
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

9-24-2019

Neuroevolutionary Training of Deep Convolutional Generative Neuroevolutionary Training of Deep Convolutional Generative

Adversarial Networks Adversarial Networks

Kaitav Nayankumar Mehta
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Mehta, Kaitav Nayankumar, "Neuroevolutionary Training of Deep Convolutional Generative Adversarial
Networks" (2019). Electronic Theses and Dissertations. 7820.
https://scholar.uwindsor.ca/etd/7820

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7820&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7820?utm_source=scholar.uwindsor.ca%2Fetd%2F7820&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Neuroevolutionary Training of Deep Convolutional Generative

Adversarial Networks

By

Kaitav Mehta

A Thesis

Submitted to the Faculty of Graduate Studies

through the School of Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Science

 at the University of Windsor

Windsor, Ontario, Canada

2019

© Kaitav Nayankumar Mehta, 2019

Neuroevolutionary Training of Deep Convolutional Generative

Adversarial Networks

by

Kaitav Nayankumar Mehta

APPROVED BY:

__

K. Pfaff

Faculty of Nursing

__

A. Ngom

School of Computer Science

__

Z. Kobti, Advisor

School of Computer Science

September 24, 2019

iii

DECLARATION OF CO-

AUTHORSHIP / PREVIOUS

PUBLICATION

I. Co-Authorship

I hereby declare that this thesis incorporates material that is a result of research

conducted under the supervision of Dr. Ziad Kobti (Advisor). Dr. Kathryn Pfaff and Dr.

Susan Fox contributed in revising the publication. In all cases, the key ideas, primary

contributions, experimental designs, data analysis, interpretation, and writing were

performed by the author, and the contribution of co-authors was primarily through

providing feedback on the refinement of ideas and editing of the manuscripts.

I am aware of the University of Windsor Senate Policy on Authorship, and ,

certify that I have correctly acknowledged the contribution of other researchers to my

thesis, and have obtained written permission from each of the co-author(s) to include the

above material(s) in my thesis.

I certify that, with the above qualification, this thesis, and the research to which it

refers, is the product of my own work.

II. Previous Publication

This thesis includes one original paper that has been previously published for

publication in peer-reviewed journals, as follows:

Section Publication title/full citation Publication status

4.2, 4.5, 5.8 Kaitav Mehta, Ziad Kobti, Kathryn Pfaff

and Susan Fox, “Culturally evolved GANs

for generating fake Stroke Faces”, in ISCC

Workshops- ICTS4eHealth 2019

Published

iv

I certify that I have obtained written permission from the copyright owner(s) to

include the above-published material(s) in my thesis. I certify that the above material

describes work completed during my registration as a graduate student at the University of

Windsor.

III. General

I declare that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted material

that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act,

I certify that I have obtained written permission from the copyright owner(s) to include

such material(s) in my thesis.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office and that this thesis has

not been submitted for a higher degree to any other University or Institution.

v

ABSTRACT

Recent developments in Deep Learning are noteworthy when it comes to

learning the probability distribution of points through neural networks, and one of

the crucial parts for such progress is because of Generative Adversarial Networks

(GANs) [1]. In GANs, two neural networks, Generator and Discriminator, compete

amongst each other to learn the probability distribution of points in visual pictures.

A lot of research has been conducted to overcome the challenges of GANs which

include training instability, mode collapse and vanishing gradient. However, there

was no significant proof found on whether modern techniques consistently

outperform vanilla GANs, and it turns out that different advanced techniques

distinctively perform on different datasets. In this thesis, we propose two

neuroevolutionary training techniques for deep convolutional GANs. We evolve

the deep GANs architecture in low data regime. Using Fréchet Inception Distance

(FID) score as the fitness function, we select the best deep convolutional

topography generated by the evolutionary algorithm. The parameters of the best-

selected individuals are maintained throughout the generations, and we continue to

train the population until individuals demonstrate convergence. We compare our

approach with the Vanilla GANs, Deep Convolutional GANs and COEGAN. Our

experiments show that an evolutionary algorithm-based training technique gives a

lower FID score than those of benchmark models. A lower FID score results in

better image quality and diversity in the generated images.

vi

DEDICATION

This Thesis is dedicated to my father, Nayan Mehta, my mother, Rita Mehta, and

my brother, Kaivan Mehta.

vii

ACKNOWLEDGEMENTS

I want to acknowledge my parents and family members Hiren Mehta and Nishita

Mehta for providing me with enormous support to carry out this research.

I appreciate the time and vast knowledge of my supervisor Dr. Ziad Kobti. I want

to thank Dr. Kobti for guiding me throughout my master's degree from course

selection to building research skills. I want to thank the members of my thesis

committee, Dr. Alioune Ngom and Dr. Kathryn Pfaff, for their helpful comments

and suggestions for the completion of this thesis.

I would like to sincerely thank my friends, who have been vital support throughout

my work. Finally, but not least, I want to thank God for giving me motivation and

belief to carry out this research successfully.

viii

TABLE OF CONTENTS

DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION iii

ABSTRACT ...v

DEDICATION ... vi

ACKNOWLEDGEMENTS .. vii

LIST OF TABLES .. xii

LIST OF FIGURES ... xiii

CHAPTER 1 Introduction..1

1.1 Overview ..1

1.2 Problem Definition ...4

1.3 Motivation ..5

1.4 Thesis Statement ..6

1.5 Thesis Contribution ..7

1.6 Thesis Organization..8

CHAPTER 2 Introduction to Deep Learning and Evolutionary Computation10

2.1 Artificial Neural Networks ...10

2.1.1 Perceptron ..11

2.1.2 Activation Functions..12

2.1.3 Loss Functions ...15

2.1.4 Gradient Descent ...17

2.2 Convolutional Neural Networks...19

ix

2.2.1 CNN Architecture Overview ...19

2.2.2 Convolutional Layers ..20

2.2.3 Filters/Kernels ...21

2.2.4 Pooling Layers ...22

2.3 Generative Adversarial Networks ..22

2.3.1 Structure of a GAN ..23

2.3.2 Training GANs ..24

2.3.3 Deep Convolutional GAN ...25

2.3.4 GAN Loss Functions ...26

2.4 Evolutionary Algorithms ..27

2.4.1 Genetic Algorithms..28

2.4.2 Cultural Algorithms ...33

CHAPTER 3 Related Work ...35

3.1 Neuroevolution of Weights ..36

3.2 Neuroevolution of Topography ..39

3.3 Neuroevolution of Weights and Topography ...41

CHAPTER 4 Proposed Approach ..44

4.1 Proposed Training to Neuroevolve Deep Convolutional GANs44

4.2 Individual Representation ..44

4.3 Individual Generation ...46

4.4 Fitness Evaluation ..48

4.5 Genetic Neuroevolutionary Training of Deep Convolutional GANs.......................49

4.5.1 Crossover ...50

4.5.2 Mutation...50

4.5.3 GAGAN Algorithm ...52

x

4.6 Cultural Neuroevolutionary Training of Deep Convolutional GANs54

4.6.1 Adjusting Cultures ...54

4.6.2 Influence Functions ...57

4.6.3 CAGAN Algorithm ...59

CHAPTER 5 Experiments and Results..61

5.1 Datasets ..61

5.2 Experimental Setup ..63

5.3 Using GAGAN to Generate MNIST Images ...64

5.4 Using GAGAN to Generate F-MNIST Images ..65

5.5 Using GAGAN to Generate Stroke Faces ..66

5.6 Using CAGAN to Generate MNIST Images..68

5.7 Using CAGAN to Generate F-MNIST Images ..69

5.8 Using CAGAN to Generate Stroke Faces ..70

5.9 Best Evolved Architecture ...71

CHAPTER 6 Comparison and Discussion ..73

6.1 Comparison between Vanilla GAN, DCGAN, COEGAN, GAGAN and

CAGAN to generate MNIST images ...73

6.2 Comparison between Vanilla GAN, DCGAN, COEGAN, GAGAN and

CAGAN to generate F-MNIST images ..74

6.3 Comparison between Vanilla GAN, DCGAN, GAGAN and CAGAN to

generate Stroke faces ..75

CHAPTER 7 Conclusion & Future Work ...77

REFERENCES ..79

APPENDICES ...84

Appendix A ..84

xi

VITA AUCTORIS ...85

xii

LIST OF TABLES

Table 1 Comparision of various methods to evolve GANs 43

Table 2 Activation Functions Encoding ... 47

Table 3 Loss Functions Encoding ... 47

Table 4 Individual GAN genotype .. 48

Table 5 Mutation operations ... 51

Table 6 Experimental parameters ... 63

Table 7 Best CAGAN evolved Generator and Discriminator Architecture for

MNIST .. 72

Table 8 FID score comparison of five different models with three datasets 76

xiii

LIST OF FIGURES

Figure 1 Progression of face generation [3] .. 1

Figure 2 Schematic Representation of GANs [5] ... 2

Figure 3 Vessels to fundus image [6] ... 3

Figure 4 General Architecture of Neural Network ... 10

Figure 5 A sample perceptron [21] ... 11

Figure 6 Linear activation function ... 12

Figure 7 Sigmoid activation function ... 13

Figure 8 Tanh activation function ... 13

Figure 9 Rectified Linear activation function ... 14

Figure 10 Showing Weight change using Gradient Descent 18

Figure 11 High-level general CNN architecture ... 20

Figure 12 Sample Convolution operation [23] ... 20

Figure 13 Generating an activation output volume... 21

Figure 14 Max pooling.. 22

Figure 15 An example of a generator network in DCGAN. A 100-dimensional

noise z is passed into the transpose convolutional layers which are converted into

64*64 pixel image [30] ... 25

Figure 16 Representing Population space, Chromosome, Gene and Allele [36] 29

Figure 17 Encoding and Decoding [36] .. 30

Figure 18 Genetic Algorithm [36] .. 30

Figure 19 One Point Crossover ... 31

Figure 20 Random Mutation ... 32

Figure 21 Tournament Selection [36] ... 32

Figure 22 Population Space and Belief Space in CA [38] 33

Figure 23 Conventional GAN versus E-GAN [9]... 36

Figure 24 Spatial coevolution of generator and discriminator population [46] 37

Figure 25 Graphical representation of the mutation used in Mustangs [47] 38

Figure 26 GAN combined with GA [48] .. 39

Figure 27 Progressive Growing of GANs [10] ... 40

xiv

Figure 28 Search space in AutoGAN [50] .. 42

Figure 29 A phenotype of the discriminator ... 45

Figure 30 A phenotype of the generator ... 46

Figure 31 Genetic Neuroevolution of Neural Network .. 49

Figure 32 MNIST Dataset ... 61

Figure 33 Fashion MNIST Dataset ... 62

Figure 34 Stroke Face Dataset .. 62

Figure 35 Graph showing the best FID score achieved at each generation versus

the mean of three runs for GAGAN MNIST .. 64

Figure 36 The progression of MNIST samples created by best GAGAN generator

in generations a) 1, b) 25 and c) 50 .. 65

Figure 37 Graph showing the best FID score achieved at each generation versus

the mean of three runs for GAGAN F-MNIST ... 65

Figure 38 The progression of F-MNIST samples created by best GAGAN

generator in generations a) 1, b) 25 and c) 50 ... 66

Figure 39 Graph showing the best FID score achieved at each generation versus

the mean of three runs for GAGAN Stroke Faces .. 67

Figure 40 The progression of Stroke face samples created by best GAGAN

generator in generations a) 1, b) 25 and c) 50 ... 67

Figure 41 Graph showing the best FID score achieved at each generation versus

the mean of three runs for CAGAN MNIST .. 68

Figure 42 The progression of MNIST samples created by best CAGAN generator

in generations a) 1, b) 25 and c) 50 ... 69

Figure 43 Graph showing the best FID score achieved at each generation versus

the mean of three runs for CAGAN F-MNIST ... 69

Figure 44 The progression of F-MNIST samples created by best CAGAN

generator in generations a) 1, b) 25 and c) 50 ... 70

Figure 45 Graph showing the best FID score achieved at each generation versus

the mean of three runs for CAGAN Stroke Faces .. 71

Figure 46 The progression of Stroke Face samples created by best CAGAN

generator in generations a) 1, b) 25 and c) 50 ... 71

xv

Figure 47 Comparison of Vanilla GAN, DCGAN, COEGAN, GAGAN and

CAGAN for MNIST dataset ... 73

Figure 48 Comparison of Vanilla GAN, DCGAN, COEGAN, GAGAN and

CAGAN for F-MNIST dataset.. 74

Figure 49 Comparison of Vanilla GAN, DCGAN, GAGAN and CAGAN for

Stroke Face dataset ... 75

1

CHAPTER 1

Introduction

1.1 Overview

Facebook Artificial Intelligence’s research director Yann LeCun described generative

adversarial training to be “the most interesting idea in the last 10 years of Machine

Learning.” [2]

Generative Adversarial Networks (GANs) were created by Ian Goodfellow in 2014 [1].

GANs are a machine learning approach qualified to generate novel synthetic outputs

across a space of provided training examples.

Figure 1 Progression of face generation [3]

Figure 1 shows the five years of progression of GANs for generating human faces [3].

Since 2014, the GAN progress has exploded and has led to generate realistic outputs.

Today, GANs are able to output many different types of media, being in the form of

images, videos, text and audio. These different synthetic outputs can be used to train

different machine learning models. However, the training of GANs is a difficult task.

2

There are still fundamentally unresolved issues like vanishing gradient and mode collapse

in GANs [4].

Figure 2 Schematic Representation of GANs [5]

Figure 2 shows a schematic representation of GANs. GANs combines two deep neural

networks playing a minimax game with each other. The discriminator network tries to

distinguish whether the sample is real or fake. While the other neural network, called a

generator, tries to create fake samples that the discriminator thinks is real.

The generator never sees the original dataset, and it must learn to generate realistic

samples by receiving criticism from the discriminator. This process is called adversarial

loss, and when implemented correctly it works very well. The more the generator and the

discriminator play this game, the more they advance each other’s skills. The

discriminator becomes very good at predicting synthetic data while the generator learns

to create information that is identical from what is observed in the real world [1] [5].

Once the generator masters the distribution of the training samples, we can sample the

generator 𝑛 times for pragmatic outputs such as images, videos, text, numerical

simulations, and just about anything else one can imagine. Further, the discriminator is

also used for different tasks such as distinguishing outliers, abnormalities and anything

3

which is not ordinary. This could be very beneficial in fields such as cybersecurity,

radiology, astronomy, and manufacturing [5].

Adversarial training is also proven to be useful in many different applications like

domain adaptation, data augmentation, and image-to-image translation [6]. Figure 3

shows one such example of image-to-image translation, wherein the eye vessels are

translated to a fundus image [6].

Figure 3 Vessels to fundus image [6]

However, training such GANs requires a large dataset. In many realistic settings, such as

the medical domain, we need to achieve goals with a limited dataset. In such cases, deep

neural networks fall short, overfitting on the training set and producing poor

generalization on the test set [7]. To overcome such issues, it is possible to generate more

data from existing data by applying data augmentation techniques to the original dataset.

However, standard data augmentation produces only limited alternatives [7]. Thus, we

want to generate images in such low scale data domain. GANs do not create new data;

rather, they produce new data with different properties, which can capture many different

aspects of the original data. All of these different aspects can be captured by a classifier

to improve the accuracy of machine learning models.

Further, to generate such synthetic images, the GANs are required to be well trained. The

training of the GANs can be improved by optimizing the hyperparameters and

architecture of the deep neural networks. Generally, the topology and hyperparameters

are chosen empirically, which takes a lot of human time. The method to search the

4

accurate architecture can be automated. One such approach to request architecture is

using neuroevolution [8].

Many approaches are proposed to find the architecture of neural networks, but decidedly

less research has been conducted for evolving deep GANs. In previous works, there are

not many components which are taken into consideration for evolving GANs. In E-GANs

[9], for example, only weight parameters of neurons are considered for evolution.

Thus, in this thesis, we tried to generate images in the shallow dataset domain. With the

image generation, we also stabilize the training of the GANs and search for the best GAN

architecture.

1.2 Problem Definition

In large scale datasets, GANs were improved to generate high-quality images [10].

Despite the progress in GANs, there are open issues regarding the training of the GANs.

Most common issues, like mode collapse and vanishing gradient, make the training of the

GANs difficult. Various strategies have been proposed to minimize these issues, but

fundamentally, the issue remains unresolved [11].

The Generator and Discriminator are deep neural networks in GANs. The architecture

and hyperparameters of these networks are empirically determined by spending human

time in the repetitive task such as fine-tuning the network. However, some techniques can

automate the design of the networks. Neuroevolution is a technique that uses

evolutionary algorithms to automate the design of neural network architecture.

Formally, we can define our problem as follows:

Let Generator(G) and Discriminator(D) hyperparameters be defined by following tuples:

 𝐺 = (𝑁, 𝑊𝑖, 𝜎(𝑥)) 𝐷 = (𝑁, 𝑊𝑖, 𝜎(𝑥)) (1)

5

Where:

 𝑁: represents the number of layers of the network

 𝑊𝑖: is the weight initialization of each network

 𝜎(𝑥): represents the activation function applied at each layer of both the networks

We want to search for the best trained GAN architecture. In both the generator and

discriminator we are searching for the number of layers, activation function for each

layer, output channels for each layer and weight initialization. Also, the search for the

best loss function to train the weight parameters of the networks is automated.

An individual GAN equation is expressed as below:

 𝐺𝐴𝑁𝑖 = {𝐺, 𝐷, 𝐿𝑜𝑠𝑠}

(2)

In Equation 2, G represents Generator Neural Network and D represents Discriminator

Neural Network, and Loss represents Loss function required to find the gradients to learn

the weight parameters of the network using backpropagation.

Intuitively we want to test if the introduction of an evolutionary algorithm in deep GANs

can design the topography of the network. Thus, we want evolutionary algorithms to

automate deep convolutional GAN architecture search and increase the training stability

in low data regime.

1.3 Motivation

Generative Adversarial Networks became remarkable, presenting impressive results

mainly for image synthesis in the field of computer vision. Several works improving the

GAN model have been published in the large-scale datasets. However, there are still

fundamentally unresolved issues related to the training of the GANs. Vanishing gradient

6

and mode collapse are the most common issues, making the training of GANs hard [12].

There are different strategies to minimize these issues, but radically, they remain

unresolved. Another issue, not only related to GANs but also to neural networks, is the

need to decide a network architecture previously. In this case, the topology and

hyperparameters are chosen empirically or require careful design by experts. Hence,

spending human time in a repetitive task such as fine-tuning the network.

Ideally, one would want to automate the method to generate the right neural architecture.

One approach to generate these architectures is called Neuroevolution. Neuroevolution is

the application of an evolutionary algorithm to automate the design of neural

architectures [13]. Standard evolutionary algorithm has been successful in solving diverse

and complex problems. Evolutionary computations mimic natural evolution, which is

based on the principle of genetic inheritance. In natural systems, genetic evolution is a

slow process. Cultural evolution enables the population to adapt to their changing

environments at a rate that exceeds of biological evolution. Neural network design is

inspired by the human brain neurons structure. The human brain has evolved over a long

time, from very simple worm brains 500 million years ago to a diversity of modern

structures today. We, humans, became the top predator when we started evolving

culturally [14] [15] and hence, our motivation for using Cultural Algorithms.

1.4 Thesis Statement

Machine learning (ML) is used in order to make predictions or decisions without being

explicitly programmed to perform the task. The larger the dataset, the greater the

accuracy in the training of the ML models and better the performance. In real-world

settings, the size of the datasets is small, which makes it challenging to perform well

using these machine learning algorithms. As such the general goal is to explore methods

to create synthetic dataset for such domains.

Recently, GANs was improved to generate high-resolution images in large-scale datasets

[10]. However, there are still open problems regarding the training of the GANs. Our

7

hypothesis is neuroevolutionary training can resolve GAN training issues and can

generate better images even if there is a small training dataset.

There are different approaches to automate the discovery of GAN architecture. One of

them is to use a grid search, wherein all the possible combinations of the network

architecture are tested, and the best one is selected. Such an approach can be very time-

consuming. Second, a very well appreciated approach called AutoML involves usage of

reinforcement learning, where the AI agents learn by trial-and-error in an environment

without direct supervision. AutoML based techniques have made a significant impact in

searching the different types of backbone architecture for deep neural networks [13]. One

drawback of the AutoML approach is that it requires tremendous computing resources

and data. However, a recent study has shown that evolutionary algorithms are a

competitive alternative to such deep reinforcement approaches. Moreover, it is proven

that evolutionary algorithms are substantially faster than deep reinforcement learning

methods [16]. Hence, in our approach we have selected evolutionary strategies to

automate the architecture search of deep convolutional GANs (DCGAN). Also, in our

approach, we are using domain knowledge in cultural algorithm based neuroevolutionary

training of DCGAN. By using domain knowledge, we propose that the hyperparameter

search space will be dramatically reduced and eventually generate sharper and diverse

realistic images.

We expect to see the improvement of the training stability, better generation of images

and automatic discovery of efficient deep convolutional GANs topologies by the

introduction of evolutionary algorithms.

1.5 Thesis Contribution

This thesis represents the problem of training deep convolutional GANs with a small

dataset. With the training, GANs topography is also evolved using two evolutionary

8

algorithms. Genetic algorithm and Cultural algorithm are used with the combination of

neuroevolution of augmented topologies (NEAT) [8].

Moreover, the proposed approaches are tested on three different datasets. The three

datasets are MNIST [17], F-MNIST [18] and Stroke Face. We also introduced the Stroke

face dataset to test our approach in the low-scale dataset. To compare the quality and

diversity of generated images, we have used the FID score [19], which is currently the

state-of-the-art metric to evaluate GANs. In this thesis, we also demonstrate the

transference of weight parameters of deep neural networks throughout the generations of

the evolutionary algorithm.

Thus, this thesis contributes by implementing the following strategies:

• Genetic neuroevolutionary training of deep convolutional GANs (GAGAN)

• Cultural neuroevolutionary training of deep convolutional GANs (CAGAN)

1.6 Thesis Organization

The rest of the thesis is organized in the following way:

In chapter Ⅱ, we do a background study of our thesis. We discuss the basic concepts of

deep learning and evolutionary computation.

In Chapter Ⅲ, we explain the literature review in the field of neuroevolution of

Generative Adversarial Networks.

In chapter Ⅳ, we introduce our proposed approach in detail with algorithms to

understand it better.

9

Chapter Ⅴ describes the experimental setups and detailed results of the proposed

methods.

In Chapter Ⅵ, we compare our work with other benchmark models and analyze the

results.

Chapter Ⅶ concludes the research, discuss limitations and set up potential directions for

future work.

10

CHAPTER 2

Introduction to Deep Learning and

Evolutionary Computation

This chapter introduces the reader to deep learning. The following section introduces the

fundamental concepts of Artificial Neural Networks. Section 2.2 Convolutional Neural

Networks describes the detailed explanation of components of Convolutional Networks.

Section 2.3 Generative Adversarial Networks provides an introduction to GANs and

equips the reader with the necessary knowledge for the methods implemented in this

thesis. An introduction to evolutionary algorithms is presented in section 2.4 , which is

the fundamental technique used throughout this thesis.

2.1 Artificial Neural Networks

Figure 4 General Architecture of Neural Network

11

Artificial Neural Networks (ANN) are machine learning tools which are loosely based on

human mind architecture [20]. ANN is one of the most active topics of research in

machine learning, and it is because ANN has the capability to represent and learn highly

complex and non-linear functions.

The most simple ANN contains three layers and is composed of an input layer, a hidden

layer and an output layer, where each layer contains neurons [21]. Figure 4 shows a

general ANN architecture which contains 3 input neurons, 4 hidden neurons and 2 output

neurons.

2.1.1 Perceptron

Frank Rosenblatt developed the first neuron, which he named as perceptron in 1957 [22].

The basic unit of ANN is the perceptron (neuron). The perceptron works in the following

way: All the inputs 𝑥 are multiplied with their weights 𝑤. Let’s call it 𝑘.

Figure 5 A sample perceptron [21]

Add all the multiplied values and call them a weighted sum. Apply the weighted sum to

the Activation Function. The perceptron will return 1 only if the aggregated sum is more

than some threshold else returns 0. A single perceptron can only be used to implement

linearly separable functions.

12

2.1.2 Activation Functions

Activation functions are used to propagate the output of one-layer perceptron to another

layer perceptron. Activation functions are scalar-to-scalar function, deciding the

activation of perceptron in Neural Network. To introduce nonlinearity for the neural

network, hidden layers uses activation function. Most of the important activation function

belongs to a logistic class of transform when graphed resembles an S. For this section, we

will state useful activation function in neural networks.

2.1.2.1 Linear Function

A linear function is the identity function represented by 𝑓(𝑥) = 𝑊𝑥 , where the

dependent variable has a direct proportional relation relationship with the independent

variable [23]. In practical definition, it means the function passes through signal

unchanged.

Figure 6 Linear activation function

Linear activation functions are commonly used in the input layer of the neural network.

2.1.2.2 Sigmoid Function

A sigmoid activation function [24] outputs an independent probability for each class. A

sigmoid function will convert independent variables of infinite range into simple

13

probabilities between 0 and 1, and most of its output will be very close to 0 and 1. The

vertical line in Figure 7 is the decision boundary.

 𝑆(𝑥) =
𝑒𝑥

𝑒𝑥+1
 (3)

Figure 7 Sigmoid activation function

2.1.2.3 Tanh Function

Figure 8 Tanh activation function

Tanh [25] represents the ratio of hyperbolic sine to the hyperbolic cosine. Tanh is

normalized in the range of -1 to 1. The advantage of Tanh over the sigmoid function is

that it can deal more efficiently with negative numbers.

14

tanh(𝑥) =

sinh (𝑥)

cosh (𝑥)

(4)

2.1.2.4 Rectified Linear Function

Rectified Linear (ReLU) [26] activates a neuron if the input is above a certain value.

When the input is above a certain quantity, it has a linear relationship with the dependent

variable 𝑓(𝑥) = max(0, 𝑥) as shown in Figure 9. ReLU is the current state of the art.

Because the gradient of ReLU is either zero or a constant, it is possible to prevail in

vanishing exploding gradient issue.

Figure 9 Rectified Linear activation function

2.1.2.5 Leaky ReLU Function

Leaky RELU [26] has a small slope of negative values instead of altogether zero. The

downside for being zero for all the negative values is called a dying ReLU problem.

Leaky ReLU is strategy to mitigate dying ReLU problem. Leaky ReLU results are not

always consistent.

15

𝑓(𝑥) = {

𝑥
0.01𝑥

𝑖𝑓 𝑥 > 0

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5)

2.1.3 Loss Functions

Loss Functions calibrate how close the neural network is to the ideal towards which it is

training. A metric is calculated based on the error observed in the network’s predictions.

We then aggregate these errors over the entire dataset and average them to find a single

number representation of how close the network is to its ideal.

The weight and bias of the neural networks decide the output of the network and altering

them alters the loss function. Looking for the ideal state is same as finding weight and

bias of the network, which will minimize the loss function incurred from the errors.

Finding these parameters cannot be solved analytically but can be found by iterative

optimization algorithms like gradient descent.

The loss function notation can be described as follows:

 ℎ𝑤,𝑏(𝑋) = 𝑌̂ (6)

Where,

𝑊, 𝑏: weight and bias of the network respectively

𝑋: represents Input data

𝑌̂: denote the output of the neural net

ℎ(𝑋𝑖) = 𝑌̂𝑖: denote the neural network transforming the given input to the output 𝑌𝑖̂

2.1.3.1 Mean squared error loss

16

The error in a prediction is squared and is averaged over the number of data points. The

MSE loss [27] can be described as follows:

𝐿(𝑊, 𝑏) =

1

𝑁
∑ (𝑌̂ − 𝑌𝑖)

2
𝑁

𝑖=1

(7)

The loss function boils-down the difference between desired and predicted, be that they

are vectors, into a single number.

2.1.3.2 Hinge loss

When the network is to be optimized for hard classification like 0-1 classifier, hinge loss

is most commonly used. For example, 0= no fraud and 1= fraud. The 0,1 choice is

arbitrary and -1,1 is also seen in substitute of 0,1.

The hinge loss equation [23] can be described as follows:

𝐿(𝑊, 𝑏) =

1

𝑁
∑ 𝑚𝑎𝑥(0,1 − 𝑌𝑖,𝑗∗𝑌̂𝑖,𝑗)

𝑁

𝑖=1

(8)

2.1.3.3 Maximum likelihood loss

When probabilities are of great interest than hard classification, logistic loss is used.

Example, probability of someone clicking on an advertisement. In maximum likelihood

loss [23], we want to maximize the probability to predict the correct class, and we want to

do so for each sample in the dataset.

We can describe the loss function for 0,1 classifiers as follows:

 𝑃(𝑦𝑖|𝑋𝑖; 𝑊, 𝑏) = (ℎ𝑊,𝑏(𝑋𝑖))𝑦𝑖 ∗ (1 − ℎ𝑊,𝑏(𝑋𝑖))1−𝑦𝑖 (9)

The above equation can be written as follows for each sample:

17

𝐿(𝑊, 𝑏) = ∏ 𝑦𝑖̂

𝑦𝑖

𝑛

𝑖=1

∗ (1 − 𝑦𝑖̂)
1−𝑦𝑖

(10)

2.1.3.4 Negative log-likelihood loss

For mathematical convenience, when dealing with the product of probabilities, it is

accepted to convert them to the log of the probabilities. The product of the maximum

likelihood transforms into the sum of the log of the probabilities. The logarithm is

monotonically increasing function. Thus, minimizing the negative log-likelihood is

equivalent to maximizing the probability.

The negative log-likelihood [20] can be written as follows:

𝐿(𝑊, 𝑏) = − ∑ 𝑌𝑖 ∗ log 𝑦𝑖̂ + (1 − 𝑌𝑖) ∗

𝑁

𝑖=1

log(1 − 𝑦𝑖̂)

(11)

When the loss function is extended from two classes to M classes, it gives us the equation

which is called as cross-entropy between two probability distributions.

2.1.4 Gradient Descent

Gradient descent is the first-order iterative optimization algorithm for finding the

minimum of a function. It is represented as a vector on n partial derivatives of the

function f. Gradient descent calculates the slope of the loss function by taking a

derivative. On a two-dimensional loss function, the derivative would simply be the

tangent of any point on the parabola, i.e. change in y over change in x.

18

The gradient points directly uphill, as shown in Figure 10, so a parameter is updated by

taking a small step in the reversed direction of the gradient, this small step is known as

learning rate. The size of the learning rate is difficult to set; it must be large enough to

make progress but small enough to not miss the minimum.

Figure 10 Showing Weight change using Gradient Descent

Gradient descent can be algebraically written as [28]:

 𝜃′ = 𝜃 − 𝜂∇𝑓(𝜃) (12)

Where,

𝜃′ : is the newly updated weight parameter

𝜃 : is the old parameter

𝜂 : is the learning rate

∇𝑓(𝜃): is the gradient of the loss function

The process of calculating the gradient of the loss function with respect to the network’s

parameter is usually made by the back-propagation algorithm.

19

2.2 Convolutional Neural Networks

Multi-Layer Neural Networks does not scale well with the image data. When the image

data is parsed into the feed-forward simple neural networks, the learnable parameters

increases to approximately 1 billion for 1024x1024 pixel size image. Even though we

have computers to handle computation on this scale, it is very time-consuming. The

structure of image data allows to change the architecture of a neural network in a way

that we can take advantage of this structure, the goal of the CNN is to learn higher-order

features in the data via convolutions. The efficacy of CNNs in image recognition is one

of the main reasons why the world recognizes the power of deep learning. CNN

architecture can be considered to be three-dimensional volume of neurons.

2.2.1 CNN Architecture Overview

CNN's [20] transforms the input data from the input layer through all connected layers

into the set of class scores given by the output layer. High-level CNN architecture view is

shown in Figure 11.

It consists of three parts:

1) Input layer

2) Feature-extraction layer

3) Classification layer

The input layer accepts three-dimensional input in the form of height*width*RGB colour

channels. The feature extraction layer has a general repeating pattern of Convolutional

layers and Pooling layers.

20

Figure 11 High-level general CNN architecture

2.2.2 Convolutional Layers

The Convolutional layers are the core building blocks of CNN architectures [23]. A

convolution is how the input is modified by a filter. A filter is taken to slice through the

image and map it to learn different portion of input image. As shown in Figure 12, Dot

product is computed between the kernel and the layer of the image. The resulting output

generally has the same spatial dimensions but increases the number of elements in the

third dimension of the output.

Figure 12 Sample Convolution operation [23]

21

2.2.3 Filters/Kernels

Filters are the function that has a width and height smaller than the input volume. Filters

are applied across the width and height of the input volume in a sliding window manner,

as shown in Figure 12. The output of the filter is computed doing the dot product of the

filter and the input region. The filters also usually have a shared bias parameter for each

convolutional layer. The output activation map is expressed as

𝑎𝑗,𝑘
𝑙 = 𝜎(𝑏𝑙−1 + ∑ ∑ 𝑤𝑚,𝑛

𝑙−1𝑎𝑗+𝑚,𝑘+𝑛
𝑙−1

𝑞

𝑛=0

𝑝

𝑚=0

)

(13)

Where 𝑎𝑗,𝑘
𝑙 is the activation value of the kth neuron in the jth row of lth layer, b is the

shared bias, w is the weight parameter of 𝑝𝑥𝑞 kernel and 𝜎(𝑧) is the activation function.

Figure 13 Generating an activation output volume

The above activation value calculation can be visualized, as shown in Figure 13.

22

2.2.4 Pooling Layers

Pooling layers are commonly followed by convolutional layers. Pooling layers are used

to progressively reduce the spatial size of the data representation. They replace the output

by taking the summary statistics of the nearby output values. Most common

downsampling operation is the max operation, also called as max pooling. Max pooling

reduces the image size by mapping the 𝑚𝑥𝑛 window into a single result by taking the

maximum value of the elements in the window, as shown in Figure 14.

Figure 14 Max pooling

Convolution is powerful in detecting the same patters as horizontal edge or vertical edge

across the image. Hence CNNs are well adapted to translation invariance of images.

2.3 Generative Adversarial Networks

One of the most impressive successes in deep learning has, so far, involved

discriminative models, i.e. models that map the dependence of unobserved target

variables 𝑦 on observed variables 𝑥.

Discriminative models infer outputs based on inputs without caring about how the input

was generated. Generative models, as opposed to discriminative models, maps how the

input data was generated. They are a branch of unsupervised learning techniques [1].

23

Generative Adversarial Networks (GANs) [1] are a class of generative models. GANs are

trained to generate fake data similar to some known input data. A GAN model consists of

two types of neural networks, a generative model and a discriminative model. The two

networks compete against each other, and they have an adversarial relationship. The

generative model learns to generate data while the discriminative model learns to predict

whether a data is from the model distribution 𝑝𝑚𝑜𝑑𝑒𝑙 or the original data distribution

𝑝𝑑𝑎𝑡𝑎. During training, both models improve their methods until the artificially generated

data are indistinguishable from real data [29]

2.3.1 Structure of a GAN

A GAN is made up of two different networks called as a Discriminator network and

Generator network.

Generator Network- The generative network in GANs creates synthetic data with a

special kind of layer called a transpose convolutional layer. The input to the generator 𝑧

is sampled from some simple prior distribution. The generator can be seen as a kind of

reverse CNN. It takes a vector of z-dimensional noise as input and upsamples it to images

[1].

Discriminator Network- When modelling images, the discriminator network is generally

a standard CNN. Using a secondary network as the discriminator neural network allows

the GAN to train two networks in parallel in an unsupervised fashion. The input to the

discriminator networks is images and outputs classification probabilities.

The gradient of the discriminator network output with respect to generated input data

indicates how to make changes to the generated data to make it more realistic [23].

24

2.3.2 Training GANs

In the training process of GANs, both the generator and discriminator are trained

simultaneously. Two mini-batches are sampled in the first step. One of the batches is 𝑧

values from 𝑝𝑚𝑜𝑑𝑒𝑙 , the model’s prior over latent variables. In the next step for each

network, a gradient step is made. For generator network, the gradients update the

parameters 𝜃(𝐺) to reduce its loss function 𝐿(𝐺)(𝜃(𝐺), 𝜃(𝐷)) and one for updating

discriminator’s parameters 𝜃(𝐷) to reduce discriminators loss function 𝐿(𝐷)(𝜃(𝐷), 𝜃(𝐺)).

The tricky part here is that there are two optimizer function used one for each network. In

other words, discriminator and generator play the two-player minimax game with value

function 𝑉(𝐺, 𝐷) as shown in Equation 14 [1]. This training process is repeated for a

number of training iterations.

 𝑚𝑖𝑛𝐺 𝑚𝑎𝑥𝐷 V(D,G) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)
[log D(x)]+ 𝔼𝑧~𝑝𝑧(𝑧)

[log (1 − 𝐷(𝐺(𝑧)))] (14)

GANs training is complicated; there must be a balance during training between the two

networks. Otherwise, one can overpower the other network. It is therefore essential to

have the correct hyperparameters, network topography and training procedure.

When the generator overpowers some weakness in a discriminator, then an issue called

mode collapse occurs. In mode collapse, the generator produces very similar images

regardless of a change in the input 𝑧 . In another case, the discriminator can also

overpower generator where the discriminator classifies fake generated data with absolute

certainty. In this case, generator is left with no gradients and the network will not learn

anything, this issue is called a vanishing gradient. These issues can be avoided by

accurate hyperparameters of both the networks [29].

During the training process, the discriminator gets one of the two different inputs. The

first is when 𝑥 is real data. In this case, the discriminator 𝐷(𝑥) goal is to be near to 1. In

the second scenario, both the generator and the discriminator participate. The

25

discriminator receives generated data, i.e. x = G(z), where the discriminator goal is to

make 𝐷(𝐺(𝑧)) closer to 0 and the generator will try to make it near 1. This is how the

generator learns to generate synthetic data. Finally, if the training is balanced enough

then at the end of the training, they will achieve Nash equilibrium. When this is achieved

the 𝐷(𝑥) for both the input will be equal to 0.5, and it will be valid for any x, i.e.

𝑃𝑚𝑜𝑑𝑒𝑙 = 𝑃𝑑𝑎𝑡𝑎 [20] [29].

2.3.3 Deep Convolutional GAN

Deep Convolutional Generative Adversarial Networks (DCGAN) [30] is a special class

of GANs which is heavily inspired by CNN. Most of the real-world image generation

applications, starter approach is DCGAN [31]. Compared to regular GAN approaches

DCGAN has more stable training architecture.

In DCGAN, the overall network architecture is composed of all convolutional layers. In

discriminator, the pooling layers are replaced with transposed convolutions, and in a

generator, it is replaced with strided convolutional layers. Such architecture design

allowed the generator to learn its own upsampling. While in discriminator in the last

layer, the transpose convolution was flattened and fed into sigmoid activation function.

All the fully connected layers were also eliminated in DCGAN [30].

Figure 15 An example of a generator network in DCGAN. A 100-dimensional noise z is passed into the

transpose convolutional layers which are converted into 64*64 pixel image [30]

26

Another significant change in DCGAN was to introduce the usage of batch normalization

layer [31]. Because of batch normalization, each neuron had zero mean and unit variance,

which helped to stabilize the training. This also allowed gradients to flow deeper and

prevented the generator collapse. To avoid sample oscillation and instability, the

generator output layer and discriminator input layer were not batch normalized [30].

The final change was the generator and discriminator activation functions were different.

The generator had ReLU in all layers except for output, and the discriminator had

LeakyReLU.

2.3.4 GAN Loss Functions

Like DCGAN, many other studies have tried to improve the training of the regular

GANs. One of the ways is to improve the training using different variations of loss

functions. Because the gradient used to train the network is calculated using the loss

function, they play an essential role in training stability.

In GAN, the discriminator can be defined in term of the non-transformed layer 𝐶(𝑥), as

𝐷(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐶(𝑥)). Here 𝐶(𝑥) can also be called as the critic [32]. 𝐶(𝑥) can be

interpreted as how real the data is, while a negative number means the data is synthetic.

Also, let the real and fake data samples be represented as 𝑥𝑟 and 𝑥𝑓 respectively.

Using these representations, we will define five different GAN loss functions which are

used in this thesis.

1. Vanilla GAN [1]

 𝐿𝐷
𝑉𝐺𝐴𝑁 = −𝔼𝑥𝑟~𝕡

[𝑙𝑜𝑔 (𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐶(𝑥𝑟))) − 𝔼𝑥𝑓~ℚ
[log (1 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝐶(𝑥𝑓)))] (15)

 𝐿𝐺
𝑉𝐺𝐴𝑁 = −𝔼𝑥𝑓~ℚ

[log (𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝐶(𝑥𝑓)))]

(16)

2. LSGAN [33]

27

 𝐿𝐷
𝐿𝑆𝐺𝐴𝑁 = 𝔼𝑥𝑟~𝕡

[(𝐶(𝑥𝑟) − 0)2] + 𝔼𝑥𝑓~ℚ
[(𝐶(𝑥𝑟) − 1)2] (17)

 𝐿𝐺
𝐿𝑆𝐺𝐴𝑁 = 𝔼𝑥𝑓~ℚ

[(𝐶(𝑥𝑓) − 0)
2

]

(18)

3. HINGE GAN [34]

 𝐿𝐷
𝐻𝑖𝑛𝑔𝑒𝐺𝐴𝑁

= 𝔼𝑥𝑟~𝕡
[max (0,1 − 𝐶(𝑥𝑟))] + 𝔼𝑥𝑓~ℚ

[max (0,1 + 𝐶(𝑥𝑓)] (19)

 𝐿𝐷
𝐻𝑖𝑛𝑔𝑒𝐺𝐴𝑁

= − 𝔼𝑥𝑓~ℚ
[𝐶(𝑥𝑓)] (20)

4. RSGAN [32]

 𝐿𝐷
𝑅𝑆𝐺𝐴𝑁𝐿𝐷

𝑅𝑆𝐺𝐴𝑁 = −𝔼(𝑥𝑟 ,𝑥𝑓)~(𝕡,ℚ)[log (𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐶(𝑥𝑟) − 𝐶(𝑥𝑓)))] (21)

 𝐿𝐺
𝑅𝑆𝐺𝐴𝑁 = −𝔼(𝑥𝑟 ,𝑥𝑓)~(𝕡,ℚ)[log (𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐶(𝑥𝑓) − 𝐶(𝑥𝑟)))]

(22)

5. RaSGAN [32]

 𝐿𝐷
𝑅𝑎𝑆𝐺𝐴𝑁 = −𝔼𝑥𝑟~𝕡

[log 𝐷̃ (𝑥𝑟)] − 𝔼𝑥𝑓~ℚ
[log(1 − 𝐷̃ (𝑥𝑓))]

(23)

 𝐿𝐺
𝑅𝑎𝑆𝐺𝐴𝑁 = −𝔼𝑥𝑓~ℚ

[log 𝐷̃ (𝑥𝑓)] − 𝔼𝑥𝑟~ℙ
[log(1 − 𝐷̃ (𝑥𝑟))]

(24)

 Where,

𝐷̃(𝑥𝑟) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐶(𝑥𝑟) − 𝔼𝑥𝑓~ℚ
 𝐶(𝑥𝑓))

𝐷̃(𝑥𝑓) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐶(𝑥𝑓) − 𝔼𝑥𝑓~𝕡
 𝐶(𝑥𝑟))

2.4 Evolutionary Algorithms

An evolutionary algorithm (EA) is a technique inspired by biological evolution that aims

to mimic the same evolutionary mechanism found in nature. In EAs, the population is

composed of individuals that represent possible solutions for a given problem, using a

high-order abstraction to encode their characteristics [27]. The algorithm uses various

genetic operators like mutation, crossover and selection on the population in order to

28

search for better solutions. Evolutionary algorithms have various advantages which have

made them immensely popular.

• EAs are faster and more efficient when compared to traditional methods

• Has excellent parallel computing capabilities

• Optimizes both the continuous, discrete and also solve multi-objective

optimization problems

• EAs are useful when the search space is substantially large, and there are a large

number of parameters involved

Like any other technique, EAs also suffer from a few limitations.

• EAs are stochastic, because of which there might not be any guarantee on the

optimality of the solution

• Fitness is calculated at every generation, which might be computationally

expensive for a few problem domains like ours

2.4.1 Genetic Algorithms

Genetic Algorithms (GA) are the first EAs model developed to simulate natural genetic

evolution. John Holland is considered the father of GAs [35]. GAs are search heuristics

inspired by Charles Darwin’s theory of natural evolution - “Survival of the fittest.”

In GAs, we have a pool or population of possible solutions for the given problem. These

pools or population undergo genetic operation like crossover and mutation, producing

new offsprings. Genetic algorithms reflect the process of natural selection, where the

fittest individuals are elected to reproduce the offspring of the upcoming generation. Each

candidate individual is assigned a fitness value based on its objective function. The more

fit the individuals in the population, the more chance they have to mate and produce more

“fitter” individuals. We carry out this evolution procedure for multiple generations until

we reach stopping criteria.

 It is imperative to be familiar with some basic terminology which will be useful

throughout the thesis.

29

• Population - It is a subset of all possible candidate solutions to the given

problem.

• Chromosomes - A chromosome is one such candidate solution to the given

problem

• Gene - It is one of the elements of a chromosome

• Allele - An allele is a value which a gene takes for a particular chromosome

• Genotype - A genotype is an individual of the population in the computation

space. The individual's representation in computational space is in such a way that

it can be easily understood and manipulated using a computation system

• Phenotype - Phenotype is the population space in the actual real-world solution

domain. In phenotype, the solutions are represented in the way they exist in real-

world situations.

Figure 16 Representing Population space, Chromosome, Gene and Allele [36]

• Encoding and Decoding – In most of the problems, genotype and phenotype are

different. As shown in Figure 17, Encoding is a process of transforming a solution

from phenotype to genotype while decoding is the other way around, transforming

a genotype to phenotype.

30

Figure 17 Encoding and Decoding [36]

• Fitness Function – A fitness function takes a genotype as input, and outputs

suitability of the solution. In our case, the fitness function and the objective

function are the same, while in some other cases it can be different based on the

problem

Figure 18 Genetic Algorithm [36]

In GAs, we start with an initial population space which may be seeded by some heuristic

or generated randomly. In the next step, we select the parents from this population space

for yielding offsprings. Then with the elected parents, we do genetic operations like

crossover and mutations to generate new offsprings. The better offsprings replace the

individuals in the population and the evolutionary process repeats. A basic flow of GAs is

shown in Figure 18.

31

2.4.1.1 Crossover Operation

The crossover genetic operator is similar to the reproduction and biological genes

crossover. From the population, more than one parent is selected, and one or more new

individuals are produced using the genes of the parent.

There are many different types of genetic crossovers like the one-point crossover, multi-

point crossover and uniform crossover. For this thesis, we will only use the one-point

crossover. It is also necessary to note that GA designer, might choose to implement a

problem-oriented crossover.

One Point Crossover

Figure 19 shows a one-point crossover operation. A random or specific point is selected

in the parent individuals, and the tails of its two parents are exchanged to generate a new

offspring.

Figure 19 One Point Crossover

2.4.1.2 Mutation Operation

Mutation operation is a random tweak in the chromosome, to generate new offspring. The

primary role of mutation is to introduce diversity in the population. For the converge of

evolutionary algorithms, the mutation is an essential part. Many common types of

mutation exist like bit flip, random resetting, swap mutation, scramble mutation etc. [36].

For this thesis, we have implemented the random resetting mutation.

32

Random Resetting

In random resetting mutation, a random value from the list of permissible allele is

assigned to a gene which is uniformly randomly chosen.

Figure 20 Random Mutation

2.4.1.3 Selection Operation

The selection operation decides which chromosome from the population and offspring set

will proceed to the next generation, and which will be eliminated. It is a vital operation as

it should be able to promote fitter chromosomes, while the diversity of the population

space should also be maintained.

Figure 21 Tournament Selection [36]

For this thesis, we have used a tournament selection [37] operation. In a k-way

tournament, k random chromosomes are selected, and we run a tournament among them.

The fittest individual is elected among them and is passed on the next generation. In a

similar way, many such tournaments can take place until we have our final selection of

the candidates for the next generation. The k-way tournament selection is shown in

Figure 21.

33

2.4.2 Cultural Algorithms

Cultural evolution(CE) was first introduced by Renyolds [38] in the early 1990s. CE bias

the search process with prior knowledge about the domain as well as knowledge gained

during the evolutionary process.

Standard EAs like genetic algorithms are unbiased using little or no domain knowledge to

guide the search process. However, the performance of EAs can be improved

considerably if the domain knowledge is used to bias the search process. Domain

knowledge then serves as a mechanism to reduce the search space by pruning unwanted

parts of the solution space by promoting desirable parts.

Figure 22 Population Space and Belief Space in CA [38]

A Cultural Algorithm (CA) maintains two search spaces: the population space and a

belief space. The population space contains the individuals, and the belief space contains

cultural knowledge. Both the population space and belief space evolve in parallel to

optimize some function. Figure 22 visualizes the dual-inheritance system of CA. A two-

way communication protocol is set up to exchange information between the search

spaces. One protocol called as acceptance function used to select a group of individuals

34

from the current population, these selected individuals will be used to adjust the current

belief space and second variation operator uses the beliefs to control the changes in the

individuals [27].

The next section discusses the belief space in more detail.

2.4.2.1 Belief Space

The belief space serves as a knowledge repository, where the collective behaviour of the

individual in the population space are stored [38]. The belief space can effectively be

used to prune the population search space: the knowledge within the belief space is used

to route individuals away from undesirable areas in the population space towards more

promising areas. It has been proven that the use of a belief space reduces computational

cost dramatically [39].

To represent the behavioural pattern of individuals from the population space, belief

space contains a number of knowledge components. The type of knowledge component

and data structures used to represent the knowledge depends on the problem being

solved.

In general, the belief space contains five different knowledge components [38]:

1. A situational knowledge component keeps track of the elite solutions found at

each generation.

2. A normative knowledge component provides specifications for individuals

behaviour, used as guidelines for mutational adjustment to individuals.

3. A domain knowledge component contains an archive of best solutions since

evolution started. Domain knowledge is not re-initialized at each generation.

4. A history knowledge component maintains information about the sequence of

environmental changes. For each environmental change, the following

information is stored: the best solution, the change in direction for each dimension

and the current change distance.

5. A topographical knowledge component which maintains a multi-dimensional

grid representation of the search space.

35

CHAPTER 3

Related Work

In this chapter, we have reviewed the literature of evolutionary Generative Adversarial

Networks.

Modern machine learning techniques focus heavily on the usage of deep learning

approaches. In deep learning, the neural network weights are trained through a variation

of stochastic gradient descent. An alternative way comes from the field of

Neuroevolution. Neuroevolution is the application of evolutionary algorithms in the

evolution of neural networks. Neuroevolutionary approach can be applied to weights,

topography and hyperparameters of the neural networks. Neuroevolution can be used for

the generation of network architecture, and a substantial benefit is the automation of

topography design and the parameters of the network [40].

However, evolutionary algorithms are not the only approach for Neuroevolution.

Neuroevolution can be combined with a Reinforcement learning approach, also called as

AutoML [41]. But the problem with such AutoML approach is that it requires vast

computational resources in spite of their success, in many real-world applications it

makes unfeasible to apply [16]. Therefore, we have focused our thesis on classic

evolutionary approaches.

GANs were first introduced in 2014 [1] by Ian Goodfellow. Several works improving the

GAN model were recently published, leveraging the quality of the results to impressive

levels [10] [11] [29]. However, there are some open problems related to training of GANs

like mode collapse and vanishing gradient [42]. Neuroevolution of GANs can be helpful

to resolve the existing problems in GANs [43]. Therefore, this literature focuses on a

niche area of the evolution of generative adversarial networks. Moreover, the first

36

evolutionary GANs were introduced in 2018 by Wang et al., so this research area is very

recent. We have tried to cover all the evolutionary GAN approaches until August 2019.

Related work is divided into three sections, where the first section contains methods of

neuroevolution of weight parameter of the generator network. In the second section, only

the discriminator and generator architecture is evolved. And in the last section study of a

combination of weight parameter, topography and hyperparameter of the GANs are

presented.

3.1 Neuroevolution of Weights

Various evolutionary algorithms like genetic algorithm [35] and coevolutionary

algorithm [27] are used to evolve the weight parameters of the generator and

discriminator networks.

In March 2018, Wang et al. proposed the first evolutionary generative adversarial

networks (E-GAN) [9] approach. E-GAN was proposed with the intention to improve the

training stability and better generative performance of GANs. Figure 23 shows the E-

GAN architecture where a population of generator 𝐺𝜃 evolves in a dynamic environment,

the discriminator 𝐷.

Figure 23 Conventional GAN versus E-GAN [9]

37

Unlike in conventional GAN, E-GAN uses pre-defined objective functions, alternatively

training generator’s weight parameters. In each evolutionary step, there are three sub-

stages: variation, evaluation and selection. One of the main contributions of E-GAN is

the variation step, in which asexual reproduction with different mutations is used to

produce the next generation’s individuals. E-GAN was tested on datasets like LSUN

bedroom [44] and CelebA [45]. In E-GAN the generator quality was compared with

conventional GANs using FID score and demonstrated that E-GAN achieves convincing

generative performance and minimizes training problems in conventional GANs.

Thereafter, in August 2018, Abdullah et al. proposed a spatial coevolutionary approach

called Towards Distributed Coevolutionary GANs (Lipizzaner) [46]. In which, the

researchers investigate the usage of coevolutionary algorithms with conventional GAN

training. Their aim was to bridge the gap between works of deep learning and

evolutionary computing communities towards a better understanding of gradient-based

and gradient-free GAN dynamics.

Figure 24 Spatial coevolution of generator and discriminator population [46]

Figure 24 represents a spatial GAN training framework that allows scaling over a

distributed spatial grid topology. In spatial coevolution, GAN individuals are distributed

on a grid, as shown in Figure 24, where the local interaction of individuals governs the

fitness evaluation, selection and mutation. Lipizzaner framework was tested on MNIST

38

[17] and CelebA datasets. Researcher in their experiments shows that coevolution is a

promising framework for escaping degenerate GAN training behaviour.

An improved version of Lipizzaner was introduced by Jamal et al. in July 2019. This

approach is called as spatial evolutionary generative adversarial networks (Mustangs)

[47].

Figure 25 Graphical representation of the mutation used in Mustangs [47]

In mustangs, the main idea focuses on combining mutation from E-GAN and population

diversity from Lipizzaner. Figure 25 shows the selection of random loss function to

create a new generator 𝐺𝑢′. Mustangs were tested on MNIST and CelebA datasets, and

they demonstrated statistically faster training compared to Lipizzaner.

Recently in July 2019, Cho et al. tried genetic algorithms to stabilize the training of

GANs [48]. In this approach, authours attempted to improve the discrimination ability of

the 𝐷 and accordingly improve the performance of the generator, as shown in Figure 26.

The chromosome in this approach is fake generated images by 𝐺. The synthetic images of

high fitness were selected, i.e. the samples that were discriminated real by 𝐷 and the

population of fake images are evolved using a genetic algorithm. This approach was

tested on MNIST dataset and authors claims to improve the convergence speed and GAN

stability during training.

39

Figure 26 GAN combined with GA [48]

The weight-based neuroevolutionary training approaches were able to minimize the

training instability. However, the GANs network topography and hyperparameter were

empirically selected, wasting individual time on the monotonous experiments such as

fine-tuning the network.

3.2 Neuroevolution of Topography

In this section, we will present the work where only the architecture of GANs is evolved.

Progressive GANs [10] uses a simple strategy to evolve GANs during the training

procedure. The idea is to increases the number of layers progressively in both the

generator and discriminator.

This progressive growing will make the model complex as the training proceeds. Also,

the resolutions of training images are increased at each progression, as shown in Figure

27. However, the layers are preconfigured in this approach, i.e. they are hand-designed

architecture. The progressive layers are not evolved using any stochastic method. Hence,

the network model is evolved in a pre-configured way but does not use any evolutionary

algorithm. Therefore, we consider this pre-defined progressive growing of GANs as the

first approach to evolutionary Generative Adversarial Networks. Progressive Growing of

40

GANs used CelebA and CIFAR 10 dataset for their experimentation. Progressive

Growing of GANs is state-of-the-art in image generation.

Figure 27 Progressive Growing of GANs [10]

In July 2018, Unai et al. presented evolved GANs for generating Pareto Set

approximations [43]. In this paper, a neuroevolutionary approach in combination of a

genetic algorithm is used to evolve the deep GANs architecture. The deep GANs

architecture presented in the paper uses conventional GANs, i.e. Multi-Level

Perceptron’s (MLP) are used as the hidden layers in the GANs architecture. Our approach

GAGAN is different in a way that we are using convolutional layers instead of MLP.

However, our GAN evolvability components are inspired by this approach. Moreover,

after every generation, the weight parameters of the trained networks are deleted. The

evolved GANs are not used to generate images. Instead, they were used to generate

Pareto set points.

The major drawback of evolving just the architecture of the network is that it does not

take full advantage of the weights learned in the evaluation of the previous solutions.

41

3.3 Neuroevolution of Weights and Topography

In this section, we will present the literature review of GANs whose weight parameter, as

well as network architecture, are evolved.

Neuroevolution of Augmented Topology (NEAT) [8] is a famous approach to evolve

weight and topography of neural networks. Deep Neat [40] was recently proposed to

extend the NEAT approach to larger search space such as deep neural networks. Most of

the GANs evolutionary approaches in this section are inspired from NEAT or Deep Neat

based methods.

In March 2019, Costa et al. proposed coevolution of Generative Adversarial Networks

(COEGAN) [12]. In COEGAN authours combines neuroevolution and coevolution in the

coordination of the GAN training algorithm. In COEGAN the activation functions,

number of hidden layers of the network, output channels and weight parameter are

evolved in coevolutionary fashion. However, COEGAN approach does not take

advantage of evolving different loss functions to train the GANs. Our approach is

different in a way, we are using convolution layer while the COEGAN uses a

combination of linear and convolutional layers. Moreover, in our approach, the GANs are

evolved using genetic and cultural algorithms, and in COEGAN coevolutionary approach

is used. COEGAN was evaluated with conventional DCGAN on MNSIT dataset using

FID score.

In July 2019, an evaluation of COEGAN [49] was presented by Costa et al., wherein

COEGAN was evaluated on Fashion-MNIST dataset. The evaluation suggests that

COEGAN can be used as a training algorithm for GANs to avoid common issues, such as

mode collapse.

Recently, in August 2019, a reinforcement learning-based approach was presented by

Gong et al. for Neural Architecture Search (NAS) of GANs (AutoGAN) [50]. The search

space of generator architecture was defined in AutoGAN, as shown in Figure 28.

42

Recurrent Neural Network (RNN) is used to guide the search, with the parameter sharing

and dynamic resetting to accelerate the process. Inception score is adopted as a reward.

Also, a multi-level architectural search is introduced to perform the neural architectural

search. AutoGAN experiments were performed on CIFAR-10 and STL-10 datasets and

evaluated with state-of-the-art GANs using FID score.

Figure 28 Search space in AutoGAN [50]

However, there is a high computational cost associated with AutoGAN; it takes

approximately 43 hours for training on CIFAR-10. Thus, only the generator’s

architecture was evolved.

Method

Author Type Approach

E-GAN [9]

Wang et al. Weight parameter Genetic

Lipizzaner [46]

Abdullah et al. Weight parameter Coevolution

Mustang [47]

Jamal et al. Weight parameter Coevolution

Stabilized GAN

training [48]

Cho et al. Weight parameter Genetic

Progressive GAN

[10]

Karras et al. Topography Hand-designed

Evolved GANs [43]

Unai et al. Topography Genetic

43

COEGAN [12]

Costa et al. Weight and

Topography

Coevolution

Evaluating

COEGAN [49]

Costa et al. Weight and

Topography

Coevolution

AutoGAN [50]

Gong et al. Weight and

Topography

Reinforcement

learning

Table 1 Comparision of various methods to evolve GANs

Table 1 summarizes the literature review for this thesis, in which it compares all different

proposed approach for evolving Generative Adversarial Networks.

44

CHAPTER 4

Proposed Approach

In this chapter, we have discussed the proposed neuroevolutionary training algorithms for

Deep Convolutional Generative Adversarial Networks (DCGAN). The chapter begins

with the introduction of gene representation and fitness evaluation of the individuals.

Thereafter this is followed by an explanation of pseudocodes of our proposed technique.

4.1 Proposed Training to Neuroevolve Deep

Convolutional GANs

There are two proposed training strategies for evolving deep convolutional GANs. Both

strategies are applied to automate the architecture search and stabilize the training of

DCGAN. The names of the strategies are as stated below:

• Genetic neuroevolutionary training of deep convolutional GANs (GAGAN)

• Cultural neuroevolutionary training of deep convolutional GANs (CAGAN)

4.2 Individual Representation

In GAGAN and CAGAN, the genome is represented as an array of genes which are

directly mapped into a phenotype consisting of a sequence of layers in a deep neural

network. Each gene represents a convolutional or transpose convolutional layers.

Moreover, each gene also has an activation function, chosen from the following set:

ReLU, LeakyReLU, ELU, Sigmoid and Tanh. There is also a loss function gene

associated with each genotype. The loss function is chosen from the following set: BCE,

45

MSE, RSGAN, RAGAN and Hinge loss. From the specific parameter of each type of

gene, convolutional and transpose convolutional layers only have the number of output

channel as a random parameter. The strides and kernel size are fixed. The number of

input channel are calculated dynamically based on the previous layer. Therefore, only the

number of layers, activation function with each layer, output channels and loss function

are subject to mutation operations.

Each individual’s genotype is composed of two separate arrays of gene: one array

represents Generator network 𝐺𝑖 and the second array represents a Discriminator network

𝐷𝑖 and a universal loss function gene. The individual genotype is represented by the

following equation:

 𝐼𝑖 = {𝐺𝑖 , 𝐷𝑖 , 𝑙}

(25)

Figure 29 shows a sample of a discriminator phenotype. The discriminator is composed

of three layers wherein each convolutional layer is followed by batchnorm2d layer and

activation function. The output channel of the previous layer will be the input channel of

the current layer.

Figure 29 A phenotype of the discriminator

Figure 30 shows a sample of a generator phenotype. The generator network is also

composed of three layers. Each convolutional transpose layer is followed by

batchnorm2d layer and activation function. Similar to discriminator in the generator

output channel of the previous layer will be the input channel of the current layer.

46

Figure 30 A phenotype of the generator

In the population space, there is a list of individual GAN which represents genetic

components. Thus, GAGAN and CAGAN use a list-based encoding and genetic

operators that operate on these lists. Each network parameter list includes convolutional

or transpose convolutional layer, output channel in each layer, activation function for

each layer. In generator genotype, all hidden layers are composed of transpose

convolutional section followed by batch normalization and activation function. While in

discriminator genotype, all hidden layers are convolutional, followed by batch

normalization and activation function. These hidden layers design is inspired by DCGAN

[28]. The specification of the hidden layers (e.g. weights and bias) will be trained by a

variation of the gradient descent method and will not be part of the evolution. However,

the weights of the networks are preserved over the generations for each individual.

During the evaluation step, fake generated images are used to assess the quality of the

individual by a predefined fitness function.

4.3 Individual Generation

We will identify the GAN components which will be used to generate the individual. As

described in Equation 25, each GAN individual consists of a Generator Network, a

Discriminator Network and a loss function.

47

The following components are defined to initialize an Individual:

1. Architecture of Generator. This includes:

a. Number of layers of the architecture

b. Activation function for each layer

c. Output channel for each layer

2. Architecture of Discriminator (with similar elements to be considered to those for

the generator)

3. Loss function used to train both the architecture

4. Weight initialization technique for each network

We will encode the value of each gene in a categorical way.

Activation Functions and Loss Functions encoding is described as follows:

Activation

Function

Encoding

LeakyReLU 0

ReLU 1

ELU 2

Sigmoid 3

Tanh 4

Table 2 Activation Functions Encoding

Loss Function Encoding

Binary Cross-Entropy (Vanilla

GAN)

0

Mean Squared Error (LSGAN) 1

Relativistic Standard GAN

(RSGAN)

2

Relativistic Average GAN

(RAGAN)

3

Hinge GAN 4

Table 3 Loss Functions Encoding

The weight initialization is encoded 0 for Normal and 1 for Xavier initialization. The

output channels are randomly chosen from a range of 64 to 512, and the outputs channels

48

are in multiples of 64. Selection of output channels is inspired by DCGAN architecture

[31].

Example of a genotype encoding can be shown in the following table:

Gene Generator Discriminator

Number of layers 5 6

Activation functions [1,1,0,2,4] [0,0,0,1,0,3]

Output channels [512,256,128,64,64] [64,64,128,256,512,512]

Weight initialization 0 1

Loss Function 2

Table 4 Individual GAN genotype

During the population initialization 𝑁, such GAN genotypes are generated.

4.4 Fitness Evaluation

The fitness evaluation is the process of measuring the fitness of an individual. We have

tried to use the loss function of the individual as a fitness evaluation metric. However,

preliminary experiments evidenced that the loss function does not represent a good

measure for quality. Since the loss functions are unstable during the training of the

GANs, it is not suitable to be used as a fitness function in evolutionary algorithms.

Fréchet Inception Distance (FID) [51] is the state-of-the-art metric to compare the

generative component of the GANs and outperforms other evaluation metrics, such as the

Inception score [11] with respect to diversity and quality. Inception Net [19] is used in

FID, and it is trained on ImageNet [51]. This Inception Net is used to transform the

images to feature space. This feature space is interpreted as a continuous multivariate

Gaussian [12]. So, the mean and covariance of two Gaussians are estimated using real

and fake samples. The FID score between two Gaussians is given by the following

equation:

49

 FID(x, g) = ||μx − μg||𝟐𝟐 + Tr(Σx + Σg − 𝟐(ΣxΣg)1/2)

(26)

In Equation 26, μx, Σx, μg and Σg represent the mean and covariance estimated for the

real dataset and fake samples, respectively.

4.5 Genetic Neuroevolutionary Training of Deep

Convolutional GANs

One of the simplest way to evolve any neural network can be done through the use of

Genetic Algorithms. Figure 31 shows a visual representation of the usage of genetic

algorithm in neuroevolution. Where the weights of the neural networks are evolved using

a genetic algorithm, then the network is asked to perform some action on the environment

and based on the action, a fitness score is calculated. However, there is a problem when

this approach is applied to deep convolutional neural networks, the parameters required

to optimize deep networks increases to hundreds of thousands in number.

Neuroevolution of Augmented topologies (NEAT) [8] deals with this problem, where

authours instead of evolving weights of the network evolves the topology of the network.

The weights are trained through traditional stochastic gradient descent algorithm [52].

Figure 31 Genetic Neuroevolution of Neural Network

50

GAGAN model combines neuroevolution and genetic algorithms in the coordination of

the deep Convolutional GAN training algorithm. Our approach is based on NEAT [8],

that was adapted to the context of GANs. Algorithm 1 presents the GAGAN, a genetic

neuroevolutionary training of deep convolutional GANs.

In this section, we will give a detailed explanation of genetic operations like crossover

and mutations performed in the algorithm. At the end of this section, each step of

Algorithm 1 is analyzed.

4.5.1 Crossover

The crossover operation is used to combine genetic information of two parents to

generate new offsprings. Initially, we have tried to apply a k-point crossover. We tried to

pick randomly 𝑘 different genes and swap between the parent individuals. However,

preliminary test evidenced that k-point crossover decreases the performance of the

system. Such a decrease in performance happens because when the new gene is

introduced in the individual genotype, the trained weights of the network are not

compatible.

So for our crossover operation, we are using the single-point crossover. Let two selected

parent individuals from the population be represented as follows:

𝑃1 = (𝐺1,𝐷1) , 𝑃2 = (𝐺2,𝐷2)

The crossover operation creates two offsprings as follows:

𝑂1 = (𝐺2, 𝐷1) , 𝑂2 = (𝐺1,𝐷2)

Crossover preserves the integrity of each network with trained weights and bias.

4.5.2 Mutation

The mutation operation is composed of five primary operations, as stated in

51

Table 5. One of the generator network or discriminator network is selected to mutate,

from the elected individual of the population space. For discriminators, the available

layer is convolution layer, and for generator, the available layer is transpose convolution.

The maximum and minimum number of layers’ range is the input parameter for the

GAGAN algorithm.

Mutation Operations

Add Layer

Delete Layer

Activation function change

Output channel change

Loss function change

Table 5 Mutation operations

In Add layer mutation, according to the network type, a new layer is added. Add layer

mutation operation will never exceed the maximum range of layers. With the new layer,

batchnorm layer and randomly selected activation function are also added. Also, the input

channel of the next layer is reinitialized according to the output channel of the new layer.

Similarly, in Delete layer mutation, a convolutional or transpose convolution layer is

deleted. Input channel of the next layer is appropriately changed according to the

previous layer output channel. The weights of the layers are not altered during this

mutation operation. The Delete layer mutation will never go beyond the minimum range.

If the mutation operation chooses activation function change, then a random layer is

selected of the previously elected GAN network. A new activation function from Table 2

is selected, and it is used to replace the elected networks activation function.

A layer is arbitrarily chosen for which output channel change is to be performed. One

new channel number is selected from the range of 64-512 and is replaced with the chosen

layer output channel. Because of the output channel mutation, the input channel of the

next layer is also changed dynamically.

The loss function is selected from Table 3 and is replaced with the existing loss function

of the individual. The mutation of these attributes follows a uniform distribution, with a

predefined range limiting the possible values.

52

4.5.3 GAGAN Algorithm

The purpose of the GAGAN algorithm is to search for best network topography and train

the network to improve the generation of the images.

The algorithm starts with the creation of population space according to the input

parameter population_size. An individual in the population is initialized as described in

4.3 Individual Generation. All the individuals of the population are trained for one epoch.

Each epoch has a predefined batch size and training iteration as the input of the

algorithm. The parameters of the epoch should be sufficient enough for the deep neural

networks to learn some underlying task. Then a fitness score for each individual

chromosome is calculated, as shown in Equation 26. Lower the FID score, better the

individual solution. Hence, the best individual is saved at this step of the algorithm, as

shown in Algorithm 1 step (6-8).

New solutions are generated using genetic operations. In which population individuals

become the parent, and Mutation(asexual) or Crossover(bisexual) reproduction is used to

generate the offsprings. The size of the offspring is equal to the population size, and

according to the predefined probability, Crossover or Mutation operation is chosen. Two

random individuals are selected from the population, and as described in section 4.5.1

Crossover operation is performed. For mutation operation, any random individual is

elected from the population space, and as explained in section 4.5.2 Mutation operation is

done. It is important to note that the choice of the mutation is made uniformly at random.

The mutation and crossover are presented in step 10 of Algorithm 1. In step (11-17), the

offsprings are trained, and the FID score is calculated for each new individual. If the

offspring is better than the current best individual, then the best individual is updated

with that offspring.

53

Algorithm 1 Genetic Algorithm(GA) for evolving deep convolutional GANs

In step 18, the selection operation is performed. Selection gives preference to the better

chromosomes to pass their genome to the next generation of GAGAN algorithm.

Different types of selection method exist, empirically we have chosen tournament

selection as it gives the best results in our problem space. Tournament selection involves

running multiple tournaments among the randomly chosen k individuals. Using

tournament selection gives the diversity and best offspring for the upcoming generation.

The whole process is repeated until the specified number of generation, generation_max

is also one of the input parameters of the algorithm. The number of generation should be

sufficient for individuals to show the convergence. Finally, the bests individual having

the lowest fitness score is returned as the output of the algorithm.

54

4.6 Cultural Neuroevolutionary Training of Deep

Convolutional GANs

Unlike Genetic Algorithms, Cultural Algorithm enables the population to adapt to their

changing environment at a rate that exceeds that of biological evolution. CAGAN model

combines neuroevolution and cultural algorithm in the coordination of the GAN training

algorithm. In this section, we will introduce the cultural components and how to adjust

those components, followed by usage of the culture to exceed the natural evolution.

Finally, we will analyze all the steps of CAGAN.

4.6.1 Adjusting Cultures

In CAGAN, we maintain two search spaces: the population space, and a belief space (to

represent cultural component). The belief space models cultural information about the

population, while population space represents individuals. Both the population space and

belief space evolve in parallel, with both influencing one another.

In our method, we have used Situational, Domain and Normative knowledge to adjust the

belief space and influence the GAN population. Mathematically, the belief space is

represented as follows

 𝐵(𝑡) = [𝑆(𝑡), 𝑁(𝑡), 𝐷]

(27)

Where 𝐵(𝑡) represents belief space at generation t, 𝑆(𝑡) , 𝑁(𝑡) and 𝐷 represents the

Situational, Normative and Domain knowledge components respectively. Situational and

Normative component are updated simultaneously in every generation.

Algorithm 2 shows how these knowledge components are updated in each generation.

We will explain the adjustment of each knowledge components in the following sections.

55

4.6.1.1 Situational Knowledge

Let 𝑆(𝑡) have an individual who has the fitness value represented as 𝑏𝑒𝑠𝑡_𝑖𝑛𝑑𝐹𝐼𝐷. If

during the adjustment of situational component there is an individual in population 𝑃𝑡

who has FID score lesser than 𝑏𝑒𝑠𝑡_𝑖𝑛𝑑𝐹𝐼𝐷; then we update the situational component as

shown in step 1 of Algorithm 2. The best individual from the 𝑃𝑡 is set as a situational

component. At all-time the 𝑆(𝑡) will have only one individual.

This property of storing the best individual is known as Elitism. Elitism guarantees that

the evolutionary process converges. However, the chances of converging to a local

optimum also increase due to elitism.

Algorithm 2 Adjust Culture

56

4.6.1.2 Domain Knowledge

The domain knowledge component differs from the situational knowledge component in

that knowledge is not re-initialized at each generation, but contains an archive of the best

solutions since evolution started – very similar to the hall-of-fame used in coevolution.

In our domain knowledge, we are storing the hyperparameters of a benchmark DCGAN

[31] model. Hyperparameters like generators and discriminators activation function,

number of layers, output channels for each layer and loss functions are stored in a

dictionary in belief space. The domain knowledge is initialized as described in step 2-4 of

Algorithm 2.

4.6.1.3 Normative Knowledge

The normative knowledge component maintains a set of intervals, one for each

dimension of the problem is solved. These intervals characterize the range of what is

believed to be good areas to search in each dimension [38].

The normative component is represented as follows

 𝑁(𝑡) = (𝑔𝑙𝑎𝑦𝑒𝑟(𝑡), 𝑔𝑎𝑐𝑡(𝑡), 𝑔𝑜𝑢𝑡(𝑡), 𝑑𝑙𝑎𝑦𝑒𝑟(𝑡), 𝑑𝑎𝑐𝑡(𝑡), 𝑑𝑜𝑢𝑡(𝑡), 𝑙𝑜𝑠𝑠(𝑡))

(28)

Where,

 𝑔𝑙𝑎𝑦𝑒𝑟(𝑡): Generator layer count component

𝑔𝑎𝑐𝑡(𝑡): Generator activation component

𝑔𝑜𝑢𝑡(𝑡): Generator output channel array component for each layer

𝑑𝑙𝑎𝑦𝑒𝑟(𝑡): Discriminator layer count component

𝑑𝑎𝑐𝑡(𝑡): Discriminator activation component

𝑑𝑜𝑢𝑡(𝑡): Discriminator output channel array component for each layer

Where for each dimension following information is stored:

 𝑋𝑗(𝑡) = (𝐼𝑗(𝑡), 𝐿𝑗(𝑡), 𝑈𝑗(𝑡))

(29)

57

𝐼𝑗(𝑡) denotes a closed interval, 𝐼𝑗(𝑡) = [𝑥𝑚𝑖𝑛,𝑗 (𝑡), 𝑥𝑚𝑎𝑥 ,𝑗 (𝑡)], 𝐿𝑗(𝑡) is the score for the

lower bound, and 𝑈𝑗(𝑡) is the score for the upper bound.

In adjusting the normative knowledge component, a conservative approach is followed

when narrowing the intervals, thereby delaying a too early exploration. To update the

normative component, top three elites are elected from the population 𝑃𝑡 . For all the

dimension of the search space, these three elites are used to update the normative

knowledge, as shown in the steps (9-14) of Algorithm 2.

Where,

𝑥𝑙(t): 𝑙
𝑡ℎ elite at generation 𝑡

𝑓(𝑥𝑙(𝑡)): fitness value of the 𝑙𝑡ℎ elite individual at generation 𝑡

𝑥𝑙𝑗(𝑡): is the value of 𝑗𝑡ℎ gene of the 𝑙𝑡ℎ elite at generation t

𝑥𝑚𝑖𝑛,𝑗 (𝑡): is the value of the 𝑗𝑡ℎ gene of the 𝑙𝑡ℎ elite whose fitness value is less than that

of the individual with the smallest 𝑗𝑡ℎ gene at generation 𝑡

𝐿𝑗(𝑡): represents the fitness value of the elite that is less than the fitness value of the

individual having the smallest 𝑗𝑡ℎ gene at generation 𝑡

 𝑥𝑚𝑎𝑥 ,𝑗 (𝑡): would signify the value of the 𝑗𝑡ℎ gene of the 𝑙𝑡ℎ elite whose fitness value is

less than that of the individual with the highest 𝑗𝑡ℎ gene at generation 𝑡

𝑈𝑗(𝑡): would represent the fitness value of the individual that is less than the fitness value

of the individual having the largest 𝑗𝑡ℎ gene at generation 𝑡

4.6.2 Influence Functions

Beliefs are used to adjust individuals in the population space to conform closer to the

global belief space. The adjustments are realized via influence functions.

In our model, the belief space is used to generate new offsprings by using genetic

operations like mutations and crossover. The belief knowledge will be used to determine

the search direction and step sizes.

58

The input to Algorithm 3 is the belief space 𝐵𝑡 and population 𝑃𝑡. At the end of the

algorithm offspring 𝑂𝑡+1 of the population size is created. It is important to note that

during the offspring creation, the weights of the networks are preserved showcasing

transfer learning between the generations.

Algorithm 3 Influence from Culture

The probability of performing the crossover operation is decided to be 0.1 empirically to

prevent the algorithm from local minima. In the crossover operation, the offsprings are

created using situational knowledge and domain knowledge. Crossover operation is

identical to the crossover in GAGAN as defined in section 4.5.1 Crossover.

Unlike in GAGAN, the mutation operation uses Normative knowledge and Domain

knowledge. For any 𝑥 mutation dimension, the search direction and step sizes are

determined using the Normative knowledge as demonstrated in step (10-13) of

Algorithm 3 Influence from Culture

59

Where,

 𝑥𝑖𝑗(𝑡): represents the value of the 𝑗𝑡ℎ gene of the 𝑖𝑡ℎ individual

𝑠𝑖𝑧𝑒(𝐼𝑗): 𝑥𝑚𝑎𝑥,𝑗(𝑡) − 𝑥𝑚𝑖𝑛,𝑗(𝑡)

If 𝑥𝑖𝑗(𝑡) is less than 𝑥𝑚𝑖𝑛,𝑗(𝑡), then it is incremented by the normative knowledge size for

that gene, and if it is higher than the knowledge range, then it is decremented or else it is

kept unaltered.

If domain knowledge is elected for the mutational adjustment, then the gene 𝑗 of 𝑖𝑡ℎ

individual is replaced from the domain knowledge.

4.6.3 CAGAN Algorithm

CAGAN algorithm starts with the initialization of population space, similarly to GAGAN

as presented in 4.3 Individual Generation. In the next step, Belief space 𝐵0 is initialized,

where domain knowledge dictionary is created according to the hyperparameters of

DCGAN, Situational knowledge and Normative knowledge are kept empty. At the start

of evolution, all the individuals are trained for one epoch, and their fitness scores are

calculated as explained in 4.4 Fitness Evaluation.

A reference of best_ind is kept throughout the generations, if the fitness value of any

individual is less than the fitness value of best_ind then the best individual is updated as

stated in step (4-9) of Algorithm 4.

Training of individual is followed by adjustment of belief space. The detailed explanation

of the belief space modification is mentioned in 4.6.1 Adjusting Cultures. The belief

space will be used in the creation of the new offspring; the individuals in the population

are variated using the cultural influence. This variation of the population space is shown

in step 12, and the detailed description is in 4.6.2 Influence Functions.

The new offsprings are then trained for one epoch, and their fitness scores are calculated.

This process is shown in step (13-19) of Algorithm 4. After that, using the tournament

selection operation, the next population set is created. This evolution process is repeated

over the number of generations, which is the input parameter of the algorithm.

60

Algorithm 4 Cultural Algorithm (CA) for evolving deep convolutional GANs

Once the last generation is completed, the GAN individual having the lowest FID score is

then returned. Best GAN individual is saved with the weights and can be used as an API

to generate new images.

61

CHAPTER 5

Experiments and Results

In this chapter, we present different types of datasets used for experimentation, which is

followed by the experimental setup for the proposed algorithms and the result obtained

from those experiments.

5.1 Datasets

We will evaluate the performance of our method on three different datasets. Two of them

are standard benchmark dataset for GANs, and the third one (Stroke Faces) is created by

us. Following are the names and sample training images of these datasets.

• MNIST handwritten digit dataset [17]- consists of 60000 training images and

10000 testing images. Each image is grayscale of size 28*28, but for our

experimentation, we scale the images to 64*64.

Figure 32 MNIST Dataset

62

• Fashion MNSIT [18] also consists of 60000 training examples and 10000 test

images. Each example is a 28*28 grayscale image, and dataset has 10 different

labelled classes. Similar to MNIST, we scale the dataset to 64*64 grayscale

images.

Figure 33 Fashion MNIST Dataset

• Stroke Faces- Stroke faces dataset is one of our contribution. It consists of 3

labelled classes of child, men and women having a stroke or facial paralyzes. This

dataset has total 1280 samples scraped from google images and is pre-processed

to 64*64 size grayscale images.

Figure 34 Stroke Face Dataset

63

Usually, the network would be training for several epochs using the whole dataset in the

procedure. But there are several domains where there is a lack of dataset, so we are

testing our approach in low data regime. We will only use a small subset of the dataset

per generation. Combining the small dataset, with the transfer of parameters between the

generations, was sufficient to produce an evolutionary pressure towards efficient

solutions to promote the GAN convergence.

5.2 Experimental Setup

Evolutionary Parameters Value

Number of Generations 50
Population size 7
Crossover rate 0.1
Mutation rate 0.9

Layers range [5:8]
Output channel range [64:512]

Tournament size 3
FID samples 1000

Batch size
Batches per generation

64
20

Optimizer
Learning rate

Adam
0.001

Table 6 Experimental parameters

Table 6 describes the parameters used in all experiments reported in this thesis.

For evolutionary parameters, we chose to execute our experiments for 50 generations.

After this number of generations, the fitness stagnates, and we expect no improvement in

the results. We have used 7 individuals for the population, i.e. there will be 7 different

generators and discriminators in the population. We choose 7 because that was the

maximum computational power we had for carrying out our experiments. A larger

population will probably achieve better results, but the computational cost is too high.

The maximum layer range of 8, is also restricted for the same reason. We empirically

64

define the probability of crossover to be 0.1 and mutation to be 0.9; this is because we

want the evolutionary algorithms to avoid the local optimum.

For the GAN parameters, we choose 64 as the batch size, running 20 batches per

generation. This amounts to 1280 samples per generation to train the individual. The

optimizer used in this method is Adam [53].

For all the three dataset MNIST, F-MNIST and Stroke face, we executed both the

proposed model three times.

5.3 Using GAGAN to Generate MNIST Images

FID score is calculated by comparing 1000 generated images and original dataset images.

Figure 35 shows the progression of the FID fitness score for the best individual

represented by GAGAN. Moreover, the second line AVG GAGAN, shows the average of

the best individuals FID score at each generation achieved in three runs. We can see the

fitness of the generator reducing through generation with reduced noise.

Figure 35 Graph showing the best FID score achieved at each generation versus the mean of three runs for

GAGAN MNIST

65

In the final generation, the lowest FID was reported to be 36.61, with a standard deviation

of 𝜎 = 7.15.

Figure 36 contains generated samples selected to represent the progression of the

generator during the evolutionary algorithm. We can see in the first generation only noisy

samples, without any structure resembling a digit. From generation 25 we can start

distinguishing between the digits, with a progressive improvement of the quality.

Figure 36 The progression of MNIST samples created by best GAGAN generator in generations a) 1, b) 25

and c) 50

5.4 Using GAGAN to Generate F-MNIST Images

Figure 37 Graph showing the best FID score achieved at each generation versus the mean of three runs for

GAGAN F-MNIST

b) Gen 25 c) Gen 50 a) Gen 1

66

Figure 37 shows the graph of the best individual generators FID scores over the 50

generations, versus the mean of the best individuals in the three runs of the experiments

for Fashion MNSIT dataset. In the last generation for GAGAN F-MNIST, the lowest FID

was reported to be 104.02, with a standard deviation of 𝜎 = 20.68.

Figure 38 shows a similar progression of the best individual GAGAN for the F-MNIST.

Figure 38 The progression of F-MNIST samples created by best GAGAN generator in generations a) 1, b)

25 and c) 50

5.5 Using GAGAN to Generate Stroke Faces

Similar to another dataset we have compared GAGAN generated stroke faces using FID

score as shown in Figure 39. The best individuals FID score is plotted with the average

FID score of top individuals from the three runs of the experiments over 50 generations.

The best FID score for GAGAN stroke faces is recorded to be 93.16. From the three runs

of this GAGAN model for stroke faces the standard deviation in the last generation is

𝜎 = 26.99.

Figure 40 shows the progression of the stroke faces over the generation. In the first

generation, only noise is generated. At generation 25, we can distinguish some faces

having the droopy stroke effect. In generation 50, we can see some improvement in the

quality of generated stroke faces. However, there is some noise also seen in the generated

b) Gen 25 c) Gen 50 a) Gen 1

67

faces. This is because the dataset we are training on is minimal and when compared to

benchmark models using FID score as shown in section 6.3 Comparison between Vanilla

GAN, DCGAN, GAGAN and CAGAN to generate Stroke faces our proposed models

generates better quality images.

Figure 39 Graph showing the best FID score achieved at each generation versus the mean of three runs for

GAGAN Stroke Faces

Figure 40 The progression of Stroke face samples created by best GAGAN generator in generations a) 1,

b) 25 and c) 50

b) Gen 25 c) Gen 50 a) Gen 1

68

5.6 Using CAGAN to Generate MNIST Images

In this section, we will compare our second model CAGAN to generate MNIST images.

As mentioned in section 5.2 Experimental Setup, only 1280 sample training images are

used to train this model. In the following chapter, we will compare both the proposed

technique with other benchmark models.

Figure 41 shows the progression of the FID fitness score for the best individual

represented by CAGAN. Also, the second line AVG CAGAN, shows the mean FID score

of the best individuals at each generation achieved in three runs. We can see the fitness of

the generator reducing through generations.

Figure 41 Graph showing the best FID score achieved at each generation versus the mean of three runs for

CAGAN MNIST

Figure 42 shows the generated images of the best individual of CAGAN population.

Visually it is hard to compare the images generated by different models, that is why we

rely on FID score to validate the performance of the different models. The best FID score

for MNIST dataset by CAGAN is reported to be 33.37, with the standard deviation for

the last generation in total three-run is 𝜎 = 0.80.

69

Figure 42 The progression of MNIST samples created by best CAGAN generator in generations a) 1, b) 25

and c) 50

5.7 Using CAGAN to Generate F-MNIST Images

Figure 43 Graph showing the best FID score achieved at each generation versus the mean of three runs for

CAGAN F-MNIST

Figure 43 shows the graph of the best CAGAN individual generator FID scores over the

50 generations, versus the mean of the best individuals in the three runs of the

b) Gen 25 c) Gen 50 a) Gen 1

70

experiments for Fashion MNSIT dataset. In the last generation for CAGAN F-MNIST,

the lowest FID was reported to be 79.97, with a standard deviation of 𝜎 = 3.79. When

compared to the standard deviation of GAGAN, the CAGAN standard deviation is

dramatically lower.

Figure 38 shows a progression of the best individual CAGAN generated images for the F-

MNIST.

Figure 44 The progression of F-MNIST samples created by best CAGAN generator in generations a) 1, b)

25 and c) 50

5.8 Using CAGAN to Generate Stroke Faces

Figure 45 shows the FID score over the generations of the best CAGAN individual found

in three runs for Stroke Faces. The best FID score at the last generation of CAGAN was

reported to be 74.36. The mean of the top individuals of three runs is also shown in

Figure 45. The standard deviation of the last generation for all the runs of CAGAN

Stroke Faces is proclaimed to be 𝜎 = 21.25.

In Figure 46, CAGAN stroke face generation is shown. In first-generation, the best

CAGAN individual is generating the noise, but as the training progress, the generator

learns the complicated stroke face dataset and some of the generated images shows the

facial stroke signs. However, there is some noise present in the final training generation

of CAGAN, but the generated images are outperforming the existing benchmark models.

The comparison of benchmark models is shown in the next chapter.

c) Gen 25 d) Gen 50 b) Gen 1

71

Figure 45 Graph showing the best FID score achieved at each generation versus the mean of three runs for

CAGAN Stroke Faces

Figure 46 The progression of Stroke Face samples created by best CAGAN generator in generations a) 1,

b) 25 and c) 50

5.9 Best Evolved Architecture

Table 7 represents the best architecture found by using CAGAN for MNIST after 50

generations. Both the architectures are composed of convolutional layers. The loss

function for this best-evolved architecture is RAGAN loss function.

d) Gen 25 e) Gen 50 c) Gen 1

72

It is necessary to note that not only the final architecture is essential but also the process

to construct the final models because of the mechanism of transference of the learned

weights throughout generations. Therefore, we are only showing one evolved

architecture.

Discriminator

𝑥𝜖ℝ1∗64∗64
Conv2d 4x4, Stride 2, Pad 1, no bias, 1→64

ReLU

Conv2d 4x4, Stride 1, Pad (1,2,21), no bias, 64→64

BN and LeakyReLU

Conv2d 4x4, Stride 2, Pad 1, no bias, 64→128

BN and LeakyReLU

Conv2d 4x4, Stride 2, Pad 1, no bias, 128→256

BN and ReLU

Conv2d 4x4, Stride 2, Pad 1, no bias, 256→512

BN and ELU

Conv2d 4x4, Stride 1, Pad 1, no bias, 512→1

Table 7 Best CAGAN evolved Generator and Discriminator Architecture for MNIST

Generator

𝑧𝜖ℝ100 ~N(0,1)

ConvTranspose2d 4x4, Stride 1, Pad 0, no bias, 100→512

BN and LeakyReLU

ConvTranspose2d 3x3, Stride 1, Pad 1, no bias, 512→512

BN and ELU

ConvTranspose2d 4x4, Stride 2, Pad 1, no bias, 512→256

BN and ELU

ConvTranspose2d 3x3, Stride 1, Pad 1, no bias, 256→256

BN and ReLU

ConvTranspose2d 4x4, Stride 2, Pad 1, no bias, 256→128

BN and ELU

ConvTranspose2d 4x4, Stride 2, Pad 1, no bias, 128→64

BN and LeakyReLU

ConvTranspose2d 4x4, Stride 2, Pad 1, no bias, 64→1

Tanh

73

CHAPTER 6

Comparison and Discussion

In this chapter, we have compared our proposed approach with three other different

methods and analyze our results.

The study made by Lucic et al. [42] found that metric to represent better diversity and

quality of generated samples when compared with real data is FID score metric. Thus,

based on this study, the results are compared using FID scores.

6.1 Comparison between Vanilla GAN, DCGAN,

COEGAN, GAGAN and CAGAN to generate

MNIST images

Figure 47 Comparison of Vanilla GAN, DCGAN, COEGAN, GAGAN and CAGAN for MNIST dataset

74

Figure 47 shows the comparison of the best FID score of Vanilla GAN, DCGAN,

COEGAN, GAGAN and CAGAN. The best FID score is obtained from the three runs of

each experiment. The mean FID is not shown here, because we are only interested in the

best individual for generating images. The graph shows that in the low data regime, non-

evolutionary methods like V-GAN and DCGAN have very high FID score compared to

evolutionary methods, which means that the generated images for MNIST are not of

better quality and diversity.

For COEGAN, it takes 20 generations to reach an FID score of 42 whereas for GAGAN

and CAGAN it takes around 30 generations. However, at the end of 50𝑡ℎ generation

CAGAN catches up with the COEGAN having the best FID score of 33.

6.2 Comparison between Vanilla GAN, DCGAN,

COEGAN, GAGAN and CAGAN to generate F-

MNIST images

Figure 48 Comparison of Vanilla GAN, DCGAN, COEGAN, GAGAN and CAGAN for F-MNIST dataset

75

Best FID of the generators in Vanilla GAN, DCGAN, COEGAN, GAGAN and CAGAN

are shown in Figure 48. We can see that the result of the COEGAN is better than the

results of all other methods. Nonetheless, our approach CAGAN gives comparable FID

score.

Because of computational limitation, we were only able to use seven individuals in our

approach, whereas the COEGAN uses ten individuals in their population. With the

increase in the higher GPU computational power, we can increase the population size and

probably CAGAN can achieve equivalent FID number.

6.3 Comparison between Vanilla GAN, DCGAN,

GAGAN and CAGAN to generate Stroke faces

Figure 49 Comparison of Vanilla GAN, DCGAN, GAGAN and CAGAN for Stroke Face dataset

In this section, we have compared the stroke face generation with vanilla GAN, DCGAN,

GAGAN and CAGAN. The COEGAN is not used here because their code repository has

not given the compatibility to test it with the custom dataset. Figure 49 shows the best

FID score plotting of Vanilla GAN, DCGAN, GAGAN and CAGAN. From the graph,

76

we can see that after 25𝑡ℎ generation the FID score stagnates for GAGAN and CAGAN.

The best architecture found in CAGAN outperforms all other referenced methods.

Table 8 summaries all the results of five different models for three referenced datasets

used in this thesis. We can see that the CAGAN achieves best FID score of 33.37 for

MNIST dataset, whereas COEGAN ranks at second best with 34.66 FID metric.

For F-MNIST dataset COEGAN exceeds all other approaches and has best FID score of

71.04, while the position of CAGAN is second with comparable FID score of 79.97.

Model MNIST F-MNSIT Stroke Face

Vanilla GAN 180
113
34.66
36.61
33.37

234
202
71.04

104.02
79.97

348
218

-
93.16
74.36

DCGAN

COEGAN
GAGAN

CAGAN
Table 8 FID score comparison of five different models with three datasets

For the generation of stroke face dataset, the CAGAN is elite with FID score of 74.36,

whereas the GAGAN has the second-best position with FID score of 93.16.

77

CHAPTER 7

Conclusion & Future Work

Generative Adversarial Networks (GANs) gained relevance for generating a synthetic

dataset similar to the original images. However, training stability issues like vanishing

gradient and mode collapse make the training of GAN, a hard work.

We propose two different training technique called as GAGAN and CAGAN, which uses

neuroevolution with genetic algorithm and cultural algorithm respectively. The proposed

methods were designed by inspiration on NEAT [8] and COEGAN [12].

In this thesis, we presented the experiments made with MNIST, F-MNIST and Stroke

Face datasets to assess the efficiency of GAGAN and CAGAN in low data regime. In our

experimentation, we found no evidence of mode collapse or vanishing gradient for all the

three datasets. The natural evolution of the genetic and cultural algorithm contributed to

preventing these issues. Moreover, the proposed method was able to generate better

images when compared to referenced benchmark models. Thus, GAGAN and CAGAN

presented more stable training solutions than regular GANs. We compared our results

with Vanilla GAN, DCGAN and COEGAN; the result displayed that CAGAN achieved

the best FID score for most of the datasets. However, COEGAN outperformed CAGAN

for F-MNIST dataset.

A significant limitation of our approach is training many deep neural networks

throughout the generations. Because of which proposed neuroevolutionary training

approach have a high computational complexity which may turn their application

unfeasible. Besides that, our proposed approach did not outperform state-of-the-art

techniques, as presented in [10].

78

In the future work, we can extend this approach to test transferability of neuroevolved

GANs from grayscale to RGB and test for higher resolution of images. We would also

like to have a sensitivity analysis of the effect of different type of crossover and mutation

with varying probability rate.

The proposed stroke face dataset can be pre-processed to have a higher image resolution

and can be used to generate RGB stroke faces. Which further can be used to create novel

approaches that more quickly and accurately recognize a stroke, particularly in counties

and other settings where access to CT scans and specialized health care services is

limited.

We can also expand the parameters used in the experiments in this thesis to enable the

generation of a larger network. Thus, a larger population of GANs can be used with a

bigger limit in the number of genes in the chromosome.

79

REFERENCES

[1] I. J. Goodfellow, J. . Pouget-Abadie, M. . Mirza, B. . Xu, D. . Warde-Farley, S. . Ozair, A. C.

Courville and Y. . Bengio, "Generative Adversarial Nets," , 2014. [Online]. Available:

https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf. [Accessed 14 4 2019].

[2] Y. LeCun, "Quora," July 2016. [Online]. Available: https://www.quora.com/What-are-some-

recent-and-potentially-upcoming-breakthroughs-in-deep-learning.

[3] I. Goodfellow, "Twitter," 2018. [Online]. Available:

https://twitter.com/goodfellow_ian/status/1084973596236144640?s=20.

[4] K. Shmelkov, C. Schmid and K. Alahari, "How good is my GAN?," in Proceedings of the

European Conference on Computer Vision (ECCV), 2018.

[5] M. Hergott, A Leap into the Future: Generative Adversarial Networks, Medium, 2019.

[6] X. Yi, E. Walia and P. Babyn, "Generative adversarial network in medical imaging: A

review," Medical Image Analysis, p. 101552, 2019.

[7] A. Antoniou, A. Storkey and H. Edwards, "Augmenting image classifiers using data

augmentation generative adversarial networks," in International Conference on Artificial

Neural Networks, 2018.

[8] K. O. Stanley and R. Miikkulainen, "Evolving neural networks through augmenting

topologies," Evolutionary computation, vol. 10, pp. 99-127, 2002.

[9] C. Wang, C. Xu, X. Yao and D. Tao, "Evolutionary generative adversarial networks," IEEE

Transactions on Evolutionary Computation, 2019.

[10] T. Karras, T. Aila, S. Laine and J. Lehtinen, "Progressive growing of gans for improved

quality, stability, and variation," arXiv preprint arXiv:1710.10196, 2017.

[11] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford and X. Chen, "Improved

techniques for training gans," in Advances in neural information processing systems, 2016.

[12] V. Costa, N. Lourenço and P. Machado, "Coevolution of Generative Adversarial Networks,"

in International Conference on the Applications of Evolutionary Computation (Part of

EvoStar), 2019.

[13] Estenben, Using Evolutionary AutoML to Discover Neural Network Architectures, Google

Brain, 2018.

80

[14] H. Y. Noah, "Sapiens: A brief history of humankind," NY: HarperCollins, 2015.

[15] G. M. Feinman and L. R. Manzanilla, Cultural evolution: Contemporary viewpoints,

Springer Science & Business Media, 2000.

[16] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley and J. Clune, "Deep

neuroevolution: Genetic algorithms are a competitive alternative for training deep neural

networks for reinforcement learning," arXiv preprint arXiv:1712.06567, 2017.

[17] Y. LeCun and C. Cortes, "MNIST handwritten digit database," 2010.

[18] H. Xiao, K. Rasul and R. Vollgraf, "Fashion-MNIST: a Novel Image Dataset for

Benchmarking Machine Learning Algorithms," 28 8 2017. [Online].

[19] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, "Rethinking the inception

architecture for computer vision," in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016.

[20] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016.

[21] B. Shabash and K. C. Wiese, "EvoNN: a customizable evolutionary neural network with

heterogenous activation functions," in Proceedings of the Genetic and Evolutionary

Computation Conference Companion, 2018.

[22] F. Rosenblatt, The perceptron, a perceiving and recognizing automaton Project Para, Cornell

Aeronautical Laboratory, 1957.

[23] J. Patterson and A. Gibson, Deep Learning A Practitioner's Approach, O'Reilly, 2007.

[24] D. H. Von Seggern, CRC standard curves and surfaces with mathematica, Chapman and

Hall/CRC, 2016.

[25] E. Fan, "Extended tanh-function method and its applications to nonlinear equations," Physics

Letters A, vol. 277, pp. 212-218, 2000.

[26] V. Nair and G. E. Hinton, "Rectified linear units improve restricted boltzmann machines," in

Proceedings of the 27th international conference on machine learning (ICML-10), 2010.

[27] A. P. Engelbrecht, Computational Intelligence : an Introduction, Wiley., 2007 .

[28] M. Nielsen, Neural Networks and Deep Learning, 2015.

[29] I. Goodfellow, "NIPS 2016 tutorial: Generative adversarial networks," arXiv preprint

arXiv:1701.00160, 2016.

[30] A. Radford, L. Metz and S. Chintala, "Unsupervised representation learning with deep

convolutional generative adversarial networks," arXiv preprint arXiv:1511.06434, 2015.

81

[31] N. Inkawhich, DCGAN Tutorial, 2018.

[32] A. Jolicoeur-Martineau, "The relativistic discriminator: a key element missing from standard

GAN," arXiv preprint arXiv:1807.00734, 2018.

[33] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang and S. Paul Smolley, "Least squares

generative adversarial networks," in Proceedings of the IEEE International Conference on

Computer Vision, 2017.

[34] H. Zhang, I. Goodfellow, D. Metaxas and A. Odena, "Self-attention generative adversarial

networks," arXiv preprint arXiv:1805.08318, 2018.

[35] J. H. Holland, "Genetic algorithms," Scientific american, vol. 267, pp. 66-73, 1992.

[36] "Tutorials Point," [Online]. Available:

https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_mutation.htm.

[37] "GeeksforGeeks," [Online]. Available: https://www.geeksforgeeks.org/tournament-

selection-ga/.

[38] R. G. Reynolds, "An introduction to cultural algorithms," in Proceedings of the third annual

conference on evolutionary programming, 1994.

[39] R. G. Reynolds and S. Zhu, "Knowledge-based function optimization using fuzzy cultural

algorithms with evolutionary programming," IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), vol. 31, pp. 1-18, 2001.

[40] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju, H.

Shahrzad, A. Navruzyan, N. Duffy and others, "Evolving deep neural networks," in Artificial

Intelligence in the Age of Neural Networks and Brain Computing, Elsevier, 2019, pp. 293-

312.

[41] K. O. Stanley, J. Clune, J. Lehman and R. Miikkulainen, "Designing neural networks

through neuroevolution," Nature Machine Intelligence, vol. 1, pp. 24-35, 2019.

[42] M. Lucic, K. Kurach, M. Michalski, S. Gelly and O. Bousquet, "Are gans created equal? a

large-scale study," in Advances in neural information processing systems, 2018.

[43] U. Garciarena, R. Santana and A. Mendiburu, "Evolved GANs for generating Pareto set

approximations," in Proceedings of the Genetic and Evolutionary Computation Conference,

2018.

[44] F. a. S. A. a. Z. Y. a. S. S. a. F. T. a. X. J. Yu, "Lsun: Construction of a large-scale image

dataset using deep learning with humans in the loop," in arXiv preprint arXiv:1506.03365,

82

2015.

[45] Z. a. L. P. a. W. X. a. T. X. Liu, "Deep Learning Face Attributes in the Wild," in

Proceedings of International Conference on Computer Vision, 2015.

[46] T. Schmiedlechner, A. Al-Dujaili, E. Hemberg and U.-M. O'Reilly, "Towards distributed

coevolutionary gans," arXiv preprint arXiv:1807.08194, 2018.

[47] J. a. H. E. a. O. U.-M. Toutouh, "Spatial evolutionary generative adversarial networks," in

Proceedings of the Genetic and Evolutionary Computation Conference, 2019.

[48] H.-Y. Cho and Y.-H. Kim, "Stabilized training of generative adversarial networks by a

genetic algorithm," in Proceedings of the Genetic and Evolutionary Computation

Conference Companion, 2019.

[49] V. a. L. N. a. C. J. a. M. P. Costa, "COEGAN: evaluating the coevolution effect in

generative adversarial networks," in Proceedings of the Genetic and Evolutionary

Computation Conference, 2019.

[50] X. Gong, S. Chang, Y. Jiang and Z. Wang, "AutoGAN: Neural Architecture Search for

Generative Adversarial Networks," arXiv preprint arXiv:1908.03835, 2019.

[51] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler and S. Hochreiter, "Gans trained by a

two time-scale update rule converge to a local nash equilibrium," in Advances in Neural

Information Processing Systems, 2017.

[52] L. Bottou, "Stochastic gradient descent tricks," in Neural networks: Tricks of the trade,

Springer, 2012, pp. 421-436.

[53] D. P. a. B. J. Kingma, "Adam: A method for stochastic optimization," in arXiv preprint

arXiv:1412.6980, 2014.

[54] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L.

Antiga and A. Lerer, "Automatic differentiation in PyTorch," in NIPS-W, 2017.

[55] R. Allain, Plotly Technologies Inc., [Online]. Available:

https://plot.ly/~RhettAllain/412/mass-of-8-x-115-sheets-of-paper/ .

[56] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith and S. Risi, "Evolving mario levels in the

latent space of a deep convolutional generative adversarial network," in Proceedings of the

Genetic and Evolutionary Computation Conference, 2018.

[57] M. Suganuma, S. Shirakawa and T. Nagao, "A genetic programming approach to designing

convolutional neural network architectures," in Proceedings of the Genetic and Evolutionary

83

Computation Conference, 2017.

[58] E. Real, A. Aggarwal, Y. Huang and Q. V. Le, "Regularized evolution for image classifier

architecture search," arXiv preprint arXiv:1802.01548, 2018.

[59] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le and A. Kurakin,

"Large-scale evolution of image classifiers," in Proceedings of the 34th International

Conference on Machine Learning-Volume 70, 2017.

[60] P. H. Mcquesten, "Cultural enhancement of neuroevolution," 2002.

[61] F.-A. Fortin, F.-M. D. Rainville, M.-A. Gardner, M. Parizeau and C. Gagné, " DEAP:

Evolutionary Algorithms Made Easy," Journal of Machine Learning Research , vol. 13 , pp.

2171-2175, 7 2012 .

[62] P. Bontrager, W. Lin, J. Togelius and S. Risi, "Deep interactive evolution," in International

Conference on Computational Intelligence in Music, Sound, Art and Design, 2018.

[63] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A.

Khosla, M. Bernstein and others, "Imagenet large scale visual recognition challenge,"

International journal of computer vision, vol. 115, pp. 211-252, 2015.

[64] D.-A. Clevert, T. Unterthiner and S. Hochreiter, "Fast and accurate deep network learning by

exponential linear units (elus)," arXiv preprint arXiv:1511.07289, 2015.

[65] U. Garciarena, A. Mendiburu and R. Santana, "Towards automatic construction of multi-

network models for heterogeneous multi-task learning," arXiv preprint arXiv:1903.09171,

2019.

[66] X. Cui, W. Zhang, Z. Tüske and M. Picheny, "Evolutionary stochastic gradient descent for

optimization of deep neural networks," in Advances in neural information processing

systems, 2018.

84

APPENDICES

Appendix A

All the experiments were performed using Pytorch [54] library. To develop the deep

learning models for research purposes I strongly suggest using Pytorch. For plotting the

graphs, I have used Plotly [55].

All the source code for this thesis is available at https://github.com/KaitavMehta95/GAN-

Evolution. One may need to change the hyperparameters, activation functions, loss

functions, output channels range or even the code used in above reference to better suit

their dataset and experiments.

The code was executed on NVIDIA GeForceGTX 1070 GPU with dedicated GPU

memory of 8 GB. Each run of the experiment took around 16 hours, the runtime of the

algorithm can be improved by increasing the GPU memory.

https://github.com/KaitavMehta95/GAN-Evolution
https://github.com/KaitavMehta95/GAN-Evolution

85

VITA AUCTORIS

NAME: Kaitav Mehta

PLACE OF BIRTH:

Gujarat, India

YEAR OF BIRTH:

1995

EDUCATION:

M.K secondary and higher secondary School,

Ahmedabad, Gujarat, 2012

Government Engineering College Gandhinagar,

B.E., Gandhinagar, Gujarat, 2016

University of Windsor, M.Sc., Windsor, ON,

2019

	Neuroevolutionary Training of Deep Convolutional Generative Adversarial Networks
	Recommended Citation

	tmp.1573682764.pdf.uRquC

