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ABSTRACT 

 

Recent developments in Deep Learning are noteworthy when it comes to 

learning the probability distribution of points through neural networks, and one of 

the crucial parts for such progress is because of Generative Adversarial Networks 

(GANs) [1]. In GANs, two neural networks, Generator and Discriminator, compete 

amongst each other to learn the probability distribution of points in visual pictures. 

A lot of research has been conducted to overcome the challenges of GANs which 

include training instability, mode collapse and vanishing gradient. However, there 

was no significant proof found on whether modern techniques consistently 

outperform vanilla GANs, and it turns out that different advanced techniques 

distinctively perform on different datasets. In this thesis, we propose two 

neuroevolutionary training techniques for deep convolutional GANs. We evolve 

the deep GANs architecture in low data regime. Using Fréchet Inception Distance 

(FID) score as the fitness function, we select the best deep convolutional 

topography generated by the evolutionary algorithm. The parameters of the best-

selected individuals are maintained throughout the generations, and we continue to 

train the population until individuals demonstrate convergence. We compare our 

approach with the Vanilla GANs, Deep Convolutional GANs and COEGAN. Our 

experiments show that an evolutionary algorithm-based training technique gives a 

lower FID score than those of benchmark models. A lower FID score results in 

better image quality and diversity in the generated images.  
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CHAPTER 1 

Introduction 

1.1 Overview 

  

Facebook Artificial Intelligence’s research director Yann LeCun described generative 

adversarial training to be “the most interesting idea in the last 10 years of Machine 

Learning.” [2] 

 

Generative Adversarial Networks (GANs) were created by Ian Goodfellow in 2014 [1]. 

GANs are a machine learning approach qualified to generate novel synthetic outputs 

across a space of provided training examples.  

 

 

 

Figure 1 Progression of face generation [3] 

 

Figure 1 shows the five years of progression of GANs for generating human faces [3]. 

Since 2014, the GAN progress has exploded and has led to generate realistic outputs. 

Today, GANs are able to output many different types of media, being in the form of 

images, videos, text and audio. These different synthetic outputs can be used to train 

different machine learning models. However, the training of GANs is a difficult task. 
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There are still fundamentally unresolved issues like vanishing gradient and mode collapse 

in GANs [4]. 

 

 

Figure 2 Schematic Representation of GANs [5] 

 

Figure 2 shows a schematic representation of GANs. GANs combines two deep neural 

networks playing a minimax game with each other. The discriminator network tries to 

distinguish whether the sample is real or fake. While the other neural network, called a 

generator, tries to create fake samples that the discriminator thinks is real. 

 

The generator never sees the original dataset, and it must learn to generate realistic 

samples by receiving criticism from the discriminator. This process is called adversarial 

loss, and when implemented correctly it works very well. The more the generator and the 

discriminator play this game, the more they advance each other’s skills. The 

discriminator becomes very good at predicting synthetic data while the generator learns 

to create information that is identical from what is observed in the real world [1] [5].  

 

Once the generator masters the distribution of the training samples, we can sample the 

generator 𝑛  times for pragmatic outputs such as images, videos, text, numerical 

simulations, and just about anything else one can imagine. Further, the discriminator is 

also used for different tasks such as distinguishing outliers, abnormalities and anything 
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which is not ordinary. This could be very beneficial in fields such as cybersecurity, 

radiology, astronomy, and manufacturing [5]. 

 

Adversarial training is also proven to be useful in many different applications like 

domain adaptation, data augmentation, and image-to-image translation [6]. Figure 3 

shows one such example of image-to-image translation, wherein the eye vessels are 

translated to a fundus image [6]. 

 

 

Figure 3 Vessels to fundus image [6] 

 

However, training such GANs requires a large dataset. In many realistic settings, such as 

the medical domain, we need to achieve goals with a limited dataset. In such cases, deep 

neural networks fall short, overfitting on the training set and producing poor 

generalization on the test set [7]. To overcome such issues, it is possible to generate more 

data from existing data by applying data augmentation techniques to the original dataset. 

However, standard data augmentation produces only limited alternatives [7]. Thus, we 

want to generate images in such low scale data domain. GANs do not create new data; 

rather, they produce new data with different properties, which can capture many different 

aspects of the original data. All of these different aspects can be captured by a classifier 

to improve the accuracy of machine learning models.  

 

Further, to generate such synthetic images, the GANs are required to be well trained. The 

training of the GANs can be improved by optimizing the hyperparameters and 

architecture of the deep neural networks. Generally, the topology and hyperparameters 

are chosen empirically, which takes a lot of human time. The method to search the 
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accurate architecture can be automated. One such approach to request architecture is 

using neuroevolution [8].  

 

Many approaches are proposed to find the architecture of neural networks, but decidedly 

less research has been conducted for evolving deep GANs. In previous works, there are 

not many components which are taken into consideration for evolving GANs. In E-GANs 

[9], for example, only weight parameters of neurons are considered for evolution.  

 

Thus, in this thesis, we tried to generate images in the shallow dataset domain. With the 

image generation, we also stabilize the training of the GANs and search for the best GAN 

architecture.  

 

1.2 Problem Definition 

 

In large scale datasets, GANs were improved to generate high-quality images [10]. 

Despite the progress in GANs, there are open issues regarding the training of the GANs. 

Most common issues, like mode collapse and vanishing gradient, make the training of the 

GANs difficult. Various strategies have been proposed to minimize these issues, but 

fundamentally, the issue remains unresolved [11].  

 

The Generator and Discriminator are deep neural networks in GANs. The architecture 

and hyperparameters of these networks are empirically determined by spending human 

time in the repetitive task such as fine-tuning the network. However, some techniques can 

automate the design of the networks. Neuroevolution is a technique that uses 

evolutionary algorithms to automate the design of neural network architecture. 

 

Formally, we can define our problem as follows: 

Let Generator(G) and Discriminator(D) hyperparameters be defined by following tuples: 

 

 𝐺 = (𝑁, 𝑊𝑖, 𝜎(𝑥))  𝐷 = (𝑁, 𝑊𝑖, 𝜎(𝑥)) (1) 
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Where: 

 𝑁: represents the number of layers of the network 

 𝑊𝑖: is the weight initialization of each network 

 𝜎(𝑥): represents the activation function applied at each layer of both the networks 

 

We want to search for the best trained GAN architecture. In both the generator and 

discriminator we are searching for the number of layers, activation function for each 

layer, output channels for each layer and weight initialization. Also, the search for the 

best loss function to train the weight parameters of the networks is automated.  

 

An individual GAN equation is expressed as below: 

 

 𝐺𝐴𝑁𝑖 = {𝐺, 𝐷, 𝐿𝑜𝑠𝑠} 

 

(2) 

In Equation 2, G represents Generator Neural Network and D represents Discriminator 

Neural Network, and Loss represents Loss function required to find the gradients to learn 

the weight parameters of the network using backpropagation.  

 

Intuitively we want to test if the introduction of an evolutionary algorithm in deep GANs 

can design the topography of the network. Thus, we want evolutionary algorithms to 

automate deep convolutional GAN architecture search and increase the training stability 

in low data regime. 

 

1.3 Motivation 

 

Generative Adversarial Networks became remarkable, presenting impressive results 

mainly for image synthesis in the field of computer vision. Several works improving the 

GAN model have been published in the large-scale datasets. However, there are still 

fundamentally unresolved issues related to the training of the GANs. Vanishing gradient 
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and mode collapse are the most common issues, making the training of GANs hard [12]. 

There are different strategies to minimize these issues, but radically, they remain 

unresolved. Another issue, not only related to GANs but also to neural networks, is the 

need to decide a network architecture previously. In this case, the topology and 

hyperparameters are chosen empirically or require careful design by experts. Hence, 

spending human time in a repetitive task such as fine-tuning the network. 

 

Ideally, one would want to automate the method to generate the right neural architecture. 

One approach to generate these architectures is called Neuroevolution. Neuroevolution is 

the application of an evolutionary algorithm to automate the design of neural 

architectures [13]. Standard evolutionary algorithm has been successful in solving diverse 

and complex problems. Evolutionary computations mimic natural evolution, which is 

based on the principle of genetic inheritance. In natural systems, genetic evolution is a 

slow process. Cultural evolution enables the population to adapt to their changing 

environments at a rate that exceeds of biological evolution. Neural network design is 

inspired by the human brain neurons structure. The human brain has evolved over a long 

time, from very simple worm brains 500 million years ago to a diversity of modern 

structures today. We, humans, became the top predator when we started evolving 

culturally [14] [15] and hence, our motivation for using Cultural Algorithms.  

 

1.4 Thesis Statement 

 

Machine learning (ML) is used in order to make predictions or decisions without being 

explicitly programmed to perform the task.  The larger the dataset, the greater the 

accuracy in the training of the ML models and better the performance.  In real-world 

settings, the size of the datasets is small, which makes it challenging to perform well 

using these machine learning algorithms. As such the general goal is to explore methods 

to create synthetic dataset for such domains. 

Recently, GANs was improved to generate high-resolution images in large-scale datasets 

[10]. However, there are still open problems regarding the training of the GANs. Our 
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hypothesis is neuroevolutionary training can resolve GAN training issues and can 

generate better images even if there is a small training dataset.   

 

There are different approaches to automate the discovery of GAN architecture. One of 

them is to use a grid search, wherein all the possible combinations of the network 

architecture are tested, and the best one is selected. Such an approach can be very time-

consuming. Second, a very well appreciated approach called AutoML involves usage of 

reinforcement learning, where the AI agents learn by trial-and-error in an environment 

without direct supervision. AutoML based techniques have made a significant impact in 

searching the different types of backbone architecture for deep neural networks [13]. One 

drawback of the AutoML approach is that it requires tremendous computing resources 

and data. However, a recent study has shown that evolutionary algorithms are a 

competitive alternative to such deep reinforcement approaches. Moreover, it is proven 

that evolutionary algorithms are substantially faster than deep reinforcement learning 

methods [16]. Hence, in our approach we have selected evolutionary strategies to 

automate the architecture search of deep convolutional GANs (DCGAN). Also, in our 

approach, we are using domain knowledge in cultural algorithm based neuroevolutionary 

training of DCGAN. By using domain knowledge, we propose that the hyperparameter 

search space will be dramatically reduced and eventually generate sharper and diverse 

realistic images.  

 

We expect to see the improvement of the training stability, better generation of images 

and automatic discovery of efficient deep convolutional GANs topologies by the 

introduction of evolutionary algorithms. 

 

1.5 Thesis Contribution 

 

This thesis represents the problem of training deep convolutional GANs with a small 

dataset. With the training, GANs topography is also evolved using two evolutionary 
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algorithms. Genetic algorithm and Cultural algorithm are used with the combination of 

neuroevolution of augmented topologies (NEAT) [8].  

 

Moreover, the proposed approaches are tested on three different datasets. The three 

datasets are MNIST [17], F-MNIST [18] and Stroke Face. We also introduced the Stroke 

face dataset to test our approach in the low-scale dataset. To compare the quality and 

diversity of generated images, we have used the FID score [19], which is currently the 

state-of-the-art metric to evaluate GANs. In this thesis, we also demonstrate the 

transference of weight parameters of deep neural networks throughout the generations of 

the evolutionary algorithm.  

 

Thus, this thesis contributes by implementing the following strategies: 

 

• Genetic neuroevolutionary training of deep convolutional GANs (GAGAN) 

• Cultural neuroevolutionary training of deep convolutional GANs (CAGAN) 

 

1.6 Thesis Organization 

 

The rest of the thesis is organized in the following way:  

 

In chapter Ⅱ, we do a background study of our thesis. We discuss the basic concepts of 

deep learning and evolutionary computation.  

 

In Chapter Ⅲ, we explain the literature review in the field of neuroevolution of 

Generative Adversarial Networks. 

 

In chapter Ⅳ, we introduce our proposed approach in detail with algorithms to 

understand it better.  
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Chapter Ⅴ describes the experimental setups and detailed results of the proposed 

methods. 

In Chapter Ⅵ, we compare our work with other benchmark models and analyze the 

results. 

 

Chapter Ⅶ concludes the research, discuss limitations and set up potential directions for 

future work. 
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CHAPTER 2 

Introduction to Deep Learning and 

Evolutionary Computation 

 

This chapter introduces the reader to deep learning. The following section introduces the 

fundamental concepts of Artificial Neural Networks. Section 2.2 Convolutional Neural 

Networks describes the detailed explanation of components of Convolutional Networks. 

Section 2.3 Generative Adversarial Networks provides an introduction to GANs and 

equips the reader with the necessary knowledge for the methods implemented in this 

thesis. An introduction to evolutionary algorithms is presented in section 2.4 , which is 

the fundamental technique used throughout this thesis.   

 

2.1 Artificial Neural Networks 

 

Figure 4 General Architecture of Neural Network 
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Artificial Neural Networks (ANN) are machine learning tools which are loosely based on 

human mind architecture [20]. ANN is one of the most active topics of research in 

machine learning, and it is because ANN has the capability to represent and learn highly 

complex and non-linear functions. 

 

The most simple ANN contains three layers and is composed of an input layer, a hidden 

layer and an output layer, where each layer contains neurons [21]. Figure 4 shows a 

general ANN architecture which contains 3 input neurons, 4 hidden neurons and 2 output 

neurons. 

 

2.1.1 Perceptron 

 

Frank Rosenblatt developed the first neuron, which he named as perceptron in 1957 [22]. 

The basic unit of ANN is the perceptron (neuron). The perceptron works in the following 

way: All the inputs 𝑥 are multiplied with their weights 𝑤. Let’s call it 𝑘. 

 

Figure 5 A sample perceptron [21] 

 

Add all the multiplied values and call them a weighted sum.  Apply the weighted sum to 

the Activation Function. The perceptron will return 1 only if the aggregated sum is more 

than some threshold else returns 0. A single perceptron can only be used to implement 

linearly separable functions.  
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2.1.2 Activation Functions 

 

Activation functions are used to propagate the output of one-layer perceptron to another 

layer perceptron. Activation functions are scalar-to-scalar function, deciding the 

activation of perceptron in Neural Network. To introduce nonlinearity for the neural 

network, hidden layers uses activation function. Most of the important activation function 

belongs to a logistic class of transform when graphed resembles an S. For this section, we 

will state useful activation function in neural networks. 

 

2.1.2.1 Linear Function 

 

A linear function is the identity function represented by 𝑓(𝑥) = 𝑊𝑥 , where the 

dependent variable has a direct proportional relation relationship with the independent 

variable [23]. In practical definition, it means the function passes through signal 

unchanged. 

 

Figure 6 Linear activation function 

 

Linear activation functions are commonly used in the input layer of the neural network. 

 

2.1.2.2 Sigmoid Function 

 

A sigmoid activation function [24] outputs an independent probability for each class. A 

sigmoid function will convert independent variables of infinite range into simple 
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probabilities between 0 and 1, and most of its output will be very close to 0 and 1. The 

vertical line in Figure 7 is the decision boundary.  

 

 𝑆(𝑥) =  
𝑒𝑥

𝑒𝑥+1
 (3) 

 

 

Figure 7 Sigmoid activation function 

 

2.1.2.3 Tanh Function 

 

 

Figure 8 Tanh activation function 

 

Tanh [25] represents the ratio of hyperbolic sine to the hyperbolic cosine. Tanh is 

normalized in the range of -1 to 1. The advantage of Tanh over the sigmoid function is 

that it can deal more efficiently with negative numbers. 
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tanh(𝑥) =

sinh (𝑥)

cosh (𝑥)
 

(4) 

 

 

2.1.2.4 Rectified Linear Function 

 

Rectified Linear (ReLU) [26] activates a neuron if the input is above a certain value. 

When the input is above a certain quantity, it has a linear relationship with the dependent 

variable 𝑓(𝑥) = max(0, 𝑥) as shown in Figure 9. ReLU is the current state of the art. 

Because the gradient of ReLU is either zero or a constant, it is possible to prevail in 

vanishing exploding gradient issue.  

 

 

Figure 9 Rectified Linear activation function 

 

 

2.1.2.5 Leaky ReLU Function 

 

Leaky RELU [26] has a small slope of negative values instead of altogether zero. The 

downside for being zero for all the negative values is called a dying ReLU problem. 

Leaky ReLU is strategy to mitigate dying ReLU problem. Leaky ReLU results are not 

always consistent.  
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𝑓(𝑥) = {

𝑥
0.01𝑥

𝑖𝑓 𝑥 > 0

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(5) 

 

2.1.3 Loss Functions 

 

Loss Functions calibrate how close the neural network is to the ideal towards which it is 

training. A metric is calculated based on the error observed in the network’s predictions. 

We then aggregate these errors over the entire dataset and average them to find a single 

number representation of how close the network is to its ideal. 

 

The weight and bias of the neural networks decide the output of the network and altering 

them alters the loss function. Looking for the ideal state is same as finding weight and 

bias of the network, which will minimize the loss function incurred from the errors. 

Finding these parameters cannot be solved analytically but can be found by iterative 

optimization algorithms like gradient descent. 

 

The loss function notation can be described as follows: 

 

 ℎ𝑤,𝑏(𝑋) = �̂� (6) 

 

Where, 

𝑊, 𝑏: weight and bias of the network respectively 

𝑋: represents Input data 

�̂�: denote the output of the neural net 

ℎ(𝑋𝑖) =  �̂�𝑖: denote the neural network transforming the given input to the output 𝑌�̂�  

 

2.1.3.1 Mean squared error loss 
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The error in a prediction is squared and is averaged over the number of data points. The 

MSE loss [27] can be described as follows: 

 

 
𝐿(𝑊, 𝑏) =  

1

𝑁
∑ (�̂� − 𝑌𝑖)

2
𝑁

𝑖=1
 

(7) 

 

The loss function boils-down the difference between desired and predicted, be that they 

are vectors, into a single number. 

 

2.1.3.2 Hinge loss 

 

When the network is to be optimized for hard classification like 0-1 classifier, hinge loss 

is most commonly used. For example, 0= no fraud and 1= fraud. The 0,1 choice is 

arbitrary and -1,1 is also seen in substitute of 0,1.  

The hinge loss equation [23] can be described as follows: 

 

 
𝐿(𝑊, 𝑏) =  

1

𝑁
∑ 𝑚𝑎𝑥(0,1 − 𝑌𝑖,𝑗∗�̂�𝑖,𝑗)

𝑁

𝑖=1
 

 

(8) 

 

2.1.3.3 Maximum likelihood loss 

 

When probabilities are of great interest than hard classification, logistic loss is used. 

Example, probability of someone clicking on an advertisement. In maximum likelihood 

loss [23], we want to maximize the probability to predict the correct class, and we want to 

do so for each sample in the dataset.  

We can describe the loss function for 0,1 classifiers as follows: 

 

 𝑃(𝑦𝑖|𝑋𝑖; 𝑊, 𝑏) = (ℎ𝑊,𝑏(𝑋𝑖))𝑦𝑖 ∗  (1 − ℎ𝑊,𝑏(𝑋𝑖))1−𝑦𝑖 (9) 

 

The above equation can be written as follows for each sample: 
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𝐿(𝑊, 𝑏) =  ∏ 𝑦�̂�

𝑦𝑖

𝑛

𝑖=1

∗ (1 − 𝑦�̂�)
1−𝑦𝑖 

(10) 

 

2.1.3.4 Negative log-likelihood loss 

 

For mathematical convenience, when dealing with the product of probabilities, it is 

accepted to convert them to the log of the probabilities. The product of the maximum 

likelihood transforms into the sum of the log of the probabilities. The logarithm is 

monotonically increasing function. Thus, minimizing the negative log-likelihood is 

equivalent to maximizing the probability. 

The negative log-likelihood [20] can be written as follows: 

 

 

𝐿(𝑊, 𝑏) =  − ∑ 𝑌𝑖 ∗ log 𝑦�̂� + (1 − 𝑌𝑖) ∗

𝑁

𝑖=1

log(1 − 𝑦�̂�) 

 

(11) 

 

When the loss function is extended from two classes to M classes, it gives us the equation 

which is called as cross-entropy between two probability distributions. 

 

2.1.4 Gradient Descent 

 

Gradient descent is the first-order iterative optimization algorithm for finding the 

minimum of a function. It is represented as a vector on n partial derivatives of the 

function f. Gradient descent calculates the slope of the loss function by taking a 

derivative. On a two-dimensional loss function, the derivative would simply be the 

tangent of any point on the parabola, i.e. change in y over change in x. 
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The gradient points directly uphill, as shown in Figure 10, so a parameter is updated by 

taking a small step in the reversed direction of the gradient, this small step is known as 

learning rate. The size of the learning rate is difficult to set; it must be large enough to 

make progress but small enough to not miss the minimum.  

 

 

Figure 10 Showing Weight change using Gradient Descent 

 

Gradient descent can be algebraically written as [28]: 

 

 𝜃′ =  𝜃 − 𝜂∇𝑓(𝜃) (12) 

 

Where, 

𝜃′ : is the newly updated weight parameter 

𝜃 : is the old parameter  

𝜂 : is the learning rate 

∇𝑓(𝜃): is the gradient of the loss function 

 

The process of calculating the gradient of the loss function with respect to the network’s 

parameter is usually made by the back-propagation algorithm. 
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2.2 Convolutional Neural Networks 

 

Multi-Layer Neural Networks does not scale well with the image data. When the image 

data is parsed into the feed-forward simple neural networks, the learnable parameters 

increases to approximately 1 billion for 1024x1024 pixel size image. Even though we 

have computers to handle computation on this scale, it is very time-consuming. The 

structure of image data allows to change the architecture of a neural network in a way 

that we can take advantage of this structure, the goal of the CNN is to learn higher-order 

features in the data via convolutions. The efficacy of CNNs in image recognition is one 

of the main reasons why the world recognizes the power of deep learning. CNN 

architecture can be considered to be three-dimensional volume of neurons.  

 

2.2.1 CNN Architecture Overview 

 

CNN's [20] transforms the input data from the input layer through all connected layers 

into the set of class scores given by the output layer. High-level CNN architecture view is 

shown in Figure 11.  

 

It consists of three parts:  

1) Input layer 

2) Feature-extraction layer 

3) Classification layer 

 

The input layer accepts three-dimensional input in the form of height*width*RGB colour 

channels. The feature extraction layer has a general repeating pattern of Convolutional 

layers and Pooling layers.  
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Figure 11 High-level general CNN architecture 

 

2.2.2 Convolutional Layers 

 

The Convolutional layers are the core building blocks of CNN architectures [23]. A 

convolution is how the input is modified by a filter. A filter is taken to slice through the 

image and map it to learn different portion of input image. As shown in Figure 12, Dot 

product is computed between the kernel and the layer of the image. The resulting output 

generally has the same spatial dimensions but increases the number of elements in the 

third dimension of the output. 

 

Figure 12 Sample Convolution operation [23] 
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2.2.3 Filters/Kernels 

 

Filters are the function that has a width and height smaller than the input volume. Filters 

are applied across the width and height of the input volume in a sliding window manner, 

as shown in Figure 12. The output of the filter is computed doing the dot product of the 

filter and the input region. The filters also usually have a shared bias parameter for each 

convolutional layer. The output activation map is expressed as   

 

 

𝑎𝑗,𝑘
𝑙 = 𝜎(𝑏𝑙−1 +  ∑ ∑ 𝑤𝑚,𝑛

𝑙−1𝑎𝑗+𝑚,𝑘+𝑛
𝑙−1

𝑞

𝑛=0

𝑝

𝑚=0

) 

 

(13) 

 

Where 𝑎𝑗,𝑘
𝑙  is the activation value of the kth neuron in the jth row of lth layer, b is the 

shared bias, w is the weight parameter of 𝑝𝑥𝑞 kernel and 𝜎(𝑧) is the activation function.  

 

 

Figure 13 Generating an activation output volume 

 

The above activation value calculation can be visualized, as shown in Figure 13. 
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2.2.4 Pooling Layers 

 

Pooling layers are commonly followed by convolutional layers. Pooling layers are used 

to progressively reduce the spatial size of the data representation. They replace the output 

by taking the summary statistics of the nearby output values. Most common 

downsampling operation is the max operation, also called as max pooling. Max pooling 

reduces the image size by mapping the 𝑚𝑥𝑛 window into a single result by taking the 

maximum value of the elements in the window, as shown in Figure 14.  

 

 

Figure 14 Max pooling 

 

Convolution is powerful in detecting the same patters as horizontal edge or vertical edge 

across the image. Hence CNNs are well adapted to translation invariance of images.  

 

2.3 Generative Adversarial Networks 

 

One of the most impressive successes in deep learning has, so far, involved 

discriminative models, i.e. models that map the dependence of unobserved target 

variables 𝑦 on observed variables 𝑥.  

 

Discriminative models infer outputs based on inputs without caring about how the input 

was generated. Generative models, as opposed to discriminative models, maps how the 

input data was generated. They are a branch of unsupervised learning techniques [1]. 
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Generative Adversarial Networks (GANs) [1] are a class of generative models. GANs are 

trained to generate fake data similar to some known input data. A GAN model consists of 

two types of neural networks, a generative model and a discriminative model. The two 

networks compete against each other, and they have an adversarial relationship. The 

generative model learns to generate data while the discriminative model learns to predict 

whether a data is from the model distribution 𝑝𝑚𝑜𝑑𝑒𝑙  or the original data distribution 

𝑝𝑑𝑎𝑡𝑎. During training, both models improve their methods until the artificially generated 

data are indistinguishable from real data [29] 

 

2.3.1 Structure of a GAN 

 

A GAN is made up of two different networks called as a Discriminator network and 

Generator network.  

 

Generator Network- The generative network in GANs creates synthetic data with a 

special kind of layer called a transpose convolutional layer. The input to the generator 𝑧 

is sampled from some simple prior distribution. The generator can be seen as a kind of 

reverse CNN. It takes a vector of z-dimensional noise as input and upsamples it to images 

[1].  

 

Discriminator Network- When modelling images, the discriminator network is generally 

a standard CNN. Using a secondary network as the discriminator neural network allows 

the GAN to train two networks in parallel in an unsupervised fashion. The input to the 

discriminator networks is images and outputs classification probabilities.  

The gradient of the discriminator network output with respect to generated input data 

indicates how to make changes to the generated data to make it more realistic [23]. 
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2.3.2 Training GANs 

 

In the training process of GANs, both the generator and discriminator are trained 

simultaneously. Two mini-batches are sampled in the first step. One of the batches is 𝑧 

values from 𝑝𝑚𝑜𝑑𝑒𝑙 , the model’s prior over latent variables. In the next step for each 

network, a gradient step is made. For generator network, the gradients update the 

parameters 𝜃(𝐺)  to reduce its loss function 𝐿(𝐺)(𝜃(𝐺), 𝜃(𝐷))  and one for updating 

discriminator’s parameters 𝜃(𝐷) to reduce discriminators loss function 𝐿(𝐷)(𝜃(𝐷), 𝜃(𝐺)). 

The tricky part here is that there are two optimizer function used one for each network. In 

other words, discriminator and generator play the two-player minimax game with value 

function 𝑉(𝐺, 𝐷) as shown in Equation 14 [1]. This training process is repeated for a 

number of training iterations. 

 

 𝑚𝑖𝑛𝐺 𝑚𝑎𝑥𝐷 V(D,G) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)
[log D(x)]+ 𝔼𝑧~𝑝𝑧(𝑧)

[log (1 − 𝐷(𝐺(𝑧)))] (14) 

GANs training is complicated; there must be a balance during training between the two 

networks. Otherwise, one can overpower the other network. It is therefore essential to 

have the correct hyperparameters, network topography and training procedure.  

 

When the generator overpowers some weakness in a discriminator, then an issue called 

mode collapse occurs. In mode collapse, the generator produces very similar images 

regardless of a change in the input 𝑧 . In another case, the discriminator can also 

overpower generator where the discriminator classifies fake generated data with absolute 

certainty. In this case, generator is left with no gradients and the network will not learn 

anything, this issue is called a vanishing gradient. These issues can be avoided by 

accurate hyperparameters of both the networks [29]. 

 

During the training process, the discriminator gets one of the two different inputs. The 

first is when 𝑥 is real data. In this case, the discriminator 𝐷(𝑥) goal is to be near to 1. In 

the second scenario, both the generator and the discriminator participate. The 
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discriminator receives generated data, i.e. x = G(z), where the discriminator goal is to 

make 𝐷(𝐺(𝑧)) closer to 0 and the generator will try to make it near 1. This is how the 

generator learns to generate synthetic data. Finally, if the training is balanced enough 

then at the end of the training, they will achieve Nash equilibrium. When this is achieved 

the 𝐷(𝑥) for both the input will be equal to 0.5, and it will be valid for any x, i.e. 

𝑃𝑚𝑜𝑑𝑒𝑙 = 𝑃𝑑𝑎𝑡𝑎 [20] [29].   

 

2.3.3 Deep Convolutional GAN 

 

Deep Convolutional Generative Adversarial Networks (DCGAN) [30] is a special class 

of GANs which is heavily inspired by CNN. Most of the real-world image generation 

applications, starter approach is DCGAN [31]. Compared to regular GAN approaches 

DCGAN has more stable training architecture.  

 

In DCGAN, the overall network architecture is composed of all convolutional layers. In 

discriminator, the pooling layers are replaced with transposed convolutions, and in a 

generator, it is replaced with strided convolutional layers. Such architecture design 

allowed the generator to learn its own upsampling. While in discriminator in the last 

layer, the transpose convolution was flattened and fed into sigmoid activation function. 

All the fully connected layers were also eliminated in DCGAN [30]. 

 

Figure 15 An example of a generator network in DCGAN. A 100-dimensional noise z is passed into the 

transpose convolutional layers which are converted into 64*64 pixel image [30]  
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Another significant change in DCGAN was to introduce the usage of batch normalization 

layer [31]. Because of batch normalization, each neuron had zero mean and unit variance, 

which helped to stabilize the training. This also allowed gradients to flow deeper and 

prevented the generator collapse. To avoid sample oscillation and instability, the 

generator output layer and discriminator input layer were not batch normalized [30]. 

The final change was the generator and discriminator activation functions were different. 

The generator had ReLU in all layers except for output, and the discriminator had 

LeakyReLU. 

 

2.3.4 GAN Loss Functions 

 

Like DCGAN, many other studies have tried to improve the training of the regular 

GANs. One of the ways is to improve the training using different variations of loss 

functions. Because the gradient used to train the network is calculated using the loss 

function, they play an essential role in training stability.  

 

In GAN, the discriminator can be defined in term of the non-transformed layer 𝐶(𝑥), as 

𝐷(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐶(𝑥)). Here 𝐶(𝑥) can also be called as the critic [32]. 𝐶(𝑥) can be 

interpreted as how real the data is, while a negative number means the data is synthetic. 

Also, let the real and fake data samples be represented as 𝑥𝑟 and 𝑥𝑓 respectively.   

    

Using these representations, we will define five different GAN loss functions which are 

used in this thesis. 

 

1. Vanilla GAN [1] 

 𝐿𝐷
𝑉𝐺𝐴𝑁 =  −𝔼𝑥𝑟~𝕡

[𝑙𝑜𝑔 (𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐶(𝑥𝑟))) − 𝔼𝑥𝑓~ℚ
[log (1 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝐶(𝑥𝑓)))]  (15) 

 

 𝐿𝐺
𝑉𝐺𝐴𝑁 =  −𝔼𝑥𝑓~ℚ

[log (𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝐶(𝑥𝑓)))]  

 

(16) 

2. LSGAN [33] 
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 𝐿𝐷
𝐿𝑆𝐺𝐴𝑁 =  𝔼𝑥𝑟~𝕡

[(𝐶(𝑥𝑟) − 0)2] + 𝔼𝑥𝑓~ℚ
[(𝐶(𝑥𝑟) − 1)2]  (17) 

 

 𝐿𝐺
𝐿𝑆𝐺𝐴𝑁 =  𝔼𝑥𝑓~ℚ

[(𝐶(𝑥𝑓) − 0)
2

] 

 

(18) 

3. HINGE GAN [34] 

 𝐿𝐷
𝐻𝑖𝑛𝑔𝑒𝐺𝐴𝑁

=  𝔼𝑥𝑟~𝕡
[max (0,1 − 𝐶(𝑥𝑟))] + 𝔼𝑥𝑓~ℚ

[max (0,1 + 𝐶(𝑥𝑓)]  (19) 

 

 𝐿𝐷
𝐻𝑖𝑛𝑔𝑒𝐺𝐴𝑁

= − 𝔼𝑥𝑓~ℚ
[𝐶(𝑥𝑓)]  (20) 

 

4. RSGAN [32] 

 𝐿𝐷
𝑅𝑆𝐺𝐴𝑁𝐿𝐷

𝑅𝑆𝐺𝐴𝑁 =  −𝔼(𝑥𝑟 ,𝑥𝑓)~(𝕡,ℚ)[log (𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐶(𝑥𝑟) −  𝐶(𝑥𝑓)))] (21) 

 

 𝐿𝐺
𝑅𝑆𝐺𝐴𝑁 =  −𝔼(𝑥𝑟 ,𝑥𝑓)~(𝕡,ℚ)[log (𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐶(𝑥𝑓) −  𝐶(𝑥𝑟)))] 

 

(22) 

5. RaSGAN [32] 

 𝐿𝐷
𝑅𝑎𝑆𝐺𝐴𝑁 =  −𝔼𝑥𝑟~𝕡

[log �̃� (𝑥𝑟)] − 𝔼𝑥𝑓~ℚ
[log(1 − �̃� (𝑥𝑓))] 

 

(23) 

 

 𝐿𝐺
𝑅𝑎𝑆𝐺𝐴𝑁 =  −𝔼𝑥𝑓~ℚ

[log �̃� (𝑥𝑓)] − 𝔼𝑥𝑟~ℙ
[log(1 − �̃� (𝑥𝑟))] 

 

(24) 

 Where,  

�̃�(𝑥𝑟) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐶(𝑥𝑟) − 𝔼𝑥𝑓~ℚ
 𝐶(𝑥𝑓)) 

�̃�(𝑥𝑓) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐶(𝑥𝑓) − 𝔼𝑥𝑓~𝕡
 𝐶(𝑥𝑟)) 

 

2.4 Evolutionary Algorithms 

 

An evolutionary algorithm (EA) is a technique inspired by biological evolution that aims 

to mimic the same evolutionary mechanism found in nature. In EAs, the population is 

composed of individuals that represent possible solutions for a given problem, using a 

high-order abstraction to encode their characteristics [27]. The algorithm uses various 

genetic operators like mutation, crossover and selection on the population in order to 
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search for better solutions. Evolutionary algorithms have various advantages which have 

made them immensely popular.  

• EAs are faster and more efficient when compared to traditional methods 

• Has excellent parallel computing capabilities 

• Optimizes both the continuous, discrete and also solve multi-objective 

optimization problems 

• EAs are useful when the search space is substantially large, and there are a large 

number of parameters involved 

Like any other technique, EAs also suffer from a few limitations. 

• EAs are stochastic, because of which there might not be any guarantee on the 

optimality of the solution 

• Fitness is calculated at every generation, which might be computationally 

expensive for a few problem domains like ours 

 

2.4.1 Genetic Algorithms 

 

Genetic Algorithms (GA) are the first EAs model developed to simulate natural genetic 

evolution. John Holland is considered the father of GAs [35].  GAs are search heuristics 

inspired by Charles Darwin’s theory of natural evolution - “Survival of the fittest.”  

In GAs, we have a pool or population of possible solutions for the given problem. These 

pools or population undergo genetic operation like crossover and mutation, producing 

new offsprings. Genetic algorithms reflect the process of natural selection, where the 

fittest individuals are elected to reproduce the offspring of the upcoming generation. Each 

candidate individual is assigned a fitness value based on its objective function. The more 

fit the individuals in the population, the more chance they have to mate and produce more 

“fitter” individuals. We carry out this evolution procedure for multiple generations until 

we reach stopping criteria.  

 It is imperative to be familiar with some basic terminology which will be useful 

throughout the thesis. 
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• Population - It is a subset of all possible candidate solutions to the given 

problem.  

• Chromosomes - A chromosome is one such candidate solution to the given 

problem 

• Gene - It is one of the elements of a chromosome 

• Allele - An allele is a value which a gene takes for a particular chromosome 

• Genotype - A genotype is an individual of the population in the computation 

space. The individual's representation in computational space is in such a way that 

it can be easily understood and manipulated using a computation system 

• Phenotype - Phenotype is the population space in the actual real-world solution 

domain.  In phenotype, the solutions are represented in the way they exist in real-

world situations.  

 

 

Figure 16 Representing Population space, Chromosome, Gene and Allele [36] 

 

• Encoding and Decoding – In most of the problems, genotype and phenotype are 

different. As shown in Figure 17, Encoding is a process of transforming a solution 

from phenotype to genotype while decoding is the other way around, transforming 

a genotype to phenotype.  
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Figure 17 Encoding and Decoding [36] 

 

• Fitness Function – A fitness function takes a genotype as input, and outputs 

suitability of the solution. In our case, the fitness function and the objective 

function are the same, while in some other cases it can be different based on the 

problem   

 

 

Figure 18 Genetic Algorithm [36] 

 

In GAs, we start with an initial population space which may be seeded by some heuristic 

or generated randomly.  In the next step, we select the parents from this population space 

for yielding offsprings. Then with the elected parents, we do genetic operations like 

crossover and mutations to generate new offsprings. The better offsprings replace the 

individuals in the population and the evolutionary process repeats. A basic flow of GAs is 

shown in Figure 18. 



 

31 

 

2.4.1.1 Crossover Operation 

 

The crossover genetic operator is similar to the reproduction and biological genes 

crossover. From the population, more than one parent is selected, and one or more new 

individuals are produced using the genes of the parent.  

 

There are many different types of genetic crossovers like the one-point crossover, multi-

point crossover and uniform crossover. For this thesis, we will only use the one-point 

crossover. It is also necessary to note that GA designer, might choose to implement a 

problem-oriented crossover. 

 

One Point Crossover 

Figure 19 shows a one-point crossover operation. A random or specific point is selected 

in the parent individuals, and the tails of its two parents are exchanged to generate a new 

offspring. 

 

 

Figure 19 One Point Crossover 

 

2.4.1.2 Mutation Operation 

 

Mutation operation is a random tweak in the chromosome, to generate new offspring. The 

primary role of mutation is to introduce diversity in the population. For the converge of 

evolutionary algorithms, the mutation is an essential part. Many common types of 

mutation exist like bit flip, random resetting, swap mutation, scramble mutation etc. [36]. 

For this thesis, we have implemented the random resetting mutation.  
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Random Resetting 

In random resetting mutation, a random value from the list of permissible allele is 

assigned to a gene which is uniformly randomly chosen.  

 

Figure 20 Random Mutation 

 

2.4.1.3 Selection Operation 

 

The selection operation decides which chromosome from the population and offspring set 

will proceed to the next generation, and which will be eliminated. It is a vital operation as 

it should be able to promote fitter chromosomes, while the diversity of the population 

space should also be maintained.  

 

 

Figure 21 Tournament Selection [36] 

 

For this thesis, we have used a tournament selection [37] operation. In a k-way 

tournament, k random chromosomes are selected, and we run a tournament among them. 

The fittest individual is elected among them and is passed on the next generation. In a 

similar way, many such tournaments can take place until we have our final selection of 

the candidates for the next generation. The k-way tournament selection is shown in 

Figure 21. 
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2.4.2 Cultural Algorithms 

 

Cultural evolution(CE) was first introduced by Renyolds [38] in the early 1990s. CE bias 

the search process with prior knowledge about the domain as well as knowledge gained 

during the evolutionary process. 

 

Standard EAs like genetic algorithms are unbiased using little or no domain knowledge to 

guide the search process. However, the performance of EAs can be improved 

considerably if the domain knowledge is used to bias the search process. Domain 

knowledge then serves as a mechanism to reduce the search space by pruning unwanted 

parts of the solution space by promoting desirable parts.  

 

 

Figure 22 Population Space and Belief Space in CA [38] 

 

A Cultural Algorithm (CA) maintains two search spaces: the population space and a 

belief space. The population space contains the individuals, and the belief space contains 

cultural knowledge. Both the population space and belief space evolve in parallel to 

optimize some function. Figure 22 visualizes the dual-inheritance system of CA. A two-

way communication protocol is set up to exchange information between the search 

spaces. One protocol called as acceptance function used to select a group of individuals 
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from the current population, these selected individuals will be used to adjust the current 

belief space and second variation operator uses the beliefs to control the changes in the 

individuals [27].  

The next section discusses the belief space in more detail. 

 

2.4.2.1 Belief Space 

 

The belief space serves as a knowledge repository, where the collective behaviour of the 

individual in the population space are stored [38]. The belief space can effectively be 

used to prune the population search space: the knowledge within the belief space is used 

to route individuals away from undesirable areas in the population space towards more 

promising areas. It has been proven that the use of a belief space reduces computational 

cost dramatically [39].  

 

To represent the behavioural pattern of individuals from the population space, belief 

space contains a number of knowledge components. The type of knowledge component 

and data structures used to represent the knowledge depends on the problem being 

solved.  

In general, the belief space contains five different knowledge components [38]: 

1. A situational knowledge component keeps track of the elite solutions found at 

each generation. 

2. A normative knowledge component provides specifications for individuals 

behaviour, used as guidelines for mutational adjustment to individuals.  

3. A domain knowledge component contains an archive of best solutions since 

evolution started. Domain knowledge is not re-initialized at each generation. 

4. A history knowledge component maintains information about the sequence of 

environmental changes. For each environmental change, the following 

information is stored: the best solution, the change in direction for each dimension 

and the current change distance.  

5. A topographical knowledge component which maintains a multi-dimensional 

grid representation of the search space.  
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CHAPTER 3 

Related Work 

 

In this chapter, we have reviewed the literature of evolutionary Generative Adversarial 

Networks. 

 

Modern machine learning techniques focus heavily on the usage of deep learning 

approaches. In deep learning, the neural network weights are trained through a variation 

of stochastic gradient descent. An alternative way comes from the field of 

Neuroevolution. Neuroevolution is the application of evolutionary algorithms in the 

evolution of neural networks. Neuroevolutionary approach can be applied to weights, 

topography and hyperparameters of the neural networks. Neuroevolution can be used for 

the generation of network architecture, and a substantial benefit is the automation of 

topography design and the parameters of the network [40].  

 

However, evolutionary algorithms are not the only approach for Neuroevolution. 

Neuroevolution can be combined with a Reinforcement learning approach, also called as 

AutoML [41]. But the problem with such AutoML approach is that it requires vast 

computational resources in spite of their success, in many real-world applications it 

makes unfeasible to apply [16]. Therefore, we have focused our thesis on classic 

evolutionary approaches.    

 

GANs were first introduced in 2014 [1] by Ian Goodfellow. Several works improving the 

GAN model were recently published, leveraging the quality of the results to impressive 

levels [10] [11] [29]. However, there are some open problems related to training of GANs 

like mode collapse and vanishing gradient [42].  Neuroevolution of GANs can be helpful 

to resolve the existing problems in GANs [43]. Therefore, this literature focuses on a 

niche area of the evolution of generative adversarial networks. Moreover, the first 
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evolutionary GANs were introduced in 2018 by Wang et al., so this research area is very 

recent. We have tried to cover all the evolutionary GAN approaches until August 2019. 

Related work is divided into three sections, where the first section contains methods of 

neuroevolution of weight parameter of the generator network. In the second section, only 

the discriminator and generator architecture is evolved. And in the last section study of a 

combination of weight parameter, topography and hyperparameter of the GANs are 

presented.  

 

3.1 Neuroevolution of Weights 

 

Various evolutionary algorithms like genetic algorithm [35] and coevolutionary 

algorithm [27] are used to evolve the weight parameters of the generator and 

discriminator networks.  

 

In March 2018, Wang et al. proposed the first evolutionary generative adversarial 

networks (E-GAN) [9] approach. E-GAN was proposed with the intention to improve the 

training stability and better generative performance of GANs. Figure 23 shows the E-

GAN architecture where a population of generator 𝐺𝜃 evolves in a dynamic environment, 

the discriminator 𝐷. 

 

 

Figure 23 Conventional GAN versus E-GAN [9] 
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Unlike in conventional GAN, E-GAN uses pre-defined objective functions, alternatively 

training generator’s weight parameters. In each evolutionary step, there are three sub-

stages: variation, evaluation and selection. One of the main contributions of E-GAN is 

the variation step, in which asexual reproduction with different mutations is used to 

produce the next generation’s individuals. E-GAN was tested on datasets like LSUN 

bedroom [44] and CelebA [45]. In E-GAN the generator quality was compared with 

conventional GANs using FID score and demonstrated that E-GAN achieves convincing 

generative performance and minimizes training problems in conventional GANs.   

 

Thereafter, in August 2018, Abdullah et al. proposed a spatial coevolutionary approach 

called Towards Distributed Coevolutionary GANs (Lipizzaner) [46]. In which, the 

researchers investigate the usage of coevolutionary algorithms with conventional GAN 

training. Their aim was to bridge the gap between works of deep learning and 

evolutionary computing communities towards a better understanding of gradient-based 

and gradient-free GAN dynamics.  

 

Figure 24 Spatial coevolution of generator and discriminator population [46] 

 

Figure 24 represents a spatial GAN training framework that allows scaling over a 

distributed spatial grid topology. In spatial coevolution, GAN individuals are distributed 

on a grid, as shown in Figure 24, where the local interaction of individuals governs the 

fitness evaluation, selection and mutation.  Lipizzaner framework was tested on MNIST 
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[17] and CelebA datasets. Researcher in their experiments shows that coevolution is a 

promising framework for escaping degenerate GAN training behaviour. 

 

An improved version of Lipizzaner was introduced by Jamal et al. in July 2019. This 

approach is called as spatial evolutionary generative adversarial networks (Mustangs) 

[47].  

 

 

Figure 25 Graphical representation of the mutation used in Mustangs [47] 

 

In mustangs, the main idea focuses on combining mutation from E-GAN and population 

diversity from Lipizzaner. Figure 25 shows the selection of random loss function to 

create a new generator 𝐺𝑢′. Mustangs were tested on MNIST and CelebA datasets, and 

they demonstrated statistically faster training compared to Lipizzaner.  

 

Recently in July 2019, Cho et al. tried genetic algorithms to stabilize the training of 

GANs [48]. In this approach, authours attempted to improve the discrimination ability of 

the 𝐷  and accordingly improve the performance of the generator, as shown in Figure 26.         

The chromosome in this approach is fake generated images by 𝐺. The synthetic images of 

high fitness were selected, i.e. the samples that were discriminated real by 𝐷 and the 

population of fake images are evolved using a genetic algorithm. This approach was 

tested on MNIST dataset and authors claims to improve the convergence speed and GAN 

stability during training. 
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Figure 26 GAN combined with GA [48] 

 

 

The weight-based neuroevolutionary training approaches were able to minimize the 

training instability. However, the GANs network topography and hyperparameter were 

empirically selected, wasting individual time on the monotonous experiments such as 

fine-tuning the network. 

  

3.2 Neuroevolution of Topography  

 

In this section, we will present the work where only the architecture of GANs is evolved.   

 

Progressive GANs [10] uses a simple strategy to evolve GANs during the training 

procedure. The idea is to increases the number of layers progressively in both the 

generator and discriminator.  

 

This progressive growing will make the model complex as the training proceeds. Also, 

the resolutions of training images are increased at each progression, as shown in Figure 

27. However, the layers are preconfigured in this approach, i.e. they are hand-designed 

architecture. The progressive layers are not evolved using any stochastic method. Hence, 

the network model is evolved in a pre-configured way but does not use any evolutionary 

algorithm. Therefore, we consider this pre-defined progressive growing of GANs as the 

first approach to evolutionary Generative Adversarial Networks. Progressive Growing of 
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GANs used CelebA and CIFAR 10 dataset for their experimentation. Progressive 

Growing of GANs is state-of-the-art in image generation. 

 

 

Figure 27 Progressive Growing of GANs [10] 

 

 

In July 2018, Unai et al. presented evolved GANs for generating Pareto Set 

approximations [43]. In this paper, a neuroevolutionary approach in combination of a 

genetic algorithm is used to evolve the deep GANs architecture. The deep GANs 

architecture presented in the paper uses conventional GANs, i.e. Multi-Level 

Perceptron’s (MLP) are used as the hidden layers in the GANs architecture. Our approach 

GAGAN is different in a way that we are using convolutional layers instead of MLP. 

However, our GAN evolvability components are inspired by this approach. Moreover, 

after every generation, the weight parameters of the trained networks are deleted. The 

evolved GANs are not used to generate images. Instead, they were used to generate 

Pareto set points.  

 

The major drawback of evolving just the architecture of the network is that it does not 

take full advantage of the weights learned in the evaluation of the previous solutions.  
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3.3 Neuroevolution of Weights and Topography  

 

In this section, we will present the literature review of GANs whose weight parameter, as 

well as network architecture, are evolved.  

 

Neuroevolution of Augmented Topology (NEAT) [8] is a famous approach to evolve 

weight and topography of neural networks. Deep Neat [40] was recently proposed to 

extend the NEAT approach to larger search space such as deep neural networks. Most of 

the GANs evolutionary approaches in this section are inspired from NEAT or Deep Neat 

based methods. 

 

In March 2019, Costa et al. proposed coevolution of Generative Adversarial Networks 

(COEGAN) [12]. In COEGAN authours combines neuroevolution and coevolution in the 

coordination of the GAN training algorithm. In COEGAN the activation functions, 

number of hidden layers of the network, output channels and weight parameter are 

evolved in coevolutionary fashion. However, COEGAN approach does not take 

advantage of evolving different loss functions to train the GANs. Our approach is 

different in a way, we are using convolution layer while the COEGAN uses a 

combination of linear and convolutional layers. Moreover, in our approach, the GANs are 

evolved using genetic and cultural algorithms, and in COEGAN coevolutionary approach 

is used. COEGAN was evaluated with conventional DCGAN on MNSIT dataset using 

FID score. 

 

In July 2019, an evaluation of COEGAN [49] was presented by Costa et al., wherein 

COEGAN was evaluated on Fashion-MNIST dataset. The evaluation suggests that 

COEGAN can be used as a training algorithm for GANs to avoid common issues, such as 

mode collapse.     

Recently, in August 2019, a reinforcement learning-based approach was presented by 

Gong et al. for Neural Architecture Search (NAS) of GANs (AutoGAN) [50]. The search 

space of generator architecture was defined in AutoGAN, as shown in Figure 28. 
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Recurrent Neural Network (RNN) is used to guide the search, with the parameter sharing 

and dynamic resetting to accelerate the process. Inception score is adopted as a reward. 

Also, a multi-level architectural search is introduced to perform the neural architectural 

search. AutoGAN experiments were performed on CIFAR-10 and STL-10 datasets and 

evaluated with state-of-the-art GANs using FID score. 

 

 

Figure 28 Search space in AutoGAN [50] 

 

However, there is a high computational cost associated with AutoGAN; it takes 

approximately 43 hours for training on CIFAR-10. Thus, only the generator’s 

architecture was evolved. 

 

 

Method 

 

Author Type Approach 

E-GAN [9] 

 

Wang et al. Weight parameter Genetic 

Lipizzaner [46] 

 

Abdullah et al. Weight parameter Coevolution 

Mustang [47] 

 

Jamal et al. Weight parameter Coevolution 

Stabilized GAN 

training [48] 

 

Cho et al. Weight parameter Genetic 

Progressive GAN 

[10] 

 

Karras et al. Topography Hand-designed 

Evolved GANs [43] 

 

Unai et al. Topography Genetic 
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COEGAN [12] 

 

 

Costa et al. Weight and 

Topography 

Coevolution 

Evaluating 

COEGAN [49] 

 

Costa et al. Weight and 

Topography 

Coevolution 

AutoGAN [50] 

 

 

Gong et al. Weight and 

Topography 

Reinforcement 

learning 

 

Table 1 Comparision of various methods to evolve GANs 

 

 

Table 1 summarizes the literature review for this thesis, in which it compares all different 

proposed approach for evolving Generative Adversarial Networks.  
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CHAPTER 4 

Proposed Approach 

 

In this chapter, we have discussed the proposed neuroevolutionary training algorithms for 

Deep Convolutional Generative Adversarial Networks (DCGAN). The chapter begins 

with the introduction of gene representation and fitness evaluation of the individuals. 

Thereafter this is followed by an explanation of pseudocodes of our proposed technique. 

 

4.1 Proposed Training to Neuroevolve Deep 

Convolutional GANs 

 

There are two proposed training strategies for evolving deep convolutional GANs. Both 

strategies are applied to automate the architecture search and stabilize the training of 

DCGAN. The names of the strategies are as stated below: 

• Genetic neuroevolutionary training of deep convolutional GANs (GAGAN) 

• Cultural neuroevolutionary training of deep convolutional GANs (CAGAN) 

 

4.2 Individual Representation 

 

In GAGAN and CAGAN, the genome is represented as an array of genes which are 

directly mapped into a phenotype consisting of a sequence of layers in a deep neural 

network. Each gene represents a convolutional or transpose convolutional layers. 

Moreover, each gene also has an activation function, chosen from the following set: 

ReLU, LeakyReLU, ELU, Sigmoid and Tanh. There is also a loss function gene 

associated with each genotype. The loss function is chosen from the following set: BCE, 
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MSE, RSGAN, RAGAN and Hinge loss. From the specific parameter of each type of 

gene, convolutional and transpose convolutional layers only have the number of output 

channel as a random parameter. The strides and kernel size are fixed. The number of 

input channel are calculated dynamically based on the previous layer. Therefore, only the 

number of layers, activation function with each layer, output channels and loss function 

are subject to mutation operations.   

 

Each individual’s genotype is composed of two separate arrays of gene: one array 

represents Generator network 𝐺𝑖 and the second array represents a Discriminator network 

𝐷𝑖  and a universal loss function gene. The individual genotype is represented by the 

following equation: 

 

 𝐼𝑖 = {𝐺𝑖 , 𝐷𝑖 , 𝑙} 

 

(25) 

 

 

  

Figure 29 shows a sample of a discriminator phenotype. The discriminator is composed 

of three layers wherein each convolutional layer is followed by batchnorm2d layer and 

activation function. The output channel of the previous layer will be the input channel of 

the current layer. 

 

Figure 29 A phenotype of the discriminator 

 

Figure 30 shows a sample of a generator phenotype. The generator network is also 

composed of three layers. Each convolutional transpose layer is followed by 

batchnorm2d layer and activation function. Similar to discriminator in the generator 

output channel of the previous layer will be the input channel of the current layer. 
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Figure 30 A phenotype of the generator 

 

In the population space, there is a list of individual GAN which represents genetic 

components. Thus, GAGAN and CAGAN use a list-based encoding and genetic 

operators that operate on these lists. Each network parameter list includes convolutional 

or transpose convolutional layer, output channel in each layer, activation function for 

each layer. In generator genotype, all hidden layers are composed of transpose 

convolutional section followed by batch normalization and activation function. While in 

discriminator genotype, all hidden layers are convolutional, followed by batch 

normalization and activation function. These hidden layers design is inspired by DCGAN 

[28]. The specification of the hidden layers (e.g. weights and bias) will be trained by a 

variation of the gradient descent method and will not be part of the evolution. However, 

the weights of the networks are preserved over the generations for each individual. 

During the evaluation step, fake generated images are used to assess the quality of the 

individual by a predefined fitness function. 

 

4.3 Individual Generation 

 

We will identify the GAN components which will be used to generate the individual. As 

described in Equation 25, each GAN individual consists of a Generator Network, a 

Discriminator Network and a loss function.  
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The following components are defined to initialize an Individual: 

1. Architecture of Generator. This includes: 

a. Number of layers of the architecture 

b. Activation function for each layer 

c. Output channel for each layer  

2. Architecture of Discriminator (with similar elements to be considered to those for 

the generator) 

3. Loss function used to train both the architecture 

4. Weight initialization technique for each network  

 

We will encode the value of each gene in a categorical way. 

Activation Functions and Loss Functions encoding is described as follows: 

 

Activation 

Function 

Encoding 

LeakyReLU 0 

ReLU 1 

ELU 2 

Sigmoid 3 

Tanh 4 
 

Table 2 Activation Functions Encoding 

 

 

Loss Function Encoding 

Binary Cross-Entropy (Vanilla 

GAN) 

0 

Mean Squared Error (LSGAN) 1 

Relativistic Standard GAN 

(RSGAN) 

2 

Relativistic Average GAN 

(RAGAN) 

3 

Hinge GAN 4 

 

Table 3 Loss Functions Encoding 

 

The weight initialization is encoded 0 for Normal and 1 for Xavier initialization. The 

output channels are randomly chosen from a range of 64 to 512, and the outputs channels 
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are in multiples of 64. Selection of output channels is inspired by DCGAN architecture 

[31]. 

Example of a genotype encoding can be shown in the following table: 

 

Gene Generator Discriminator 

Number of layers 5 6 

Activation functions [1,1,0,2,4] [0,0,0,1,0,3] 

Output channels [512,256,128,64,64] [64,64,128,256,512,512] 

Weight initialization 0 1 

Loss Function 2 
 

Table 4 Individual GAN genotype 

 

During the population initialization 𝑁, such GAN genotypes are generated. 

 

4.4 Fitness Evaluation  

 

The fitness evaluation is the process of measuring the fitness of an individual. We have 

tried to use the loss function of the individual as a fitness evaluation metric. However, 

preliminary experiments evidenced that the loss function does not represent a good 

measure for quality. Since the loss functions are unstable during the training of the 

GANs, it is not suitable to be used as a fitness function in evolutionary algorithms. 

 

Fréchet Inception Distance (FID) [51] is the state-of-the-art metric to compare the 

generative component of the GANs and outperforms other evaluation metrics, such as the 

Inception score [11] with respect to diversity and quality. Inception Net [19] is used  in 

FID, and it is trained on ImageNet [51]. This Inception Net is used to transform the 

images to feature space. This feature space is interpreted as a continuous multivariate 

Gaussian [12]. So, the mean and covariance of two Gaussians are estimated using real 

and fake samples. The FID score between two Gaussians is given by the following 

equation: 
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 FID(x, g) = ||μx − μg||𝟐𝟐 + Tr(Σx + Σg − 𝟐(ΣxΣg)1/2) 
 

(26) 

 

In Equation 26, μx, Σx, μg and Σg represent the mean and covariance estimated for the 

real dataset and fake samples, respectively. 

 

4.5 Genetic Neuroevolutionary Training of Deep 

Convolutional GANs 

 

One of the simplest way to evolve any neural network can be done through the use of 

Genetic Algorithms. Figure 31 shows a visual representation of the usage of genetic 

algorithm in neuroevolution. Where the weights of the neural networks are evolved using 

a genetic algorithm, then the network is asked to perform some action on the environment 

and based on the action, a fitness score is calculated. However, there is a problem when 

this approach is applied to deep convolutional neural networks, the parameters required 

to optimize deep networks increases to hundreds of thousands in number.  

Neuroevolution of Augmented topologies (NEAT) [8] deals with this problem, where 

authours instead of evolving weights of the network evolves the topology of the network. 

The weights are trained through traditional stochastic gradient descent algorithm [52]. 

 

 

 

Figure 31 Genetic Neuroevolution of Neural Network 
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GAGAN model combines neuroevolution and genetic algorithms in the coordination of 

the deep Convolutional GAN training algorithm. Our approach is based on NEAT [8], 

that was adapted to the context of GANs. Algorithm 1 presents the GAGAN, a genetic 

neuroevolutionary training of deep convolutional GANs.  

 

In this section, we will give a detailed explanation of genetic operations like crossover 

and mutations performed in the algorithm. At the end of this section, each step of 

Algorithm 1 is analyzed. 

 

4.5.1 Crossover 

 

The crossover operation is used to combine genetic information of two parents to 

generate new offsprings. Initially, we have tried to apply a k-point crossover. We tried to 

pick randomly 𝑘  different genes and swap between the parent individuals. However, 

preliminary test evidenced that k-point crossover decreases the performance of the 

system. Such a decrease in performance happens because when the new gene is 

introduced in the individual genotype, the trained weights of the network are not 

compatible. 

So for our crossover operation, we are using the single-point crossover. Let two selected 

parent individuals from the population be represented as follows: 

𝑃1 = (𝐺1,𝐷1) , 𝑃2 = (𝐺2,𝐷2) 

The crossover operation creates two offsprings as follows: 

𝑂1 = (𝐺2, 𝐷1) , 𝑂2 = (𝐺1,𝐷2) 

Crossover preserves the integrity of each network with trained weights and bias. 

 

4.5.2 Mutation 

 

The mutation operation is composed of five primary operations, as stated in  
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Table 5. One of the generator network or discriminator network is selected to mutate, 

from the elected individual of the population space. For discriminators, the available 

layer is convolution layer, and for generator, the available layer is transpose convolution. 

The maximum and minimum number of layers’ range is the input parameter for the 

GAGAN algorithm.  

 

Mutation Operations 

Add Layer 

Delete Layer 

Activation function change 

Output channel change 

Loss function change 
 

Table 5 Mutation operations 

 

In Add layer mutation, according to the network type, a new layer is added. Add layer 

mutation operation will never exceed the maximum range of layers. With the new layer, 

batchnorm layer and randomly selected activation function are also added. Also, the input 

channel of the next layer is reinitialized according to the output channel of the new layer. 

Similarly, in Delete layer mutation, a convolutional or transpose convolution layer is 

deleted. Input channel of the next layer is appropriately changed according to the 

previous layer output channel. The weights of the layers are not altered during this 

mutation operation. The Delete layer mutation will never go beyond the minimum range. 

If the mutation operation chooses activation function change, then a random layer is 

selected of the previously elected GAN network. A new activation function from Table 2 

is selected, and it is used to replace the elected networks activation function.  

A layer is arbitrarily chosen for which output channel change is to be performed. One 

new channel number is selected from the range of 64-512 and is replaced with the chosen 

layer output channel. Because of the output channel mutation, the input channel of the 

next layer is also changed dynamically. 

The loss function is selected from Table 3 and is replaced with the existing loss function 

of the individual. The mutation of these attributes follows a uniform distribution, with a 

predefined range limiting the possible values. 
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4.5.3 GAGAN Algorithm 

 

The purpose of the GAGAN algorithm is to search for best network topography and train 

the network to improve the generation of the images.  

 

The algorithm starts with the creation of population space according to the input 

parameter population_size. An individual in the population is initialized as described in 

4.3 Individual Generation. All the individuals of the population are trained for one epoch. 

Each epoch has a predefined batch size and training iteration as the input of the 

algorithm. The parameters of the epoch should be sufficient enough for the deep neural 

networks to learn some underlying task. Then a fitness score for each individual 

chromosome is calculated, as shown in Equation 26. Lower the FID score, better the 

individual solution. Hence, the best individual is saved at this step of the algorithm, as 

shown in Algorithm 1 step (6-8). 

 

New solutions are generated using genetic operations. In which population individuals 

become the parent, and Mutation(asexual) or Crossover(bisexual) reproduction is used to 

generate the offsprings. The size of the offspring is equal to the population size, and 

according to the predefined probability, Crossover or Mutation operation is chosen. Two 

random individuals are selected from the population, and as described in section 4.5.1 

Crossover operation is performed. For mutation operation, any random individual is 

elected from the population space, and as explained in section 4.5.2 Mutation operation is 

done. It is important to note that the choice of the mutation is made uniformly at random. 

The mutation and crossover are presented in step 10 of Algorithm 1. In step (11-17), the 

offsprings are trained, and the FID score is calculated for each new individual. If the 

offspring is better than the current best individual, then the best individual is updated 

with that offspring. 
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Algorithm 1 Genetic Algorithm(GA) for evolving deep convolutional GANs 

 

In step 18, the selection operation is performed. Selection gives preference to the better 

chromosomes to pass their genome to the next generation of GAGAN algorithm. 

Different types of selection method exist, empirically we have chosen tournament 

selection as it gives the best results in our problem space. Tournament selection involves 

running multiple tournaments among the randomly chosen k individuals. Using 

tournament selection gives the diversity and best offspring for the upcoming generation.  

The whole process is repeated until the specified number of generation, generation_max 

is also one of the input parameters of the algorithm. The number of generation should be 

sufficient for individuals to show the convergence. Finally, the bests individual having 

the lowest fitness score is returned as the output of the algorithm. 
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4.6 Cultural Neuroevolutionary Training of Deep 

Convolutional GANs 

 

Unlike Genetic Algorithms, Cultural Algorithm enables the population to adapt to their 

changing environment at a rate that exceeds that of biological evolution. CAGAN model 

combines neuroevolution and cultural algorithm in the coordination of the GAN training 

algorithm. In this section, we will introduce the cultural components and how to adjust 

those components, followed by usage of the culture to exceed the natural evolution. 

Finally, we will analyze all the steps of CAGAN. 

 

4.6.1 Adjusting Cultures 

 

In CAGAN, we maintain two search spaces: the population space, and a belief space (to 

represent cultural component). The belief space models cultural information about the 

population, while population space represents individuals. Both the population space and 

belief space evolve in parallel, with both influencing one another. 

In our method, we have used Situational, Domain and Normative knowledge to adjust the 

belief space and influence the GAN population. Mathematically, the belief space is 

represented as follows  

 𝐵(𝑡) = [𝑆(𝑡), 𝑁(𝑡), 𝐷] 
 

(27) 

Where 𝐵(𝑡)  represents belief space at generation t, 𝑆(𝑡) , 𝑁(𝑡) and 𝐷  represents the 

Situational, Normative and Domain knowledge components respectively. Situational and 

Normative component are updated simultaneously in every generation.  

Algorithm 2 shows how these knowledge components are updated in each generation. 

We will explain the adjustment of each knowledge components in the following sections. 
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4.6.1.1 Situational Knowledge 

 

Let 𝑆(𝑡) have an individual who has the fitness value represented as 𝑏𝑒𝑠𝑡_𝑖𝑛𝑑𝐹𝐼𝐷. If 

during the adjustment of situational component there is an individual in population 𝑃𝑡 

who has FID score lesser than 𝑏𝑒𝑠𝑡_𝑖𝑛𝑑𝐹𝐼𝐷; then we update the situational component as 

shown in step 1 of Algorithm 2. The best individual from the 𝑃𝑡 is set as a situational 

component. At all-time the 𝑆(𝑡) will have only one individual. 

This property of storing the best individual is known as Elitism. Elitism guarantees that 

the evolutionary process converges. However, the chances of converging to a local 

optimum also increase due to elitism. 

 

 

Algorithm 2 Adjust Culture 
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4.6.1.2 Domain Knowledge 

 

The domain knowledge component differs from the situational knowledge component in 

that knowledge is not re-initialized at each generation, but contains an archive of the best 

solutions since evolution started – very similar to the hall-of-fame used in coevolution. 

In our domain knowledge, we are storing the hyperparameters of a benchmark DCGAN 

[31] model. Hyperparameters like generators and discriminators activation function, 

number of layers, output channels for each layer and loss functions are stored in a 

dictionary in belief space. The domain knowledge is initialized as described in step 2-4 of 

Algorithm 2.   

 

4.6.1.3 Normative Knowledge 

 

The normative knowledge component maintains a set of intervals, one for each 

dimension of the problem is solved. These intervals characterize the range of what is 

believed to be good areas to search in each dimension [38]. 

The normative component is represented as follows 

 

 𝑁(𝑡) = (𝑔𝑙𝑎𝑦𝑒𝑟(𝑡), 𝑔𝑎𝑐𝑡(𝑡), 𝑔𝑜𝑢𝑡(𝑡), 𝑑𝑙𝑎𝑦𝑒𝑟(𝑡), 𝑑𝑎𝑐𝑡(𝑡), 𝑑𝑜𝑢𝑡(𝑡), 𝑙𝑜𝑠𝑠(𝑡)) 

 

 

(28) 

Where, 

 𝑔𝑙𝑎𝑦𝑒𝑟(𝑡): Generator layer count component 

𝑔𝑎𝑐𝑡(𝑡): Generator activation component 

𝑔𝑜𝑢𝑡(𝑡): Generator output channel array component for each layer 

𝑑𝑙𝑎𝑦𝑒𝑟(𝑡): Discriminator layer count component 

𝑑𝑎𝑐𝑡(𝑡): Discriminator activation component 

𝑑𝑜𝑢𝑡(𝑡): Discriminator output channel array component for each layer 

 

Where for each dimension following information is stored: 

 𝑋𝑗(𝑡) = (𝐼𝑗(𝑡), 𝐿𝑗(𝑡), 𝑈𝑗(𝑡)) 

 

(29) 
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𝐼𝑗(𝑡) denotes a closed interval, 𝐼𝑗(𝑡) = [ 𝑥𝑚𝑖𝑛,𝑗 (𝑡), 𝑥𝑚𝑎𝑥 ,𝑗 (𝑡)],  𝐿𝑗(𝑡) is the score for the 

lower bound, and 𝑈𝑗(𝑡) is the score for the upper bound. 

In adjusting the normative knowledge component, a conservative approach is followed 

when narrowing the intervals, thereby delaying a too early exploration. To update the 

normative component, top three elites are elected from the population 𝑃𝑡 . For all the 

dimension of the search space, these three elites are used to update the normative 

knowledge, as shown in the steps (9-14) of Algorithm 2.  

Where, 

𝑥𝑙(t): 𝑙
𝑡ℎ elite at generation 𝑡  

𝑓(𝑥𝑙(𝑡)): fitness value of the 𝑙𝑡ℎ elite individual at generation 𝑡  

𝑥𝑙𝑗(𝑡):  is the value of 𝑗𝑡ℎ gene of the 𝑙𝑡ℎ elite at generation t   

𝑥𝑚𝑖𝑛,𝑗 (𝑡): is the value of the 𝑗𝑡ℎ gene of the 𝑙𝑡ℎ elite whose fitness value is less than that 

of the individual with the smallest 𝑗𝑡ℎ gene at generation 𝑡  

𝐿𝑗(𝑡):  represents the fitness value of the elite that is less than the fitness value of the 

individual having the smallest 𝑗𝑡ℎ gene at generation 𝑡 

 𝑥𝑚𝑎𝑥 ,𝑗 (𝑡): would signify the value of the 𝑗𝑡ℎ gene of the 𝑙𝑡ℎ elite whose fitness value is 

less than that of the individual with the highest 𝑗𝑡ℎ gene at generation 𝑡  

𝑈𝑗(𝑡): would represent the fitness value of the individual that is less than the fitness value 

of the individual having the largest 𝑗𝑡ℎ gene at generation 𝑡 

  

4.6.2 Influence Functions 

 

Beliefs are used to adjust individuals in the population space to conform closer to the 

global belief space. The adjustments are realized via influence functions.  

In our model, the belief space is used to generate new offsprings by using genetic 

operations like mutations and crossover. The belief knowledge will be used to determine 

the search direction and step sizes.  
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The input to Algorithm 3 is the belief space 𝐵𝑡  and population  𝑃𝑡. At the end of the 

algorithm offspring 𝑂𝑡+1 of the population size is created. It is important to note that 

during the offspring creation, the weights of the networks are preserved showcasing 

transfer learning between the generations.  

 

Algorithm 3 Influence from Culture 

The probability of performing the crossover operation is decided to be 0.1 empirically to 

prevent the algorithm from local minima. In the crossover operation, the offsprings are 

created using situational knowledge and domain knowledge. Crossover operation is 

identical to the crossover in GAGAN as defined in section 4.5.1 Crossover. 

 

Unlike in GAGAN, the mutation operation uses Normative knowledge and Domain 

knowledge.  For any 𝑥  mutation dimension, the search direction and step sizes are 

determined  using the Normative knowledge as demonstrated in step (10-13) of 

Algorithm 3 Influence from Culture 
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Where,  

 𝑥𝑖𝑗(𝑡): represents the value of the 𝑗𝑡ℎ gene of the 𝑖𝑡ℎ individual 

𝑠𝑖𝑧𝑒(𝐼𝑗): 𝑥𝑚𝑎𝑥,𝑗(𝑡) −  𝑥𝑚𝑖𝑛,𝑗(𝑡) 

If 𝑥𝑖𝑗(𝑡) is less than 𝑥𝑚𝑖𝑛,𝑗(𝑡), then it is incremented by the normative knowledge size for 

that gene, and if it is higher than the knowledge range, then it is decremented or else it is 

kept unaltered.   

If domain knowledge is elected for the mutational adjustment, then the gene 𝑗  of 𝑖𝑡ℎ 

individual is replaced from the domain knowledge. 

 

4.6.3 CAGAN Algorithm 

 

CAGAN algorithm starts with the initialization of population space, similarly to GAGAN 

as presented in 4.3 Individual Generation. In the next step, Belief space 𝐵0 is initialized, 

where domain knowledge dictionary is created according to the hyperparameters of 

DCGAN, Situational knowledge and Normative knowledge are kept empty. At the start 

of evolution, all the individuals are trained for one epoch, and their fitness scores are 

calculated as explained in 4.4 Fitness Evaluation.  

A reference of best_ind is kept throughout the generations, if the fitness value of any 

individual is less than the fitness value of best_ind then the best individual is updated as 

stated in step (4-9) of Algorithm 4.  

 

Training of individual is followed by adjustment of belief space. The detailed explanation 

of the belief space modification is mentioned in 4.6.1 Adjusting Cultures. The belief 

space will be used in the creation of the new offspring; the individuals in the population 

are variated using the cultural influence. This variation of the population space is shown 

in step 12, and the detailed description is in 4.6.2 Influence Functions. 

The new offsprings are then trained for one epoch, and their fitness scores are calculated. 

This process is shown in step (13-19) of Algorithm 4. After that, using the tournament 

selection operation, the next population set is created. This evolution process is repeated 

over the number of generations, which is the input parameter of the algorithm.  
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Algorithm 4 Cultural Algorithm (CA) for evolving deep convolutional GANs 

 

Once the last generation is completed, the GAN individual having the lowest FID score is 

then returned. Best GAN individual is saved with the weights and can be used as an API 

to generate new images. 
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CHAPTER 5 

Experiments and Results 

 

In this chapter, we present different types of datasets used for experimentation, which is 

followed by the experimental setup for the proposed algorithms and the result obtained 

from those experiments.  

 

5.1 Datasets 

 

We will evaluate the performance of our method on three different datasets. Two of them 

are standard benchmark dataset for GANs, and the third one (Stroke Faces) is created by 

us. Following are the names and sample training images of these datasets.  

 

• MNIST  handwritten digit dataset [17]- consists of 60000 training images and 

10000 testing images. Each image is grayscale of size 28*28, but for our 

experimentation, we scale the images to 64*64.  

 

Figure 32 MNIST Dataset 
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• Fashion MNSIT [18] also consists of 60000 training examples and 10000 test 

images. Each example is a 28*28 grayscale image, and dataset has 10 different 

labelled classes. Similar to MNIST, we scale the dataset to 64*64 grayscale 

images. 

 

Figure 33 Fashion MNIST Dataset 

 

• Stroke Faces- Stroke faces dataset is one of our contribution. It consists of 3 

labelled classes of child, men and women having a stroke or facial paralyzes. This 

dataset has total 1280 samples scraped from google images and is pre-processed 

to 64*64 size grayscale images. 

 

Figure 34 Stroke Face Dataset 
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Usually, the network would be training for several epochs using the whole dataset in the 

procedure. But there are several domains where there is a lack of dataset, so we are 

testing our approach in low data regime. We will only use a small subset of the dataset 

per generation. Combining the small dataset, with the transfer of parameters between the 

generations, was sufficient to produce an evolutionary pressure towards efficient 

solutions to promote the GAN convergence. 

 

5.2 Experimental Setup 

 

Evolutionary Parameters Value 

Number of Generations 50 
Population size 7 
Crossover rate 0.1 
Mutation rate 0.9 

Layers range [5:8] 
Output channel range [64:512] 

Tournament size 3 
FID samples 1000 

Batch size 
Batches per generation 

64 
20 

Optimizer 
Learning rate 

Adam 
0.001 

  
Table 6 Experimental parameters 

 

Table 6 describes the parameters used in all experiments reported in this thesis. 

For evolutionary parameters, we chose to execute our experiments for 50 generations. 

After this number of generations, the fitness stagnates, and we expect no improvement in 

the results. We have used 7 individuals for the population, i.e. there will be 7 different 

generators and discriminators in the population. We choose 7 because that was the 

maximum computational power we had for carrying out our experiments. A larger 

population will probably achieve better results, but the computational cost is too high. 

The maximum layer range of 8, is also restricted for the same reason. We empirically 
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define the probability of crossover to be 0.1 and mutation to be 0.9; this is because we 

want the evolutionary algorithms to avoid the local optimum.  

For the GAN parameters, we choose 64 as the batch size, running 20 batches per 

generation. This amounts to 1280 samples per generation to train the individual. The 

optimizer used in this method is Adam [53].  

For all the three dataset MNIST, F-MNIST and Stroke face, we executed both the 

proposed model three times.  

 

5.3 Using GAGAN to Generate MNIST Images 

 

FID score is calculated by comparing 1000 generated images and original dataset images.  

Figure 35 shows the progression of the FID fitness score for the best individual 

represented by GAGAN. Moreover, the second line AVG GAGAN, shows the average of 

the best individuals FID score at each generation achieved in three runs. We can see the 

fitness of the generator reducing through generation with reduced noise.  

 

Figure 35 Graph showing the best FID score achieved at each generation versus the mean of three runs for 

GAGAN MNIST 
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In the final generation, the lowest FID was reported to be 36.61, with a standard deviation 

of  𝜎 = 7.15. 

Figure 36 contains generated samples selected to represent the progression of the 

generator during the evolutionary algorithm. We can see in the first generation only noisy 

samples, without any structure resembling a digit. From generation 25 we can start 

distinguishing between the digits, with a progressive improvement of the quality. 

 

Figure 36 The progression of MNIST samples created by best GAGAN generator in  generations a) 1, b) 25 

and c) 50 

5.4 Using GAGAN to Generate F-MNIST Images 

 

Figure 37 Graph showing the best FID score achieved at each generation versus the mean of three runs for 

GAGAN F-MNIST 

b) Gen 25 c) Gen 50 a) Gen 1 
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Figure 37 shows the graph of the best individual generators FID scores over the 50 

generations, versus the mean of the best individuals in the three runs of the experiments 

for Fashion MNSIT dataset. In the last generation for GAGAN F-MNIST, the lowest FID 

was reported to be 104.02, with a standard deviation of  𝜎 = 20.68.  

 

Figure 38 shows a similar progression of the best individual GAGAN for the F-MNIST. 

 

Figure 38 The progression of F-MNIST samples created by best GAGAN generator in generations a) 1, b) 

25 and c) 50 

 

5.5 Using GAGAN to Generate Stroke Faces 

 

Similar to another dataset we have compared GAGAN generated stroke faces using FID 

score as shown in Figure 39. The best individuals FID score is plotted with the average 

FID score of top individuals from the three runs of the experiments over 50 generations. 

The best FID score for GAGAN stroke faces is recorded to be 93.16. From the three runs 

of this GAGAN model for stroke faces the standard deviation in the last generation is  

𝜎 = 26.99.  

Figure 40 shows the progression of the stroke faces over the generation. In the first 

generation, only noise is generated. At generation 25, we can distinguish some faces 

having the droopy stroke effect. In generation 50, we can see some improvement in the 

quality of generated stroke faces. However, there is some noise also seen in the generated 

b) Gen 25 c) Gen 50 a) Gen 1 
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faces. This is because the dataset we are training on is minimal and when compared to 

benchmark models using FID score as shown in section 6.3 Comparison between Vanilla 

GAN, DCGAN, GAGAN and CAGAN to generate Stroke faces our proposed models 

generates better quality images.  

 

Figure 39 Graph showing the best FID score achieved at each generation versus the mean of three runs for 

GAGAN Stroke Faces 

 

Figure 40 The progression of Stroke face samples created by best GAGAN generator in generations a) 1, 

b) 25 and c) 50 

 

b) Gen 25 c) Gen 50 a) Gen 1 



 

68 

 

5.6 Using CAGAN to Generate MNIST Images 

 

In this section, we will compare our second model CAGAN to generate MNIST images. 

As mentioned in section 5.2 Experimental Setup, only 1280 sample training images are 

used to train this model. In the following chapter, we will compare both the proposed 

technique with other benchmark models.  

Figure 41 shows the progression of the FID fitness score for the best individual 

represented by CAGAN. Also, the second line AVG CAGAN, shows the mean FID score 

of the best individuals at each generation achieved in three runs. We can see the fitness of 

the generator reducing through generations.  

 

Figure 41 Graph showing the best FID score achieved at each generation versus the mean of three runs for 

CAGAN MNIST 

 

Figure 42 shows the generated images of the best individual of CAGAN population. 

Visually it is hard to compare the images generated by different models, that is why we 

rely on FID score to validate the performance of the different models. The best FID score 

for MNIST dataset by CAGAN is reported to be 33.37, with the standard deviation for 

the last generation in total three-run is 𝜎 = 0.80. 



 

69 

 

 

Figure 42 The progression of MNIST samples created by best CAGAN generator in generations a) 1, b) 25 

and c) 50 

 

 

5.7 Using CAGAN to Generate F-MNIST Images 

 

Figure 43 Graph showing the best FID score achieved at each generation versus the mean of three runs for 

CAGAN F-MNIST 

 

Figure 43 shows the graph of the best CAGAN individual generator FID scores over the 

50 generations, versus the mean of the best individuals in the three runs of the 

b) Gen 25 c) Gen 50 a) Gen 1 
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experiments for Fashion MNSIT dataset. In the last generation for CAGAN F-MNIST, 

the lowest FID was reported to be 79.97, with a standard deviation of  𝜎 = 3.79. When 

compared to the standard deviation of GAGAN, the CAGAN standard deviation is 

dramatically lower. 

Figure 38 shows a progression of the best individual CAGAN generated images for the F-

MNIST. 

 

Figure 44 The progression of F-MNIST samples created by best CAGAN generator in generations a) 1, b) 

25 and c) 50 

 

5.8 Using CAGAN to Generate Stroke Faces 

 

Figure 45 shows the FID score over the generations of the best CAGAN individual found 

in three runs for Stroke Faces. The best FID score at the last generation of CAGAN was 

reported to be 74.36. The mean of the top individuals of three runs is also shown in 

Figure 45. The standard deviation of the last generation for all the runs of CAGAN 

Stroke Faces is proclaimed to be 𝜎 = 21.25. 

In Figure 46, CAGAN stroke face generation is shown. In first-generation, the best 

CAGAN individual is generating the noise, but as the training progress, the generator 

learns the complicated stroke face dataset and some of the generated images shows the 

facial stroke signs. However, there is some noise present in the final training generation 

of CAGAN, but the generated images are outperforming the existing benchmark models. 

The comparison of benchmark models is shown in the next chapter. 

c) Gen 25 d) Gen 50 b) Gen 1 
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Figure 45 Graph showing the best FID score achieved at each generation versus the mean of three runs for 

CAGAN Stroke Faces 

 

Figure 46 The progression of Stroke Face samples created by best CAGAN generator in generations a) 1, 

b) 25 and c) 50 

5.9 Best Evolved Architecture 

 

Table 7 represents the best architecture found by using CAGAN for MNIST after 50 

generations. Both the architectures are composed of convolutional layers. The loss 

function for this best-evolved architecture is RAGAN loss function. 

d) Gen 25 e) Gen 50 c) Gen 1 
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It is necessary to note that not only the final architecture is essential but also the process 

to construct the final models because of the mechanism of transference of the learned 

weights throughout generations. Therefore, we are only showing one evolved 

architecture. 

 

 

 

 
 

Discriminator 

𝑥𝜖ℝ1∗64∗64 
Conv2d 4x4, Stride 2, Pad 1, no bias, 1→64 

ReLU 

Conv2d 4x4, Stride 1, Pad (1,2,21), no bias, 64→64 

BN and LeakyReLU 

Conv2d 4x4, Stride 2, Pad 1, no bias, 64→128 

BN and LeakyReLU 

Conv2d 4x4, Stride 2, Pad 1, no bias, 128→256 

BN and ReLU 

Conv2d 4x4, Stride 2, Pad 1, no bias, 256→512 

BN and ELU 

Conv2d 4x4, Stride 1, Pad 1, no bias, 512→1 
 

Table 7 Best CAGAN evolved Generator and Discriminator Architecture for MNIST 

 

  

Generator 

𝑧𝜖ℝ100 ~N(0,1) 

ConvTranspose2d 4x4, Stride 1, Pad 0, no bias, 100→512 

BN and LeakyReLU 

ConvTranspose2d 3x3, Stride 1, Pad 1, no bias, 512→512 

BN and ELU 

ConvTranspose2d 4x4, Stride 2, Pad 1, no bias, 512→256 

BN and ELU 

ConvTranspose2d 3x3, Stride 1, Pad 1, no bias, 256→256 

BN and ReLU 

ConvTranspose2d 4x4, Stride 2, Pad 1, no bias, 256→128 

BN and ELU 

ConvTranspose2d 4x4, Stride 2, Pad 1, no bias, 128→64 

BN and LeakyReLU 

ConvTranspose2d 4x4, Stride 2, Pad 1, no bias, 64→1 

Tanh 
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CHAPTER 6 

Comparison and Discussion 

 

In this chapter, we have compared our proposed approach with three other different 

methods and analyze our results. 

 

The study made by Lucic et al. [42] found that metric to represent better diversity and 

quality of generated samples when compared with real data is FID score metric. Thus, 

based on this study, the results are compared using FID scores.  

 

6.1 Comparison between Vanilla GAN, DCGAN, 

COEGAN, GAGAN and CAGAN to generate 

MNIST images 

 

Figure 47 Comparison of Vanilla GAN, DCGAN, COEGAN, GAGAN and CAGAN for MNIST dataset 
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Figure 47 shows the comparison of the best FID score of Vanilla GAN, DCGAN, 

COEGAN, GAGAN and CAGAN. The best FID score is obtained from the three runs of 

each experiment. The mean FID is not shown here, because we are only interested in the 

best individual for generating images. The graph shows that in the low data regime, non-

evolutionary methods like V-GAN and DCGAN have very high FID score compared to 

evolutionary methods, which means that the generated images for MNIST are not of 

better quality and diversity.  

For COEGAN, it takes 20 generations to reach an FID score of 42 whereas for GAGAN 

and CAGAN it takes around 30 generations. However, at the end of 50𝑡ℎ  generation 

CAGAN catches up with the COEGAN having the best FID score of 33.  

 

6.2 Comparison between Vanilla GAN, DCGAN, 

COEGAN, GAGAN and CAGAN to generate F-

MNIST images 

 

Figure 48 Comparison of Vanilla GAN, DCGAN, COEGAN, GAGAN and CAGAN for F-MNIST dataset 
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Best FID of the generators in Vanilla GAN, DCGAN, COEGAN, GAGAN and CAGAN 

are shown in Figure 48. We can see that the result of the COEGAN is better than the 

results of all other methods. Nonetheless, our approach CAGAN gives comparable FID 

score.  

Because of computational limitation, we were only able to use seven individuals in our 

approach, whereas the COEGAN uses ten individuals in their population. With the 

increase in the higher GPU computational power, we can increase the population size and 

probably CAGAN can achieve equivalent FID number.  

 

6.3 Comparison between Vanilla GAN, DCGAN, 

GAGAN and CAGAN to generate Stroke faces 

 

Figure 49 Comparison of Vanilla GAN, DCGAN, GAGAN and CAGAN for Stroke Face dataset 

 

 

In this section, we have compared the stroke face generation with vanilla GAN, DCGAN, 

GAGAN and CAGAN. The COEGAN is not used here because their code repository has 

not given the compatibility to test it with the custom dataset. Figure 49 shows the best 

FID score plotting of Vanilla GAN, DCGAN, GAGAN and CAGAN. From the graph, 
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we can see that after 25𝑡ℎ generation the FID score stagnates for GAGAN and CAGAN. 

The best architecture found in CAGAN outperforms all other referenced methods.  

 

Table 8 summaries all the results of five different models for three referenced datasets 

used in this thesis. We can see that the CAGAN achieves best FID score of 33.37 for 

MNIST dataset, whereas COEGAN ranks at second best with 34.66 FID metric.  

For F-MNIST dataset COEGAN exceeds all other approaches and has best FID score of 

71.04, while the position of CAGAN is second with comparable FID score of 79.97.  

 

Model MNIST F-MNSIT Stroke Face 

Vanilla GAN 180 
113 
34.66 
36.61  
33.37  

234 
202 
71.04 

104.02  
79.97  

348 
218 

- 
93.16  
74.36  

DCGAN 

COEGAN 
GAGAN 

CAGAN 
Table 8 FID score comparison of five different models with three datasets 

 

For the generation of stroke face dataset, the CAGAN is elite with FID score of 74.36, 

whereas the GAGAN has the second-best position with FID score of 93.16.  
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CHAPTER 7 

Conclusion & Future Work 

 

Generative Adversarial Networks (GANs) gained relevance for generating a synthetic 

dataset similar to the original images. However, training stability issues like vanishing 

gradient and mode collapse make the training of GAN, a hard work.  

 

We propose two different training technique called as GAGAN and CAGAN, which uses 

neuroevolution with genetic algorithm and cultural algorithm respectively. The proposed 

methods were designed by inspiration on NEAT [8] and COEGAN [12].  

 

In this thesis, we presented the experiments made with MNIST, F-MNIST and Stroke 

Face datasets to assess the efficiency of GAGAN and CAGAN in low data regime. In our 

experimentation, we found no evidence of mode collapse or vanishing gradient for all the 

three datasets. The natural evolution of the genetic and cultural algorithm contributed to 

preventing these issues. Moreover, the proposed method was able to generate better 

images when compared to referenced benchmark models. Thus, GAGAN and CAGAN 

presented more stable training solutions than regular GANs. We compared our results 

with Vanilla GAN, DCGAN and COEGAN; the result displayed that CAGAN achieved 

the best FID score for most of the datasets. However, COEGAN outperformed CAGAN 

for F-MNIST dataset.  

 

A significant limitation of our approach is training many deep neural networks 

throughout the generations. Because of which proposed neuroevolutionary training 

approach have a high computational complexity which may turn their application 

unfeasible. Besides that, our proposed approach did not outperform state-of-the-art 

techniques, as presented in [10]. 
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In the future work, we can extend this approach to test transferability of neuroevolved 

GANs from grayscale to RGB and test for higher resolution of images. We would also 

like to have a sensitivity analysis of the effect of different type of crossover and mutation 

with varying probability rate. 

 

The proposed stroke face dataset can be pre-processed to have a higher image resolution 

and can be used to generate RGB stroke faces. Which further can be used to create novel 

approaches that more quickly and accurately recognize a stroke, particularly in counties 

and other settings where access to CT scans and specialized health care services is 

limited. 

 

We can also expand the parameters used in the experiments in this thesis to enable the 

generation of a larger network.  Thus, a larger population of GANs can be used with a 

bigger limit in the number of genes in the chromosome.  
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APPENDICES  

Appendix A 

 

All the experiments were performed using Pytorch [54] library. To develop the deep 

learning models for research purposes I strongly suggest using Pytorch. For plotting the 

graphs, I have used Plotly [55].   

 

All the source code for this thesis is available at https://github.com/KaitavMehta95/GAN-

Evolution. One may need to change the hyperparameters, activation functions, loss 

functions, output channels range or even the code used in above reference to better suit 

their dataset and experiments.  

 

The code was executed on NVIDIA GeForceGTX 1070 GPU with dedicated GPU 

memory of 8 GB. Each run of the experiment took around 16 hours, the runtime of the 

algorithm can be improved by increasing the GPU memory.  

 

 

 

 

  

https://github.com/KaitavMehta95/GAN-Evolution
https://github.com/KaitavMehta95/GAN-Evolution
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