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Abstract

In this thesis, we presents a novel approach for system identification of a Li-ion batter-

ies. First, we we present a robust approach to estimate the equivalent circuit model

(ECM) parameters of a Li-ion battery that offers several advantages over existing

ones. Particularly, (i) The proposed approach depends only on measured voltage

across and current through the battery; (ii) We theoretically derive the estimation

error in terms of the voltage and current measurement errors; (iii) The proposed

approach is unaffected by the effect of hysteresis in batteries; (iv) The proposed ap-

proach is applicable in time-varying conditions; and (v) The new ECM identification

approach can be implementedfor different ECM approximations with little change in

the algorithm. The proposed algorithm was tested on simulated as well as real world

battery data and found to be accurate within 1% uncertainty. Finally, we discuss

about the battery fuel gauge (BFG). We suggest an improved BFG of an existing

one that estimate ECM parameter as well as the state of charge (SOC) in real time.

Then we use the BFG evaluation scheme to validate the performance of an improved

BFG and compare its performance with its predecessor. The comparison shows the

performance improvement of the improved BFG in objective terms — using the BFG

evaluation metrics. Therefore, this thesis further aims to highlight the importance

of employing objective performance analysis to quantify the performance of different

versions of BFG being proposed in the literature and demonstrate its use case using

simulated as well as real world data.
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Chapter 1

Introduction

In this manuscript-style thesis, we explore the research and development of technol-

ogy in the realm of battery management system (BMS) presented as a collection of

his previously submitted and published works. Due to increasing concern on the en-

vironmental effects of fossil fuels, here is a need to develop renewable energy storage

systems, such as, rechargeable batteries.. Lithium-ion batteries are widely used as an

energy storage device because of their high energy density. It is necessary to ensure

the safe operation of battery when it is connected to a systems or load. BMS is de-

signed to monitor, control the states of battery such as terminal voltage, current, tem-

perature and estimate state-of-charge (SOC), state-of-health (SOH), state-of-power

(SOP), time-to-voltage (TTV). In order to obtain accurate estimation of the states

of a battery, an appropriate modeling of battery is crucial which can be achieved by

precise estimation of the parameters of a battery model. Indeed, the development of

algorithm in order to estimate the battery equivalent circuit model and the online

estimation of SOC is the main theme of this thesis.

Battery management system has three major components, namely optimal charg-

ing algorithm (OCA), cell balencing circuitry (CBC) and battery fuel gauge. Battery

charging strategies, charging speed, charging efficiency, charging temperature rise and

the battery cycle life are controlled by optimal charging algorithm. On the other hand,

1



the individual cell of a battery might have different capacity or different impedances

and states of charge which in turn cause the imbalences among the cells in a battery

pack. Cell balancing circuitry transfers the charge from one cell to another until the

state of charge becomes equal among all the cells in a battery pack. Finally, battery

fuel gauge (BFG) is designed to provide accurate estimation of the parameters of a

battery equivalent circuit model, state of charge, state of available peak power, state

of health and the capacity of a battery. The OCA and CBC components of BMS

depend on BFG for their functioning.

This thesis is focused on BFG where we represent the Li-ion battery by means

of equivalent circuit model (ECM) and develop algorithm in order to estimate the

ECM parameters of battery. We develop four equivalent circuit model considering

the dynamic loading conditions. Most of the existing approaches regarding ECM

parameter identification rely on offline characteristics of a battery in order to esti-

mate parameters online. Therefore, we focus on developing a new aproach based on

recursive least square method in order to estimate the battery ECM parameters in

real time that only requires the measured voltage and current. We further propose a

new battery fuel gauge to estimate battery SOC online in the later part of the thesis.

ECM parameters identification and online SOC estimation will be explored in differ-

ent chapters of the thesis, and as such we have dedicated this research toward future

development of this algorithm for hardware implementation of a battery management

system.

1.1 Organization of the Thesis

We have elected to present this thesis structured according to the manuscript for-

mat rather than the traditional format. That is, the chapters to follow consist of

manuscripts previously written and submitted by the author, with first authorship.

Chapters 2, 3, and 4 (referred to herein as “manuscript chapters”) are included in
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this thesis as written at the times of their submissions, in chronological order, with

alterations to format and slight modifications to content in order to maintain a co-

hesive thesis structure. As prescribed by the manuscript format, abstracts have also

been omitted. It is the belief of the author that by virtue of the chosen format their

thought process, understanding of the research topic and its place in the modern

world, and journey toward producing increasingly meaningful contributions, are far

more accurately conveyed as a story told through a collection of chronological works.

While a traditional thesis commonly contains a general literature review and prob-

lem statement, the we have chosen to forego these sections in the traditional sense.

The reader will find that each of the manuscript chapters provide their own intro-

ductions which serve the purpose of familiarizing the reader with both the context

of the research and relevant literature. To include a general literature review and

problem statement in this thesis would be to introduce unnecessary redundancy. It

must be noted, however, that some amount of redundancy will persist throughout the

manuscript chapters as a consequence of each being originally written as their own,

standalone entities.

The remainder of this thesis is organized as follows: In Chapter 2, the first of

the author’s accepted work in IEEE Electrical Power and Energy Conference (EPEC

2019) is presented. In this chapter, a novel approach to real time parameter iden-

tification of a Li-ion batteri is proposed. The method is based on recursive least

square (RLS) method. An equivalent circuit model (ECM) of the Li-ion battery is

introduced in this chapter. The proposed approach tends to estimate the ECM par-

rameters of the battery which requires only measure voltage and currents whereas,

the existing approaches rely on open circuit voltage (OCV)- state of charge (SOC)

characteristics, hysteresis and temperature. Chapter2 is a shorter version of Chapter

3. In Chapter 2 we propose one equivalent circuit model which is denoted as ’model 3’

in Chapter 3. In Chapter 3, we propose four equivalent circuit model of a Li-ion bat-

teries considering the dynamic loading condition and estimate the ECM parameters

3



for each of these models based on RLS method. We perform our proposed algorithm

in to individual model. The algorithm is tested using simulated data and further the

robustness is verified by employing it into real data from multiple batteries recorded

at different temperature. We analyze the model mismatch issue in order to realize

the performance of the proposed approach in practical scenario.

Finally, Chapter 4 presents a robust battery fuel gauge (BFG) where the we de-

veloped a new approach to estimate SOC online. The ECM parameter identification

algorithm from Chapter 3 is incorporated in Chapter 4 to estimate ECM parameter

and the SOC simultaneously so that the algorithm can capture the change in param-

eters and the SOC in real time due to the temperature and aging. We compare the

estimated SOC using the proposed approach with widely used SOC estimation tech-

nique called Coulomb counting (CC) to verify our performance. Although Coulomb

counting is a popular approah, it has certain limitations such as it requires the initial

condition of the SOC to begin estimation. Moreover, it requires the knowledge of

true battery capacity. Therefore, the proposed BFG in Chapter 4 tends to focus on

exterminating this limitations. The proposed BFG is further evaluated by introduc-

ing the three new validation technique: CC Metric, OCV Metric and TTV Metric.

The results demonstrate the state-of-art performance of the proposed BFG.

4



Chapter 2

Recursive Least Square Estimation

Approach to Real-Time Parameter

Identification in Li-ion Batteries

2.1 Introduction

Rechargeable batteries play a major role as a fundamental part of the renewable en-

ergy storage systems, electric vehicles, equipment and power tools, consumer electron-

ics, military and aerospace supplies due to their high power and high energy density.

Safe, efficient and reliable operation of a battery is therefore becoming the prime ob-

jective for the upcoming era of energy storage. In this regards, battery management

system (BMS) has become an integral part of the rechargeable battery systems that

are used for energy storage. An efficient way to identify battery’s performance could

increase the safety, efficiency and reliability of battery pack in a system.

Important modules of a BMS [6] are the battery fuel gauge (BFG), cell balancing

circuitry (CBC), and optimal charging algorithm (OCA). Online estimation of avail-

able peak power, state-of-charge, state-of-health of the battery is required in practical

5



scenario. Further, ECM parameters change according to the variation of tempera-

ture, aging, cell balancing, change of state-of-charge (SOC), state-of-health (SOH)

and load. Therefore, real time ECM parameter identification is critical in battery

management systems.

Modeling the Li-ion batteries in the form of an electrical equivalent circuit models

(ECM) is a widely accepted approach in BMS [13, 15]. In an overly simplified form

the ECM approximation, a Li-ion battery reduces to a resistive element that is in

series to the electromotive force (EMF) element of the battery [14,15]. More realistic

extended ECMs include several RC elements as well as a hysteresis voltage in the

ECM. The parameters of the ECM needs to be known in order to estimate the SOC

as well as remaining power both of which are crucial for battery management [2,17].

For example, the knowledge of SOC and remaining power is crucial for an electric

vehicle (EV) while it is on the road. Indeed, estimating the battery ECM parameters

is an essential element in all applications where rechargeable batteries are used.

Many different approaches to estimate battery model parameter can be found in

the existing literature. One of these used extended kalman filter method and state

space model for the online parameter identification [20]. However, the convergence

of the error for the estimating capacitance in that approach is not as good as for

the estimation of other parameters. In [8], [18], [9], equivalent circuit model based

parameter identification was presented where the hysteresis was not included in the

model which may affect the performance. The offline approach for initialization is

required in [1] for real-time parameter estimation. Another approach for real-time

parameter estimation in [21] requires the knowledge of SOC in order to identify both

the fast dynamics (resistance, charge transfer) and the slow dynamics (diffusion ef-

fect). Online battery model parameter estimation is critical as the parameters change

according to the variation of temperature, aging, cell balancing, change of SOC, SOH

and load and it can affect the available peak power [22]. Besides, offline parameter

identification methods do not consider dynamic inputs. These observations justify

6



the need to develop more accurate approaches for real-time identification of ECM

parameters in Li-ion batteries.

In this chapter, a robust approach is presented for real-time, linear estimation of

dynamic equivalent circuit parameters for batteries. There are several existing works

that developed parameter estimation algorithms for similar battery equivalent circuit

models [4, 10, 11, 16, 18, 19]. In these existing works, the ECM parameter estimation

is (either directly or indirectly) tied to the SOC estimation algorithm as well. Such

dependence on SOC increases the complexity of the ECM identification algorithm;

further, errors in SOC estimation, e.g., due to incorrect knowledge of the battery

capacity, might affect the parameter estimates. Furthermore, SOC estimation algo-

rithms depend on the OCV-SOC parameters [12] of the battery and any errors in

the OCV-SOC characterization might affect the performance of these ECM identifi-

cation algorithms as well. Hence, the primary objective of this chapter is to develop

an approach to estimate the ECM model parameters in real-time without depend-

ing on other elements of a battery management system, such as OCV-SOC model

parameters, SOC estimation algorithms and hysteresis modeling. Consequently, the

developed approach in this chapter resulted in other benefits as well. The contribu-

tions of this chapter are summarized as follows:

(i) An online ECM parameter estimation method that depends only on measured

voltage and current: The proposed approach requires only the measured voltage

across the battery terminals and current through the battery. Unlike prior ap-

proaches that require SOC, OCV-SOC parameters, temperature, and hysteresis

modeling [7], the proposed approach is simplistic in terms of measurement and

modeling requirements.

(ii) Effect of hysteresis in ECM identification is nullified: Unlike previous ap-

proaches [4], the measurement model for the proposed approach takes the dif-

ference of adjacent voltage and current measurements, hence (considering that

7



adjacent samples are milliseconds apart), nullifying the effect of hysteresis in

ECM parameter estimation.

(iii) Applicability in time-varying conditions: The proposed ECM identification ap-

proach is built around the recursive least square (RLS) filter. As such, it is able

to track time-varying parameters, e.g. it can track change in parameters due to

temperature, SOC changes and aging.

The remainder of this chapter is organized as follows: In Section 3.2, we present

the mathematical derivation of the new measurement model that is based only on

the measured voltage across the battery and current through the battery. In Section

3.3, we summarize our proposed algorithm for ECM parameter estimation using the

above-mentioned measurement model. In Section 4.4, we present objective evaluation

of the proposed algorithm using a simulated battery model and by computing the

mean square error (MSE); then the ECM identification algorithm is applied on data

collected from real battery cell at different temperature controlled settings. The

chapter is concluded in Section 3.6.

2.2 Mathematical Derivation of a New Measure-

ment Model

Fig. 4.14 shows the battery equivalent circuit model where v(k) represents the mea-

sured voltage across the battery terminals and i(k) represents the current through the

battery. h(k) represents the hysteresis voltage and R1 and C1 represents the resistive

and the capacitive elements (RC circuit)

In [4], the knowledge of the OCV-SOC curve and the SOC of the battery, s(k), was

used to compute the OCV(V0(s(k)) of the battery. Using this, the voltage-drop can
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be computed as,

VD(k) = V (k)− V0(s(k)) (2.1)

Based on the above voltage drop VD(k), an approach to estimate the battery ECM

parameters (R0, R1, C1, R2, C2) was present in [4].

In this chapter, we develop an approach to estimate the ECM parameters without

requiring the knowledge of VD(k) i.e., without requiring the knowledge of SOC(s(k))

and the OCV-SOC model parameters that are widely used in the literature to ap-

proximate battery.

Figure 2.1: Equivalent circuit models (ECM) of a battery. Battery equivalent
circuit model that is widely used in the literature to represent Li-ion batteries. In
this chapter, we present a generalized approach to estimate the ECM parameter.
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2.2.1 Measurement Model Derivation for Battery ECM

Based on the notations used in Fig. 4.14 the voltage across the battery terminals at

time k and k + 1 can be written as

v(k) = V0(k) + i(k)R0 + i1(k)R1 + h(k) (2.2)

v(k + 1) = V0(k + 1) + i(k + 1)R0 + i1(k + 1)R1

+h(k + 1) (2.3)

Subtracting (3.62) from (3.63), with the same assumptions that V0(k + 1) = V0(k)

and h(k + 1) = h(k),

v(k + 1)− v(k) = [i(k + 1)− i(k)]R0

+[i1(k + 1)− i1(k)]R1 (2.4)

Here,

i1(k + 1) = α1i1(k) + (1− α1)i(k) (2.5)

(2.6)

Taking Z-transform on the above, we can write

zI1(z) = α1I1(z) + (1− α1)I(z) (2.7)

I1(z) =
1− α1

z − α1

I(z) (2.8)

where

α1 = e
− ∆

R1C1 (2.9)
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Applying Z-transform in (3.64) results in

zV (z)− V (z) = [zI(z)− I(z)]R0

+

[
z(1− α1)

z − α1
− 1− α1

z − α1

]
I(z)R1

(z − 1)V (z) = (z − 1)I(z)R0

+
(z − 1)(1− α1)

z − α1
I(z)R1

(z − α1)V (z) = (z − α1)I(z)R0 + (1− α1)I(z)R1

v(k + 1)− α1v(k) = [i(k + 1)− α1i(k)]R0

+(1− α1)i(k)R1

v(k + 1) = α1v(k) + [i(k + 1)− α1i(k)]R0

+(1− α1)i(k)R1 (2.10)

v(k) = α1v(k − 1) + [i(k)− α1i(k − 1)]R0

+(1− α1)i(k − 1)R1 (2.11)

Subtracting (2.11) from (3.70),

ṽ(k) = α1ṽ(k − 1) + [̃i(k)− α1ĩ(k − 1)]R0

+(1− α1)̃i(k − 1)R1 (2.12)

where, ṽ(k) and ĩ(k) are the difference of terminal voltage and difference of the

current the resistance for two consecutive time steps.

It is assumed that the sampling time is short enough (typically 0.1 seconds) such that

the difference in OCV is negligible, i.e.,

V0(k + 1)− V0(k) = 0 (2.13)

As the sampling time is short enough (typically 0.1 seconds), the difference in hys-

teresis between two consecutive time steps becomes negligible, hence, the effect of
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hysteresis is nullified.

h(k + 1)− h(k) = 0 (2.14)

Now, let us consider the case where the quantities v(k) and i(k) are measured as

follows

zv(k) = v(k) + nv(k) (2.15)

zi(k) = i(k) + ni(k) (2.16)

where nv(k) and ni(k) are the voltage and current measurement noise. Let us assume

the measurement noise to be independently and identically distributed (i.i.d.) zero-

mean Gaussian with standard deviations σv and σi, respectively.

Substituting (3.44) and (3.45) into (2.12),

ṽ(k) = α1ṽ(k − 1) + ĩ(k)R0 − ĩ(k − 1)R̃1

z̃v(k)− ñv(k) = α1[z̃v(k − 1)− ñv(k − 1)] + [z̃i(k)− ñi(k)]R0

−[z̃i(k − 1)− ñi(k − 1)]R̃1

z̃v(k) = α1z̃v(k − 1) + z̃i(k)R0 − z̃i(k − 1)R̃1

+ñ(k) (2.17)

where,

ñ(k) = ñv(k)− α1ñv(k − 1)−R0ñi(k) + R̃1ñi(k − 1) (2.18)
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The above can be written in matrix format as follows

z̃v(k) =
[
z̃v(k − 1) z̃i(k) −z̃i(k − 1)

]
α1

R0

R̃1

+ ñ(k)

(2.19)

where,

R̃1 = α1R0 − (1− α1)R1 (2.20)

The noise ñ(k) is correlative and it can be defined as

σ2
n(l) = E {ñ(k)ñ(k − l)} (2.21)

which can be simplified for different possible scenarios as follows:

l = 0

σ2n(0) = E {ñ(k)ñ(k)}

= E
{
ñ2v(k) + α2

1ñ
2
v(k − 1) +R2

0ñ
2
i (k)

+R̃2
1ñ

2
i (k − 1)

}
= 2σ2v + 2α2

1σ
2
v + 2R2

0σ
2
i + 2R̃2

1σ
2
i

= 2(1 + α2
1)σ

2
v + 2(R2

0 + R̃2
1)σ2i (2.22)
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l = 1

σ2n(1) = E {ñ(k)ñ(k − 1)}

= E
{(
−α1ñv(k − 1) + R̃1ñi(k − 1)

)
(ñv(k − 1)−R0ñi(k − 1))}

= E
{
−α1ñ

2
v(k − 1)−R0R̃1ñ

2
i (k − 1)

}
= −2α1σ

2
v − 2R0R̃1σ

2
i (2.23)

l ≥ 2

σ2n(l) = E {ñ(k)ñ(k − l)} = 0 (2.24)

2.3 Summary of the Proposed Algorithm

Based on the derivations in Section 3.2, the voltage drop across the circuit components

of each of the four equivalent circuit models can be written in the following form:

ṽ(k) = ã(k)Tb + ñ(k) (2.25)

where

ã(k)T =
[
ṽD(k − 1) z̃i(k) − z̃i(k − 1)

]
(2.26)

b =
[
α1 R0 R̃1

]T
(2.27)

where

R̃1 = α1R0 − (1− α1)R1 (2.28)
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By stacking one observation ṽ(k) below another, the observation model (4.133) can

be written in matrix form as follows

ṽκ = Ãκbκ + ñκ (2.29)

where κ is the batch number,

ṽκ = [ṽ(κLb − Lb + 1), ṽ(κLb − Lb + 1), . . . , ṽ(κLb)]
T

ãκ = [ã(κLb − Lb + 1), ã(κLb − Lb + 1), . . . , ã(κLb)]
T

ñκ = [n(κLb − Lb + 1), ñ(κLb − Lb + 1), . . . , ñ(κLb)]
T

(2.30)

and Lb is the batch length.

The noise ñκ is zero mean with covariance matrices given by

Σ =



σ2n(0) σ2n(1)

σ2n(1) σ2n(0) σ2n(1)

. . .
. . .

. . .

σ2n(1) σ2n(0) σ2n(1)

σ2n(1) σ2n(0)


(2.31)

The individual terms of the noise variance σ2
n(0), σ2

n(1) are derived in (3.78) and

(3.79) respectively.

Now, given the κth batch of observation ṽκ along with the model Ãκ, the parameter

b can be estimated through the least squares (LS) method as follows:

b̂κ =
(
ÃT
κΣ−1Ãκ

)−1
ÃT
κΣ−1ṽκ (2.32)

When the next batch of observation ṽκ becomes available, the recursive least
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square method can be used to update the parameter estimated:

b̂κ+1 = b̂κ + Wκ+1

(
ṽκ+1 − Ãκ+1b̂κ

)
(2.33)

where

Wκ+1 = Pκ+1Ã
T
κ+1S

−1
κ+1 (2.34)

and

P−1κ+1 = P−1κ + ÃT
κ+1Σ

−1Ãκ+1

Sκ+1 = Ãκ+1P
−1
κ+1Ã

T
κ+1 + Σ

(2.35)

Given the past parameter estimate for the previous batch, b̂κ, its estimation error

covariance P−1κ (in inverse form), new set of measurements from the current batch

ṽκ+1 and the corresponding model Ãκ+1, the Algorithm 3 can be used to obtain the

updated estimate b̂κ+1 and the updated estimation error covariance P−1κ+1. It must

be noted that dimension of b̃κ and Ãκ vary based on the assumed model.

Remark 1 (Initialization) For the very first iteration of Algorithm 3 there is no

prior knowledge of b̂κ, i.e, when κ = 1 there is no b̂0. For this case, we will use

a least square estimation without assuming any prior information about noise. This

will reduce the covariance matrix to be an identity matrix, i.e.,

Σ = ILb
(2.36)

where ILb
is an Lb×Lb identity matrix. As a result, for the first batch, the parameter
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estimation is carried out using the least square (LS) algorithm as follows

b̂1 =
(
ÃT

1 Ã1

)−1
ÃT

1 ṽ1 (2.37)

P1 =
(
ÃT

1 Ã1

)−1
Remark 2 (Battery parameter recovery) At every iteration of Algorithm 3, the

parameter b̂κ has three elements that can be indicated by b̂κ(1), b̂κ(2) and b̂κ(3). The

parameters of the ECM can be recovered as follows:

R0 = b̂κ(2)

R1 =

[
b̂κ(1)b̂κ(2)− b̂κ(3)

]
1− b̂κ(1)

C1 = − ∆

R1 ln(b̂κ(1))

(2.38)

where, ∆ is the sampling time.

2.4 Results

In this section, we present the results of the proposed algorithm through various

computer experiments. First, in subsection 3.5.1, a simulated battery model is used

to objectively quantify the performance of the ECM identification algorithm. Then,

in subsection 2.4.2, the proposed ECM identification algorithm is tested using data

collected from five different battery cells at eight different temperatures.

2.4.1 Objective Performance Analysis

For the analysis in this subsection, typical battery usage data was simulated using

the observation model shown in Fig. 4.14. First, the current through the battery

is simulated to emulate typical battery usage data in a smartphone [3, 5]. Then the
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voltage across the battery terminal is computed according to the model assumption.

For example, the measured voltage is computed according to (3.62) — after account-

ing for the voltage and current measurement noise. This requires one to compute the

SOC of the battery so that Vo(s(k)) can be computed. For this purpose, we used

the characteristics of a typical smart phone battery for the OCV-SOC parameter and

Cbatt = 1.5 Ah for battery capacity. The exact equations and in-depth details for such

battery data simulation is presented in [4]; in this chapter, we adopt the approach

in [4] to simulate battery data for model shown in Fig. 4.14. The true value of the

ECM parameters are set at R0 = 0.2246 Ω, R1 = 1 Ω and C1 = 50 F. The analysis is

repeated for three different values of the measurement errors: (σv = 1µV, σi = 1µV),

(σv = 10µV, σi = 10µV), and (σv = 100µV, σi = 100µV). Hence, with only the value

of σv is indicated when discussing the results. Fig. 3.7 shows the resulting voltage

across the battery terminals and current through the battery Model.

The Algorithm 3 is used on the voltage and current data to estimate the battery

ECM parameters and their performance is analyzed against true values that are used

to simulate the data. Throughout this chapter, the batch number at the ECM esti-

mation algorithm is kept at Lb = 200. At a sampling time of ∆ = 0.1 seconds, this

amounts to 20 seconds of data in each batch. For comparison, the time constant of

the RC circuit in the simulation is R1 × C1 = 1× 50 = 50 seconds.

The average estimation error for parameter identification is obtained by computing

200 Monte-Carlo runs and shown in Fig. 3.8 for three different values of measurement

noise, σv = 1µV, 10µV and 100µV. The conclusion is that the estimation error is

0.892% for R0, 1.1033% for R1 and 0.2708% for C1 assuming σv = 1µV which implies

that the ECM parameter estimation performance is close to optimal. As expected, the

average estimation error slightly increases with the noise. This is further illustrated in

Table 3.3 which summarizes the average estimation error over all the blocks and 200

Monte Carlo runs for different values of measurement noise. It shows the expected

behavior that the estimation error increases with the noise.
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Figure 2.2: Measured voltage and current profile. Voltage across the battery
terminals and current through the battery

Table 2.1: ECM Parameter Estimation Error (in %)

Parameter σv = 1µV σv = 10µV σv = 100µV
R0 0.8922 0.8920 0.8967
R1 1.1033 1.3160 12.2375
C1 0.2708 0.2367 1.6002

2.4.2 Performance Analysis using Different Temperatures

In this subsection, we demonstrate the performance of the proposed approach for

battery parameter estimation using data collected from a Samsung EB575152 battery

cell at eight different temperatures ranging from −25◦C to 45◦C at equal intervals. At

each temperature, the cell is fully charged at kept at the specified temperature. Then

a discharging-charging-discharging current, similar to the one shown in Fig. 3.7 is

applied to the battery and the voltage across the battery terminals is recorded. These

voltage-current data is then used by the ECM parameter estimation Algorithm 3.

Fig. 3.11 shows the estimated parameters against batch number and Fig. 3.12
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Figure 2.3: Parameter Estimation for Battery Equivalent Circuit Model.
Mean square error of the estimated parameters are plotted for different values of
measurement noise.

shows the steady-state estimated parameters against temperature. It is interesting to

note that these estimated values, especially R0, follows previously known pattern [12]

regarding battery behaviour against temperature changes.

2.5 Conclusion

This chapter presents a novel approach for parameter identification of a Lithium ion

battery equivalent circuit model (ECM) based on the recursive least square (RLS)

filter. The proposed approach only requires measured voltage across the battery
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Figure 2.4: Performance of the ECM identification algorithm at multiple
temperatures. Estimated values of the ECM parameters are plotted against batch
number for data collected from the same battery cell used in Samsung Galaxy 4
smartphones (Samsung EB 575152) at eight different temperatures.

terminals and current through the battery. Estimation error due to the noise in

measured voltage and current is derived based on the standard deviation of these

measurement noises.

The MSE increases with model complexity, however, it remained 1% for battery

equivalent circuit model under the assumption of the practical values of measurement

noise. ECM parameters were estimated from the same battery cell at eight different

temperatures; estimated parameters conformed to previously understood behaviour

against temperature.
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Figure 2.5: Performance of the ECM identification algorithm on multiple
batteries. Estimated values of the ECM parameters are plotted against the temper-
ature in which the battery was kept. Each entry in this plot is obtained by averaging
the estimated values for the last 10 batches corresponding to Fig. 3.11.

Algorithm 1
[
b̂κ+1,P

−1
κ+1

]
= BattECMID[b̂κ,P

−1
κ , ṽκ+1, Ãκ+1]

1: Construct the noise covariance matrix: Σκ using (4.138)

σ2
n(0) = 2(1 + b̂2

κ(1))σ2
v + 2(b̂2

κ(2) + b̂2
κ(3))σ2

i

σ2
n(1) = −2α1σ

2
v − 2b̂κ(2)b̂κ(3)σ2

i

2: Update Error Cov: P−1κ+1 = P−1κ + ÃT
κ+1Σ

−1Ãκ+1

3: Update Residual Cov: Sκ+1 = Ãκ+1P
−1
κ+1Ã

T
κ+1 + Σ

4: Update gain:Wκ+1 = Pκ+1Ã
T
κ+1S

−1
κ+1

5: Update Parameter:b̂κ+1 = b̂κ + Wκ+1(ṽκ+1 − Ãκ+1b̂κ)
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Chapter 3

A Novel Approach to Real-Time

Parameter Identification in Li-ion

Batteries

3.1 Introduction

Rechargeable batteries are an excellent form of energy storage. Particularly, Lithium

based batteries have been widely adopted in electric vehicles, portable electronic

equipment, household appliances, power tools, aerospace equipment and renewable

energy storage systems, to name a few. A battery management system (BMS) [7],

consisting of a battery fuel gauge, cell balancing circuitry, and optimal charging al-

gorithm, is essential for the safe, reliable and efficient operation of a battery pack.

The BMS uses three non-invasive measurements from the battery, voltage, current

and temperature, to estimate the state of charge (SOC) and state of health (SOH);

these estimates are used in BMS functions, such as the generation of optimal charging

waveforms, cell balancing, and to activate safety protectors.

Modeling the Li-ion batteries in the form of an electrical equivalent circuit models

(ECM) is a widely accepted approach in BMS [24, 28]. In an overly simplified form
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the ECM approximation, a Li-ion battery reduces to a resistive element that is in

series to the electromotive force (EMF) element of the battery [27,28]. More realistic

extended ECMs include several RC elements as well as a hysteresis voltage in the

ECM. The parameters of the ECM needs to be known in order to estimate the SOC

as well as remaining power both of which are crucial for battery management [2,32].

For example, the knowledge of SOC and remaining power is crucial for an electric

vehicle (EV) while it is on the road. Indeed, estimating the battery ECM parameters

is an essential element in all applications where rechargeable batteries are used.

Battery ECM identification methods fall into two important categories: frequency

domain methods and time domain methods. Frequency domain approaches employ

electrochemical impedance spectroscopy (EIS) [29,31,34] where specified control sig-

nal at different frequency is applied to the battery and its response is measured for

EIS analysis. As such, the EIS approach is considered an offline approach to ECM pa-

rameter identification. Further, considering the fact that specialized excitation pulses

are applied, the accuracy of the EIS approaches are very high.

Time domain approach to ECM identification does not require a special excita-

tion to be applied on the battery. As such, time domain ECM identification methods

are suitable for online ECM parameter estimation by a BMS. Due to this, significant

work was done in the past with the aim of developing ECM identification techniques

through time-domain based algorithms. The extended Kalman filter (EKF) based

approaches [21, 25, 35, 38] propose to model and estimate the ECM parameters in a

state-space model (SSM) along with other battery states, such as the SOC, battery

capacity and hysteresis. The EKF approach suffers form the fact that it approximates

the SSM to be linear and Gaussian whereas in reality the dynamics in a battery are

hardly linear or Gaussian. Other approaches to estimate ECM parameters include

auto regressive exogenous (ARX) models [39], least squares methods [18,19], and ge-

netic algorithms [16]. There is little work in the present literature about performance

bounds of ECM parameter estimation methods [37].
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Battery model parameters can be identified by using either online or offline ap-

proaches. In [3], [9], [22], [41], the parameters were estimated offline following EIS and

pulse discharging method. However, those approaches do not inspect the dynamic in-

puts and fail to operate under dynamic loading condition. Additionally, more model

parameters were required in [3] as it induced more RC circuits in the model which

in turns resulted in increased complexity to identify the parameters. Online battery

model parameter estimation provides with the up-to-date knowledge of the available

power in real time. Online estimation of available peak power (i.e. state of energy)

of the battery is critical in some applications such as driving, portable equipment

and medical devices [10], [11], [12], [30], [36]. However, the battery model parame-

ters change according to the variation of temperature, aging, cell balancing, change of

SOC, SOH and load and it can affect the available peak power [42]. For such dynamic

scenario, offline parameter estimation approaches are not suitable.

Several approaches can be found in the literature regarding real time parameter

identification. Equivalent circuit model based battery parameter identification was

proposed in [14], [33], [15]. However, these approaches did not include hysteresis in

the model which may affect the performance. There is one approach in [26], where

author incorporated hysteresis by means of “zero state hysteresis” and “one state hys-

teresis” model. However, the method did not demonstrate the performance analysis

regarding estimation of model parameter. The approach proposed in [1] for real-time

parameter estimation requires an offline approach for initialization. Another approach

for real-time parameter estimation in [40], which is based on decoupled weighted re-

cursive least square, requires the knowledge of SOC in order to identify both the

fast dynamics (resistance, charge transfer) and the slow dynamics (diffusion effect).

In [13], impedance is modeled as a function of SOC and [12] requires the knowledge

of SOC as well and does not consider measurement noise covariance analysis which

was shown to be critical in [5]. In summary, ECM parameter estimation remains an

important, ongoing problem for battery management systems.
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In this chapter, a robust approach is presented for real-time, linear estimation of

dynamic equivalent circuit parameters for batteries. There are several existing works

that developed parameter estimation algorithms for similar battery equivalent circuit

models [5, 17, 20, 29, 33, 34]. In these existing works, the ECM parameter estimation

is (either directly or indirectly) tied to the SOC estimation algorithm as well. Such

dependence on SOC increases the complexity of the ECM identification algorithm;

further, errors in SOC estimation, e.g., due to incorrect knowledge of the battery

capacity, might affect the parameter estimates. Furthermore, SOC estimation algo-

rithms depend on the OCV-SOC parameters [23] of the battery and any errors in

the OCV-SOC characterization might affect the performance of these ECM identifi-

cation algorithms as well. Hence, the primary objective of this chapter is to develop

an approach to estimate the ECM model parameters in real-time without depend-

ing on other elements of a battery management system, such as OCV-SOC model

parameters, SOC estimation algorithms and hysteresis modeling. Consequently, the

developed approach in this chapter resulted in other benefits as well. The contribu-

tions of this chapter are summarized as follows:

(i) An online ECM parameter estimation method that depends only on measured

voltage and current: The proposed approach requires only the measured voltage

across the battery terminals and current through the battery. Unlike prior ap-

proaches that require SOC, OCV-SOC parameters, temperature, and hysteresis

modeling [13], the proposed approach is simplistic in terms of measurement and

modeling requirements.

(ii) Theoretical derivation of estimation error: For the first time, the ECM param-

eter estimation error is derived in terms of the voltage/current measurement

error standard deviations. In this chapter, we show the exact error bound when

estimating battery resistance.
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(iii) Effect of hysteresis in ECM identification is nullified: Unlike previous ap-

proaches [5], the measurement model for the proposed approach takes the dif-

ference of adjacent voltage and current measurements, hence (considering that

adjacent samples are milliseconds apart), nullifying the effect of hysteresis in

ECM parameter estimation.

(iv) Applicability in time-varying conditions: The proposed ECM identification ap-

proach is built around the recursive least square (RLS) filter. As such, it is able

to track time-varying parameters, e.g. it can track change in parameters due to

temperature, SOC changes and aging.

(v) Applicability to different ECM approximations of a real battery: In this chapter,

we show the derivation of ECM parameter estimation for four different ECM

model approximations that were widely used in the literature.

The remainder of this chapter is organized as follows: In Section 3.2, we present

the mathematical derivation of the new measurement model that is based only on

the measured voltage across the battery and current through the battery. In Section

3.3, we summarize our proposed algorithm for ECM parameter estimation using the

above-mentioned measurement model. Section 3.4 presents a theoretical performance

analysis of the proposed ECM parameter estimation approach. In Section 4.4, we

present objective evaluation of the proposed algorithm using several means; first

using a simulated battery model and by computing the mean square error (MSE);

then the ECM identification algorithm is applied on data collected from real battery

cell at different temperature controlled settings; finally, the the ECM identification

algorithm is applied to data collected from different commercial battery cells and the

results are analyzed. The chapter is concluded in Section 3.6.
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List of Notations I

ã(k)T . observation model (see (4.134))

Ãκ . . . . κth batch of observation model (3.108)

b . . . . . . observation model parameter (4.135)

bκ . . . . . κth batch of observation model parameter (3.108)

C1 . . . . battery internal capacitance (Figure 4.14)

C2 . . . . battery internal capacitance (Figure 4.14)

h(k) . . . hysteresis at time k (3.55)

i(k) . . . true current through the battery at time k (3.45)

i1(k) . . current through R1 (3.81)

i2(k) . . current through R2 (3.81)

I(z) . . . z−transform of current (3.69)

ĩ(k) . . . difference of current between two consecutive time steps (3.54)

ñ1(k) . . measurement noise for ECM 1 (3.46)

ñ2(k) . . measurement noise for ECM 2 (3.56)

ñ3(k) . . measurement noise for ECM 3 (3.75)

ñ4(k) . . measurement noise for ECM 4 (3.93)

nv(k) . . voltage measurement error at time k (3.44)

ni(k) . . current measurement error at time k (3.45)
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ñv(k) . . difference of voltage measurement error between two consecutive time steps

(3.58)

ñi(k) . . difference of current measurement error between two consecutive time steps

(3.59)

ñ(k) . . . difference of measurement noise between two consecutive time steps (4.135)

ñκ . . . . . κth batch of noise covariance matrix (3.108)

Pκ . . . . error covariance (3.124)

P−1κ+1 . . inverse of error covariance (4.142)

R0 . . . . battery internal series resistance in Figure 4.14

R1 . . . . battery internal resistance in Figure 4.14

R2 . . . . battery internal resistance in Figure 4.14

Sκ+1 . . updated residual covariance (4.142)

vD(k) . Voltage drops across model impedance at time k (3.39)

v(k) . . . true voltage across the battery terminal at time k (3.44)

V0(k) . . open circuit voltage (3.43)

V (z) . . z−transform of measured terminal voltage (3.69)

ṽ(k) . . . difference of measured voltage between two consecutive measurements (3.54)

ṽκ . . . . . κth batch of measured voltage (3.108)

Wκ+1 . updated gain (4.141)

zv(k) . . measured voltage across the battery terminal at time k (3.44)

zi(k) . . measured current through the battery at time k (3.45)
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z̃v(k) . . difference of measured battery terminal voltage between two consecutive

time steps (3.46)

z̃i(k) . . difference of measured current through the battery between two consecutive

time steps (3.46)

∆ . . . . . sampling time (3.122)

σn . . . . . standard deviation of observation noise (3.61)

σv . . . . . standard deviation of voltage noise (3.61)

σi . . . . . standard deviation of current noise (3.61)

σ2
n3

(0) . 1st diagonal elements of error covariance matrix for model 3 (3.78)

σ2
n3

(1) . first off-diagonal elements of error covariance matrix for model 3 (3.79)

σ2
n4

(0) . diagonal elements of error covariance matrix for model 4 (3.97)

σ2
n4

(1) . first off-diagonal elements of error covariance matrix for model 4 (3.98)

σ2
n4

(2) . second off-diagonal elements of error covariance matrix for model 4 (3.99)

Σ . . . . . noise covariance matrix (3.109)

3.2 Mathematical Derivation of a New Measure-

ment Model

Figure 4.14 shows four different ECM types that are widely used in the literature to

represent Li-ion batteries. In all four models, v(k) represents the measured voltage

across the battery terminals and i(k) represents the current through the battery. In

models 2 to 4, h(k) represents the hysteresis voltage. In model 3 and 4, R1 and

C1 represents the resistive and the capacitive elements (RC circuit) and similarly in
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model 4 R2 and C2 represents a second resistive and capacitive elements.

In [5], the knowledge of the OCV-SOC curve and the SOC of the battery, s(k), was

used to compute the OCV(V0(s(k)) of the battery. Using this, the voltage-drop can

be computed as,

VD(k) = V (k)− V0(s(k)) (3.39)

Based on the above voltage drop VD(k), an approach to estimate the battery ECM

parameters (R0, R1, C1, R2, C2) was present in [5].

In this chapter, we develop an approach to estimate the ECM parameters without

requiring the knowledge of VD(k) i.e., without requiring the knowledge of SOC(s(k))

and the OCV-SOC model parameters that are widely used in the literature to ap-

proximate battery.

3.2.1 Measurement Model Derivation for Model 1

Based on the notations used in Figure 4.14(a) the voltage across the battery terminals

at time k and k + 1 can be written as

v(k) = V0(k) + i(k)R0 (3.40)

v(k + 1) = V0(k + 1) + i(k + 1)R0 (3.41)

From equation (3.40) and (3.41),

v(k + 1)− v(k) = [i(k + 1)− i(k)]R0

ṽ(k) = ĩ(k)R0 (3.42)

where, ṽ(k) and ĩ(k) are the difference of terminal voltage and difference of the current

the resistance for two consecutive time steps.

Further, it is assumed that the sampling time is short enough (typically 0.1 seconds)
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 3.6: Equivalent circuit models (ECM) of a battery. Four different
ECMs that are widely used in the literature to represent Li-ion batteries. In this
chapter, we present a generalized approach to estimate the parameters under each
model assumption.

such that the difference in OCV is negligible, i.e.,

V0(k + 1)− V0(k) = 0 (3.43)

Now, let us consider the case where the quantities v(k) and i(k) are measured as

follows

zv(k) = v(k) + nv(k) (3.44)

zi(k) = i(k) + ni(k) (3.45)

where nv(k) and ni(k) are the voltage and current measurement noise. Let us assume
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the measurement noise to be independently and identically distributed (i.i.d.) zero-

mean Gaussian with standard deviations σv and σi, respectively.

By substituting (3.44) and (3.45) in (3.42), we get

z̃v(k)− ñv(k) = [z̃i(k)− ñi(k)]R0

z̃v(k) = z̃i(k)R0 + ñ1(k) (3.46)

where

ñ1(k) = ñv(k)− ñi(k)R0 (3.47)

ñv(k) = nv(k + 1)− nv(k) (3.48)

ñi(k) = ni(k + 1)− ni(k) (3.49)

and the noise ñ(k) is zero mean and variance

σ2
n = E{ñ1(k)2} (3.50)

= E{[n1(k + 1)− n1(k)]2}

= E{n1(k + 1)2}+ E{n1(k)2}

=
(
σ2
v +R2

0σ
2
i

)
+
(
σ2
v +R2

0σ
2
i

)
= 2

(
σ2
v +R2

0σ
2
i

)
(3.51)

3.2.2 Measurement Model Derivation for Model 2

Based on the notations used in Figure 4.14(b) the voltage across the battery terminals

at time k and k + 1 can be written as

v(k) = V0(k) + i(k)R0 + h(k) (3.52)

v(k + 1) = V0(k + 1) + i(k + 1)R0 + h(k + 1) (3.53)
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From equation (3.52) and (3.53),

v(k + 1)− v(k) = [i(k + 1)− i(k)]R0

ṽ(k) = ĩ(k)R0 (3.54)

where, ṽ(k) and ĩ(k) are the difference of terminal voltage and difference of the cur-

rent through the resistance for two consecutive time steps.

As the sampling time is short enough (typically 0.1 seconds), the difference in hys-

teresis between two consecutive time steps becomes negligible, hence, the effect of

hysteresis is nullified.

h(k + 1)− h(k) = 0 (3.55)

Assuming that the voltage and current measurement noises are zero, and considering

a batch of Lb measurements, the following vector observation model can be written:

By substituting (3.44) and (3.45) in (3.54), we get

z̃v(k)− ñv(k) = [z̃i(k)− ñi(k)]R0

z̃v(k) = z̃i(k)R0 + ñ2(k) (3.56)

where

ñ2(k) = ñv(k)− ñi(k)R0 (3.57)

ñv(k) = nv(k + 1)− nv(k) (3.58)

ñi(k) = ni(k + 1)− ni(k) (3.59)
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and the noise ñ2(k) is zero mean and variance

σ2
n = E{ñ2(k)2} (3.60)

= E{[n2(k + 1)− n2(k)]2}

= E{n2(k + 1)2}+ E{n2(k)2}

=
(
σ2
v +R2

0σ
2
i

)
+
(
σ2
v +R2

0σ
2
i

)
= 2

(
σ2
v +R2

0σ
2
i

)
(3.61)

Remark 3 As the hysteresis effect is nullified, Model 2 reduces to the same observa-

tion model as that of Model 1. This was not the case in [5]. In the remainder of this

chapter we will use Model 1 for performance analysis.

3.2.3 Measurement Model Derivation for Model 3

Based on the notations used in Figure 4.14(c) the voltage across the battery terminals

at time k and k + 1 can be written as

v(k) = V0(k) + i(k)R0 + i1(k)R1 + h(k) (3.62)

v(k + 1) = V0(k + 1) + i(k + 1)R0 + i1(k + 1)R1

+h(k + 1) (3.63)

Subtracting equation (3.62) from (3.63), with the same assumptions that V0(k+ 1) =

V0(k) and h(k + 1) = h(k),

v(k + 1)− v(k) = [i(k + 1)− i(k)]R0

+[i1(k + 1)− i1(k)]R1 (3.64)
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Here,

i1(k + 1) = α1i1(k) + (1− α1)i(k) (3.65)

Taking Z-transform on the above, we can write

zI1(z) = α1I1(z) + (1− α1)I(z) (3.66)

I1(z) =
1− α1

z − α1

I(z) (3.67)

where

α1 = e
− ∆

R1C1 (3.68)

Applying Z-transform in (3.64) results in

zV (z)− V (z) = [zI(z)− I(z)]R0 (3.69)

+

[
z(1− α1)

z − α1
− 1− α1

z − α1

]
I(z)R1

(z − 1)V (z) = (z − 1)I(z)R0

+
(z − 1)(1− α1)

z − α1
I(z)R1

(z − α1)V (z) = (z − α1)I(z)R0 + (1− α1)I(z)R1

v(k + 1)− α1v(k) = [i(k + 1)− α1i(k)]R0

+(1− α1)i(k)R1

v(k + 1) = α1v(k) + [i(k + 1)− α1i(k)]R0

+(1− α1)i(k)R1 (3.70)

v(k) = α1v(k − 1) + [i(k)− α1i(k − 1)]R0

+(1− α1)i(k − 1)R1 (3.71)
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Subtracting equation (3.71) from (3.70),

ṽ(k) = α1ṽ(k − 1) + [̃i(k)− α1ĩ(k − 1)]R0

+(1− α1)̃i(k − 1)R1 (3.72)

Substituting equation (3.44) and (3.45) into the equation (3.72),

ṽ(k) = α1ṽ(k − 1) + ĩ(k)R0 − ĩ(k − 1)R̃1

z̃v(k)− ñv(k) = α1[z̃v(k − 1)− ñv(k − 1)] + [z̃i(k)− ñi(k)]R0

−[z̃i(k − 1)− ñi(k − 1)]R̃1

z̃v(k) = α1z̃v(k − 1) + z̃i(k)R0 − z̃i(k − 1)R̃1

+ñ3(k) (3.73)

where,

ñ3(k) = ñv(k)− α1ñv(k − 1)−R0ñi(k) + R̃1ñi(k − 1) (3.74)

The above can be written in matrix format as follows

z̃v(k) =
[
z̃v(k − 1) z̃i(k) −z̃i(k − 1)

]
α1

R0

R̃1

+ ñ3(k)

(3.75)

where,

R̃1 = α1R0 − (1− α1)R1 (3.76)
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The noise ñ3(k) is correlative and it can be defined as

σ2
n3

(l) = E {ñ3(k)ñ3(k − l)} (3.77)

which can be simplified for different possible scenarios as follows:

l = 0

σ2n3
(0) = E {ñ3(k)ñ3(k)}

= E
{
ñ2v(k) + α2

1ñ
2
v(k − 1) +R2

0ñ
2
i (k)

+R̃2
1ñ

2
i (k − 1)

}
= 2σ2v + 2α2

1σ
2
v + 2R2

0σ
2
i + 2R̃2

1σ
2
i

= 2(1 + α2
1)σ

2
v + 2(R2

0 + R̃2
1)σ2i (3.78)

l = 1

σ2n3
(1) = E {ñ3(k)ñ3(k − 1)}

= E
{(
−α1ñv(k − 1) + R̃1ñi(k − 1)

)
(ñv(k − 1)−R0ñi(k − 1))}

= E
{
−α1ñ

2
v(k − 1)−R0R̃1ñ

2
i (k − 1)

}
= −2α1σ

2
v − 2R0R̃1σ

2
i (3.79)

l ≥ 2

σ2n3
(l) = E {ñ3(k)ñ3(k − l)} = 0 (3.80)
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3.2.4 Measurement Model Derivation for Model 4

Based on the notations used in Figure 4.14(d) the voltage across the battery terminals

at time k and k + 1 can be written as

v(k) = V0(k) + i(k)R0 + i1(k)R1 + i2(k)R2 + h(k) (3.81)

v(k + 1) = V0(k + 1) + i(k + 1)R0 + i1(k + 1)R1

+i2(k + 1)R2 + h(k + 1) (3.82)

Substituting equation (3.81) from equation (3.82),

v(k + 1)− v(k) = [i(k + 1)− i(k)]R0 + [i1(k + 1)− i1(k)]R1

+[i2(k + 1)− i2(k)]R2 (3.83)

Here,

i1(k + 1) = α1i1(k) + (1− α1)i(k) (3.84)

⇒ zI1(z) = α1I1(z) + (1− α1)I(z) (3.85)

⇒ I1(z) =
1− α1

z − α1

I(z) (3.86)

i2(k + 1) = α2i2(k) + (1− α2)i(k) (3.87)

⇒ zI2(z) = α2I2(z) + (1− α2)I(z) (3.88)

⇒ I2(z) =
1− α2

z − α2

I(z) (3.89)

where,

α1 = e
− ∆

R1C1

α2 = e
− ∆

R2C2

(3.90)
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From equation (3.83)

zV (z)− V (z) = [zI(z)− I(z)]R0 + [
z(1− α1)

z − α1
− 1− α1

z − α1
]I(z)R1

+[
z(1− α2)

z − α2
− 1− α2

z − α2
]I(z)R2

(z − 1)V (z) = (z − 1)I(z)R0 +
(z − 1)(1− α1)

z − α1
I(z)R1

+
(z − 1)(1− α2)

z − α2
I(z)R2

V (z) = I(z)R0 +
(1− α1)

z − α1
I(z)R1 +

(1− α2)

z − α2
I(z)R2

z2V (z) = [(α1 + α2)z + α1α2]V (z)

+[z2 − (α1 + α2)z + α1α2]I(z)R0

+[z − α2 − α1z + α1α2]I(z)R1

+[z − α1 − α2z + α1α2]I(z)R2

ṽ(k + 2) = (α1 + α2)ṽ(k + 1) + α1α2ṽ(k) + ĩ(k + 2)R0

−(α1 + α2)R0ĩ(k + 1) + α1α2R0ĩ(k)

+R1ĩ(k + 1)− α2R1ĩ(k)− α1R1ĩ(k + 1)

+α1α2R1ĩ(k) +R2ĩ(k + 1)− α1R2ĩ(k)

−α2R2ĩ(k + 1) + α1α2R2ĩ(k)

ṽ(k + 2) = αṽ(k + 1)− βṽ(k) +R0ĩ(k + 2)− Ř1ĩ(k + 1)

+Ř2ĩ(k)

ṽ(k) = αṽ(k − 1)− βṽ(k − 2) +R0ĩ(k)− Ř1ĩ(k − 1)

+Ř2ĩ(k − 2) (3.91)
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Substituting equation (3.44) and (3.45) into the equation (3.91),

z̃v(k)− ñv(k) = α[z̃v(k − 1)− ñv(k − 1)]

−β[z̃v(k − 2)− ñv(k − 2)] +R0[z̃i(k)

−ñi(k)]− Ř1[z̃i(k − 1)− ñi(k − 1)]

+Ř2[z̃i(k − 2)− ñi(k − 2)]

z̃v(k) = αz̃v(k − 1)− βz̃v(k − 2) +R0z̃i(k)

−Ř1z̃i(k − 1) + Ř2z̃i(k − 2) + ñ4(k) (3.92)

which can be written in the following vector form

z̃v(k) =

[
z̃v(k − 1) −z̃v(k − 2)

z̃i(k) −z̃i(k − 1) z̃i(k − 2)
]



α

β

R0

Ř1

Ř2


+ ñ4(k) (3.93)

where the elements of b are given by

α = α1 + α2

β = α1α2

Ř1 = (α1 + α2)R0 − (1− α1)R1 − (1− α2)R2

Ř2 = α1α2R0 − α2(1− α1)R1 − α1(1− α2)R2

(3.94)

where,

ñ4(k) = ñv(k)− αñv(k − 1) + βñv(k − 2)−R0ñi(k)

+Ř1ñi(k − 1)− Ř2ñi(k − 2) (3.95)
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The noise ñ(k) is correlative and it can be defined as

σ2
n4

(l) = E {ñ4(k)ñ4(k − l)} (3.96)

which can be simplified for different possible scenarios as follows:

l = 0

σ2n4
(0) = E {ñ4(k)ñ4(k)}

= E
{
ñ2v(k) + α2ñ2v(k − 1) + β2ñ2v(k − 2)

+R2
0ñ

2
i (k) + Ř2

1ñ
2
i (k − 1)) + Ř2

2ñ
2
i (k − 2)

}
= 2

[
(1 + α2 + β2)σ2v + (R2

0 + Ř2
1 + Ř2

2)σ2i
]

(3.97)

l = 1

σ2n4
(1) = E {ñ4(k)ñ4(k − 1)}

= E{[−αñv(k − 1) + βñv(k − 2)

+Ř1ñi(k − 1)− Ř2ñi(k − 2)
]

[ñv(k − 1)− αñv(k − 2)

−R0ñi(k − 1) + Ř1ñi(k − 2)
]
}

= E{−αñ2v(k − 1)− αβñ2v(k − 2)

−R0Ř1ñ
2
i (k − 1)− Ř1Ř2ñ

2
i (k − 2)

= 2
[
−α(1 + β)σ2v − Ř1(R0 + Ř2)σ

2
i

]
(3.98)
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l = 2

σ2n4
(2) = E {ñ4(k)ñ4(k − 2)}

= E
{

[βñv(k − 2)− Ř2ñi(k − 2)]

[ñv(k − 2)−R0ñi(k − 2)]}

= E
{
βñ2v(k − 2) + Ř2R0ñ

2
i (k − 2)

}
= 2

[
βσ2v + Ř2R0σ

2
i

]
(3.99)

l ≥ 3

σ2n4
(l) = E {ñ4(k)ñ4(k − l)} = 0 (3.100)

In this section, we defined a novel observation model and its noise characteristics to

four different types of ECM approximations shown in Figure 4.14. In the next section,

we will use these observation models to derive a parameter estimation algorithm for

each case.

3.3 Summary of the Proposed Algorithm

Based on the derivations in Section 3.2, the voltage drop across the circuit components

of each of the four equivalent circuit models can be written in the following form:

ṽ(k) = ã(k)Tb + ñ(k) (3.101)
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where

ã(k)T =



ãT1 (k) , z̃i(k) Model 1

ãT2 (k) , z̃i(k) Model 2

ãT3 (k) ,
[
ṽD(k − 1) z̃i(k) − z̃i(k − 1)

]
Model 3

ãT4 (k) ,
[
ṽD(k − 1) − ṽD(k − 2) z̃i(k)

−z̃i(k − 1) z̃i(k − 2)
]

Model 4

(3.102)

b =



b1 , R0 Model 1

b2 , R0 Model 2

b3 ,
[
α1 R0 R̃1

]T
Model 3

b4 ,
[
α β R0 Ř1 Ř2

]T
Model 4

(3.103)

ñ(k) =



ñ1(k) Model 1

ñ2(k) Model 2

ñ3(k) Model 3

ñ4(k) Model 4

(3.104)

for model 3

R̃1 = α1R0 − (1− α1)R1

H̃ = h(k)− α1h(k − 1)
(3.105)
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and, for model 4

α = α1 + α2

β = α1α2

Ř1 = (α1 + α2)R0 − (1− α1)R1 − (1− α2)R2

Ř2 = α1α2R0 − α2(1− α1)R1 − α1(1− α2)R2

(3.106)

By stacking one observation ṽ(k) below another, the observation model (4.133)

can be written in matrix form as follows

ṽκ = Ãκbκ + ñκ (3.107)

where κ is the batch number,

ṽκ = [ṽ(κLb − Lb + 1), ṽ(κLb − Lb + 1), . . . , ṽ(κLb)]
T

ãκ = [ã(κLb − Lb + 1), ã(κLb − Lb + 1), . . . , ã(κLb)]
T

ñκ = [n(κLb − Lb + 1), ñ(κLb − Lb + 1), . . . , ñ(κLb)]
T

(3.108)

and Lb is the batch length.

The noise ñκ is zero mean with covariance matrices for each of the four cases given

by

Σ =



Σ1 Model 1

Σ2 Model 2

Σ3 Model 3

Σ4 Model 4

(3.109)

49



where

Σ1 =



σ2n1

σ2n1

. . .

σ2n1


(3.110)

Σ2 =



σ2n2

σ2n2

. . .

σ2n2


(3.111)

Σ3 =



σ2n3
(0) σ2n3

(1)

σ2n3
(1) σ2n3

(0) σ2n3
(1)

. . .
. . .

. . .

σ2n3
(1) σ2n3

(0) σ2n3
(1)

σ2n3
(1) σ2n3

(0)


(3.112)

Σ4 =



σ2n4
(0) σ2n4

(1) σ2n4
(2)

σ2n4
(1) σ2n4

(0) σ2n4
(1) σ2n4

(2)

σ2n4
(2) σ2n4

(1) σ2n4
(0) σ2n4

(1) σ2n4
(2)

. . .
. . .

. . .
. . .

. . .

σ2n4
(2) σ2n4

(1) σ2n4
(0) σ2n4

(1) σ2n4
(2)

σ2n4
(2) σ2n4

(1) σ2n4
(0) σ2n4

(1)

σ2n4
(2) σ2n4

(1) σ2n4
(0)


(3.113)

The individual terms of the noise variance σ2
n1

= σ2
n2

= σ2
n are defined in (3.61)

and the expressions for σ2
n3

(0), σ2
n3

(1), σ2
n4

(0), σ2
n4

(1) and σ2
n4

(2) are derived in (3.78),

(3.79), (3.97), (3.98) and (3.99) respectively.

Now, given the κth batch of observation ṽκ along with the model Ãκ, the parameter
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b can be estimated through the least squares (LS) method as follows:

b̂κ =
(
ÃT
κΣ−1Ãκ

)−1
ÃT
κΣ−1ṽκ (3.114)

When the next batch of observation ṽκ becomes available, the recursive least

square method can be used to update the parameter estimated:

b̂κ+1 = b̂κ + Wκ+1

(
ṽκ+1 − Ãκ+1b̂κ

)
(3.115)

where

Wκ+1 = Pκ+1Ã
T
κ+1S

−1
κ+1 (3.116)

and

P−1κ+1 = P−1κ + ÃT
κ+1Σ

−1Ãκ+1

Sκ+1 = Ãκ+1P
−1
κ+1Ã

T
κ+1 + Σ

(3.117)

Given the past parameter estimate for the previous batch, b̂κ, its estimation error

covariance P−1κ (in inverse form), new set of measurements from the current batch

ṽκ+1 and the corresponding model Ãκ+1, the Algorithm 3 can be used to obtain the

updated estimate b̂κ+1 and the updated estimation error covariance P−1κ+1. It must

be noted that dimension of b̃κ and Ãκ vary based on the assumed model.

Remark 4 (Initialization) For the very first iteration of Algorithm 3 there is no

prior knowledge of b̂κ, i.e, when κ = 1 there is no b̂0. For this case, we will use

a least square estimation without assuming any prior information about noise. This

will reduce the covariance matrix to be an identity matrix, i.e.,

Σ = ILb
(3.118)
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where ILb
is an Lb×Lb identity matrix. As a result, for the first batch, the parameter

estimation is carried out using the least square (LS) algorithm as follows

b̂1 =
(
ÃT

1 Ã1

)−1
ÃT

1 ṽ1 (3.119)

P1 =
(
ÃT

1 Ã1

)−1

Remark 5 (Battery parameter recovery) At every iteration of Algorithm 3, given

b̂κ, the ECM parameters are computed as follows: Model 1 & 2:

Here, the parameter b̂κ has just one element which is the estimate of R0, i.e.,

R0 = b̂κ (3.120)

Model 3:

Here, the parameter b̂κ has three elements that can be indicated by b̂κ(1), b̂κ(2) and

b̂κ(3). The parameters of the ECM model 3 can be recovered as follows:

R0 = b̂κ(2)

R1 =

[
b̂κ(1)b̂κ(2)− b̂κ(3)

]
1− b̂κ(1)

C1 = − ∆

R1 ln(b̂κ(1))

(3.121)

where, ∆ is the sampling time.

Model 4:

Here, the parameter b̂κ has five elements indicated by b̂κ(1) . . . b̂κ(5). The parameters
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of the ECM model 4 can be recovered as follows:

R0 = b̂κ(3)

R1 =
(α2b̂κ(1)− b̂κ(2))b̂κ(3)− α2b̂κ(4) + b̂κ(5)

(α2 − α1)(1− α2)

C1 = − ∆

R1 ln(b̂κ(3))

R2 =
(α1b̂κ(1)− b̂κ(2))b̂κ(3)− α1b̂κ(4) + b̂κ(5)

(α1 − α2)(1− α1)

C2 = − ∆

R2 ln(b̂κ(3))

(3.122)

where

α1 =

(
−b̂κ(1) +

√
b̂2
κ(1)− 4b̂κ(2)

)
2

α2 =

(
−b̂κ(1)−

√
b̂2
κ(1)− 4b̂κ(2)

)
2

(3.123)

3.4 Theoretical Performance Analysis

In this section, we derive error bounds for the model identification strategies presented

in Section 3.2.

The error covariance matrix Pκ corresponding to the above LS estimation of b̃κ

is given by the following equation [8]

Pκ =
(
ÃT
κΣ−1Ãκ

)−1
(3.124)

where the model parameter Aκ is defined in (4.134) which is also re-written below

Ãκ = [z̃i(κLb − Lb + 1), . . . , z̃i(κLb)]
T (3.125)

Next, we will simplify and analyze the above covariance matrix.
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For Model 1 the parameter to be estimated is b = R0; the inverse of the noise

covariance, Σ−1, simplifies to

Σ−1 =


σ−2n

σ−2n
. . .

σ−2n


=

1

σ2
n

I (3.126)

where I is an Lb × Lb identity matrix. Substituting (3.126) and (3.125) into (3.124),

the noise covariance for model 1 becomes,

Pκ =
(
σ−2n ÃT

κ Ãκ

)−1
=

(
σ−2n

(
z̃2i (1), . . . , z̃2i (Lb)

))−1
= σ2

n

(
Lb∑
k=1

z̃2i (k)

)−1
(3.127)

where, without loss of generality, we assumed the first batch, i.e., κ = 1.

From (3.127), one can conclude the following about the estimation error:

1. Measurement error effect: The estimation error is proportional to σ2
n = 2 (σ2

v +R2
0σ

2
i ) .

2. Number of sample effect: The more the number of samples Lb the lower the

estimation error.

3. Sampling time effect: Let us recall that each sample z̃i(k) is defined by

z̃i(k) = zi(k + 1)− zi(k) (3.128)

based on which, the following can be written

Lb∑
k=1

z̃i(k) = zi(Lb + 1)− zi(1) (3.129)
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Further, the following inequality is always true

(x1 + x2 + . . . xN)2 >
(
x21 + x22 + . . . x2N

)
(3.130)

as long as the signs of all xk, k = 1, . . . , N, are the same. From this, we can

write that

(zi(Lb + 1)− zi(1))2 >

Lb∑
k=1

z̃2i (k) (3.131)

The observation (3.131) tells us that the estimation error can be reduced by

increasing the time between two adjacent samples — as long as the direction of

current through the battery remains unchanged (either charging or discharging.

However, the further the two samples are apart, the more the assumption in

(3.43) is violated. Further, the performance might be affected by measurement

noise. In this chapter, we do not analyze the performance due to downsampling

– an elaborate performance analysis for best hardware implementation is left

out as a future work.

Remark 6 The noise covariance matrix contains only the diagonal elements thus

implying the white noise. According to the Cramer Rao Lower Bound(CRLB), the

diagonal elements of the covariance matrix is equal to the inverse of Fisher Infor-

mation Matrix, J−1 = σ2
n

(
ÃT
κ Ãκ

)−1
. Therefore, the proposed approach for model 1

satisfy the Cramer Rao Lower Bound(CRLB) which makes the estimator Minimum

Variance Unbiased Estimator.

The only parameter being estimated under the Model 2 assumption isR0 where the

observation model is identical to that of Model 1. As such, the discussion regarding

the estimation error variance is the same that for Model 1.

For Model 3 and 4, analytical simplification similar to (3.127) is impossible. How-

ever, the above three effects, measurement error effect, number of samples effect, and
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sampling time effect, are expected to hold for all four models.

3.5 Results

In this section, we present the results of the proposed algorithm through various com-

puter experiments. First, in subsection 3.5.1, a simulated battery model is used to

objectively quantify the performance of the ECM identification algorithm. Then, in

subsection 3.5.2, a model mismatch analysis is presented based on the same simulated

battery model. Finally, in subsection 3.5.4, the proposed ECM identification algo-

rithm is tested using data collected from five different battery cells at eight different

temperatures.

3.5.1 Objective Performance Analysis

For the analysis in this subsection, typical battery usage data was simulated using

the observation model shown in Figure 4.14. First, the current through the battery

is simulated to emulate typical battery usage data in a smartphone [4, 6]. Then the

voltage across the battery terminal is computed according to the model assumption.

For example, for model 1, the measured voltage is computed according to (3.40)

— after accounting for the voltage and current measurement noise. This requires

one to compute the SOC of the battery so that Vo(s(k)) can be computed. For

this purpose, we used the characteristics of a typical smart phone battery for the

OCV-SOC parameter and Cbatt = 1.5 Ah for battery capacity. The exact equations

and in-depth details for such battery data simulation is presented in [5]; in this

chapter, we adopt the approach in [5] to simulate battery data for the four different

models shown in Figure 4.14. First the analysis is done for Model 1 and then it is

repeated for Model 3. For both cases, the true value of the ECM parameters are set at

R0 = 0.2246 Ω, R1 = 1 Ω and C1 = 50 F. The analysis is repeated for three different

values of the measurement errors: (σv = 1µV, σi = 1µV), (σv = 10µV, σi = 10µV),
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and (σv = 100µV, σi = 100µV). Hence, with only the value of σv is indicated when

discussing the results. Figure 3.7(a) shows the resulting voltage across the battery

terminals and current through the battery under the Model 1 assumption for ECM.

The Algorithm 3 is used on the voltage and current data to estimate the battery

ECM parameters and their performance is analyzed against true values that are used

to simulate the data. Throughout this chapter, the batch number at the ECM esti-

mation algorithm is kept at Lb = 200. At a sampling time of ∆ = 0.1 seconds, this

amounts to 20 seconds of data in each batch. For comparison, the time constant of

the RC circuit in the simulation is R1 × C1 = 1× 50 = 50 seconds.

The average estimation error for parameter identification is obtained by computing

200 Monte-Carlo runs and shown in Figure 3.7(b) for three different values of mea-

surement noise, σv = 1µV, 10µV and 100µV. The conclusion is that the estimation

error is 0.00001% assuming σv = 1µV which implies that the parameter estimation

performance for model 1 is close to optimal. As expected, the average estimation

error slightly increases with the noise. This is further illustrated in Table 3.2 which

summarizes the average estimation error over all the blocks and 200 Monte Carlo

runs for different values of measurement noise. It shows the expected behavior that

the estimation error increases with the noise. Further, one must note the very low

error for Model 1 (later we will see the estimation error significantly increasing when

estimating the more complicated Model 3 parameters).

Table 3.2: Estimation Error (in %) for Model 1

Parameter σv = 1µV σv = 10µV σv = 100µV
R0 0.000010 0.000095 0.001108

Figure 3.8 shows the average estimation error, from 200 Monte-Carlo runs, for

three different values of the standard deviation of the noise, for Model 3. Table 3.3

shows the average estimation error over the entire block for comparison. Comparison

of Table 3.2 and Table 3.3 shows that the when the ECM complexity increases from

57



Model 1 to Model 3, the estimation error also increases very significantly.

Table 3.3: Estimation Error (in %) for Model 3

Parameter σv = 1µV σv = 10µV σv = 100µV
R0 0.8916 0.8916 0.8934
R1 0.9236 0.2208 0.829
C1 0.1508 0.1185 0.1382

3.5.2 Model Mismatch Analysis

In subsection 3.5.1, the voltage and current measurement of the battery is generated

for the exact same model for estimation error analysis. However, the exact model

of a real life battery is not necessarily the same as the one assumed by the ECM

system identification algorithm. Hence, it is beneficial to understand the type of error

resulting from such a model mismatch. In this section, we present the results of two

different model match analysis: first, the battery data was simulated using Model 3

to which the parameter estimation Algorithm 3 was applied assuming Model 1; then

the battery data was simulated using Model 4 to which the parameter estimation

Algorithm 3 was applied assuming Model 3.

Figure 3.9 and 3.10 shows the average estimation error for the above two cases of

model mismatch. Averaged errors over all the batches are also summarized in Table

3.4. These results show that the proposed ECM parameter identification approaches

are meaningful even if the assumed battery model at the BMS is not exactly the same

as the one in play in the battery.

3.5.3 Performance Analysis using Different Temperatures

In this subsection, we demonstrate the performance of the proposed approach for bat-

tery parameter estimation using data collected from a Samsung EB575152 battery

cell at eight different temperatures ranging from −25◦C to 45◦C at equal intervals.
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Table 3.4: Estimation Error (in %) considering Model Mismatch

standard deviation= 1µV Estimation model=1, Estimation model=3,
True model= 3 True model= 4

R0 0.4474 0.8992
R1 N/A 4.028
C1 N/A 0.7755

At each temperature, the cell is fully charged at kept at the specified temperature.

Then a discharging-charging-discharging current, similar to the one shown in Fig-

ure 3.7(a) is applied to the battery and the voltage across the battery terminals is

recorded. These voltage-current data is then used by the ECM parameter estima-

tion Algorithm 3 that was set to the battery model to be at Model 3. Figure 3.11

shows the estimated parameters against batch number and Figure 3.12 shows the

steady-state estimated parameters against temperature. It is interesting to note that

these estimated values, especially R0, follows previously known pattern [23] regarding

battery behaviour against temperature changes.

3.5.4 Performance Analysis Using Multiple Batteries

In this section, we demonstrate the performance of the proposed approach for battery

parameter estimation using multiple Li-ion batteries. Figure 3.13 shows the estimated

parameter values against batch number for five different batteries: LG LGIP 530B,

Nokia BP-4L, Blackberry RIM FS 1, Samsung AB463651, and Samsung EB575152.

The objective of this demonstration is to find out whether our proposed approach

provides accurate estimation of ECM parameters using real measeured voltage data

collected from different Li-ion batteries. According to Figure 3.13, all the parameters

considering model 3 results into the optimum estimated values for each of the batter-

ies, thus states the proposed approach suitable in expectation of practical scenario.
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3.6 Conclusion

This chapter presents a novel approach for parameter identification of a Lithium ion

battery equivalent circuit model (ECM) based on the recursive least square (RLS)

filter. The proposed approach only requires measured voltage across the battery

terminals and current through the battery. The proposed parameter estimation algo-

rithm is shown to be generalizable to four different ECM approximations of varying

model complexity. Estimation error due to the noise in measured voltage and current

is derived based on the standard deviation of these measurement noises.

Proposed ECM identification algorithm is rigorously tested through various means:

First, data from a battery simulator is used to test the algorithms. For the simplest

ECM, the mean square error (MSE) of estimating the battery resistance is found to be

the same as the theoretical error bound derived in the chapter. The MSE increases

with model complexity, however, it remained below 1% a common model assump-

tion of ECM complexity (denoted in this chapter as Model 3) for practical values of

measurement noise. The worst MSE remained 4.028% when a model mismatch was

introduced in the battery simulator. Finally, the proposed ECM identification algo-

rithm is tested on real battery data. First, Model 3 parameters were estimated from

the same battery cell at eight different temperatures; estimated parameters conformed

to previously understood behaviour against temperature. Then, the algorithm was

tested on data collected from five different battery cells at room temperature.
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Algorithm 2
[
b̂κ+1,P

−1
κ+1

]
= BattECMID[b̂κ,P

−1
κ , ṽκ+1, Ãκ+1]

1: Construct the noise covariance matrix: Σκ using (3.110)-(3.113)

(i) Model 1:

σ2
n1 = 2

(
σ2
v + b̂2

κσ
2
i

)
(ii) Model 2:

σ2
n2 = 2

(
σ2
v + b̂2

κσ
2
i

)
(iii) Model 3:

σ2
n3(0) = 2(1 + b̂2

κ(1))σ2
v + 2(b̂2

κ(2) + b̂2
κ(3))σ2

i

σ2
n3(1) = −2α1σ

2
v − 2b̂κ(2)b̂κ(3)σ2

i

(iv) Model 4:

σ2
n4(0) = 2(1 + b̂2

κ(1) + b̂2
κ(2))σ2

v

+ 2(b̂2
κ(3) + b̂2

κ(4) + b̂2
κ(5))σ2

i

σ2
n4(1) = −2b̂κ(1)(1 + b̂κ(2))σ2

v

− 2b̂κ(4)(b̂κ(3) + b̂κ(5))σ2
i

σ2
n4(2) = 2

[
b̂κ(2)σ2

v + b̂κ(3)b̂κ(5)σ2
i

]
2: Update Error Cov: P−1κ+1 = P−1κ + ÃT

κ+1Σ
−1Ãκ+1

3: Update Residual Cov: Sκ+1 = Ãκ+1P
−1
κ+1Ã

T
κ+1 + Σ

4: Update gain:Wκ+1 = Pκ+1Ã
T
κ+1S

−1
κ+1

5: Update Parameter:b̂κ+1 = b̂κ + Wκ+1(ṽκ+1 − Ãκ+1b̂κ)
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Figure 3.7: Estimation of R0 in Model 1. Voltage across the battery terminals
and current through the battery is shown in (a); mean square error of estimation over
200 Monte-Carlo runs is shown in (b).
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Figure 3.8: Parameter Estimation for Model 3. Mean square error of the esti-
mated parameters are plotted for different values of measurement noise.
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Figure 3.9: Model mismatch analysis. The result of estimating Model 1 parame-
ters from data that was simulated using Model 3. Mean square error against batch
number is shown for the estimated parameter.
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Figure 3.10: Model mismatch analysis. The results of estimating Model 3 param-
eters from data that was simulated using Model 4. Mean square error against batch
number is shown for each estimated Model 3 parameter.
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Figure 3.11: Performance of the ECM identification algorithm at multiple
temperatures. Estimated values of the Model 3 parameters are plotted against
batch number for data collected from the same battery cell used in Samsung Galaxy
4 smartphones (Samsung EB 575152) at eight different temperatures.
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Figure 3.12: Performance of the ECM identification algorithm on multiple
batteries. Estimated values of the Model 3 parameters are plotted against the
temperature in which the battery was kept. Each entry in this plot is obtained by
averaging the estimated values for the last 10 batches corresponding to Figure 3.11.
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Chapter 4

Robust Battery Fuel Gauge:

Algorithm and Evaluation

4.1 Introduction

Li-ion batteries are known for high power density, high capacity and light weight [34].

With the proliferation of portable electronic devices and electric vehicles, Li-ion bat-

teries have become the most common rechargeable batteries. Consequently, it is

important to have an accurate estimate of the state of charge (SOC) in order to avoid

overcharging or deep discharging conditions in a battery. Further, the knowledge of

the SOC of the battery is critical in many applications, such as in electrical vehicles

(EV), where the battery replacement is costly and must be planned well in advance to

avoid unanticipated breakdowns. The battery fuel gauge (BFG) estimates the SOC,

SOH, the time to shut down (TTS) and the remaining useful life (RUL) of the bat-

tery. The knowledge of battery capacity has significant impact on the estimation of

SOC, SOH, TTS and RUL. The battery capacity fades over time depending on envi-

ronmental, usage and charging patterns and, as a result, BFG becomes a challenging

system identification and state estimation problem.
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There has been tremendous interest in the past decade on developing BFG algo-

rithms that involve the solution to a joint state and parameter estimation problem.

There have been two significantly different approaches to modeling the internal chem-

ical behavior of the battery: the electrochemical models such as [30] and the references

therein, and the electrical equivalent circuit models that are widespread in the engi-

neering community. The electrical equivalent circuit model based BFG algorithms

are based on three important sub-models: the open circuit model (OCV) model, the

dynamic equivalent circuit model (ECM), and the battery capacity model. The pa-

rameters of the OCV curve (shown to be unchanged over temperature changes and

aging, if estimated through the normalized OCV modeling approach of [23]) are esti-

mated offline and the ECM parameters (known to vary with temperature, loading [4]

and aging) and the battery capacity (known to vary with temperature and aging)

are estimated online. In most works, the combined model [24, 25] was adopted for

modeling the OCV; many other possible OCV models are discussed in [23] as well.

In [21, 24–28], different dynamic models, such as a simple (resistance only) model,

zero/one state hysteresis model and enhanced self correcting models, are discussed;

these works give significant attention to modeling the hysteresis effect in a battery.

Combinations of resistance/capacitance models, where the hysteresis effect is either

ignored or modeled as an error term, can be found in [6, 8, 10,12–18].

The existing literature has diverse methods and approaches related to types of

ECM, model identification methods, SOC estimation methods and online capacity

estimation methods. However, when it comes to validating the SOC estimates, a vast

majority of the existing approaches solely depend on the Coulomb counting method.

Our objective in this chapter is to show the necessity of having robust BFG validation

strategies.

Evaluating a BFG is challenging due to the fact that there are no reliable math-

ematical models in order to represent the complex features of a Li-ion battery, such

as hysteresis and relaxation effects, temperature effects on parameters, aging, power
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fade (PF), and capacity fade (CF) with respect to the chemical composition of the

battery. To the best of our knowledge, there is little literature focusing on BFG algo-

rithm evaluation under realistic usage conditions; the importance of BFG evaluation

is discussed in [31]; in [7], the need to minimize power dissipation and to extend

battery run-time for portable devices is discussed; the advantages of hardware-in-the-

loop (HIL) testing to validate a battery management system (BMS) under various

failure conditions was motivated in [19]; and a HIL test to validate the BFG using

a multi-cell battery pack was proposed in [11, 33]. Eventually, three BFG evaluation

metrics were presented and demonstrated in [1, 3].

Compared to the previous discussions on this topic [1,3], the contributions of this

chapter are listed below:

1. Rigorous evaluation of BFG evaluation metrics. In this chapter, we use sim-

ulated data to test the validity of the proposed BFG evaluation metrics [1, 3].

Using the simulated data (with known battery parameters), we demonstrate

the validity of the BFG evaluation metrics. Such practice gives more insights

when it comes to using them to validate BFGs.

2. Stable RLS model for parameter estimation. In this chapter we present a robust

approach to estimate the equivalent circuit model (ECM) parameters of a Li-ion

battery based on recursive least square (RLS) estimation method [5].

3. Comparison of the proposed method with previous BFG. We use the BFG evalua-

tion metrics [1,3] to show that the proposed RLS implementation outperformed

it predecessor presented in [2].

The aforementioned contributions of the chapter are organized as follows: In Sec-

tion 4.2, we present the detailed attributes of the proposed BFG. The battery equiv-

alent circuit models are presented in 4.2.1. The battery OCV model is summarized

in Section 4.2.2. In Section 4.2.3, we present the recursive least square based battery

ECM parameter estimation algorithm and analyze the performance on load profile.
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Section 4.2.4 presents the new SOC tracking algorithm based on extended Kalman

filter. Section 4.2.5 presents the block diagram of the proposed BFG. In Section 4.3,

we introduce three validation method of the proposed BFG namely CC metric, OCV

metric and TTV metric. In Section 4.4, the performance of the proposed BFG is

tested first on simulated data; then the RLS and EKF algorithm is employed on the

real data from multiple batteries; finally the three metrics emerge the validity of the

proposed BFG. Section 4.5 concludes the chapter.

List of Notations

ã(k)T . Oobservation model (4.134)

Ãκ . . . . Observation model in single batch (4.137)

b . . . . . . ECM parameters to be estimated (4.135)

bκ . . . . . ECM parameters to be estimated at κth batch(4.137)

C1 . . . . Battery internal capacitance in Farad (Figure 4.14)

Cbatt . . Battery capacity in Ampere-hour (4.147)

F (k) . . State transition matrix(4.154)

f−1OCV−SOCOCV look up from OCV-SOC characteristics (4.171)

G(k) . . Input gain in EKF (4.154)

h(k) . . . Hysteresis at k(4.169)

h′(k + 1) Linearization of measurement model (4.161)

i(k) . . . Current through battery in Ampere (4.147)

ksd . . . . Time index at shut down voltage (4.173)
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K0, ..., K7OCV-SOC model parameter (4.132)

m(k + 1) Inovation variance of Kalman filter (4.163)

ni(k) . . Process noise at time k (4.154)

ñκ . . . . . Measurement noise (4.137)

Nk . . . . Number of time samples to reach vsd (4.175)

P−1κ+1 . . Error covariance(4.142)

R0 . . . . Battery internal series resistance in Ω ( Figure 4.14)

R1 . . . . Battery internal resistance in Ω (Figure 4.14)

s(k) . . . SOC using Coulomb counting at time step k (4.147)

s′ . . . . . Scaled SOC (4.148)

ŝsd . . . . SOC at shut down voltage(4.171)

Sκ+1 . . Residual covariance(4.142)

T (k) . . Actual TTV in minute (4.173)

Tsd(k) . Predicted TTV in minute (4.172)

Tttv . . . Total duration of TTV in minute(4.176)

u(k) . . . Measured current in EKF in Ampere (4.154)

ṽ(k) . . . Measured voltage (V) (4.133)

ṽκ . . . . . Measured voltage (V) at κth batch (4.137)

vr . . . . . Voltage (V) at rest(4.168)

vd . . . . . Voltage drop (V)(4.169)
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v̂sd . . . . Shut down voltage (V)(4.169)

Vo(s) . . Open circuit voltage (V) (OCV) (4.132)

Wκ+1 . Update RLS gain(4.141)

xs(k) . . SOC in EKF (4.153)

W (k + 1)Gain of Kalman filter (4.164)

xs(k) . . State of the Kalman filter at time k (4.153)

x̂s(k|k) Estimated state(4.157)

x̂s(k + 1|k)State prediction(4.157)eq:stateestimate

ẑ(k + 1|k)Measurement prediction of Kalman filter (4.160)

zv(k) . . Measured terminal voltage (V) at time k (4.155)

zi(k) . . Measured current(A) at time k (4.134)

∆k . . . . Time interval (seconds) (4.147)

σv . . . . . Standard deviation of voltage noise (4.143)

σi . . . . . Standard deviation of current noise (4.143)

σ2
n(1) . . Noise variance of the measurement model (4.143)

Σ . . . . . Covariance matrix (4.138)

ε . . . . . . Scaling factor(4.149)

ε̄cc . . . . CC metric (%) (4.167)

ε̄ocv . . . OCV metric (%)(4.168)

ε(k) . . . TTV error at kthtime index(4.174)
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ε̄ttv . . . . Mean TTV error in minute(4.175)

Ettv . . . TTV metric (%)(4.177)

4.2 Details of the New Battery Fuel Gauge

4.2.1 Battery Equivalent Circuit Model

Figure 4.14: Equivalent circuit models (ECM) of a battery. Battery equivalent
circuit model that is widely used in the literature to represent Li-ion batteries. In
this chapter, we use a RLS based approach to estimate the ECM parameter [1,3] with
some improvements.

Battery modeling is important to design and approximate the battery perfor-

mance. As Li-ion batteres have complex, non-linear characteristics, precise battery

modeling is required to define their suitability for different applications and to analyze

their dynamic behavior. Two main catagories of electical battery models are namely

Thevenin-based electrical models [24,29] and impedance based electrical models [32].

An equivalent circuit model is widely accepted method for analyzing the dynamic

behavior of Li-ion batteries.

We use time domain approach to develop the equivalent circuit model. Figure 4.14

shows the equivalent circuit model that is widely used for parameter identification in
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this chapter. In this model, v(k) represents the measured voltage across the battery

terminals and i(k) represents the current through the baIttery. Here, R1 and C1

represents the resistive and the capacitive elements (RC circuit). Based on [22],

the knowledge of the OCV-SOC curve and the SOC of the battery, s(k), was used

to compute the OCV(V0(s(k)) of the battery. Obtaining the OCV-SOC curve is an

offline process (the details can be found in [22]). With the knowledge of the OCV-SOC

curve, the ECM parameters of the batteries can be estimated based on the battery

equivalent circuit model (ECM) – as described later in this chapter. Using these

estimated parameters, an online SOC estimation technique, based on the extended

Kalman filter, is described to recursively estimate the SOC of the battery. The real

time BFG demonstrated in this chapter will estimate the battery ECM parameters

in real time simultaneously track the SOC.

4.2.2 Battery OCV Model

In this section, we summarize the approach presented in [22] to OCV characterization.

The OCV of a Lithium-ion battery varies with its state of charge (SOC) in a non-linear

fashion represented as follows1:

Vo(s) = K0 +
K1

s
+
K2

s2
+
K3

s3
+

K4

s4
+K5s+K6 ln(s) +K7 ln(1− s) (4.132)

where Vo(s) indicates the OCV which is a function of SOC, s. The set of coeffi-

cients {K0, K1, K2, K3, K4, K5, K6, K7} are referred to as the OCV-SOC parameters

or at times simply as OCV parameters. These OCV parameters can be estimated of-

fline through a custom experimental data collection process followed by a parameter

estimation step (more details can be found in [20,22]).

1The OCV-SOC model in (4.132) was introduced as combined+3 model in [22].
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4.2.3 ECM Parameter Estimation

In this section, we summarize a previous approach [2] and discuss some modifications

for real-time, linear estimation of dynamic equivalent circuit parameters for batteries.

Unlike prior approaches that require SOC, OCV-SOC parameters, temperature, and

hysteresis modeling [9], the proposed approach is simplistic in terms of measurement

and modeling requirements.

The equivalent circuit models of Li-ion batteries as shown in Figure 4.14 are used

to derive the ECM parameters. The proposed ECM identification approach is built

around the recursive least square (RLS) filter. As such, it is able to track time-varying

parameters, e.g. it can track change in parameters due to temperature, SOC changes

and aging. We present the mathematical derivation of the new measurement model

that is based only on the measured voltage across the battery and current through

the battery.

The voltage drop across the circuit components of the equivalent circuit model

can be written in the following form:

ṽ(k) = ã(k)Tb + ñ(k) (4.133)

where

ã(k)T =
[
ṽD(k − 1) z̃i(k) − z̃i(k − 1)

]
(4.134)

b =
[
α1 R0 R̃1

]T
(4.135)

where

R̃1 = α1R0 − (1− α1)R1 (4.136)
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By stacking one observation ṽ(k) below another, the observation model (4.133) can

be written in matrix form as follows

ṽκ = Ãκbκ + ñκ (4.137)

where κ is the batch number,

The noise ñκ is zero mean with covariance matrices given by

Σ =



σ2n(0) σ2n(1)

σ2n(1) σ2n(0) σ2n(1)

. . .
. . .

. . .

σ2n(1) σ2n(0) σ2n(1)

σ2n(1) σ2n(0)


(4.138)

where σ2
n(0), σ2

n(1) are the individual terms of the noise variance.

Now, given the κth batch of observation ṽκ along with the model Ãκ, the parameter

b can be estimated through the least squares (LS) method as follows:

b̂κ =
(
ÃT
κΣ−1Ãκ

)−1
ÃT
κΣ−1ṽκ (4.139)

When the next batch of observation ṽκ becomes available, the recursive least

square method can be used to update the parameter estimated:

b̂κ+1 = b̂κ + Wκ+1

(
ṽκ+1 − Ãκ+1b̂κ

)
(4.140)

where

Wκ+1 = Pκ+1Ã
T
κ+1S

−1
κ+1 (4.141)
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and

P−1κ+1 = P−1κ + ÃT
κ+1Σ

−1Ãκ+1

Sκ+1 = Ãκ+1P
−1
κ+1Ã

T
κ+1 + Σ

(4.142)

Given the past parameter estimate for the previous batch, b̂κ, its estimation error

covariance P−1κ (in inverse form), new set of measurements from the current batch

ṽκ+1 and the corresponding model Ãκ+1, the Algorithm 3 can be used to obtain the

updated estimate b̂κ+1 and the updated estimation error covariance P−1κ+1. It must

be noted that dimension of b̃κ and Ãκ vary based on the assumed model.

Remark 7 (Initialization) For the very first iteration of Algorithm 3 there is no

prior knowledge of b̂κ, i.e, when κ = 1 there is no b̂0. For this case, we will use

a least square estimation without assuming any prior information about noise. This

will reduce the covariance matrix to be an identity matrix, i.e.,

Σ = ILb
(4.144)

where ILb
is an Lb×Lb identity matrix. As a result, for the first batch, the parameter

estimation is carried out using the least square (LS) algorithm as follows

b̂1 =
(
ÃT

1 Ã1

)−1
ÃT

1 ṽ1 (4.145)

P1 =
(
ÃT

1 Ã1

)−1

Remark 8 (Battery parameter recovery) At every iteration of Algorithm 3, the

parameter b̂κ has three elements that can be indicated by b̂κ(1), b̂κ(2) and b̂κ(3). The
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parameters of the ECM can be recovered as follows:

R0 = b̂κ(2)

R1 =

[
b̂κ(1)b̂κ(2)− b̂κ(3)

]
1− b̂κ(1)

C1 = − ∆

R1 ln(b̂κ(1))

(4.146)

where, ∆ is the sampling time.

4.2.4 State of Charge Tracking

In order to derive the SOC tracking method, we start with the Coulomb counting

equation as follows

s(k + 1) = s(k) +
∆ki(k)

3600Cbatt

(4.147)

where SOC is denoted by s(k) ∈ [0, 1].

The problems of the offline OCV-SOC model (4.132) is that the OCV is not

defined at the SOC values s = 0 and s = 1. Considering that the OCV-SOC model

has ‘log(s)’ and ‘1/s’ terms, value of SOC that is closer to “0” and “1” will cause

numerical issues. Therefore, a scaling approach is introduced in order to map the

range of s ∈ [0, 1] to s′ ∈ [ε, 1− ε] (more details can be found in [20]). where

s′ = s(1− 2ε) + ε (4.148)

and

ε ∈ (0, 0.5) (4.149)
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where ε is the scaling factor. From here on, we use s′ to indicate scaled SOC and s

to indicate unscaled (true) SOC. Now s′ will be used instead of s. Here, it must be

noted that s′ does not go to 0 or 1 – it always stays ε away from these extreme values.

Now, let us re-write (4.147) by replacing s(k) with the scaled version of SOC s′(k)

that is obtained based on (4.148) as

s′(k + 1)

1− 2ε
=

s′(k)

1− 2ε
+

∆ki(k)

3600Cbatt

(4.150)

where

s′(k) = s(k)(1− 2ε) + ε (4.151)

The scaled version of the Coulomb counting equation is then

s′(k + 1) = s′(k) + (1− 2ε)
∆ki(k)

3600Cbatt

(4.152)

Now, let us denote the scaled SOC, s′(k) at time k as

xs(k) , s′(k) (4.153)

considering the process noise ni(k), the state equation can be written by the following

form

xs(k + 1) = xs(k) +G(k)u(k) + ni(k) (4.154)

where,

Input gain, G(k) =
∆k

3600Cbatt

Measured current, u(k) = zi(k)
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For the battery equivalent circuit model provided in Figure 4.14, the measurement

model can be written as

zv(k) = V◦(xs(k)) + vd + nv(k) (4.155)

where vd = f
(
zi, R̂0, R̂1, Ĉ1

)
is the voltage drop across the ECM parameter and

the noise nv(k) is the voltage measurement noise which is assumed to be zero-mean

Gaussian with standard deviation σv.

The observation model above is non-linear in terms of the SOC, i.e.,

V◦(xs(k)) = K0 +
K1

xs(k)
+

K2

x2s(k)
+

K3

x3s(k)
+

K4

x4s(k)

+K5xs(k) +K6 ln(xs(k)) +K7 ln(1− xs(k))]

(4.156)

Now, the online SOC tracking problem can be formally stated as follows: Given

zv(k) and zi(k), the the voltage and current measurements respectively, at time k,

recursively estimate the (scaled) SOC of the battery x̂s(k|k) and the associated esti-

mation error covariance Ps(k|k). The Algorithm 4 summarizes the extended Kalman

filter approach to SOC tracking.

The Algorithm 4 works by taking as an input the previous state x̂s(k|k), previous

covariance Ps(k|k), current measurement zi(k+1) and voltage measurement zv(k+1).

It outputs the state x̂s(k+1|k+1) and covariance estimate Ps(k+1|k+1) using (4.165)

and (4.166) respectively. In the process, it calculates the state prediction x̂s(k+ 1|k)

using (4.157), state prediction variance Ps(k + 1|k) using (4.158) and measurement

prediction ẑ(k + 1|k) using (4.160). Finally, the innovation variance S(k + 1|k),

innovation m(k+ 1) and filter gain W (k+ 1) are calculated using (4.162),(4.163) and

(4.164) respectively.

The performance of the the SOC tracking is analyzed in Section 4.4. The Coulomb

counting method provides a reference SOC because it is computed based on true value

of the battery capacity and noiseless current.
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4.2.5 Block Diagram of the Robust BFG

Figure 4.15: Block diagram of the proposed BFG. The proposed BFG is designed
to estimate ECM parameters as well as the SOC in real time.

Figure 4.15 summarize the block diagram of the BFG algorithm. The recursive

least square method is introduced with a view to developing batch-wise ECM param-

eters estimation and at the same time the extended Kalman filter (EKF) is employed

in order to estimate the SOC in real time. First, the observation model, ã(k)T is

built in terms of measured voltage, zv(k) and zi(k) using (4.134). This ã(k)T , SOC

estimate (received from EKF) and the K parameters (obtained from OCV test) are

stored in the buffer and fed into ECM parameter estimation mentioned in Algorithm

3 to launch the proposed BFG. The estimated parameters, bk from the corresponding

batch of length, Lb is further fed into the EKF along with reconsidering the observa-

tion model, ã(k)T as shown in Figure 4.15 in order to compute the voltage drop vd(k)

by using (4.159) in order to predict the measurement, ẑ(k + 1|k).

Algotihm 4 is developed based on EKF to predict the state, x̂s(k+1|k+1) and the
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variance x̂s(k+1|k+1) by using (4.165) and (4.166) respectively. The prediicted SOC,

x̂s(k+1|k+1) and the state variance Ps(k+1|k+1) are accounted as the previous state

estimate, x̂s(k|k) and previous state variance, Ps(k|k) in order to employ EKF for the

next set of SOC estimation. The online estimation is conducted simultaneously for

ECM parameters and the SOC by using recursive least square and extended Kalman

filter respectively which upholds the robustness of the proposed BFG presented in

Figure 4.15.

4.3 Details of the Validation Method

4.3.1 Coulomb Counting (CC) Metric

In this section we present a BFG validation metric called Coulomb counting (CC)

metric [1, 3]. The CC metric computes average error between the SOC estimated by

the BFG and that obtained by the Coulomb counting method; here, the Coulomb

counting approach assumes the knowledge of the initial SOC and the accurate knowl-

edge of the battery capacity (the BFG evaluation profile is designed in such a way

that both of these information can be obtained in retrospect). The BFG algorithm

on the other hand is not supposed to take advantage of these two information that

the Coulomb counting method had the access to. Since both of these SOC estimates

are in % the unit of the CC metric is also in % — a CC metric of 0% indicates a

perfect BFG and a CC metric of 100% indicates completely flawed BFG.

Given the exact knowledge of battery capacity, Cbatt, and the initial SOC, scc(0),

the Coulomb counting based SOC, ŝcc(k) can be computed by making use of (4.147).

The approach to obtain the SOC estimate by the proposed BFG, x̂s(k|k), is summa-

rized in Section 4.2.4. The BFG error (in %) is then obtained as

ε̄cc =


√√√√ 1

T

T∑
k=1

{scc(k)− x̂s(k|k)}2
 100 (4.167)
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where T is the number of samples on which the validation is performed. Observations

and discussions of CC metric based on simulated and real load profile is shown in

Section 4.4.1.1and 4.4.2.2 respectively.

4.3.2 OCV Metric

In this section we briefly review the OCV metric [1, 3]. The OCV-SOC characteri-

zation is used to obtain a voltage based SOC estimation while battery is resting. A

battery is considered resting after experiencing zero current for considerable amount

of time, e.g., 1-2 hours. Consequently, the OCV based SOC estimation is not possible

while the battery is in use; the OCV metric is computed by defining a BFG evaluation

profile that includes a rest period.

In this chapter, the normalized OCV-SOC modeling approach [23] briefed in Sec-

tion 4.2.2 is used in order to develop OCV look-up based SOC estimation. It must

be noted that when the battery is in rest state, there is no voltage drop across the

battery ECM parameters. Therefore, the battery terminal voltage at rest can be

considered as the OCV of the battery.

In order to develop OCV metric, we compute the SOC related to the battery

terminal voltage at rest, vr shown in (4.168) and subtract that from the estimated

SOC, x̂s(k|k) using proposed BFG based on extended Kalman filter. The estimated

SOC by the BFG, x̂s(k|k), is taken just after the dynamic part of the load profile,

i.e., since the current is zero after that until the point where the rest is achieved. The

OCV metric can be written as

ε̄ocv = |x̂s(k|k)− f−1OCV−SOC

(
vr
)
| (4.168)

where, the OCV metric ε̄ocv (in %) refers to the (SOC) error of the BFG in terms of

the OCV lookup. The result of OCV metric applied on simulated and real load profile

is visualized and analyzed in 4.4.1.2and 4.4.2.3 respectively.
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4.3.3 TTV Metric

The TTV metric [1,3] is the third and comprehensive metric of BFG evaluation that

we consider in this chapter. The time to voltage (TTV) interprets the remaining

charge of a battery in terms of remaining operational time — when a constant load

is applied. When a battery is connected to a system, it is possible to know how much

time it takes to reach a certain terminal voltage of the battery from the present states

of charge. For example, given that the present sates of charge (SOC) of a battery in

a cell phone device is 65%, the TTV may notify the users about having 2 hours of

browsing time or 4 hours of remaing talking time. Moreover, it is applicable to know

the time when we need to shut down the battery while it is discharging in order to

secure the safety of the battery.

Figure 4.16: Shut down voltage for TTV metric validation. Shut down voltage,
vsd for TTV metric is determined by subtracting voltage drop, vd and hysteresis, h(k)
from vsd from the OCV.

The errors in TTV estimate named as TTV metric can be obtained by computig

the predicted TTV and the actual TTV. For a given SOC or its corresponding volt-

age, we calcultae the actual time to reach a certain terminal voltage indicating the
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actual TTV. Similarly, the predicted time to reach that voltage anticipated from the

proposed BFG approach can be introduced as predicted TTV. If vsd is the voltage in

question to be reached as shown in Figure 4.16, then the OCV at that voltage can be

written as:

V̂o = v̂sd − vd − h(k) (4.169)

where, Vo is OCV and vd is the voltage drop across the model parameter R0, R1and

C1 as shown in Figure 4.14 which can be computed as:

vd = f
(
i(k), R̂0, R̂1, Ĉ1

)
(4.170)

R0, R1and C1 is estimated using the proposed approach based on recursive least

square method discussed in Section 4.2.3.

The SOC corresponding to this V̂o is obtained from the OCV-SOC charateristics

as follows:

ŝsd = f−1OCV−SOC(V̂o) (4.171)

where ŝsd referes to the SOC at the shut down voltage, vsd. If v(k) is the present

terminal voltage and the present SOC at v(k) is denoted as x̂s(k|k) estimated using

the proposed extended kalman filter explained in Section 4.2.4, then the time to reach

the voltage vsd can be computed as

Tsd(k) =

(
ŝsd − x̂s(k|k)

i(k)

)
Cbatt3600 (4.172)
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where, Tsd refers to the predicted TTV i.e the time to reach the shut sown voltage.

It is noted that as the present terminal voltage, v(k) progresses towards the voltage

to be reached vsd over time, the present SOC, x̂s(k|k) in turns progresses towards

ŝsd as well which is the SOC corresponding to the voltage vsd and thus, Tsd can be

obtained for each terminal voltage of the battery.

The actual TTV refers to the actual time required to reach vsd defined as follows:

T (k) = (ksd − k)∆ (4.173)

where T refers to actual TTV. ksd is the time sample of the voltage vsd and k denotes

the time sample of the current voltage, v(k).

∆ = sampling interval

For each time sample k, the predicted TTV, Tsd and actual TTV, T are obtained

using (4.172) and (4.173) respectively. Subsequently the error in TTV at each time

sample k can be computed as

ε(k) =
1

60

√
{Tsd(k)− T (k)}2 (4.174)

where the value of ε(k) is in minute. The validation of TTV metric can be obtained

by considering the average of the error as follow:

ε̄ttv =
1

60

√√√√ 1

Nk

Nk∑
i=1

ε(i) (4.175)

where the value of ε̄ttv is in minute and Nk = ksd − k is the number of time samples.

The total duration of time in minutes during which the TTV metric is determined
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can be written as,

Tttv =
Nk∆

60
(4.176)

Now the TTV metric can be defined as ,

Ettv =
ε̄ttv
Tttv

100 (4.177)

Performance analysis of TTV metric is presented in Section 4.4.1.3and 4.4.2.4

respectively.

4.4 Results

In this section, we test the validity of the proposed BFG by first using simulated data;

then by implementing it on real data from multiple batteries. We demonstrate the

CC metric , OCV metric and TTV metric for each of the profiles and compare the

results with the existing approaches in [1] to verify its robustness.

4.4.1 Performance Analysis of Proposed BFG using Simu-

lated Profile

In this section, we validate the proposed BFG by performing the CC metric , OCV

metric and TTV metric on the proposed BFG. The simulated load profile as shown

in Figure 4.17(a) is used to demonstrate the validation. The reason behind using

simulated load profile is that, we assume the true value of the ECM parameters and

the SOC as well to be known to us which advice the performance of the proposed

BFG in ideal case. 4.17(b) illustrates the estimated SOC using proposed algorithm 4

based on EKF and widely used Coulomb counting performed on the dynamic portion
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of the load profile.

4.4.1.1 CC metric using simulated profile

In this section we validate the SOC estimation by comparing Coulomb counting with

the proposed approach. First we compute the SOC by Coulomb counting using

(4.147) and the proposed BFG tracks the SOC using the approach introduced in

Section 4.2.4. Next, in order to validate the BFG, CC metric is computed using

(4.167). Figure 4.17(c) shows the CC metric applied on dynamic portion of simulated

load profile . CC metric is performed in the dynamic part of the profile shown in

Figure 4.17(a) active from 3 hours to 5 hours. For simulated data, the CC metric is

ε̄cc = 0.060831% also mention in Table 4.5 which establishes the robustness of the

proposed BFG algorithm.

Table 4.5: BFG evaluation by CC metric (%)

Data type Temperature CC metric, ε̄cc CC metric, ε̄cc
(◦C) (%) in proposed (%) from previous

BFG BFG in [1]
Simulated 25 0.060831 N/A

-15 0.134147 0.52
LG LGIP -10 0.210197 0.90

-5 0.200909 0.11
0 0.219882 0.66

Nokia BP 4L 20 0.104948 N/A
40 0.104272 N/A

Samsung -15 0.425388 0.86
EB555157VA -10 0.409190 0.44

4.4.1.2 OCV metric using simulated profile

In this section, we analyze the OCV metric validation on the proposed BFG computed

using the simulated and real data from multiple batteries. First, the OCV metric is

applied in simulated data shown in Figure 4.17(a). The battery is kept in rest in
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order to measure the terminal voltage at rest state, vr. After that the OCV-SOC

characterization is used to obtain the corresponding SOC which is compared with

the estimated SOC based on the proposed BFG. The terminal voltage is collected at

time t = 5.7 hours when the battery is resting and the measured voltage, vr is 3.8482

V. Figure 4.17(c) shows that the OCV metric is demonstrated on that particular

terminal voltage when the battery is in rest state. The OCV-SOC error is calculated

using (4.168) and the error is ε̄ocv = 0.001610% mentioned in Table 4.6 which reflects

the performance of the proposed BFG algorithm.

Table 4.6: BFG evaluation by OCV metric

Data type Temperature Voltage OCV metric, OCV metric,
(◦C) at rest, vr(V) ε̄ocv (%) in ε̄ocv(%) from

proposed BFG previous BFG in [1]
Simulated 25 3.8482 0.001610 N/A

-15 3.8340 0.378342 -0.06
LG LGIP -10 3.8164 0.303083 2.40

-5 3.8205 0.251305 0.38
0 3.8244 0.254673 0.61

Nokia BP 4L 20 3.7588 0.220708 0.23
40 3.7756 0.184159 1.12

Samsung -15 3.8196 0.028815 1.22
EB555157VA -10 3.8086 0.059137 0.38

4.4.1.3 TTV metric using simulated profile

In this section we evaluate the proposed BFG algorithm based on the TTV metric

discussed in Section 4.3.3 by showing the results obtained from both simulated and

real data. Figure 4.18 illustrates the TTV analysis using the constant part of the

current profile shown in Figure 4.17(a). The duration of time during which the

TTV metric is computed is assumed to be Tttv = 60 minutes from the begining

of the current profile. Therfore, we calculate the corresponding shut down voltage

vs = 3.6471V after 60 minutes as mentioned in Table 4.7. The TTV evluation starts
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from the present voltage of the battery, v(k). In order to obtain the corresponding

SOC ( by (4.171)), we compute the OCV using (4.169). It is noted that the voltage

drop is calculated using (4.170) after we determine the model parameter from the BFG

algorithm applied in the dynamic part of the load profile shown in Figure 4.17(a).

Table 4.7: BFG evaluation by TTV metric (%)

Data type Temp, vsd(V) Tttv ε̄ttv (min) Ettv (%), Ettv (%)
(◦C) (min) in proposed BFG in [1]

Simulated 25 3.6471 60 0.20543 0.205432 N/A
-15 3.2043 60 0.29265 0.487760 0.7

LG LGIP -10 3.3134 60 0.244462 0.407437 3.8
-5 3.3999 60 0.37555 0.625927 3.8
0 3.4840 60 0.200690 0.334484 3.0

Nokia BP 4L 20 3.5864 60 0.521901 0.869835 4.6
40 3.6889 60 0.085889 0.143149 4.5

Samsung -15 3.2013 60 1.815107 3.025179 17.7
EB555157VA -10 3.4079 60 1.342440 2.23740 1.9

Next we determine the predicted time to reach the desired shut down voltage

(Predicted TTV). Also the actual TTV is calculated based on the time sample from

the data. Figure 4.18(a) shows the predicted and actual Time to reach vsd plotted

against the time. It clear that the predicted TTV line is following the True TTV line

throught the duration of time during which the TTV is computed. The effectiveness

of the proposed algorithm can be further realized from Figure 4.17(c) which illustartes

the error in TTV computed at each voltage by using (4.174). As we use the discharg-

ing load profile , the present terminal voltage v(k) will decrease and move toward

the shut down voltage, vsd. For each of the value of the voltage, the predicted TTV

and actual TTV are calculated by using (4.172) and (4.173) respectively illustrated

in Figure 4.18(b). The mean error in TTV is found to be 0.20543 minutes. The TTV

metric for the simulated data is 0.205432 % mentioned in Table 4.7.
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4.4.2 Performance Analysis of Proposed BFG using Real Load

Profile

In this section, the proposed EKF algorithm is performed on the real data from

multiple batteries recorded at different temperature. The load profile from LG LGIP,

Nokia BP 4L and Samsung EB555157VA batteries as shown in Figure 4.19 are used

to employ the SOC tracking algorithm based on EKF. We test Algorithm 3 and

Algorithm 4 on these profile to estimate the SOC and compare the results with

Coulomb counting approach. It must be noted that, the Coulomb counting approach

requires the knowledge of initial SOC and true capacity. Therefore, we assume the

SOC computed using Coulomb counting to be true SOC (reference SOC) and correlate

with the SOC estimated from the EKF.

Figure 4.20(a) shows the true SOC using Coulomb counting and the estimated

SOC using the proposed EKF on load profile of LG LGIP shown in Figure 4.19(a).

The initial SOC is different among all the load profile recorded at different temper-

ature as shown in Figure 4.20(a) depending on how much charge is remaining when

the proposed algorithm starts. Figure 4.20(b) and Figure 4.20(c) illustrate the true

SOC using Coulomb counting and the estimated SOC using the proposed EKF on

load profile of Nokia BP 4L and Samsung EB555157VA respectively shown in Figure

4.19(b) and Figure 4.19(c). It is clear that, The estimated SOC is following the true

SOC, thus, establishing the effectiveness of the proposed BFG.

4.4.2.1 ECM parameter estimation using real load profile

Proposed ECM identification algorithm is precisely tested on real battery data col-

lected from three different batteries namely LG LGIP, Nokia BP 4L and Samsung

EB555157VA shown in Figure 4.19. The load profile from LG LGIP battery is

recorded at −15◦C, −10◦C, −5◦C and −0◦C. The load profile from Nokia BP

4L battery is recorded at 20◦C and 40◦C whereas the load profile from Samsung
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EB555157VA battery is recorded at −15◦C and −10◦C. ECM parameters are esti-

mated for each of the battery cell as illustrated in Figure 4.21.

At each temperature, the cell is fully charged at kept at the specified temperature.

Then a discharging-charging-discharging current shown in Figure 4.19 is applied to the

corresponding battery and the voltage across the battery terminals is recorded. These

voltage-current data is then used by the ECM parameter estimation Algorithm 3. The

estimated ECM parameter R0 based on the proposed model for multiple batteries are

plotted against time in Figure 4.21(a). The ECM parameter estimation is performed

in the dynamic portion of the load profile for each of the battery cells. The dynamic

portion of LG LGIP battery ranges from 2 to 4 hours shown in Figure 4.19(a), thus the

ECM parameters R0, R1 and C1 for LG LGIP battery are estimated during that time

period as shown in 4.21. Further, The dynamic portion of Nokia BP 4L and Samsung

EB555157VA batteries range from 3 to 4 hours shown in Figure 4.19(b) and Figure

4.19(c), thus the ECM parameters R0, R1 and C1 for Nokia BP 4L and Samsung

EB555157VA battery are estimated during that time period as shown in 4.21. It

must be noted that the R0 values for all three batteries maintain the impedance

properties against the temperature shown in 4.21(a). The estimated ECM parameter

R1 and C1 based on proposed model for multiple batteries are also plotted against

time in Figure 4.21(b) and Figure 4.21(b) respectively. According to Figure 4.21, all

the parameters considering model 3 results into the optimum estimated values for

each of the batteries, thus states the proposed approach suitable in expectation of

practical scenario.

4.4.2.2 CC metric using real load profile

In order to verify the effectiveness of the BFG, we further perform the CC metric on

the real data recorded from multiple batteries. and Figure 4.22 shows the CC metric

validation. The dynamic part of the load profile of LG LGIP batteries is from 2

hours to 3.929 hours at different temperature ranging from −15◦C to 0◦C illustrated
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in Figure 4.19(a) where we perform the CC metric using (4.167) and Figure 4.22(a)

shows the error in the proposed technique. The CC metric for all the load profile

of LG LGIP at different temperature ranging from −15◦C to 0◦C are 0.134147%,

0.210197%, 0.200909% and 0.219882% respectively mentioned in Table 4.5.

Next, CC metric validation is demontrated on the real data from Nokia BP 4L and

Samsung EB555157VA batteries. The dynamic part of the load profile of Nokia BP

4L is from 3.012 hours to 4.932 hours at 20◦C and 40◦C illustrated in Figure 4.19(b)

where we perform the CC metric using (4.167) and Figure 4.22(b) shows the error

in the proposed technique. The CC metric for all the load profile of Nokia BP 4L

batteries at 20◦C and 40◦C are 0.104948% and 0.104272% respectively. The dynamic

part of the load profile of Samsung EB555157VA batteries is from 3.012 hours to 5.05

hours at −15◦C and −10◦C illustrated in Figure 4.19(c) the CC metric is performed

using (4.167) and Figure 4.22(c) indicates the error in the proposed technique. The

CC metric for all the load profile of Samsung EB555157VA batteries at −15◦C and

−10◦C are 0.425388% and 0.409190% respectively based on the proposed approach.

Using the same load profiles as shown in Figure 4.19, [1] proposed a BFG and the

results of the CC metric validation of that BFG is collected from [1] and mentioned in

Table 4.5. This comparison proves the nobility of the proposed BFG over the existing

BFG.

4.4.2.3 OCV metric using real load profile

The OCV metric is further performed in validating the proposed BFG using the real

data from multiple batteries. The terminal voltages of the battery at rest are mea-

sured using the load profile collected from LG LGIP batteries shown in Figure 4.19(a).

The OCV metric is tested at different temperature (−15◦C, −10◦C, −5◦C,−0◦C)

mentioned in Table 4.6. It also shows the OCV metric validation employed on Nokia

BP 4L and Samsung EB555157VA batteries. The OCV metric, ε̄ocv for the data using

Nokia BP 4L batteries recorded at 20◦C and 40◦C are 0.220708% and 0.184159%.

101



Finally, we compute the OCV metric using the data from Samsung EB555157VA

shown in Figure 4.19(c) and the error is 0.028815% and 0.059137%. Therefore, the

observation of OCV metric validation presented in Table 4.6 implies that the pro-

posed BFG performs as a ”look-up” for OCV-SOC characterization. Using the same

load profiles as shown in Figure 4.19, [1] proposed a BFG and the results of the OCV

metric validation of that BFG is collected from [1] and mentioned in Table 4.6. It is

clear from the comparison that the proposed BFG certainly establish the robustness

over the existing BFG.

4.4.2.4 TTV metric using real load profile

The proposed BFG algorithm to estimate SOC is further validated by the TTV metric

on real data recorded at different temperature coming from LG LGIP, Nokia BP 4L

and Samsung EB555157VA shown in Figure 4.19. The predicted and actual TTV at

each time within the duration of the TTV computed using these real data is illustraed

in Figure 4.23. The zoomed version of 4.23(a) is shown in Figure 4.23(b) coming from

LG LGIP which indicates that, at the end of the TTV operation, the present voltage

v(k) catches up the desired shut down voltage vsd. Therefore, The actual time to

reach vsd at that particuar time sample seems to be 0 minute as expected. However,

when we calculate the predicted TTV based obatined from the proposed BFG, it

shows that the predicted TTV approaches very close to 0 minute which satisfies the

expectation. This minor error in TTV remains in the predicted TTV throughout the

time during which TTV is computed. Figure 4.23(c) and Figure 4.23(d) shows us the

predicted TTV calculated using Nokia BP 4L and Samsung EB555157VA. Similar

observations can also be noticed in Figure 4.24.

For all the real data, the total duration of TTV analysis is assumed to be 60

min. As the voltage drop across the model parameter changes depending on the

impedances of the ECM model due to the variation of the temperature in the real

data, the terminal voltages profile at each temperature differs accordingly. Therefore,
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the desired shut down voltage is different for each of the load profiles illustrated in

Figure 4.24. Figure 4.24(b) which is a zoomed version of 4.24(a) indicates that the

predicted TTV looks very close to zero when the desired shut down voltage is reached

justifying the robustness of the proposed BFG.

TTV metric (error in %) is calculated using (4.177) for both simulated data and

real data presented in Table 4.7. For simulated data, the error in TTV, Ettv is

0.205432% shown in Figure 4.17(c). Furthermore, we compute TTV metric for the

load profile of aforementioned batteries. As the duration of TTV is assumed Tttv = 60

minutes, the averaged TTV error (in minute) for LG LGIP batteries is computed by

using the data recorded at different temperature ranging from −15◦C to 0◦C and

the TTV metric are 0.487760%, 0.407437%, 0.625927% and 0.334484% repectively.

Figure 4.25(a) shows the TTV metric validation forload profile of LG LGIP batteries.

The averaged TTV error for Nokia BP 4L batteries is computed by using the data

recorded at 20◦C and 40◦C and the TTV metric are 0.869835% and 0.143149% repec-

tively whereas TTV metric for Samsung EB555157VA are 3.025179% and 2.23740%.

The performance of the proposed BFG based on TTV metric validation can be fur-

ther realized from the Figure 4.25(b) and Figure 4.25(c) which illustrate the error in

TTV measured at each time sample of the individual load profile. Using the same

load profiles as shown in Figure 4.19, [1] proposed a BFG and the results of the TTV

metric validation of that BFG is collected from [1] and mentioned in Table 4.7. It

is evident from the observation that the proposed BFG indeed has more accuracy in

estimation than the existing BFG.

4.5 Conclusion

Battery system identification, performed by the battery fuel gauge (BFG), is crucial

to the safety, efficiency and reliability of a battery storage system. Evaluating a BFG

is a challenging problem and recently an approach and procedure is presented for
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BFG evaluation [1, 3]. The BFG evaluation scheme consisted of a BFG evaluation

profile and three BFG evaluation metrics: the Coulomb counting metric CC metric,

the open circuit voltage metric OCV metric, and the time to voltage metric TTV

metric. These three metrics are designed in a way that each of their values vary

between 0% and 100% indicating the error in the BFG algorithm.

In this chapter, first, we rigorously tested the applicability/suitability of the BFG

evaluation metrics using simulated battery data where the true system parameters

are known a priori. This procedure resulted in close to 0% error for all three BFG

evaluation metrics, reconfirming the suitability of BFG evaluation metrics. Then, a

supposedly improved BFG algorithm was tested using the BFG evaluation scheme.

The BFG evaluation metrics produced objective numbers indicating the improvement

made in the new BFG algorithm.
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Algorithm 3
[
b̂κ+1,P

−1
κ+1

]
= BattECMID[b̂κ,P

−1
κ , ṽκ+1, Ãκ+1]

1: Construct the noise covariance matrix: Σκ using (4.138)

σ2
n(0) = 2(1 + b̂2

κ(1))σ2
v + 2(b̂2

κ(2) + b̂2
κ(3))σ2

i

σ2
n(1) = −2α1σ

2
v − 2b̂κ(2)b̂κ(3)σ2

i

(4.143)

2: Update Error Cov: P−1κ+1 = P−1κ + ÃT
κ+1Σ

−1Ãκ+1

3: Update Residual Cov: Sκ+1 = Ãκ+1P
−1
κ+1Ã

T
κ+1 + Σ

4: Update gain:Wκ+1 = Pκ+1Ã
T
κ+1S

−1
κ+1

5: Update Parameter:b̂κ+1 = b̂κ + Wκ+1(ṽκ+1 − Ãκ+1b̂κ)
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Algorithm 4[
x̂s(k + 1|k + 1), Ps(k + 1|k + 1)

]
=

EKF-SOC(x̂s(k|k), Ps(k|k), zi(k + 1), zv(k + 1), Ãκ,bκ)

1: State prediction:

x̂s(k + 1|k) = x̂s(k|k) +G(k)u(k) (4.157)

2: State prediction variance:

Ps(k + 1|k) = Ps(k|k) + σ2
s (4.158)

3: Voltage drop update:

vd(k) = Ãκbκ (4.159)

4: Measurement prediction:

ẑ(k + 1|k) = V◦(x̂s(k + 1|k)) + vd(k) (4.160)

5: Linearization of observation model:

h′(k + 1) = − K1

x̂2s(k + 1|k)
− 2K2

x̂3s(k + 1|k)
− 3K3

x̂4s(k + 1|k)

− 4K4

x̂5s(k + 1|k)
+K5 +

K6

x̂s(k + 1|k)

− K7

1− x̂s(k + 1|k)
(4.161)

6: Innovation variance:

S(k + 1|k) = σ2
v + h′(k + 1)P (k + 1|k)h′(k + 1)′ (4.162)

7: Innovation:

m(k + 1) = zv(k + 1)− ẑ(k + 1|k) (4.163)

8: Filter gain:

W (k + 1) = P (k + 1|k)h′(k + 1)′S(k + 1)−1 (4.164)

9: State estimate:

x̂s(k + 1|k + 1) = x̂s(k + 1|k) +W (k + 1)m(k + 1) (4.165)

10: State estimate variance:

Ps(k + 1|k + 1) = Ps(k + 1|k)−W (k + 1)S(k + 1)W (k + 1)′ (4.166)
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Figure 4.17: BFG evaluation using simulated load profile. Simulated voltage
and cureent are shown in (a); Estimated SOC is presented in (b); finally the validation
of the proposed BFG is illustrated in (c).
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Figure 4.18: Visualization of TTV error in minutes. A close up visualization of
TTV metric using simulated data
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Figure 4.19: Real voltage and current data from multiple batteries. The
effectiveness of the proposed BFG algorithm is verified by implenting it in three
different batteries which are LG LGIP, Nokia BP 4L and Samsung EB555157VA
measured at different temperature as indicated in the plots.
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Figure 4.20: SOC estimation using proposed BFG. The SOC is estimated on-
line using the proposed BFG and compared with the widely-used Coulomb counting
approach in order to verify the robustness. The Coulomb counting approach uses
battery capacity that was estimated prior to the experiment.
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Figure 4.21: ECM parameter estimation using the real load profile. ECM
parameter estimation is performed using the battery model shown in Figure 4.14. The
R0, R1 and C1 estimations is illustrated in (a), (b) and (c) respectively for multiple
batteries.
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Figure 4.22: BFG evaluation based on CC metric using multiple batteries.
New CC metric is developed in order to validate the proposed algorithm to estimate
SOC based on extended Kalman filter discussed in Section 4.2.4
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Figure 4.23: Predicted time to reach shut down voltage vs. actual TTV.
The real data from multiple batteries are used to calculate and compare the pre-
dicted time to reach certain shut down voltages.The zoomed version of Figure (a)
is shown in Figure (b) illustrating the true TTV calculated using the data from LG
LGIP at different temperature and the expected TTV. Figure (c) and (d) shows the
results of predicted and actual TTV using the data from Nokia BP 4L and Samsung
EB555157VA.
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Figure 4.24: Predicted time to reach shut down voltage vs. actual terminal
voltage. The real data from multiple batteries are used to calculate and compare
the predicted time to reach certain shut down voltages.The zoomed version of Figure
(a) is shown in Figure (b) illustrating the true TTV calculated using the data from
LG LGIP at different temperature and the expected TTV. Figure (c) and (d) shows
the results of predicted and actual TTV plotted against the voltage using the data
from Nokia BP 4L and Samsung EB555157VA.
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Figure 4.25: BFG evaluation based on TTV metric The proposed BFG is eval-
uated based on TTV errors (in minute) for each time index.
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Chapter 5

Conclusion and Future Work

In this thesis, author has aimed at the system identification of a battery management

system. First, we present a novel approach for parameter identification of a Lithium

ion battery equivalent circuit model (ECM) based on the recursive least square (RLS)

filter. The proposed approach only requires measured voltage across the battery

terminals and current through the battery. Estimation error due to the noise in

measured voltage and current is derived based on the standard deviation of these

measurement noises.

The MSE increases with model complexity, however, it remained 1% for battery

equivalent circuit model under the assumption of the practical values of measurement

noise. The worst MSE remained 4.028% when a model mismatch was introduced in

the battery simulator. Finally, the proposed ECM identification algorithm is tested on

real battery data. First, Model 3 parameters were estimated from the same battery

cell at eight different temperatures; estimated parameters conformed to previously

understood behaviour against temperature. Then, the algorithm was tested on data

collected from five different battery cells at room temperature.

We describe the mathematical derivation of the new measurement model that

is based only on the measured voltage across the battery and current through the
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battery. Then the proposed algorithm has been summarized for ECM parameter es-

timation using this measurement model. The theoretical performance analysis has

been discussed regarding the proposed ECM parameter estimation approach which

shows that the more the number of samples in one batch of data, the less the esti-

mation error. It tells that the estimation error can be reduced by increasing the time

between two adjacent samples.

Finally, author has validated the improved BFG using the BFG evaluation scheme

termed as “BFG evaluation metrics”. An objective performance analysis has been

conducted first using the simulated data where the true value is assumed to be known.

The CC metric has been applied on dynamic portion of simulated load profile and

the error is 0.060831%. The OCV metric for simulated data is found to be 0.001610%

considering that the battery is in rest state. The TTV metric for the simulated data

is 0.205432% performed in the constant portion of the current profile. The BFG

evaluation metrics produced objective numbers indicating the improvement made in

the new BFG algorithm.
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