
 

HappyCat Function 

F7 Shifted and Rotated 

HGBat Function 

HGBat Function 

F8 Shifted and Rotated 

Expanded Griewank's 

plus Rosenbrock's 

Function 

Griewank's Function Rosenbrock's 

Function 

F9 Shifted and Rotated 

Expanded Scaffer's F6 

Function 

Expanded Scaffer's F6 Function 

Hybrid 

Functions 

F10 Hybrid Function 1 

(N=3) 

Schwefel's Function Rastrigin’s Function 

High Condition Elliptic Function  

F11 Hybrid Function 2 

(N=4) 

Griewank's Function Rosenbrock's 

Function Scaffer's F6 Function 

Weierstrass Function 

F12 Hybrid Function 3 

(N=5) 

Katsuura Function HappyCat Function 

Griewank's Function Rosenbrock's 

Function Schwefel's Function Ackley’s 

Function 

Composite 

Functions 

 

F13 Composite Function 1 

(N=5) 

Rosenbrock's Function High Condition 

Elliptic Function Bent Cigar Function 

Discus Function 

F14 Composite Function 2 

(N=3) 

Schwefel's Function Rastrigin’s Function 

High Condition Elliptic Function 



 

60 
 

F15 Composite Function 3 

(N=5) 

HGBat Function Weierstrass Function 

Schwefel's Function Rastrigin’s Function 

High Condition Elliptic Function 

 

5.1.1 Unimodal Functions 

 The functions are the extension of the primary functions. They are shifted 

and rotated.  

  𝑜𝑖1  = [𝑜𝑖1, 𝑜𝑖2, . . . , 𝑜𝑖𝐷]𝑇        (5.1) 

is the shifted global optimum, which is randomly distributed in [−80,80]𝐷. All the 

test functions are scalable and shifted to  o. 

 

F1 (Rotated Bent Cigar Function): This is the extended version for bent 

cigar function. The properties of this function are non-separable, dimension-wise 

scalable, and unimodal.  

                               𝑓(𝑥1, … , 𝑥𝑛)  =  𝑓1(𝑀(𝑥 −  𝑜1)) + 100       (5.2) 



 

61 
 

 

Figure 5.1: 3D-Map for Rotated Bent Cigar Function [29] 

F2 (Rotated Discus Function): This function is the extended version of 

discus function. The properties of this function are non-seperable, unimodal, and 

dimension-wise scalable.  

                                 𝑓(𝑥1, … , 𝑥𝑛)  =  𝑓2(𝑀(𝑥 − 𝑜2)) + 200      (5.3)  

 

 

Figure 5.2: 3D – Map for Rotated Discus Function [29] 



 

62 
 

5.1.2 Simple Multi-Modal Functions 

F3 (Shifted and Rotated Weierstrass Function): This is an extended 

version for Weierstrass function. The properties of this function are non-

separable, dimension-wise scalable, and multi-modal. 

                             𝑓(𝑥1, … , 𝑥𝑛)  =  𝑓3(𝑀(
0.5 (𝑥 − 𝑜3)

100
 )) + 300     (5.4) 

F4 (Shifted and Rotated Schwefel’s Function): This function is an 

extended version of Schwefel’s function. The properties of the function are non-

separable, multi-modal, and dimension-wise scalable. 

                            𝑓(𝑥1, … , 𝑥𝑛)  =  𝑓4(𝑀(
1000 (𝑥 − 𝑜4)

100
 )) + 400     (5.5) 

 

Figure 5.3: 3D – Map for Rotated and Shifted Schwefel’s Function [29] 

F5 (Rotated and Shifted Katsuura Function): This is an extended version 

of Katsuura function. The properties of the function are non-separable, multi-

modal, and dimension-wise scalable.  



 

63 
 

                             𝑓(𝑥1, … , 𝑥𝑛)  =  𝑓5(𝑀(
5 (𝑥 − 𝑜5)

100
 )) + 500      (5.6) 

 

Figure 5.4: 3D -Map for Rotated and Shifted Katsuura Function [29] 

F6 (Rotated and Shifted HappyCat Function): This is an extension of 

HappyCat function. The properties of this function are separable, dimension-wise 

scalable, and multi-modal. 

                              𝑓(𝑥1, … , 𝑥𝑛)  =  𝑓6(𝑀(
5 (𝑥 − 𝑜6)

100
 )) + 600      (5.7) 

 

Figure 5.5: 3D – Map for Rotated and Shifted HappyCat Function [29] 



 

64 
 

F7 (Rotated and Shifted HGBat Function): This is an extended version of 

the HGBat function. The properties of the this function are  multi-modal, non-

separable and dimension-wise scalable. 

                                         𝑓(𝑥1, … , 𝑥𝑛)  =  𝑓7(𝑀(
5 (𝑥 − 𝑜7)

100
 )) + 700   (5.8) 

 

Figure 5.6: 3D – Map for Rotated and Shifted HGBat Function [29] 

F8 (Shifted and Rotated Expanded Griewank's plus Rosenbrock's 

Function): This function is an extended and expanded version of two functions: 

Griewank’s and Rosenbrock function. The properties of this function are non-

separable, dimension-wise scalable, and multi-modal. 

     𝑓(𝑥1, … , 𝑥𝑛)  =  𝑓8(𝑀(
5 (𝑥 − 𝑜8)

100
 )) + 800        (5.9) 

F9 (Shited and Rotated Expanded Scaffer’s F6 Function): This function is 

an expanded and extended version of Scaffer’s F6 function. The properties of this 

function are non-separable, dimension-wise scalable, and multi-modal. 



 

65 
 

   𝑓(𝑥1, … , 𝑥𝑛)  =  𝑓9(𝑀(𝑥 −  𝑜9)  +  1) + 900   (5.10) 

 

Figure 5.7: 3D – Map for Shifted and Rotated Scaffer’s F6 Function [29] 

 

5.1.3 Hybrid Functions 

 Hybrid functions resemble real-world optimization problems, comprising 

different set of variables possessing different properties. Similarly, in hybrid 

functions, all the variables are divided into some subsets, and each subset will 

have different basic functions operating on them. 

  𝐹(𝑥) = 𝑔1(𝑀1𝑧1) + 𝑔2(𝑀2𝑧2) + . . . + 𝑔𝑁(𝑀𝑁𝑧𝑁)  +  𝑓∗(𝑥)   (5.11) 

𝐹(𝑥): Hybrid Function 

𝑔𝑖(𝑥): i-th basic function used to construct the hybrid function. 

N: Number of basic functions 



 

66 
 

𝑧 =  [𝑧1, 𝑧2, . . . , 𝑧𝑁],  𝑧1 = [𝑦𝑠1
, 𝑦𝑠2

, … , 𝑦𝑠𝑚
],  𝑧2 = [𝑦𝑠𝑚+1

, 𝑦𝑠𝑚+2
, … , 𝑦𝑠𝑚+𝑛2

], … , 

     𝑧𝑁  =  [𝑦𝑠
∑ 𝑛𝑖+1𝑁−1

𝑖=1

  , 𝑦𝑠
∑ 𝑛𝑖+2𝑁−1

𝑖=1

, . . . , 𝑦𝑠𝐷
]    (5.12) 

 𝑦 =  𝑥 − 𝑜𝑖, S = randperm (1:D) 

𝑝𝑖: used to control the percentage of 𝑔𝑖(𝑥) 

𝑛𝑖: dimension for each basic function  ∑ 𝑛𝑖  =  𝐷𝑁
𝑖=1  

        𝑛1  =  [𝑝1𝐷] , 𝑛2  =  [𝑝2𝐷] , . . . , 𝑛𝑁−1  =  [𝑝𝑁−1𝐷] , 𝑛𝑁  =  𝐷 −  ∑ 𝑛𝑖
𝑁−1
𝑖 = 1    (5.13) 

F10 (Hybrid Funtion 1 ) (N = 3) 

p = [0.3, 0.3, 0.4] 

g1 : High Conditioned Elliptic Function  

g2 : Modified Schwefel’s Function 

g3 : Rastrigin’s Function  

F11 (Hybrid Function 2) (N = 4) 

p = [0.2, 0.2,  0.3, 0.3] 

g1 : Weierstrass  Function  

g2 : Griewank’s Function 

g3 : Scaffer’s F6 Function  



 

67 
 

g4 : Rosenbrock’s Function 

F12 (Hybrid Function 3) (N = 5) 

p = [0.1, 0.2, 0.2, 0.2, 0.3] 

g1 : Modified Schwefel’s Function  

g2 : HappyCat Function 

g3 : Auckley’s Function  

g4 : Katsuura Function 

g5 : Expanded Griewank’s plus Rosenbrock’s Function 

 

5.1.4 Composite Functions 

   𝐹(𝑥)  =  ∑ {𝜔𝑖  ∗  [𝜆𝑖𝑔𝑖(𝑥)  +  𝑏𝑖𝑎𝑠𝑖]}  +  𝐹∗𝑁
𝑖=1    (5.14)  

𝐹(𝑥): Composite Function 

𝑔𝑖(𝑥): i-th basic function used to construct the composite function. 

N: Number of basic functions 

𝑜𝑖 : new shifted optimum position for each 𝑔𝑖(𝑥), define the global and local 

optima’s position 

𝑏𝑖𝑎𝑠𝑖: defines which optimum is the global optimum  



 

68 
 

𝜎𝑖: used to control each 𝑔𝑖(𝑥)’s coverage range, a small 𝜎𝑖 gives a narrow range for 

that 𝑔𝑖(𝑥) 

𝜆𝑖: used to control each 𝑔𝑖(𝑥)’s height 

𝑤𝑖: weight for each 𝑔𝑖(𝑥)’s, calculated as below: 

    𝑊𝑖  =  
1

√∑  𝐷
𝑗 = 1

 𝑒𝑥𝑝 (
∑ (𝑥𝑗−𝑜𝑖𝑗)

2𝐷
𝑗 = 1

2𝐷𝜎𝑖
2 )     (5.15) 

Then normalize the weight 𝜔𝑖  =  𝑤𝑖 /  ∑ 𝜔𝑖
𝑛
𝑖=1   

So when x = 𝑜𝑖 , 𝜔𝑗  =  {
1    𝑗 = 𝑖
0    𝑗 ≠ 𝑖

   for j = 1,2, . . . , N,  f(x) = 𝑏𝑖𝑎𝑠𝑖 + f* 

 The optimum which has the smallest bias value is the global optimum. The 

composite function merges the properties of the subfunction better and 

maintains continuity around the global/optima. For some composite function, 

the hybrid functions are used as the basic functions. 

F13 (Composite Function 1) (N = 5) 

𝜆 = [1, 1e-6, 1e-26, 1e-6, 1e-6] 

𝜎 = [10, 20, 30, 40, 50]  

bias = [0, 100, 200, 300, 400] 

g1 : Rotated Rosenbrock’s Function  

g2 : Rotated Bent Cigar Function 



 

69 
 

g3 : Expanded Griewank’s plus Rosenbrock’s Function  

g4 : High Conditioned Elliptical Function 

g5 : Rotated Discus Function 

 

Figure 5.8: 3D – Map for Composite Function 1 [29] 

F14 (Composite Function 2) (N = 3) 

𝜆 = [0.25, 1, 1e-7] 

𝜎 = [10, 20, 30]  

bias = [0, 100, 200] 

g1 : Rotated Rastrigin’s Function  

g2 : Rotated Schwefel’s Function 

g3 : High Conditioned Elliptic Function  



 

70 
 

 

Figure 5.9: 3D – Map for Composite Function 2 [29] 

F15 (Composite Function 3) (N = 5) 

𝜆 = [10, 10, 2.5, 2.5, 1e-6] 

𝜎 = [10, 10, 30, 40, 50]  

bias = [0, 100, 200, 300, 400] 

g1 : Rotated Weierstrass Function  

g2 : Rotated Rastrigin’s Function 

g3 : Rotated High Conditioned Elliptic Function  

g4 : Rotated Schwefel’s Function 

g5 : Rotated Rosenbrock’s Function  



 

71 
 

 

Figure 5.10: 3D – Map for Composite Function 3 [29] 

 

5.2 Experimental Setup 

 Our proposed algorithm is compared with the performance of existing 

algorithms such as Cultural Algorithm (CA), Multi-Population Cultural Algorithm 

(MPCA), and MPCA incorporated by Game Theory Model (MPCA-GS) [19]. The 

proposed strategies: Tchebycheff method and Reference-Point method are 

compared with each other, and also with the above mentioned well-known 

algorithms. The algorithms are abbreviated as follows: 

 

M1: Cultural Algorithm 

M2: Multi-Population Cultural Algorithm 



 

72 
 

M3: Multi-Population Cultural Algorithm with Game theory model 

M4: Cultural Algorithm with Tchebycheff method 

M5: Cultural Algorithm with Reference point method 

 

 The five algorithms mentioned above are compared with each other. To 

make a fair comparison, the parameters used for all the algorithms are the same. 

The values of the parameters used are listed in Table 5.2. All the algorithms are 

tested individually 20 times on all the functions to get an exact solution. The 

performance of the proposed algorithm was evaluated using the following 

information: 

Mean Value (Mean): This is the mean value of the solution gotten maximum 

generation in 20 runs. 

Standard Deviation Value (Std): The standard deviation of the mean value. 

Best Individual Value (Best): This is the best individual in the whole population 

of all the generations. 

Average number of generation (Gen): This is the average number of generations 

required to find the best solution. 

 

 



 

73 
 

Parameters Values 

Size of the Population (N) 100 

Number of Generations 100 

Size of Neighbourhood 20 

Crossover Probability (CP) 0.5 

Scalar Factor (F) 0.5 

Polynomial Mutation Rate (pm) 1/n (n=number of dimensions) 

Independent Runs 20 

Dimensions 10 & 30 

Change of Severity (nt) 20 

Change of Frequency (τt) 10 

Table 5.2 Parameter values for the algorithm 

 

 There are different types of DMOPs based on severity, frequency, and 

predictability of changes. In our approach, we concentrate on the frequency and 

severity-based changes. The change in Frequency (τt) means how often the 

environment changes. Therefore, there is an environmental change every 10 

generations. The change in Severity (nt) refers to how severe the problem 

changes. The change can be either small or large. If the severity is small, it is 

easier to converge to the optimal solution since information acquired from the 

previous generation can be reused to accelerate the convergence. Otherwise, the 

problem may be completely unrelated to the previous one [45].  



 

74 
 

5.3 Results and Analysis 

 In this section, a relative comparison with respect to all benchmark 

models/algorithm is accomplished via experiments. The comparisons are carried 

out in both low dimension (10D) and high dimension (30D) for all the 

benchmark problems discussed in section 5.1. 

 

 F1 F2 F3 F4 F5 F6 F7 

M1        

Mean 1.12E09 6.76E05 3.19E02 5.06E03 5.15E02 6.16E02 7.48E02 

Std 5.18E02 4.65E03 0.74E00 2.01E02 0.65E00 2.07E00 5.60E01 

Best 1.43E09 5.66E05 3.11E02 1.64E03 5.02E02 6.01E02 7.97E02 

Gen 70 16 72 97 43 83 73 

M2        

Mean 1.44E09 5.22E05 3.10E02 1.22E03 5.02E02 6.01E02 7.11E02 

Std 3.15E02 9.47E03 0.71E00 8.15E01 0.21E00 0.19E00 2.97E00 

Best 1.75E09 5.07E04 3.06E02 4.40E03 5.01E02 6.00E02 7.00E02 

Gen 83 31 83 69 62 94 74 

M3        

Mean 1.55E09 5.70E05 3.10E02 1.07E03 5.02E02 6.02E02 7.11E02 



 

75 
 

Std 9.92E02 1.49E02 1.05E00 9.46E01 0.24E00 0.22E00 2.86E00 

Best 2.01E09 5.04E04 3.05E02 3.77E03 5.01E02 6.00E02 7.00E02 

Gen 97 29 59 91 54 93 86 

M4        

Mean 1.40E09 6.67E04 3.03E02 5.27E03 4.99E02 6.02E02 7.11E02 

Std 0.26E01 5.35E01 0.65E00 0.75E00 0.10E01 0.25E00 0.28E01 

Best 2.96E09 5.94E04 3.05E02 5.96E03 5.01E02 5.99E02 7.28E02 

Gen 84 40 55 87 23 36 69 

M5        

Mean 1.40E09 6.99E05 3.27E02 1.03E03 5.02E02 5.98E02 7.11E02 

Std 3.56E03 4.82E02 0.87E00 2.01E01 0.58E00 0.30E00 2.85E00 

Best 1.27E09 3.91E05 4.57E02 4.65E03 5.01E02 6.00E02 7.97E02 

Gen 90 35 61 91 26 42 74 

Table 5.3: M1-M5 on F1-F7 for 10D 

 

 F8 F9 F10 F11 F12 F13 F14 F15 

M1         

Mean 7.79E04 9.05E02 3.83E03 4.70E03 1.88E03 2.46E03 7.87E04 4.43E04 

Std 2.43E01 0.29E00 4.63E01 2.63E02 1.07E01 1.62E03 1.16E02 3.28E03 



 

76 
 

Best 8.66E04 9.04E02 3.77E03 1.43E03 1.97E03 2.60E03 8.31E04 2.00E04 

Gen 99 93 89 94 84 98 91 71 

M2         

Mean 6.83E03 9.04E02 3.01E03 1.11E03 1.48E03 1.66E03 5.61E03 1.98E03 

Std 3.67E03 0.11E00 4.11E01 2.73E00 5.73E01 1.53E01 1.61E00 1.12E02 

Best 8.04E03 9.04E02 3.23E03 1.10E03 1.29E03 1.62E03 5.60E03 1.56E03 

Gen 80 75 81 90 69 97 93 57 

M3         

Mean 7.07E03 9.04E02 2.03E03 1.11E03 1.48E03 1.66E03 5.61E03 2.02E03 

Std 4.66E03 0.10E00 5.72E02 1.90E00 5.51E01 1.67E01 2.50E00 5.12E01 

Best 8.03E03 9.04E02 3.49E03 1.10E03 1.24E03 1.61E03 5.60E03 1.93E03 

Gen 80 79 86 86 61 97 93 69 

M4         

Mean 7.95E03 9.01E02 2.01E03 1.11E03 1.48E03 1.42E03 5.59E03 1.77E03 

Std 2.87E03 0.23E00 4.10E02 2.54E00 1.98E02 1.45E02 1.75E02 1.32E02 

Best 8.01E03 9.99E02 3.58E03 1.57E03 1.01E03 1.61E03 5.98E03 1.43E03 

Gen 77 96 84 73 62 92 71 56 

M5         

Mean 7.56E03 9.82E02 2.01E02 1.85E03 1.33E03 1.42E03 5.98E01 1.77E03 



 

77 
 

Std 2.93E00 0.17E00 3.19E02 2.67E02 1.45E03 1.97E03 1.63E01 2.02E02 

Best 8.03E03 9.04E02 3.52E02 1.91E03 1.24E03 1.58E03 1.25E03 2.41E03 

Gen 72 93 81 83 59 90 77 65 

Table 5.4: M1-M5 on F8-F15 for 10D 

 

 As seen in table 5.3 and 5.4; the mean, standard deviation, best individual, 

and average generations have been recorded. The results of our proposed method 

are tabulated against the different existing algorithms, aforementioned. The 

results are for 10 dimensions. In abide to ensure equity/balance in our 

comparisons, all the parameters used are similar. All the best individuals and 

similar values are highlighted in the table (5.3 and 5.4). With respect to our 

results, M4 outperforms 7 out of the 15 benchmark functions. Thus, giving 4 

functions with similar results (F6, F7, F11, F12), but the number of generations 

required by the proposed M4 approach to converge is lesser when compared with 

other existing methods. Accordingly, we analyze the results in the next chapter. 

 On the other hand, another proposed approach M5 outperforms only 6 out 

of the 15 functions. Same as M4, it gives similar results for two functions (F5 and 

F7), and the number of generations required to converge is relatively the same as 

the existing methods. It can be observed that this method performs well on 

composite and hybrid functions as against multi-modal and unimodal functions. 

The explanation will be discussed in chapter 6. 



 

78 
 

 F1 F2 F3 F4 F5 F6 F7 

M1        

Mean 2.60E09 1.04E05 3.37E02 3.32E03 6.57E02 6.51E03 7.04E02 

Std 1.05E07 1.29E03 1.35E00 5.32E02 0.39E00 0.94E00 3.55E01 

Best 1.03E09 2.69E05 3.45E02 5.81E03 5.04E02 6.02E03 9.35E02 

Gen 95 22 78 87 51 75 85 

M2        

Mean 2.60E09 1.27E05 3.35E02 2.28E03 6.02E02 6.42E03 7.03E02 

Std 4.99E03 5.50E02 1.27E00 2.53E02 0.45E00 6.34E00 1.10E01 

Best 2.60E09 1.71E05 3.36E02 2.29E03 5.02E02 6.01E03 7.04E02 

Gen 98 31 87 88 36 51 96 

M3         

Mean 2.99E09 1.05E05 3.38E02 2.56E03 6.02E02 6.45E03 7.04E02 

Std 4.49E09 3.78E04 1.62E00 2.64E02 0.36E00 0.44E00 1.13E01 

Best 3.65E09 1.19E05 3.36E02 2.59E03 5.02E02 6.01E03 7.05E02 

Gen 97 35 71 98 44 53 98 

M4        

Mean 1.75E09 1.05E05 3.45E02 2.56E03 5.59E02 6.31E03 7.04E02 

Std 2.70E03 2.98E03 1.98E00 2.99E02 0.99E00 0.52E00 1.92E02 



 

79 
 

Best 2.56E09 1.19E05 3.06E02 2.59E03 5.02E02 5.99E03 7.65E02 

Gen 76 10 63 99 33 83 79 

M5        

Mean 1.75E09 1.06E09 3.08E02 2.23E03 5.59E02 6.31E03 7.05E02 

Std 2.98E02 5.54E09 1.84E00 2.26E02 0.85E00 0.94E00 1.72E02 

Best 2.65E09 1.17E09 3.16E02 2.61E03 5.02E02 6.00E03 7.02E02 

Gen 73 21 67 95 47 87 82 

Table 5.5: M1-M5 on F1-F7 for 30D 

 

 F8 F9 F10 F11 F12 F13 F14 F15 

M1         

Mean 1.14E04 9.67E02 2.05E06 1.58E03 1.94E03 3.65E03 1.99E03 2.82E03 

Std 4.67E02 0.20E00 8.84E03 4.37E02 3.58E02 3.52E03 4.70E03 8.58E03 

Best 1.78E04 9.14E02 3.62E06 1.48E03 1.07E03 4.27E03 2.88E03 7.28E03 

Gen 91 81 42 10 42 91 91 57 

M2         

Mean 2.09E04 9.15E02 1.74E06 1.44E03 2.05E03 1.68E03 1.67E03 2.81E03 

Std 4.34E04 0.85E00 1.98E03 4.52E01 7.65E03 6.97E01 2.71E01 2.15E01 

Best 2.01E04 9.13E02 3.58E06 1.41E03 1.94E03 1.68E03 1.65E03 2.81E03 



 

80 
 

Gen 98 89 49 69 88 93 94 35 

M3         

Mean 1.01E04 9.14E02 1.15E06 1.51E03 2.05E03 1.69E03 1.63E03 2.77E03 

Std 4.94E03 0.91E00 2.38E01 3.38E01 3.45E03 7.22E01 3.91E01 3.01E01 

Best 2.10E04 9.14E02 1.50E06 1.15E03 2.05E03 1.69E03 1.63E03 2.78E03 

Gen 91 87 81 59 69 90 95 50 

M4         

Mean 1.54E04 9.14E02 1.50E06 1.41E03 1.85E03 1.69E03 1.52E03 2.72E03 

Std 4.26E02 0.98E00 2.63E03 3.45E03 2.98E02 9.67E03 2.32E03 3.51E01 

Best 1.61E04 9.01E02 3.32E06 1.13E03 1.07E03 1.69E03 1.61E03 2.56E03 

Gen 82 75 74 73 36 79 84 47 

M5         

Mean 3.98E04 9.14E02 1.17E06 1.41E03 1.98E03 1.63E03 1.52E03 2.77E03 

Std 2.36E02 0.96E00 3.84E03 3.65E03 2.54E02 9.78E03 2.21E03 3.49E01 

Best 1.91E04 9.99E02 3.63E06 1.98E03 1.28E03 1.67E03 1.67E03 2.69E03 

Gen 95 88 66 74 38 67 97 52 

Table 5.6: M1-M5 on F8-F15 for 30D 

 Additionally, as observed in table 5.5 and 5.6; the mean, standard 

deviation, best individual, and average generations have been recorded. The 

results of our proposed method are tabulated against the different existing 



 

81 
 

algorithms, aforementioned. The results are for 30 dimensions. In order to 

ensure a relatively fair comparison, all the parameters used are similar. All the 

best individuals and similar values are highlighted in the table(5.5 and 5.6). With 

regard to our results, M4 outperforms 7 out of the 15 benchmark functions. Thus, 

resulting in 3 functions with similar results (F4, F9, F13), but the number of 

generations acquired by the proposed M4 approach to converge is lesser in 

comparison to the existing methods. We analyze the results in the next chapter. 

 On the other hand, another proposed approach M5 outperforms 8 out of 

the 15 benchmark functions. Same as M4, it gives similar results for 2 functions 

(F9 and F15), and the number of generations required to converge is relatively 

same as the existing methods. It can be observed that this method performs well 

on composite and hybrid as opposed to multi-modal and unimodal functions. The 

explanation will be discussed in chapter 6. 

 

 

 

 

 

 

 



 

82 
 

 

Chapter 6 

 

Discussion, Comparisons, and 

Analysis 

 In this chapter, we will discuss the different proposed strategies in the 

context of their characteristics. We will compare all the algorithms with each 

other and the convergence speed to reach the near-optimal solution. 

6.1 Comparison between M2, M3, and M4 
 

 We will compare M2 Vs. M3 Vs. M4. M4 is the Tchebycheff method, and 

we will compare it with the other two algorithms, MPCA, and MPCA with Game 

theory model on the 30-Dimensional problem.  

 Figure 6.1 demonstrates the performance of M4 with M2 and M3 on 

function F5, regarding the fitness value against the number of generations. We 

can observe from the figure that for M4 there is a fluctuation in fitness up to 

some generations. This is because of the environmental change that is occurring 

by the parameter (change in severity) mentioned in table 5.2. While for other 

algorithms like M2 and M3 it takes longer number of generations than M4 to 



 

83 
 

reach the optimal solution. The decomposition strategy helps to solve multi-

objective problems as it uses the information from the neighbourhood 

subproblem.  

Figure 6.1: Convergence performance of M2, M3 and M4 for F4 (30D) 

 

6.2 Comparison between M1, M3, and M4 

  

 Figure 6.2 demonstrates the performance of M4 with M1 and M3 on 

function F11, regarding the fitness value against the number of generations. This 

function is hybrid in nature and hence will have many local minima. It is a 

complex, non-convex and non-separable function. It is difficult for the 

individuals in the population to escape from the local optima and explore the new 

search space for a good optimal solution. This is the reason for the algorithm to 

have same solution over generations. This is the reason M1 attains a optimal 



 

84 
 

solution and gets stuck to it. It falls into the local optima and  follows the same 

pattern for the remaining generations. While M3 gets a good solution and then 

again obtains global minima. The knowledge of the past generation inherited by 

the next generation makes then fall into global minima. The graph of M4 shows 

that it takes time by the individual to attain the optimal solution. The 

decomposition is done by the dominating individuals of the population which 

allows the whole population to make better decisions and escape from the local 

optima. 

 

Figure 6.2: Convergence performance of M1, M3 and M4 for F11 (30D) 

 

6.3 Comparison between M2, M3, and M5 
 

 We will compare M2 Vs. M3 Vs. M5. M5 is the Reference point method, 

and we will compare it with the other two algorithms, Multi Population Cultural 



 

85 
 

Algorithm (MPCA), and MPCA with Game theory model on the 30-Dimensional 

problem.  

 The figure 6.3 demonstrates the comparison of M2, M3 and M5 on 

function F6. All the algorithms almost shows similar pattern in optimizing the 

function. M2 reaches the optimal solution (converges) in 60 generations. 

Whereas M3 gradually converges to the optimal solution but it does not reach the 

optimal solution. M5 gives the best result as the reference point method helps the 

individuals to explore the unsearched space with a better optimal solution. The 

convergence speed is not high because the population also posses diversity, 

avoiding it to move towards the best solution.  

 

Figure 6.3: Convergence performance of M2, M3 and M5  for F6 (30D) 

 

 



 

86 
 

6.4 Comparison between M1, M2, and M5 
 

 We will compare M1 Vs. M2 Vs. M5. M5 is the Reference point method, 

and we will compare it with the other two algorithms Cultural Algorithm (CA), 

and MPCA with Game theory model on the 30-Dimensional problem.  

 The figure 6.4 demonstrates the comparison of M1, M2 and M5 on 

function F10. All the algorithms follow similar pattern except for M1 which is CA. 

CA finds an optimal solution but in the next generation there is not enough 

exploration of the search space. While M2 and M5 follows a similar pattern for 

certain number of generations but later M2 keeps fluctuating, but M5 continues 

to find a better solution in the search space.  

 

Figure 6.4: Convergence performance of M1, M2 and M5  for F10 (30D) 

 



 

87 
 

6.5 Time Complexity  

 

 While analyzing an algorithm, we mostly consider the time complexity. 

The complexity depends upon the genetic operators, representation of the 

individuals and the population. The algorithm starts with the individual 

representation. The algorithm can decode a individual in linear time with the 

complexity of O(n), where n is the number of individuals. Here the run time 

complexity for each iteration in our algorithm can be represented as O(gs), where 

g is the number of iterations and s is the population size. Since we are using 

Cultural Algorithm we need to consider the complexity for updating the belief 

space and it can be represented as O(B).  

 

 

 

 

 

 

 

 



 

88 
 

 

Chapter 7 

 

Conclusion and Future Work 

 

 We proposed Cultural algorithm incorporating decomposition strategies to 

solve Dynamic Multi-Objective Optimization Problems. The decomposition 

methods used in this thesis are the Tchebycheff method and Reference Point 

method. We have compared CA/D with the traditional CA and MPCA and also 

MPCA with game strategies, respectively.  

 

 Our primary focus was to show the convergence performance of the 

population. To witness the convergence impact, we introduced decomposition 

into the cultural algorithm. It can be observed that the search space has been 

explored and exploited which makes the proposed algorithm to escape from the 

local optima. We have used the CEC 2015 benchmark functions to evaluate the 

proposed algorithm and compared them with the aforementioned. Our 

experimentation results and analysis show that CA/D outperforms on most of the 

complex test problems and gives similar kind of results or equivalent on the 

others. 



 

89 
 

 The major limitation of our model is that using Tchebycheff method for 

extremely large datasets because, the evaluation of the objective function values 

may be strenuous[1] and great deal of calculation is needed. The RP method 

convergence may not be fast, if the decision maker is not determined to find the 

optimal solutions.  

  

 In the near future, we intend to evaluate the proposed algorithm with 

more complex dynamic benchmark functions possessing higher dimensions. 

More decomposition strategies can be introduced into other evolutionary 

algorithms. The proposed approach shows good results on complex problems 

such as hybrid and composite functions. This procedure could be applied to real 

world applications Team formation problem (TFP) – to select multiple 

individuals that match the required set of skills must be chosen to maximize one 

or more social positive parameter. Another example such as reducing hospital 

readmissions to cut the healthcare costs and also recommendation systems, 

decision support systems. Apparently, all of the real world applications are 

dynamic in nature and complex.  

 

 

 

 



 

90 
 

 

 

 

REFERENCES 

 

[1] Kaisa Miettinen. 1999. Nonlinear Multiobjective Optimization. Vol. 12. 

Springer Science & Business Media.  

[2] Radhia Azzouz, Slim Bechikh, and Lamjed Ben Said. 2015. Multi-

objective optimization with dynamic constraints and objectives: new 

challenges for evolutionary algorithms. In Proceedings of the 2015 

Annual Conference on Genetic and Evolutionary Computation 

Conference (GECCO). ACM, 615–622.  

[3] Kalyanmoy Deb. 2001. Multi-Objective Optimization Using Evolutionary 

Algorithms. Vol. 16. John Wiley & Sons.  

[4] K Deb. 1995. Optimization methods for engineering design. (1995).  

[5] Tim Blackwell and Jürgen Branke. 2006. Multiswarms, exclusion, and 

anticonvergence in dynamic environments. IEEE transactions on 

evolutionary computation 10, 4 (2006), 459–472. 

[6] Leilei Cao, Lihong Xu, Erik D Goodman, Shuwei Zhu, and Hui Li. 2018. A 

differential prediction model for evolutionary dynamic multiobjective 



 

91 
 

optimization. In Proceedings of the Genetic and Evolutionary 

Computation Conference. ACM, 601–608.  

[7] Abraham Charnes, William W Cooper, and Robert O Ferguson. 1955. 

Optimal estimation of executive compensation by linear programming. 

Management science 1, 2 (1955), 138–151.  

[8] Renzhi Chen, Ke Li, and Xin Yao. 2018. Dynamic multiobjectives 

optimization with a changing number of objectives. IEEE Transactions 

on Evolutionary Computation 22, 1 (2018), 157–171. 

[9] Jingxuan Wei and Liping Jia. 2013. A novel particle swarm optimization 

algorithm with local search for dynamic constrained multi-objective 

optimization problems. In 2013 IEEE Congress on Evolutionary 

Computation. IEEE, 2436–2443.  

[10] Coello, Carlos A. Coello, and Nareli Cruz Cortés. "Solving multiobjective 

optimization problems using an artificial immune system." Genetic 

Programming and Evolvable Machines 6.2 (2005): 163-190. 

[11] Andrzej Jaszkiewicz. 2002. On the performance of multiple-objective 

genetic local search on the 0/1 knapsack problem-a comparative 

experiment. IEEE Transactions on Evolutionary Computation 6, 4 

(2002), 402–412 

[12] Robert G Reynolds. 1994. An introduction to cultural algorithms. In 

Proceedings of the third annual conference on evolutionary 

programming. World Scientific, 131–139. 



 

92 
 

[13] Ziad Kobti et al. 2013. Heterogeneous multi-population cultural 

algorithm. In 2013 IEEE Congress on Evolutionary Computation. IEEE, 

292–299.  

[14] Andries P Engelbrecht. 2007. Computational intelligence: an 

introduction. John Wiley & Sons.  

[15] Qingfu Zhang and Hui Li. 2007. MOEA/D: A multiobjective evolutionary 

algorithm based on decomposition. IEEE Transactions on evolutionary 

computation 11, 6 (2007), 712–731.  

[16] Arrchana Muruganantham, Kay Chen Tan, and Prahlad Vadakkepat. 

2016. Evolutionary dynamic multiobjective optimization via Kalman 

filter prediction. IEEE transactions on cybernetics 46, 12 (2016), 2862–

2873.  

[17] Shouyong Jiang and Shengxiang Yang. 2017. A steady-state and 

generational evolutionary algorithm for dynamic multiobjective 

optimization. IEEE Transactions on Evolutionary Computation 21, 1 

(2017), 65–82.  

[18] Leilei Cao, Lihong Xu, Erik D Goodman, and Hui Li. 2019. 

Decomposition-based evolutionary dynamic multiobjective optimization 

using a difference model. Applied Soft Computing 76 (2019), 473–490.  

[19] Panth Parikh and Ziad Kobti. 2017. Comparative strategies for knowledge 

migration in Multi Objective Optimization Problems. In 2017 IEEE 30th 

Canadian Conference on Electrical and Computer Engineering (CCECE). 



 

93 
 

IEEE, 1–5 

[20] Aimin Zhou, Yaochu Jin, Qingfu Zhang, Bernhard Sendhoff, and Edward 

Tsang. 2007. Prediction-based population re-initialization for 

evolutionary dynamic multi-objective optimization. In International 

Conference on Evolutionary MultiCriterion Optimization. Springer, 832–

846.  

[21] Dilpreet Singh et al 2018.  A Multilevel Cooperative Multi-Population 

Cultural Algorithm. In 2018 IEEE Innovations in Intelligent Systems and 

Applications (INISTA). IEEE,  1-5 

[22] Stephen P Boyd and Lieven Vandenberghe. Convex optimization (pdf). 

Np: Cambridge UP, 2004. 

[23] Agoston E Eiben, James E Smith, et al. Introduction to evolutionary 

computing, volume 53. Springer, 2003. 

[24] John H Holland. Adaptation in natural and artificial systems: an 

introductory analysis with applications to biology, control, and artificial 

intelligence. MIT press, 1992. 

[25] Rainer Storn and Kenneth Price. Differential evolution- a simple and 

efficient heuristic for global optimization over continuous spaces. Journal 

of global optimization, 11(4):341-359, 1997. 

[26] Massimiliano Vasile, Edmondo Minisci, and Marco Locatelli. An 

inationary differential evolution algorithm for space trajectory 



 

94 
 

optimization. IEEE Transactions on Evolutionary Computation, 

15(2):267-281, 2011. 

[27] Godfrey Onwubolu and Donald Davendra. Scheduling ow shops using 

differential evolution algorithm. European Journal of Operational 

Research, 171(2):674-692, 2006. 

[28] Bin Qian, Ling Wang, Rong Hu, Wan-Liang Wang, De-Xian Huang, and 

Xiong Wang. A hybrid differential evolution method for permutation 

flow-shop scheduling. The International Journal of Advanced 

Manufacturing Technology, 38(7-8):757-777, 2008. 

[29] JJ Liang, BY Qu, PN Suganthan, and Q Chen. Problem definitions and 

evaluation criteria for the cec 2015 competition on learning-based real-

parameter single objective optimization. Technical Report201411A, 

Computational Intelligence Laboratory, Zhengzhou University, 

Zhengzhou China and Technical Report, Nanyang Technological 

University, Singapore, 2014. 

[30] Boyd, Stephen, and Lieven Vandenberghe. Convex optimization. 

Cambridge university press, 2004. 

[31] Upadhyayula, Santosh. "Dominance in multi-population cultural 

algorithms." (2015). 

[32] Wang, Yu, and Bin Li. "Multi-strategy ensemble evolutionary algorithm 

for dynamic multi-objective optimization." Memetic Computing 2.1 

(2010): 3-24. 



 

95 
 

[33] Branke, Jürgen. "Memory enhanced evolutionary algorithms for 

changing optimization problems." Proceedings of the 1999 Congress on 

Evolutionary Computation-CEC99 (Cat. No. 99TH8406). Vol. 3. IEEE, 

1999. 

[34] Hatzakis, Iason, and David Wallace. "Dynamic multi-objective 

optimization with evolutionary algorithms: a forward-looking 

approach." Proceedings of the 8th annual conference on Genetic and 

evolutionary computation. ACM, 2006. 

[35] Koo, Wee Tat, Chi Keong Goh, and Kay Chen Tan. "A predictive gradient 

strategy for multiobjective evolutionary algorithms in a fast changing 

environment." Memetic Computing 2.2 (2010): 87-110. 

[36] Zhou, Aimin, Yaochu Jin, and Qingfu Zhang. "A population prediction 

strategy for evolutionary dynamic multiobjective optimization." IEEE 

transactions on cybernetics 44.1 (2013): 40-53. 

[37] Amato, P., and M. Farina. "An ALife-inspired evolutionary algorithm for 

dynamic multiobjective optimization problems." Soft Computing: 

Methodologies and Applications. Springer, Berlin, Heidelberg, 2005. 

113-125. 

[38] Azzouz, Radhia, Slim Bechikh, and Lamjed Ben Said. "A multiple 

reference point-based evolutionary algorithm for dynamic multi-

objective optimization with undetectable changes." 2014 IEEE Congress 

on Evolutionary Computation (CEC). IEEE, 2014. 



 

96 
 

[39] Coello, Carlos A. Coello, and Ricardo Landa Becerra. "Evolutionary 

multiobjective optimization using a cultural algorithm." Proceedings of 

the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No. 

03EX706). IEEE, 2003. 

[40] Deb, Kalyanmoy, and J. Sundar. "Reference point based multi-objective 

optimization using evolutionary algorithms." Proceedings of the 8th 

annual conference on Genetic and evolutionary computation. ACM, 

2006. 

[41] Cohon, Jared L. Multiobjective programming and planning. Vol. 140. 

Courier Corporation, 2004. 

[42] Saleem, Saleh, and Robert Reynolds. "Cultural algorithms in dynamic 

environments." Proceedings of the 2000 Congress on Evolutionary 

Computation. CEC00 (Cat. No. 00TH8512). Vol. 2. IEEE, 2000. 

[43] Kobti, Ziad. "Heterogeneous multi-population cultural algorithm with a 

dynamic dimension decomposition strategy." Canadian Conference on 

Artificial Intelligence. Springer, Cham, 2014. 

[44] Guo, Yi-nan, et al. "A novel multi-population cultural algorithm adopting 

knowledge migration." Soft computing 15.5 (2011): 897-905. 

[45] Azzouz, Radhia, Slim Bechikh, and Lamjed Ben Said. "A dynamic multi-

objective evolutionary algorithm using a change severity-based adaptive 

population management strategy." Soft Computing 21.4 (2017): 885-906. 



 

97 
 

[46] Weise, Thomas. "Global optimization algorithms-theory and 

application." Self-Published Thomas Weise (2009). 

[47] Bhullar, Amangel. "Improving Quality of the Solution for the Team 

Formation Problem in Social Networks Using SCAN Variant and 

Evolutionary Computation." (2018). 

[48] Booker, Lashon B., David E. Goldberg, and John H. Holland. "Classifier 

systems and genetic algorithms." Artificial intelligence 40.1-3 (1989): 

235-282. 

[49] Chittle, Joshua, and Ziad Kobti. "A New Dimension Division Scheme for 

Heterogeneous Multi-Population Cultural Algorithm." The Twenty-

Seventh International Flairs Conference. 2014. 

[50] Xue, Zhengui, and Yinan Guo. "Improved cultural algorithm based on 

genetic algorithm." 2007 IEEE International Conference on Integration 

Technology. IEEE, 2007. 

[51] Kobti, Ziad, R. G. Reynodls, and Tim Kohler. "A multi-agent simulation 

using cultural algorithms: The effect of culture on the resilience of social 

systems." The 2003 Congress on Evolutionary Computation, 2003. 

CEC'03.. Vol. 3. IEEE, 2003. 

[52] Van Veldhuizen, David A. Multiobjective evolutionary algorithms: 

classifications, analyses, and new innovations. No. AFIT/DS/ENG/99-

01. AIR FORCE INST OF TECH WRIGHT-PATTERSONAFB OH 

SCHOOL OF ENGINEERING, 1999. 



 

98 
 

[53] Deb, Kalyanmoy, and S. Karthik. "Dynamic multi-objective optimization 

and decision-making using modified NSGA-II: a case study on hydro-

thermal power scheduling." International conference on evolutionary 

multi-criterion optimization. Springer, Berlin, Heidelberg, 2007. 

[54] Deb, Kalyanmoy, et al. "A fast and elitist multiobjective genetic 

algorithm: NSGA-II." IEEE transactions on evolutionary 

computation 6.2 (2002): 182-197. 

[55] Zhu, Qingling, et al. "An Elite Gene Guided Reproduction Operator for 

Many-Objective Optimization." IEEE transactions on cybernetics (2019). 

 

 

 

 

 

 

 

 

 

 



 

99 
 

 

VITA AUCTORIS  

 

 

NAME:  Ramya Ravichandran 

PLACE OF BIRTH: 

 

Chennai, India  

YEAR OF BIRTH: 

 

1996 

EDUCATION: 

 

 

 

Bachelor of Technology in Information 

Technology, Vel Tech Multi Tech Dr.RR & 

Dr.SR Engineering College, Avadi, India, 

2017 

 

Master of Science in Computer Science, 

University of Windsor, Windsor, ON, 2019 

 


	Cultural Algorithm based on Decomposition to solve Optimization Problems
	Recommended Citation

	tmp.1573682764.pdf.xcXtj

