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Abstract 

 Noble metal nanoparticles and two-dimensional (2D) transition metal dichalcogenide 

(TMD) crystals offer unique optical and electronic properties that include strong exciton binding, 

spin-orbital coupling, and localized surface plasmon resonance. Controlling these properties at 

high spatiotemporal resolution can support emerging optoelectronic coupling and enhanced 

optical features. Excitation dynamics of these optical properties on physicochemically bonded 

mono- and few-layer TMD crystals with metal nanocrystals and two overlapping spherical metal 

nanocrystals were examined by concurrently (i) DDA simulations and (ii) far-field optical 

transmission UV-vis spectroscopic measurements.  Initially, a novel and scalable method to 

unsettle van der Waals bonds in bulk TMDs to prepare mono- and few-layer crystals was 

performed.  Examination of the solution-based and electrochemical deposition of metal 

nanocrystals on 2D TMD crystals, comparing their optical, electronic, and optoelectronic 

characteristics was accomplished via characterization methods.  Subsequently, DDA simulations 

for noble metal - semiconductor nanocrystal and noble metal - noble metal nanocrystal 

heterostructures analyzed the effects of metal type, geometry, and orientation for the predefined 

nanoantennae parameters.  Results from these computational and experimental optical spectra 

demonstrate promising percent error difference, in which distinguished quantitative effects of 2D 

TMDs crystals - metal nanocrystals and metal nanocrystals - metal nanocrystals facilitated 

optoelectronic activity in the UV-Vis-NIR region. New experimental and theoretical insights into 

energy conversion interactions between coupled plasmonic and excitonic materials spanning the 

optical regimes were established towards their applications in optoelectronic and biological 

engineering platforms.  
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1 Introduction 

 This chapter essentially focuses on the motivation for the present work, and introduces 

key optical features (i.g. surface plasmon resonance (SPR), excitons, transverse (T) peak, 

longitudinal (L) peak, and aspect ratios), discrete dipole approximation (DDA) software, and 2D-

transition metal dichalcogenides (TMDs) (e.g. WS2). General details of these three topics and the 

current research performed with noble metal - noble metal and semiconductor - noble metal will 

be emphasized and discussed. This chapter ends with an overarching hypothesis and research 

objective.  

 

 Motivation 

1.1.1 Sustainable energy 

 The world’s growing population will demand a supply of affordable, clean energy [1]. 

The global energy demand is projected to rise from 17 TW in 2010 to 30 TW by 2050, a 176% 

increase [2]. The primary energy sources are fossil fuels, and they have been the dominant global 

energy source for years and have produced increasing concerns over the effect of anthropogenic 

carbon dioxide on the earth’s climate [2-4]. In recent years, world leaders have agreed on setting 

key goals to help reduce the carbon footprint. One of the main goals for reducing the carbon-

emission was finding alternative sustainable energies that can support the escalating demand of a 

growing population and maintain an ecological balance. Sustainable energy technologies, such as 

wind, solar, and geothermal [5-9] have made significant improvements via plasmonic 

nanostructure/materials. Specific examples for these improvements include enhancement of 

electron-hole pairs, i.e., excitons (and photocurrent) in solar photovoltaics [10], and efficient 

catalytic activity in fuel cells [10-14]. However, critical challenges such as high cost of 

producing these materials (e.g., electron beam lithography, chemical vapor deposition) have 
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limited the performance improvement for the plasmonic nanostructures [15,16]. Part of this work 

has focused on performing an alternative method to mass produce cost-effective noble metal - 

noble metal (e.g. dimers) and noble metal - semiconductor heterostructures. These inexpensive 

nanoantennae have been studied experimentally and computationally for their unique enhanced 

optical features. The produced optical features such as room temperature excitons and surface 

plasmon resonance at the near infrared region help validate this heterostructure’s ability to 

produce optical emissions for alternative energies.  

 

1.1.2 Medical enhancement (tumor ablations) 

 Cancer, a significant threat to human life, causes more than eight million deaths yearly 

[17]. A solution to manage cancer has been a primary focus in medicine. In particular, 

nanotechnology has demonstrated promise for cancer therapy through noninvasive ablation on 

diseased tumor cells via light-activated therapies [18,19]. Specifically, gold nanorods (AuNRs) 

[18], gold nanostars (GNS) [17], and gold nanoparticles (AuNPs) [20-22] show potential with 

their electromagnetic (EM) and optical properties to ablate malignant cells through plasmonic 

photothermal therapy (PPTT). Additionally, AuNPs have been successful in immunotherapeutic 

application, where delivery of immunomodulation materials (e.g., antigens, checkpoint 

inhibitors, and cytokines) assist with mitigating the cancerous cells [22]. Adequate progress has 

been performed to mitigate tumors with nanoparticles. However, the manufacturing of these 

AuNPs uses the toxic cetyltrimethylammonium bromide (CTAB) and silver nitrate growth 

conditions [18]. These seeded growth conditions result in the surface chemistry of the AuNPs 

becoming cytotoxic hence hindering the opportunity for nanoparticles to become the leaders in 

tumor ablations [23]. Citrate-coated gold nanospheres (AuNSs) merged via centripetal force 

produce a nontoxic nanodimer (noble metal - noble metal) that has the potential to be used as a 
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PPTT [24]. These overlapping AuNSs have optically demonstrated visible to near infrared region 

(NIR) features that correspond to the transverse and longitudinal peaks predominantly found in 

the aspect ratio of AuNRs and prolate nanoparticles (NPs) [25-29]. New distinct features arise in 

the computational optical spectra of these nanodimers, and an in-depth study for these 

nanostructures has been performed in this research. These distinguishing features in merged 

AuNSs have the potential to broaden the medical community use of alternative nontoxic 

nanostructures for tumor mitigations. 

 

 Background  

1.2.1 Plasmonic properties of nanomaterials 

 Relatively small metal nanostructures such as gold and platinum tend to alter the 

electromagnetic energy through plasmons [30,31]. Drastic change in the nanostructure’s 

geometry determines the EM energy intensity output as well as the breadth of extinction 

efficiency optical spectra. As incident light hits the nanostructure the resonant EM energy 

produces a surface plasmon, a collective oscillation of electrons that is confined within the 

dielectric interface [32]. A phenomena known as localized surface plasmon resonance (LSPR) 

happens when the plasmons are confined in the surface of the metallic material. In Figure 1.1, 

two subwavelength metallic spheres demonstrate the LSPR phenomena where the proper 

placement of electrons and photons acquired under EM intensity is shown. Under unique 

conditions, the metallic nanostructures have absorptive behaviors when induced with an incident 

light that translates to intense electric near-fields. These absorptive behaviors intensify the heat 

in the surface of the nanostructure. Studies of this phenomena are applied to surface-enhanced 

Raman spectroscopy (SERS) [33,34] and heating applications (i.g., tumor ablations) [5,35] to 

optimize the use of nanoantennae. For this work, Au and Pt nanostructures utilize EM waves for 
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enhanced optical activity, which offers improved potential in optoelectronics [12,37-40] and 

biomedical treatment applications [17-22].  

 

 

 

 As spherical nanostructures extend from their shape to geometric shapes like ovoids and 

nanorods, the plasmon resonance will split into two modes: longitudinal and transverse. The 

longitudinal mode is produced from the long axis of the nanostructure, and the transverse mode 

is due to the perpendicular axis [40]. The rod-like shape of gold nanorods (GNRs) has LSPR 

plasmons that reach the wavelength range of both visible and NIR [25,41]. The longitudinal 

wavelength of elongated nanostructures is controlled by the aspect ratio, the ratio of length to 

width of a nanoparticle, where the higher the aspect ratio the more red shifted the longitudinal 

wavelength peak [40]. Nanostructures such as overlapping AuNSs have the same characteristics 

as GNRs. However, these nanostructures are less toxic for they do not require the toxic capping 

ligand of cetyl trimethyl ammonium bromide (CTAB). An in-depth study of the optical  

Figure 1.1 Subwavelength metallic sphere with induced dipolar plasmon. E0 is the amplitude of 

the electric field and wave vector is k. 
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characteristics via DDA simulations for these dimers will assist in further grasping the ultimate 

dimensions of nanostructures for tumor ablations and optoelectronics.   

 

1.2.2 Transition metal dichalcogenides   

 Monolayer transition metal dichalcogenides (TMD) produce room temperature excitons, 

electron-hole pairs confined through a Columbic force, which result from the direct bandgap 

within the angstrom scale structure [42]. TMDs are composed of two chalcogen atoms (e.g., 

sulfur or selenide) coated around a transition metal atom (e.g., tungsten or molybdenum). 

Multiple TMD monolayers can adhere to one another by Van der Waals bonding, which 

produces the natural bulk state of the TMD material. The bulk TMD has been studied since the 

1960s [44-46] and is currently abundant and low cost. Until the early 2000s, 2D TMDs were not 

diligently studied for their optical, electronic, and physical properties, but interest rose a few 

years after graphene was discovered [46]. In recent literature, 2D TMDs are reported to be used 

for hydrogen and oxygen evolution reaction (HER and OER) systems [10,47,48], and field-effect 

transistors (FETs) [49]. The 2D TMD, specifically WS2, exhibits unique optoelectronic and 

optical activity in the visible (Vis) wavelength range [50]. This optical activity in the Vis range 

was the main component for the selection of 2D semiconductive material to be combined with 

noble metal nanoparticles. 

 The ability to modify and enhance optical activity in the Vis range made TMD 

monolayers optimal candidates for this research. As previously mentioned, stacks of monolayer 

WS2 nanosheets make bulk TMD material which tends to be indirect band gap semiconductors. 

Indirect band gaps give off optical spectra similar to that of turbid solutions, which have no 

response in the Vis range. To improve the Vis range response, direct band gaps from WS2 TMD 

monolayers would have to be produced. This direct bandgap alters the electronic band structure, 
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which positions direct transistors at the K point (~ 2 eV, A exciton, 620 nm) of the Brillouin 

zone [42]. Energies with much higher direct transitions are B (~ 2.38 eV, 520 nm) and C (~ 3 eV, 

420 nm) excitons. Monolayer WS2 TMD crystal structures have two well-known structural 

polytypes: the octahedral (2H) and the trigonal (1T) coordination [51,52]. With the octahedral 

phase a natural semiconductive phase can transform to a metallic trigonal phase [53] by electrical 

and optical stimuli [54]or elemental doping [55].  

 The production of the 2D WS2 TMDs involves exfoliating bulk crystals or chemical 

vapor deposition (CVD) growth. Attaining cost effective macroscale 2D TMD wafer discs have 

been a driving force in finding high yield exfoliation techniques. Three well defined methods —

mechanical [42,49], chemical [55], and liquid [51,56,57] — have been successfully used to 

exfoliate the TMD bulk material. Mechanical exfoliation uses adhesive tape, similar to graphene 

production, to easily extract 1-10 µm length scale monolayer TMDs, however, using this method 

gives low throughput and little or no control of thickness [58,59]. Chemical exfoliation uses an 

electrochemical cell that requires lithium ions to intercalate between TMD monolayers so that 

the Van der Waals force can easily weaken [55,60]. The downside of using chemical exfoliation 

is high temperature (300 °C) required to anneal the 1T metallic phase to the optimal 2H 

semiconductive phase [55]. This can become costly because the high temperature has to be set 

for many hours. Liquid exfoliation requires sonicators that provide strong vibrating sound waves 

to break the Van der Waals force within the bulk TMD [61,62]. This route provides low-cost and 

high-yield of few layer TMDs that can be scalable for mass production. In this work, two liquid 

phase exfoliation techniques (probe and freeze-thaw) were implemented on bulk WS2 in order to 

acquire low-cost, and scalable colloidal WS2 nanoflakes that were decorated with noble metals.  

These noble metals - semiconductors were characterized for their enhanced optical properties. 
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1.2.3  Discrete Dipole Approximation (DDA) 

 Computational models such as finite difference time domain (FDTD), boundary/finite 

element methods (BEM/FEM), T-matrix, and discrete dipole approximation (DDA) are used to 

model and configure optics of nanoantenna systems to Maxwell’s equations [64-67]. The DDA 

software allows for simple parametrization and the ability to discretize only the particle volume, 

which makes the nanostructure simulations less time and computationally demanding. BEM, 

FEA, and FDTD software require complex parametrization, difficult application to arbitrary 

dielectric functions (ε (ω)), high time consumption, and parametrization of the volume outside 

the particle compared to DDA [67,68]. The DDA software also provides the ability to 

move/remove individual dipole points within the geometric shape, while other popular software 

packages, e.g., BEM and FEA, do not utilize individual dipole points for the simulations. DDA, 

BEM, and FEA have shown comparable experimental and simulated transverse (T) and 

longitudinal (L) optical spectra for merged AuNSs and AuNRs with varying computational 

parameters, e.g., individual dipole points and bulk material properties [42,70-72]. 

  The DDA is a key resource for this work that solves Maxwell’s equations for absorption 

and scattering of electromagnetic waves.. DDA treats nanostructure dimensions as a collection of 

dipole points in a Cartesian plane. The polarizability, 𝛼𝑖, for each dipole point is calculated by 

the Lattice Dispersion Relation [66].  The independent variable, local electric field, is 

correspondent with the dependent variable, polarization magnitude for each target sub-

volume(𝑷𝑖), and it is determined in eq. 1: 

𝑷𝑖 = 𝛼𝑖(𝑬𝑜,𝑖 − ∑ 𝑨𝑖𝑗𝑷𝑗
𝑁
𝑗≠𝑖 )    (Equation 1)      

where 𝑷  is the polarization density, 𝑬 is the electric field, 𝛼 is the polarizability, and A is the 

dipole-dipole interaction matrix.   
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 The scattering, extinction, and absorption cross sections, σsca, σext, and σabs , respectively, 

are determined as: 

σext =
4πk

|Eo|2
 ∑ I(Eo, j

* ∙Pj)
N
j=1     (Equation 2)     

σabs=
4πk

|Eo|2
 ∑ {I [Pj∙(αj

-1)
*
Pj

*]  - 
2

3
k

3|Pj|
2
}N

j=1    (Equation 3)   

σsca= σext - σabs     (Equation 4)   

where I is the intensity and k is the wave vector. This work utilizes DDA to guide design and 

describe the optical behavior of nanoantennas from the LPE WS2 nanoflakes decorated with 

noble metals and two merging gold nanospheres. Having the DDA to perform the near far-field 

spectra will demonstrate the computational optical features that are enhanced by the 

heterostructures. 

 

 Key advances of the present work 

 For this thesis, it is hypothesized that interfacial contact between adjacent nanostructures 

(i.e., noble metal - noble metal and noble metal - semiconductor) enhances optical activity at 

UV-Vis-NIR electromagnetic spectrum. This is demonstrated in two subsections where it is 

shown that: (i) reduction and simulation of noble metal nanoparticles with 2D semiconductor 

transition metal dichalcogenides can produce a heterostructure nanoantenna for enhanced optical 

spectra at the UV-Vis region, and (ii) simulated nanostructures of two merged sub-25 nm 

diameter gold nanospheres produce a heterostructure nanoantennae for enhanced optical spectra 

at the Vis-NIR region.  

 This research focused on performing liquid phase exfoliation and a chemical reduction to 

mass produce a cost-effective noble metal-semiconductor heterostructure. It also focused on 

analyzing the experimental and computational enhanced optical spectra via spectrometry and 
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DDA. The produced optical features such as room temperature excitons and surface plasmon 

resonance at the near infrared region confirmed these heterostructures ability to produce optical 

emissions for alternative energies and tumor ablations. The primary focus of the research was the 

fabrication techniques, the development and identification of design consideration, and 

characterization methods of nanoantennae for UV-Vis-NIR region optical feature enhancements.   

 The significant advances made in this study were: 

1. creations of 2D transition metal dichalcogenides nanoflakes via the probe and freeze and 

thaw liquid phase exfoliation, then decorating PtNPs on the 2D nanoflake; 

2. investigated correspondent optical features from characterized Pt-WS2 via SEM/TEM 

and EDS mapping UV-Vis spectra and in silico DDA simulations; and, 

3. characterized colloidal merged AuNSs and compared to in silico DDA merged AuNSs 

for similar optical Vis-NIR region optical features.  
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2 Pt-WS2 Heterostructure Nanoantennae 

 In this chapter, the fabrication of monolayer WS2 was performed by two liquid phase 

exfoliation techniques: probe and freeze/thaw sonication. Both methods are relatively cost-

effective and produce a significant amount of colloidal WS2 nanoflakes when compared to the 

counter techniques of mechanical and chemical exfoliation. These WS2 nanoflakes were 

decorated with promising noble metal (platinum) nanoparticles via a reduction technique. 

Scanning electron microscopy (SEM), transition electron microscopy (TEM), energy-dispersive 

x-ray spectroscopy, and optical spectroscopy was performed to demonstrate the heterostructure 

nanoantennae’s characteristics. Simulations of a TEM image of the heterostructure nanoantenna 

was performed via DDA. The results were used to analyze the enhanced optical features for both 

experimental and computational spectra. 

 

 Exfoliation of bulk WS2 

2.1.1 Freeze and thaw sonication of bulk WS2  

 Raw materials used were bulk tungsten disulfide (WS2) powder, sodium cholate, and 

degassed deionized water. Six sodium cholate solutions (ranging from 1 - 6 mg/mL mass 

concentration) were produced by mixing cholate with degassed deionized water. The bulk WS2 

powder was mixed with each sodium cholate solution in a plastic centrifuge tube to attain 30 mL 

with a concentration of 10 mg/mL. Afterward, all six samples were placed in a freezer at -20 ℃ 

for at least 90 minutes and then submerged in a sonication bath for 10 minutes. The expansion of 

the frozen water and the vibrations from the bath sonicator caused the bulk WS2 to weaken the 

van der Waals forces, which made the crystal layers separate [78-80]. The samples were then 

returned to the freezer and the process was repeated for a total of 24 iterations. After the last 

iteration, all six samples were centrifuged at 372 g for 120 minutes [39]. The supernatant was 
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then transferred to a cuvette, as shown in the inset of Figure 2.1. In its bulk form, WS2 will emit 

a black/gray color. An observable indication that sufficient TMD monolayers were within the 

solution was the emitted green color from the cuvette. In Figure 2.1, cholate mass concentrations 

of 4 mg/mL and above demonstrated a strong green tint, indicating that an increase in the 

surfactant concentration led to an increase in the efficiency of the exfoliation process. The  

 

 

 

supernatant in the cuvettes was analyzed using a UV spectrometer which measured the 

absorbance of light from 200 to 800 nm wavelengths.  

 The spectra for the respective cuvettes were analyzed and the UV spectra exhibited the 

presence of A (~620 nm), B (~510 nm), and C (~420 nm) excitons. As previously mentioned, the 

Figure 2.1 Optical spectra for freeze and thaw exfoliated WS2. The exfoliated WS2 solutions 

have a range of 1-6 mg/mL cholate mass concentrations. Inset image: picture of cuvette’s with 

corresponding colored dot to WS2-Cholate solution. Spectra for WS2 (10 mg/mL) - cholate (1 

mg/mL) (red) is located behind the WS2 (10 mg/mL) - cholate (2 mg/mL) (yellow). 
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unique ability of producing room temperature excitons from monolayer TMDs provides a 

promising semiconductor candidate to decorate with noble metals for optoelectronic and 

catalytic experiments. The 6 mg/mL solution showed a higher absorbance when compared to the 

rest of the cholate mass concentrations. The 3 mg/mL cholate sample revealed a diagonal line 

without indication of excitons, suggesting that there was still some bulk material in the solution. 

From all of the cholate solutions in the trial, the 6 mg/mL cholate solution showed the highest 

absorbance with well-defined exciton peaks.  

 

2.1.2 Probe sonication exfoliation of bulk WS2 

 Alternatively, bulk WS2 powder was mixed with a mass concentration of 25 mg/mL into 

cholate (6 mg/mL). The mixed solution was sonicated in an ice-water bath at 360 W (60% 

amplitude) in a metal beaker using a probe sonicator with a flat head tip. It was then sonicated 

for a total of 10 hours with a 6 seconds on, 2 seconds off cycle. Following the long sonication, 

the unexfoliated WS2 was removed by centrifuging the solution at 460 g for 90 minutes [39,61].  

The supernatant from this centrifugation step was then used to take the spectra shown in Figure 

2.2. Also, a 5-hour probe sonication cycle was performed with the same parameters for the probe 

sonicator. Spectra from the two purchased LPE samples of WS2 pristine nanoflake solution 

[Tungsten Disulfide (WS2), Graphene Supermarket, Calverton, NY] and from the collaborative 

WS2 solution from Dr. Jeremy Dunklin at National Renewable Energy Laboratory (NREL) are 

demonstrated in Figure 2.2 for reference. The dilution ratios (WS2 solution: WS2+DI water) for 

each WS2 solution are given in the legend. These ratios were configured to attain an absorbance 

below 3, for 99.9% of the light is attenuated at or above this boundary. All four WS2 solutions 

have demonstrated the excitons corresponding to the WS2 monolayers. For this research, 

between the two probe sonicated WS2 solutions, Probe 5 hours was the promising candidate to  



13 

 

attain more WS2 nanoflakes due to less time and energy spent in exfoliating the bulk material.  

 Both LPE techniques of the probe and freeze and thaw sonication gave sufficient WS2 

solution to reduce noble metal nanoparticles. Due to its abundance (~ 60 mL) and less time to 

produce when compared to the alternative LPE technique, the probe sonicated WS2 solution was 

selected to be decorated with noble metal nanoparticles.  

 

 

 

 Reduction of platinum nanoparticles onto WS2 nanoflakes 

 WS2 nanoflakes were obtained by the probe sonicated bulk TMD method that had been 

demonstrated above [39]. It had the most TMD nanoflake solution (~60 mL) when compared to 

the (~25 mL) freeze-thaw solution, and it also consumed less time (10 hrs vs. 40 hrs). This liquid 

Figure 2.2 Optical spectra for probe sonicated WS2. Four WS2 solutions were plotted for 

comparison. Two were purchased: WS2 pristine nanoflake solution (WS2 Pristine) and duplicated 

10 hour WS2 solution from Dr. Jeremy Dunklin (WS2 NREL). Two were produced in the lab:10 

hour probe sonicated WS2 (WS2 Probe 10 Hours) , and 5 hour probe sonicated WS2 (WS2 Probe 

5 Hours). These four samples were diluted to attain absorbance below 3. 



14 

 

exfoliation process yields semiconducting 2H WS2.  The 2H phase exhibits unique 

optoelectronic properties in the visible region that could support light-induced HER 

enhancement [39,55]. Sonication in liquid phase exfoliation is reported to increase defect density 

in the nanosheet [75]. Liquid phase exfoliation of few- to mono-layer 2H WS2 nanoflakes is 

scalable, economic, and free from toxic chemicals.  This exfoliation contrasts with chemical 

exfoliation of 1T WS2 nanosheets via intercalation by lithium.  Lithium is reported to adversely 

affect neuro-transmission, neuropeptide systems, signal transduction pathways, and gene 

expression in vivo [76].  

 PtNPs were reduced onto liquid-exfoliated WS2 nanoflakes suspended in aqueous sodium 

cholate by adding potassium tetrachloroplatinate (K2PtCl4) and sodium citrate tribasic dihydrate 

(C6H5Na3O7∙2H2O). Citrate reportedly acts as a reducing and stabilizing agent in depositing 

PtNPs on nanosheets of graphene [78-81] and TMD [81,82]. In the mixture with K2PtCl4 and 

C6H5Na3O7∙2H2O, WS2 nanoflakes provided a substrate for electroless metal deposition.  

Substrate catalyzed metallization is widely used to deposit microelectronic vias and to decorate 

ceramic oxide and polymer with metal island films [84-86]. Figure 2.3 is a schematic of the 

electrochemical reduction of PtNP on semiconducting few- to mono-layer WS2 nanoflakes. The 

present work used citrate and platinum salt concentrations 30-fold higher than those reported by 

Huang et al. to deposit Pt on lithium-intercalated 1T MoS2 based on an ostensible 50% MoS2 

recovery from centrifugation [81].  

 The reduction was conducted in ambient light in the absence, i.e., Pt-WS2(NL), or 

presence, i.e., Pt-WS2(L), of a 150 W halogen lamp. Reduction in ambient light with no halogen 

lamp yielded Pt-WS2 adduct consisting of WS2 nanoflakes approximately 34 nm x 27 nm onto 

which 1-5 nm diameter PtNPs and larger aggregates were deposited. In contrast, the 
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 photochemical reduction under the halogen lamp yielded Pt-WS2 adduct consisting of WS2 

nanoflakes approximately 36 nm x 50 nm onto which 1-3 nm diameter PtNPs were uniformly 

dispersed.  Mean diameter of 2.05 nm (N = 15) calculated for photochemically reduced PtNP 

was within 0.2 nm of the PtNP diameter recently reported to optimize specific mass activity [86]. 

Power incident onto the quartz cuvette containing the sample from the overhead lamp is 

demonstrated in Figure 2.4. Here the surface areas A1 and A2 were determined from a halogen  

Figure 2.3 Schematic of electrochemical reduction of PtNPs onto WS2 nanoflakes. An aqueous 

sodium cholate suspension of size-selected WS2 nanosheet (upper left) was mixed with 

potassium tetrachloroplatinate (K2PtCl4) and sodium citrate tribasic dihydrate 

(C6H5Na3O7∙2H2O). Subsequent irradiation with a 150 W halogen lamp yielded Pt-WS2 adduct 

consisting of WS2 nanoflakes (ca. 36 nm x 50 nm) with 1-3 nm PtNPs uniformly dispersed 

(upper right).  Reduction in ambient light with no halogen lamp yielded Pt-WS2 adduct 

consisting of WS2 nanoflakes (ca. 34 nm x 27 nm) with 1-5 nm PtNPs and larger aggregates 

(lower right). 
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light bulb radius of 0.08 m and the 0.01 m width of the cuvette (square axial projection of 0.01 m 

x 0.01 m), respectively. Temperatures for both gray surfaces were measured using a 

thermocouple (Portable Thermometer RDXL4SD, Omega, Norwalk, CT).  Average measured 

temperatures were 613.9 K for the halogen lamp, and 278 K for the cuvette. Values of emissivity 

and reflectivity for quartz glass material (for the halogen lamp) and water (for the Pt-WS2 (L) 

solution) were used [87]. The view factor, F12, was determined based on radiant heat 

transmission [88] between the two gray body surfaces, which gave a value of ~0.02. The desired 

radiative heat energy (q12) was calculated using: 5.67 x 10-8 (W/m2*K4) for the Stephan-

Boltzmann constant, σ, T1 as temperature (Kelvin) for halogen lamp, T2 as temperature (Kelvin) 

Figure 2.4 Schematic of experimental set-up of the halogen lamp above quartz crystal cuvette. 

The crystal cuvette contained the reducing Pt-WS2 (L) solution.  
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for cuvette, reflectivity for both surfaces ρ1 and ρ2, surface area for each respective gray body A1 

and A2, and the view factor F12. The quantitative inputs are demonstrated in Figure 2.4 and 

placed in Eq. 5.  

q
12

=
σ(T1

4-T2
4)

 ρ
1

A1 *ε1
+

1
A1 *F12

+
ρ

2

A2 *ε2

                                  (Equation 5) 

 

The energy incident on the quartz cuvette had a calculated value of 2.134 W. 

 

 Experimental characterization of heterostructure  

 Morphology and composition of Pt-WS2 adducts were evaluated with energy-dispersive 

x-ray via scanning electron microscopy (SEM-EDX) and transmission electron microscopy 

(TEM) (Figure 2.5). Comprehensive SEM-EDX elemental mapping for Pt-WS2(L) 

(pink/yellow/orange) on 20 nm thick SiO2 TEM grid membrane (teal) is shown in Figure 2.5A. 

Specific elemental mapping confirmed atomic platinum (Figure 2.5B), tungsten (Figure 2.5C) 

and sulfur (Figure 2.5D) comprised the surface structures on reacted WS2 nanoflakes. 

  Differential absorption by these elements in TEM images (Figure 2.6) indicated PtNPs 

were deposited on both basal plane and edges of the WS2 flakes. In contrast, addition of gold 

(III) chloride to a suspension of liquid exfoliated WS2 nanoflakes was reported to reduce AuNP 

directly to uncoordinated edge sulfurs of WS2 by an Au-S covalent bond [39]. Figure 2.6A-2.6D 

shows a photochemical reduction of Pt salt under a 150 W halogen lamp onto 2H WS2 

nanoflakes yielded evenly-sized PtNPs with a mean diameter of 2.05 nm (N = 15) distributed 

uniformly across the nanoflake. Zoom in TEM images and corresponding measured diameters 

are represented in Figure 2.6C and 2.6D.  In contrast, Figure 2.6E-2.6H shows that a reduction in 

ambient light produced heterogeneously sized PtNPs with a mean diameter of 3.84 nm (N = 15) 
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Figure 2.5 EDX imaging of elemental composition for Pt-WS2 heterostructure. SEM-EDX 

imaging confirmed elemental composition of WS2 nanoflakes decorated with PtNPs. A) 

Comprehensive SEM-EDX elemental mapping is shown for Pt-WS2(L) (pink/yellow/orange) on 

20 nm thick SiO2 TEM grid membrane (teal). Element-specific mapping is shown for B) 

platinum, C) tungsten, and D) sulfur. 

Figure 2.6 TEM images for Pt-WS2 heterostructures. The photochemical reduction yielded 

smaller, more evenly-sized PtNPs distributed uniformly across the WS2 nanoflake. Images 

shown are for A-D) Pt-WS2 (L) and E-H) Pt-WS2 (NL). Individual PtNPs on each WS2 

nanoflake were sized; representative examples are labeled in each image. 
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and a small proportion of PtNPs with 6 nm diameter distributed unevenly across the nanoflake.  

 Figure 2.7 shows optical spectra for PtNPs, WS2, and Pt-WS2. These three solutions were 

performed on a NanoDrop 2000c Spectrophotometer (Marshall Scientific, Hampton, NH), which 

allowed the optical spectra to be read in the UV region. Figure 2.8 shows that spectra in the UV 

range exhibit optoelectronic activity consistent between PtNPs and Pt-WS2. It also demonstrates 

the corresponding A (~620 nm), B (~510 nm), and C (~420 nm) excitons for both WS2 and Pt-

WS2 solutions. The Pt-WS2 shows a combination for both noble metal and semiconductor optical 

activities. 

 

 

 DDA of PtNPs reduced onto WS2 nanoflake. 

 Depositing a PtNP on edge and basal planes of a WS2 nanoflake enhances its 

optoelectronic activity.  In Figure 2.8, the measured A-exciton peak height at 630 nm (614 nm in  

Figure 2.7 Optical spectra for PtNPs, WS2, and Pt-WS2 nanostructures. The ultraviolet region, 

200 nm - 300 nm, had a consistent and dominant absorbance appears for PtNPs and Pt-WS2 at 

228 nm and 247 nm, respectively. 
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simulation) for the Pt-WS2 adduct increased 1.165-fold from a value of 0.0349 A.U. for neat 

WS2 (measured relative to a tangent baseline). Measured B- and C-exciton peaks increased 

similarly; the average optical absorption from 420 nm to 700 nm increased 0.005 A.U. for Pt-

WS2 relative to WS2 as a result of adding PtNPs. Simulated spectra in the inset show comparable 

enhancement of WS2 exciton absorption due to adjacent PtNP.  Observable enhancements at A, 

B, and C exciton wavelengths occurred due to the edge- and basal-decoration with 15-nm radius 

PtNP. DDA discretization of 1 nm necessitated the use of a 15 nm PtNP rather than a 2 nm PtNP 

to obtain simulated spectra and enhanced near field maps.  Basal simulation situated the PtNP at 

Figure 2.8 Experimental and computational spectra of PtNPs, WS2, and Pt-WS2 

nanostructures. Inset is corresponding discrete dipole approximation (DDA) spectra for PtNP 

(15 nm radius), WS2 nanosheet (50 nm x 75 nm), and basal- and edge-decorated Pt-WS2 

adduct.   
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the top center of a 50 nm x 75 nm WS2 monolayer; edge simulation centered the PtNP at the 

elongated edge. Simulated peak A-exciton of edge-decorated Pt-WS2 was 1.42- and 1.43-fold 

higher, respectively, than basal-decorated or undecorated WS2. 

 Discrete dipole simulation maps showed enhanced optoelectronic activity, i.e., extinction 

efficiency accrues from increased electric field intensity due to irradiated PtNP interacting with 

edge and basal planes of a WS2 nanoflake, particularly at resonant exciton frequencies.  Local 

near-field intensities are mapped in Figure 2.9 at incident energies corresponding to the PtNP 

absorbance as well as the A, B, and C exciton energies. The magnitude of the electric near field 

increase up to 5-fold at the interface of the PtNP and 2H WS2 nanoflake.  The area of 

enhancement in the PtNP-decorated nanoflake was significantly larger than the neat WS2. 

 

Figure 2.9 Enhanced electric near-field maps at four distinct energies. The four enhanced 

electric energies are: platinum nanoparticle absorbance (370 nm), and the C (424 nm), B 

(508 nm), and A excitons (614 nm). These near-field maps show the location of the PtNP 

as the determinant factor for the electromagnetic (EM) intensity. The edge Pt-WS2 has the 

highest EM intensity of all four wavelengths, with the maximum intensity corresponding to 

the junction point of the noble metal and semiconductor nanocrystal. 
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 Summary  

 Comparing simulated and empirical results indicated that the decrease in average PtNP 

size with more uniform distribution observed in the presence of halogen irradiation could be 

attributable to the photoelectric effect.  In ambient light, PtNP deposition largely proceeded via 

redox reaction whereby Pt(II) ions were reduced to Pt(0) and either deposited directly on WS2 

nanoflake surfaces or aggregated with adjacent PtNP deposits to form more massive clusters.[89] 

Under the halogen lamp, redox reaction was complemented by the photoelectric effect in which 

WS2 nanoflakes absorbed photons to form electron-hole pairs.[90] Long-lived WS2 excitons 

were likely to seed the formation of more PtNPs and accelerate direct Pt reduction onto WS2 

nanosheet surfaces, thereby reducing the availability of dissolved Pt ions, the size of suspended 

PtNPs, and their propensity to aggregate into clusters up to 6 nm in diameter.  Additionally, 

simulations indicate small PtNPs decorated homogenously at the basal and edge of the 

semiconducting nanosheet enhances the extinction efficiency. These enhanced optical activities 

can improve experimental co-catalysts for HER as well as the efficiency for solar cells due to the 

increased pathway of electrons in the nanostructure.  

 

 Experimental and simulation preparations 

Freeze-Thaw-Sonication Exfoliation of TMD 

  For 30 mL volume, 300 mg of bulk tungsten disulfide, WS2 (24369-50G; Sigma Aldrich, 

St. Louis, MO), was added in 30 mL of cholate (C1254-100G; Sigma Aldrich, St. Louis, MO) 

mixed with degassed deionized water solution resulting in a dark gray suspension.  The mass 

concentrations of bulk WS2 and cholate were varied with arrangements of 1-6 mg/mL of cholate 

concentration. The six solutions of bulk WS2-cholate from 1-6 mg/mL cholate concentration 

were placed in 50 mL plastic centrifuge tubes (525-0402; VWR, Radnor, PA). All temporary 
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solutions of plastic centrifuge tubes were implanted into styrofoam which secured and allowed 

the solution tubes to be submerged approximately 1 cm underneath the bath sonicator’s water 

level. The centrifuge tubes were bath sonicated (Branson 2210R-MT Ultrasonic, Marshall 

Scientific, Hampton, NH) (Power: 210 W) for 10 minutes at room temperature of approximately 

21.6 °C. Subsequently, the solutions were placed in a freezer (Puffer Hubbard) set at -20 °C. 

They were left in the freezer’s racks for 1 hr 50 min ± 10 min. After the freezing periods, the 

suspensions were again placed in the bath sonicator for 10 minutes. This freeze and thaw process 

was repeated for 24 iterations. The unexfoliated WS2 was removed by centrifugation (ModelJ2-

21M, Beckman, Brea, CA) at 400 g for 2 hours. The supernatant from this centrifugation was 

then used to take optical spectra.  

Probe Sonication Exfoliation of TMD 

 Bulk WS2 powder was incorporated at a mass concentration of 25 mg/mL into a cholate 

and degassed deionized water mixture of 6 mg/mL. The mixed solution was sonicated in an ice-

water bath at 360 W (60% amplitude) in a metal beaker using a probe sonicator with a flat-head 

tip (942098; JoyFay International LLC, Cleveland, OH). It was then sonicated for 80 minutes 

with 6 seconds on, 2 seconds off cycle. Following this sonication, the dispersion was centrifuged 

(913023419999; Scilogex, Rocky Hill, CT, USA) for 1.5 hours at 1700 g. Afterward, the 

supernatant was removed and discarded. The precipitate was then re-dispersed in 75 mL of 2 

mg/mL aqueous cholate solution. Subsequently, the WS2 dispersion was sonicated for 10 hours 

at 360 W (60% amplitude) in a metal beaker using the same flat-head tip probe sonicator with 6 

seconds on, 2 seconds off cycle. Ice was added to the ice bath every 2 hours; this was done to 

ensure aggregation-inducing heat was mitigated. Following sonication, the unexfoliated WS2 was 

removed by centrifugation at 460 g for 90 minutes. The supernatant from this centrifugation was 
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then used to obtain the spectra. For the 5-hour probe sonication, everything was performed the 

same except a sonication time of 5 hours was used instead of 10 hours.  

UV-Spectra  

 Probe and FT optical sonication extinction were taken via UV-probe (UV-1800 UV-Vis 

Spectrophotometer, Shimadzu, Kyoto, Japan) with two crystal glass cuvettes (CV10Q3500, 

Thorlabs, Austin, TX). The samples were diluted accordingly, where the first cuvette was filled 

with 2 mL of the respective solution, and the second cuvette was filled with 2 mL of deionized 

water. Optical extinction was measured using transmission UV-vis-NIR spectrometry. For 

spectral analysis, Pt-WS2 (L) solution was diluted at a 1:2 ratio to yield 1.204 and 0.0927 mg/mL 

concentrations of platinum and WS2, respectively.  In situ reduced PtNPs were diluted 1:3 to 

obtain 1.204 mg/mL platinum. Liquid-exfoliated WS2 suspension was diluted 1:43 based on the 

spectroscopic determination of its concentration to obtain 0.0927 mg/mL concentration. 

Reduction of Pt onto WS2 

 About 18 mg (± 1.5 mg) of potassium tetrachloroplatinate (II) (K2PtCl4) powder (Sigma-

Aldrich, St. Louis, MO) and 20 mg (± 2.0 mg) of sodium citrate tribasic dihydrate 

(C6H5Na3O7∙2H2O) powder (Sigma-Aldrich, St. Louis, MO) were combined in a crystal cuvette. 

Deionized water was added to the cuvette to prepare a total volume of 3 mL, and the solution 

was mixed at 900 rpm using a magnetic stirrer. While stirring, 167 µL of a 3.9 mg/mL dispersion 

of liquid exfoliated WS2 nanoflakes was added to the solution to activate reduction. The cuvette 

was placed in an ice bath and irradiated with a halogen lamp (150 W). The temperature was 

monitored in order to ensure that the solution remained under 20 °C. The solution was allowed to 

react for two hours. Following this, centrifugation was performed at 8500 rpm for 20 minutes, 

and the supernatant was extracted in order to remove unreduced material. This reduction 
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procedure was repeated to produce an additional sample that was allowed to react without the 

use of the halogen lamp. 

TEM, SEM, and EDX 

 TEM, SEM, and EDX spectroscopic analyses were performed at the University of 

Arkansas Nano-Bio Materials Characterization Facility. SEM and EDX spectroscopic analyses 

of the samples were made using an FEI Quanta 200 instrument operating at 30.0 kV. TEM was 

performed on a Cs-corrected FEI Titan 80-300 (FEI, Hillsboro, OR). Sample volumes of 1.5 µL, 

corresponding to Pt-WS2 reduced with and without halogen lamp irradiation, were drop-casted 

onto 20 nm thick SiO2 membranes (SPI Supplies, West Chester, PA). TEM grids were preheated 

to 105 ± 5 °C to flash evaporate the solvent for minimal aggregation. 

Simulation characterization 

 Simulations from 300 to 800 nm wavelengths were performed on a 16-core 

supercomputer node with 64 GB memory. Refractive index of water (1.33) was used. The limit 

of the resolution was 1 nm. Target and parameter files for DDSCAT v7.3 were developed with a 

custom MATLAB tool available on nanoHUB [91]. PtNP of 15 nm radius and WS2 rectangular 

prism of 50 nm x 75 nm area were discretized according to Cartesian descriptions with the 

dielectric functions from A. Rakic et al.[92] and Y. Li et al.[93], respectively. The enhanced 

electric near-field maps had the field set to 1.33 with 1 nm resolution. Each near-field simulation 

was performed at the A, B, C-exciton and platinum nanoparticle absorbance wavelength (614, 

508, 424, and 370 nm).   
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3 Noble Metal - Noble Metal Nanoantennae 

 In this chapter, optical responses of variations in the geometry between overlapping 

AuNSs showed precision for the simulations to attain dimer geometries used for similar optical 

spectra for colloidal AuNSs. Characterizing the dimers involved repopulating and unpopulating 

dipole points at the cleft region of two merging sub-25 nm AuNSs. DDA was used to 

characterize these dimers. Extinction spectra from DDA demonstrated a trend of red to blue shift 

at the longitudinal peak as the overlapping distance of merged AuNSs incremented. The spectra 

also showed unpredicted multi plasmon resonance (multimodal) features for sharp cleft depth 

dimers when compared to shallow cleft depth dimers. From the unique NIR multimodal features, 

Microsoft Excel was used to combine the individual dimer spectra to corresponding similar 

spectra for colloidal merged AuNSs. Error differences below 2% were attained from combined 

characterized dimer spectra and colloidal AuNSs. Subsequently, two dipole points were adjusted 

symmetric (180°) and asymmetric (90°) at the cleft region, which caused a red and blue shift at 

the 850 nm wavelength peak. These new and unique modifications in the interparticle junction 

area (cleft region) can assist dimers with application in optoelectronics and biomedical 

treatments by using the high electromagnetic (EM) intensity as a fountain of energy for other 

nonmetallic dielectric material. 

 

 Geometric dependence on NIR multimodal activity of simulated dimers   

 In this work, two AuNSs were merged 1 nm (distance between two dipole points) at a 

time, which formed a cleft region between the two spheres. The geometric distinctions on the 

dimers resulted in the development of multimodal features in the NIR region of the optical 

spectra as demonstrated in Figures 3.1-3.4. The two AuNSs were generated using dipole points 

in DDA software, which utilizes Maxwell’s equations to extract extinction, scattering, and 
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absorption efficiencies. DDA has been used for a variety of geometric shapes, e.g., NSs and 

NRs, that resulted in comparable experimental and computational optical properties [36,94,95]. 

Chen et al. used a sintering technique to merge two 4.8 nm AuNSs to show that the Au was 

malleable and resulted in a curved cleft interface rather than a sharp cleft interface observed with 

bulk Au [96]. In this work, dipole points were moved to replicate this curved interface structure 

(repopulated) or were removed to show the resulting optical properties for sharp cleft structures 

(unpopulated). The DDA software provides the ability to move/remove individual dipole points 

within the geometric shape, while other popular software packages, e.g., BEM and FEA, do not 

utilize individual dipole points for the simulations. Relative to BEM and FEA, DDA software 

reduces the complexity of generating the dimer and the computational demand for outputting the 

optical properties for the simulated dimers. These improved factors allow dipole approximation 

methods to require less computing power and time when compared to BEM and FEA. DDA, 

BEM, and FEA have shown comparable experimental and simulated transverse (T) and 

longitudinal (L) optical spectra for merged AuNSs and AuNRs with varying computational 

parameters, e.g., individual dipole points and bulk material properties  [69,70,97].  

 The merging of two AuNSs resulted in the formation of multiple optical features in the 

NIR from the various aspect ratios of the L peaks with the maximum L peak red-shifting as the 

cleft depth between the AuNSs increased, and blue-shifting as cleft depth decreased as the 

AuNSs were merged further. Figures 3.1-3.4 show the extinction efficiencies for a single AuNS 

(7, 7.5, 8, and 24 nm radius). Regarding the AuNS with 7 nm radius (Figure 3.1), a single optical 

feature was observed with a peak extinction efficiency of ~ 0.9 for the LSPR (T peak at 532 nm) 

while two AuNSs with a 1 nm gap between them resulted in a higher extinction efficiency 

(~1.25) and a slight red-shift (547 nm) in the optical feature. As these two AuNSs were merged 
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at 1 nm intervals and dipole points were moved/removed, multiple optical features were 

observed as the T and L peaks were both impacted by the merging as a result of the varying 

aspect ratios. The maximum L peak was observed to redshift with increasing cleft depth for both 

unpopulated (pair 4) and repopulated (pair 3) dimers (Figure 3.1). Sheikholeslmi et al. 

demonstrated similar multimodal peaks at the NIR and called them DDA artifact[41]. A small 

number of dipole points (<5000) is a probable cause for this low-resolution outcome of spectra 

and these 14 nm Au dimer simulations had approximately 2800 dipole points. However, 

additional simulations of larger AuNP diameters (24 nm) shown in Figure 3.4 have increased the 

number of dipole points to well over 5000 yet still produced similar optical features in the NIR 

region. Similar multipole optical features were observed in elongated annulated gold disks (90 x 

60 nm) where computational EELS spectra accounted for the major peaks to be bright bonding 

modes [98]. These bright modes are strong indications of charge interaction between adjacent 

surfaces along the inner and outer edges of the Au nanodisks. Strong charge interactions between 

adjacent surfaces, in this case, the cleft region, become accountable for a small portion of the 

multiple optical features (multiple LSP resonances) in the NIR region. The outer surrounding 

area of the dimer heterostructure provides a strong correlation to the multi bright modes.  

 As the cleft depth began to decrease when the AuNSs were merged further, the maximum 

L peak was observed to blue shift. This blue-shifting as the two AuNSs overlapped during the 

merging was previously reported by Romero et al. for two merging AuNSs with 60 nm radii 

[71]. The cleft depth and overlapping distance (d) for the dimers were divided by the AuNS 

radius (a) to obtain calculable ratios for each dimer [71]. In Figure 3.1 (a), as the d/a ratio 

decreased from 0.0 (pair 1) to -0.428 (pair 4), the maximum L peak red-shifted and the total 

number of optical features in the NIR increased; as the d/a ratio decreased from -0.428 to -1.0  
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(pair 8), the maximum L peak blue-shifted and the total number of optical features in the NIR 

decreased. This is also observed in Figure 3.4(b) with the d/a ratio decreasing from 0.0 to -0.285 

(pair 3) resulting in a red-shift as well as an increase in optical features in the NIR and the d/a 

ratio decreasing from -0.285 to -1.0 (pair 8) resulting in a blue-shift as well as a decrease in the 

number of optical features in the NIR. As the two AuNSs transitioned from pair 1 to pair 8 (two 

AuNSs to one AuNR), the optical features adjacent to the maximum L peak combined and 

resulted in spectra consistent with literature for simulations of AuNRs [25,94,99]. These trends 

were also observed for dimers with radii of 7.5 (Figure 3.2), 8 (Figure 3.3), and 24 nm (Figure 

3.4). 

 Dimers with higher cleft depth geometry resulted in an increase in the number of 

shoulders observed on the L peak and an increase in the number of optical features in the NIR, 

while dimers with lower cleft depth resulted in no observable optical features in the NIR and a 

reduction in the number of shoulders on the L peak. Figure 3.3(a) shows extinction efficiencies 

for six dimers (repopulated and unpopulated for 7, 7.5, and 8 nm AuNS radii) at the initial 

instance where more than two dipole points of each AuNS were in contact. At this instance, the 

cleft depth between the two AuNSs was at its highest value and resulted in the formation of 

multiple shoulders on the maximum L peak in the NIR. For simulations of AuNSs with whole 

number radii (7 and 8 nm), the shape generated resulted in a smooth, spherical structure that 

allowed for only two dipole points to be moved/removed at the initial emergence of the AuNSs. 

  However, for simulations of AuNSs with fractional radii (7.5 nm), the shape generated 

was not spherical and resulted in 22 dipole points being moved/removed at the initial emergence 

of the AuNSs. This resulted in an observable difference in the extinction efficiency spectra 

shown in Figure 3.5(a) for the AuNS with a radius of 7.5 nm (green solid and dashed lines)  
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compared to extinction efficiency spectra for AuNSs with radii of 7 (purple solid and dashed  

 

 

lines) and 8 nm (red solid and dashed lines). Figure 3.5(b) shows the extinction efficiencies for 

Figure 3.5 Symmetric cleft cavities for six dimers with sharp cleft depths (a) and shallow cleft 

depths (b). Symmetric cleft cavities for 14 (violet), 15 (green), and 16 (red) nm AuNSs dimers 

with deep antiwedge points have a higher number of multimodal wavelength peaks in the NIR 

when compared to shallow antiwedge points.  
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 six dimers at the instance the structures were most like an AuNR, which resulted in the 

maximum L peak blue-shifting by more than 150 nm and beginning to combine with the T 

peak.For AuNRs, the aspect ratio controls the optical properties where aspect ratios below 2 

were reported to demonstrate the merging of the L and T peaks [25,40]. The dimers shown in 

Figure 3.5(b) had aspect ratios of ~1.5, which resulted in the observation of the merging of the 

two peaks. As these AuNSs merged toward the AuNR structure, the maximum L peak no longer 

exhibited multiple shoulders in the NIR (>700 nm wavelength) and was blue-shifted closer to 

peak locations of ~600 nm (as shown in Figure 3.5(b)).  

 

 Comparison of experimental and computational dimers 

 The ratio of the cleft depth (c) and the particle radius (a) for Au dimers with similar 

geometric dimensions produced  less than 0.6 % difference error between simulated and 

experimental L and T peak locations. Figure 3.6(a) shows a TEM image consisting of a colloidal 

suspension of merged AuNS dimers (AuNS radii = ~7.4 ± 0.5 nm) fabricated via centrifugal 

force [24]. Simulations of dimers with AuNS radii of 7, 7.5, and 8 nm were performed based on 

the extracted dimensions of the dimers in the TEM image to determine and compare the 

extinction efficiencies to measured absorption spectra of the fabricated dimers. Similar studies 

have been reported by Chu et al. [70] and Su et al. [100] where SEM or STEM images were used 

to determine the size of the nanostructures for FDTD simulations and compared to measured 

optical properties. The extracted dimensions of the dimers shown in Figure 3.6(a) were used to 

determine a measured c/a ratio (listed outside the red boxes), which was used to select the dimers 

from simulations (shown as insets) that had the closest c/a ratio (listed inside the dashed boxes) 

to the measured values. While measured AuNS radii were ~7.5 nm, the simulations that resulted 

in the closest c/a ratios to the measured values consisted of unpopulated dimers with AuNSs with 
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and 8 nm radii. Optical properties of three of the simulated dimers (c/a = 0.571, 0.375 (used 

twice), 0.286) that closely matched measured values (c/a = 0.517, 0.368, 0.324, and 0.288) were 

  

 

combined to estimate and compare the T and maximum L peak locations to measured absorption 

Figure 3.6 TEM of 15 nm AuNSs dimers spectra compared with computational dimers. a) TEM 

of 15 nm AuNSs merged via centripetal force with insets of simulated dimers with similar cleft 

depth/particle radius (c/a) ratio. b) Optical and simulated spectra that demonstrates < 0.6% error 

difference in the T and L peak. 
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 spectra as shown in Figure 3.6(b).  

 Initial estimates assumed that the measured absorption spectra were a combination of 

equal distributions of these three dimers, which resulted in 1.3% and 9.3% difference for the T 

(532 nm vs. 525 nm) and L (602 nm vs. 661 nm) peaks, respectively. Since one of the dimers 

was used twice, the percentages were adjusted to 25, 25, and 50% for the three dimers, which 

resulted in an improvement to 1.3% and 1.4% for the T (532 nm vs. 525 nm) and L (670 nm vs. 

661 nm) peaks, respectively. Additional adjustments to the distribution percentages of the dimers 

resulted in less than 0.6% difference in both the T (526 nm vs. 525 nm) and L (661 nm vs. 665 

nm) peak locations when the distribution percentages were 20, 20, and 60%.  

  

 Interface sensitivity from dimers 

 Redistributed charge around the dimer cleft region caused a change in the bright modes at 

the near infrared region. Relocating a minuscule number of dipole points at the cleft region for 

deep cleft depth dimers enhanced sensitivity to red or blue shift L peak and shoulders in NIR 

region. With the 4218 dipole point dimer, two dipole points were adjusted at symmetric (180°) 

and asymmetric (90°) displacement, causing a red and blue shift in the dampened 850 nm 

wavelength peak. In Figure 3.7, maximum wavelength peaks emerged at 841 nm and 863 nm 

when two dipole points were displaced in symmetrical (90°) and asymmetrical (180°) locations, 

respectively, at the interparticle junction area. When the two dipole points (orange dots) were 

introduced into the characterized dimer (d/a = -0.25) 3, the spectra tended to dampen the 

extinction efficiency by 0.24 AU. This descending spectra happened in the 850 nm range of the 

spectra and corresponded to the proximity of the displacement of the two dipole points in the 

interparticle junction area.  

 Additionally, the symmetrical (180°) dimer redshifted the wavelength peak by 11 nm,  
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while the asymmetrical (90°) dimer blue shifted by 11 nm as well. This damping and shifting of 

spectra with only two dipole points demonstrated some sensitivity of the interparticle junction 

area. This sensitivity behavior is comparable to nanoparticles with small interparticle gaps, 

where the extinction spectra significantly begin to red shift as the gap closes [30,102-108]. Atay 

et al. considered this interparticle junction area and an array of dimers as prime optical 

manipulations that provide an effective application to nonlinear optics [108].  In contrast, the 

inset demonstrates the extinction efficiency spectra range of 400-1000 nm for all three dimers. 

The extinction efficiency spectra below 700 nm, and above 900 nm had little to no significant 

damping or wavelength shifts.  

Figure 3.7 Dimer pair 3 with two adjusted dipole points in cleft region. A red and blue shift in 

the NIR region happens when dimer (d/a = -0.25) 3 has two adjusted dipole points in 

symmetrical (180°) and asymmetrical (90°) displacements. These dipole placements (light 

orange dots) were located at the cleft region. 
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 Summary 

 In conclusion, nontoxic merged gold nanospheres dimers have the potential to be the 

leading cancer therapy through noninvasive ablation on diseased tumor cells. These dimers are 

explored via DDA with unpopulated and repopulated dipole points that show a strong variation 

of multimodal peaks in the NIR. These attributes are examined by merged AuNSs with spherical 

(diameter 14, 16 and 24 nm) and octagonal (diameter 15 nm) shapes, where a sharp transition 

from a single plasmon feature, the visible region,  to a multimode feature, infrared region, arise 

when a cleft begins to form. Subsequently, the cleft depths of both schematic dimers and a 

transmission electron microscope (TEM) image of experimental dimers were correspondingly 

used to distinguish computational dimers that validated a less than 2% error difference for both 

combined computational spectra and experimental spectra. These correlations between DDA 

simulations with UV-vis spectroscopy validated the multimodal corresponding variations in NIR 

with the geometric configurations of the merged AuNSs 

 

 Computational preparation 

3.5.1 Shape generation of Au dimers 

The building of the Au dimers was performed using a custom-made shape generator tool 

(available on nanoHub.org ) that provides target and parameter files for the structure used for the 

simulations. This tool provides a MATLAB code that offers five different predetermined shapes 

that could be generated for the simulations. For this work, the spherical shape was selected from 

the tool output window where the outer radius (7 nm), dipole spacing (1 nm), wavelength range 

(400-1000 nm), refractive index (RI) of material surrounding the shape (water, 1.33), and the 

dielectric function of the shape material (Au) were defined. This provided three files: (1) a plot 

of the shape generated (as shown in Figure 3.8-3.11); (2) a target file to alter the shape; and (3) a 
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parameter file (ddscat.par) to alter the parameters above as well as the polarizability. Average 

polarizability was selected within the parameter file, and the target file was used to duplicate the 

sphere to generate two spheres nearby. These spheres were merged to form dimers by either 

removing dipole points 1 nm at a time (unpopulated) or by moving the dipole points at the 

interparticle junction area (cleft) between the merging spheres to adjacent dipole points 

(repopulated). The additional dimers were generated at radii of 7.5, 8, and 12 nm, Figure 3.9, 

3.10, 3.11, respectively, using this procedure. However, Figure 3.7 had the schematic for 15:15 

dimers where the octagonal shape of the AuNSs reshaped the dimer figure into an AuNR and 

ovoid shape at a faster rate when compared to 14, 16, and 24 nm dimers. The refractive index 

was set as water, 1.33, to match the colloidal 15 nm diameter dimers [24].  

 

3.5.2 DDA simulations using DDSCAT v7.3. 

A 12-core supercomputer node with 64 GB memory was used to simulate the modified 

target and ddscat.par files generated as shown in Section 3.5.1. Extinction coefficients and RI 

values for Au were extracted from work performed by Johnson and Christy to generate a 

dielectric file [109]. DDSCAT (v7.3) was used to distinguish bright modes for all of the dimer 

pairs. The refractive index was performed with water (1.33). A command file (DDSCAT.pbs) 

was used to initiate and control the run-time of the simulations in the supercomputer. The 

dielectric file, command file, the modified target and parameter files, and the shape file were 

inserted into the supercomputer to begin the simulations for each of the dimers. Upon 

completion, the supercomputer outputs a file containing the extinction, absorption, and scattering 

efficiencies of the dimers versus wavelength. The data from these output files were transferred 

into Microsoft Excel, and the extinction efficiencies for each of the dimers were plotted versus 

wavelength and compared for unpopulated and repopulated merging procedures. Multiple 
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theoretical research has reported dimers surrounding medium to be similar to that of water 

(1.33), for these nanostructures tend to be in highly water solutions [110-114].  

 

  

Figure 3.8 Schematics of Au dimers merging (unpopulated and repopulated) for 14 nm AuNS. 

Dimers unpopulated and repopulated show the radius (a) and the overlapped distance (d) in a 

nomenclature format (L = 4a + d) where L is the elongated length of the two nanoparticles 

combined. The colored dot at the bottom of the schematic dimers represents its correspondent 

AuNS radius: violet for 14 nm AuNS. 
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Figure 3.9 Schematics of Au dimers merging (unpopulated and repopulated) for 15 nm AuNS. 

Dimers unpopulated and repopulated show the radius (a) and the overlapped distance (d) in a 

nomenclature format (L = 4a + d) where L is the elongated length of the two nanoparticles 

combined. The colored dot at the bottom of the schematic dimers represents its correspondent 

AuNS radius: green for 15 nm AuNS. 



43 

 

  

Figure 3.10 Schematics of Au dimers merging (unpopulated and repopulated) for 16 nm 

AuNS. Dimers unpopulated and repopulated show the radius (a) and the overlapped distance 

(d) in a nomenclature format (L = 4a + d) where L is the elongated length of the two 

nanoparticles combined. The colored dot at the bottom of the schematic dimers represents its 

correspondent AuNS radius: red for 16 nm AuNS. 
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Figure 3.11 Schematics of Au dimers merging (unpopulated and repopulated) for 24 nm AuNS. 

Dimers unpopulated and repopulated show the radius (a) and the overlapped distance (d) in a 

nomenclature format (L = 4a + d) where L is the elongated length of the two nanoparticles 

combined. The colored dot at the bottom of the schematic dimers represents its correspondent 

AuNS radius: black for 24 nm AuNS. 
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4 Concluding Remarks 

 This thesis describes the research on the fabrication, design considerations, and 

characterization of nanostructured nanoantennae, specifically the noble metal-semiconductor and 

noble metal-noble metal combinations. The noble metal-semiconductor and noble metal-noble 

metal nanoantennae have experimentally and computationally shown enhanced optical features 

via a combination of excitons and plasmons. The cost-effective techniques performed to produce 

the 2D TMD-metal nanocrystals and the theoretical computation have effectively demonstrated 

the ability for these nanoantennae combinations to enhance the optical features for 

optoelectronics and biomedical engineering. This chapter will discuss the importance of the 

research performed, results obtained, and ideas for future work based on the enhanced optical 

properties from these heterostructures. 

  

 Importance of work 

 Fossil fuels have dominated global energy for many years and have produced major 

concerns over the increased carbon dioxide emission in the earth’s atmosphere. Key goals to 

reduce the carbon footprint are making alternative energies readily available for efficient 

macroscale production. Wind, solar, and geothermal energy technologies have recently attained 

significant improvements in reducing the carbon footprint with plasmonic nanostructures [2,3]. 

However, the enhancements (e.g. excitons, surface plasmon resonances) from these 

nanostructures have lagged due to the high cost of producing these materials (e.g., electron beam 

lithography, chemical vapor deposition). Part of this work has focused on performing an 

alternative method to determine the optimal geometric nanostructure that produces optical 

enhancements such as LSPR in the NIR region. With inexpensive nanoantennae (e.g., noble 

metal-noble metal (dimers) and noble meta-semiconductor heterostructures (e.g. Pt-WS2)) an 
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efficient level of optical emissions arise. These nanoantennae have been studied theoretically and 

experimentally.  Optical emissions have a higher energy and cover a broader ultraviolet-visible-

near infrared range of the electromagnetic spectra due to the combination of these 

nanostructures.  

 Cancer results in approximately eight million deaths yearly and a demanding solution to 

manage it has been a primary focus in biomedical engineering. Nanotechnology has 

demonstrated promise for cancer therapy through noninvasive ablation on diseased tumor cells 

via light-activated therapies. Au nanostructures show potential with their electromagnetic and 

optical properties to ablate malignant cells through plasmonic photothermal therapy (PPTT). 

They also show promise with the immunotherapeutic application, where delivery of 

immunomodulation materials (i.e., antigens, checkpoint inhibitors, and cytokines) assist with 

mitigating the cancerous cells. An adequate amount of progress has been performed to mitigate 

tumors with toxic cetyltrimethylammonium bromide (CTAB) and silver nitrate growth 

conditions. However, these harmful synthesis methods can cause a significant problem for 

humans. A solution is to use citrate-coated gold nanospheres (AuNSs) merged via centripetal 

force. These overlapping AuNSs have optically demonstrated visible to near infrared region 

(NIR) optical features that can rival the current nanostructures. In this study, the new distinct 

features that arise in the nanodimers have been investigated theoretically via DDA. These 

distinguishing features in merged AuNSs have demonstrated key longitudinal wavelength peaks 

in the NIR region, which can be attained by specific geometric configurations of the nanodimers. 

These nanodimers have the potential to broaden the medical community use of alternative 

nontoxic nanostructures for tumor mitigations.   
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 Research summary 

 The creation of 2D transition metal dichalcogenides nanoflakes via the probe and freeze-

and-thaw liquid phase exfoliation was successfully demonstrated to be a cost effective route. 2D 

WS2 decorated with PtNPs via a reduction technique was characterized with TEM, SEM, EDS 

mapping, and optical absorbance. The characterization effectively demonstrated the production 

of the noble metal - semiconductor heterostructure, which indicated that the average PtNP size 

decorated at the edge and basal parts of the 2D nanosheet observed in the presence of halogen 

irradiation could be attributable to the photoelectric effect.  Additionally, optical extinction and 

absorbance spectra determined the unique enhanced optical features (e.g., excitons and SPR) are 

predominately present at the UV-Vis EM range.  

 The dimers were explored via DDA with unpopulated and repopulated dipole points that 

show a strong variation of multimodal peaks in the Vis-NIR region. The cleft depths, antiwedge 

area, from both schematic dimers and a transmission electron microscope (TEM) image of 

experimental dimers were correspondingly used to distinguish computational dimers which 

validated a less than 2% error difference for both combined computational and experimental 

spectra.  

 

 Future work 

 Extending across the broad range of the electromagnetic field, the studied nanostructures 

covered ultraviolet (via PtNPs), visible (via Pt-Au-WS2), and near-infrared (Au-Au) regions. 

Having this potential allows theses nanostructures to be further studied as a catalyst. Studies 

have indicated the Pt-WS2 could readily be combined with Nafion (Nafion D-521, Beantown 

Chemical, Hudson, NH) and Ketjen (Carbon black, Akzo Nobel Functional Chemicals, Chicago, 

IL) to produce a co catalyst ink for producing hydrogen fuel cells via hydrogen evolution 
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reaction. The nanoantennae could also be characterized under a scanning transmission electron 

microscope to perform electron energy loss spectroscopy (EELS). EELS has the potential to 

expose the material with an electron beam and make the paths of the electrons randomly and 

slightly deflected due to the geometric surface of the nanoantennae. The pathways of the 

electrons are then plotted with an electron energy loss spectrum. EELS spectra can be obtained 

for these heterostructures theoretically with electron discrete dipole approximation (eDDA). 

Masiello and Henrard implemented and adapted the DDA algorithm to electron-excitation, called 

eDDA and DDEELS [115,116]. The nanostructure gets excitation by an electron at a certain 

location (impact point) on the nanoantenna. This impact point, composed of electrons, induces 

resonances not observable under light excitation, also known as dark modes. Each impact point 

produces a spatially-unique bright or dark plasmon resonance mode in the electromagnetic loss 

density of state (ELDOS).  The plasmonic nanoantenna, in this case, dimers or Pt-WS2, 

influences the ELDOS since unique multi plasmonic features arise in the DDA spectra. 

Distinguishing, which unique geometric location on the nanoantenna contributes to the bright 

modes will establish certainty on optimizing the heterostructures geometry to attain better optical 

features.    
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Appendices 

A: Description of Research for Popular Publication  

 Enhancing the alternative energy and reducing the lives cancer takes are keen motivations 

that many scientists use to accomplish multiple scientific milestones. The past decades the 

scientific community has made several breakthroughs for both healthcare and alternative energy. 

For example, solar and electrochemical cells have recently seen an increase in the production of 

power by implementing nanostructures into the designs. Also, the medical community has 

applied nanostructures to expedite the transport of certain drugs within a human body. These two 

distinct fields have seen huge success in the last decades. However, we are still dependent on 

fossil fuels, and cancer is still one of the deadliest diseases.  Ricardo R. Romo, a Master’s 

student in Microelectronics-Photonics at the University of Arkansas, continually asks how one 

can support the global energy demand with improving the alternative energy and at the same 

time find methods to help mitigate cancer. 

 Romo and his advisor, Dr. D. Keith Roper, have envisioned in discovering methods to 

make alternative energy and tumor ablations more efficient with nanotechnology. In order for 

this improvement of efficiency to happen, the unique optical properties from noble metals 

(platinum and gold) and semiconductors (WS2) need to be combined. In the nanophotonics lab at 

the University of Arkansas, Romo and his colleague Keith Berry have successfully united these 

to properties by a simple and unique chemical reaction. When shining strong light on these 

combined materials, the optical emissions from these materials can then be converted into 

electricity. This electricity can be inexpensively generated with the sun as the strong light. 

Alternatively, the combined materials have been proven to be useful as a catalyst for the 

production of hydrogen fuel.  
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 Additionally, Romo and collaborators looked at using nanostructure materials for 

assisting in tumor ablations. Current medical practices have used cylindrical shaped 

nanostructures to ablate mass tumor cells. They displace the nanostructures on the malignant 

mass and then shine them with visible to infrared light. The surrounding areas of the 

nanostructures become hot at the localized surface. This generated heat is strong enough to 

destroy the malignant cells. In Roper’s research lab, several computational designs of these 

nanostructures were performed to investigate the optimal dimensions to attain the optical features 

in the near infrared region. They have discovered that a combination of two spheres can perform 

the needed optical frequencies for tumor ablations. However, these discoveries became more 

promising due to the nontoxic morphology that spherical shapes have when compared to the 

cylindrical counterparts.   

 With the gradual steps done in the nanophotonics lab, Romo was able to demonstrate the 

enhanced optical features from the combination of noble metals with semiconductors. Now with 

the proven enhancements, Romo is currently asking the question on how to implement these 

innovative optical features for the macroscale of industry. An experiment to use these combined 

nanostructures as a catalyst for hydrogen fuel production can be promising for future results.  
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B: Executive Summary of Newly Created Intellectual Property 

Below is a list of newly created intellectual items. 

1. Creation of Excel sheet that combines all dimer spectra to create super spectra 

comparable to experimental spectra.  
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C: Possible Patent and Commercialization Aspects of Intellectual Property 

C.1 Patentability of Intellectual Property 

 Each of the following items was considered for potential patentability. It was decided that 

none of the above items could be patented. Detailed descriptions follow.  

1. The Excel sheet has all of the computational spectra for 14, 15, and 16 nm diameter for 

Au dimers, and the modified column that combines and divides individual spectra to 

desired percentages. However, the Excel sheet is only good for gold nanodimers with an 

AuNS diameter of 14, 15, and 16 nm. This will not be suitable for other diameters, hence 

making it not patentable. 

C.2 Commercialization Aspects 

Each of the following items was considered for commercialization opportunities. It was 

decided that none of the above items could have commercial appeal. Detailed descriptions 

follow. 

1. The Excel sheet for the specific dimers does not hold potential for commercialization due 

to it only being used for specific AuNSs of 14, 15, and 16 nm diameter. To hold 

commercial appeal, it should include the ability to change the diameter for alternative 

AuNS diameters. 

C.3 Possible Future Disclosure of Intellectual Property 

1. The Excel sheet for combined dimer spectra is currently being prepared for publications 

in the Journals of Optics Express. The first authorship will belong to Ricardo Romo and 

Keith Roper with multiple co-authors.  
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D: Broader Impact of Research 

D.1 Applicability of Research Methods to Other Problems  

All of the ideas and concepts discussed in this thesis could be applied to areas such as 

biological sensors, electrochemical co-catalysts, solar cells, and other optoelectronic devices. For 

example, the Pt-WS2 (L) heterostructure could easily be produced into a co-catalyst to improve 

the hydrogen production via HER. Additionally, the sub-25 nm Au dimers coated with citrate 

could be used instead of the toxic AuNRs for tumor ablations.  

D.2 Impact of Research Results on U.S. and Global Society 

This research has the potential to reduce the cancer threat that takes eight million lives 

yearly. Recently, nanotechnology has demonstrated promise for cancer therapy through 

noninvasive ablation on diseased tumor cells via light-activated therapies. Current problems of 

this therapy arise with toxic gold nanorods, which use hazardous CTAB coating. The 

overlapping AuNSs have optically demonstrated visible to near infrared region (NIR) features 

and have a non-toxic coating of citrate, which outperforms the current AuNRs. Finding the 

optimal dimer dimensions in the cleft region would ultimately improve the SPR of the 

nanostructure. In particular, simulations determined the cleft depth to overlapping distance ratio 

that imposes an optimal dimer dimension that can induce a NIR region optical feature. These 

distinguishing features in merged AuNSs have the potential to broaden the medical community 

use of alternative nontoxic nanostructures for tumor mitigations.   

D.3. Impact of Research Results on the Environment 

 The arising optical features from noble metal-noble metal (i.g. dimers) and noble metal-

semiconductors heterostructures have the potential to be used in for alternative energies systems 

(e.g., co-catalyst for HER, surface coating for solar cell). These implementations of 
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nanostructures onto alternative energies could help eliminate a portion of green-house gas 

emissions.  Effects deemed detrimental to the environment from nanoparticles escaping their 

host matrix have yet to be reported. 
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E: Microsoft Project for M.S. MicroEP Degree Plan 

 

  



65 

 

F: Identification of All Software Used in Research and Thesis Generation 

Computer #1 

 Model: Dell Precision T3500 

 Serial Number DCRB3L1 

 Location: Institute for Nanoscience and Engineering, Room 301 

 Owner: NanoBio Photonics Lab, University of Arkansas 

Software #1 

 Name: Microsoft Office, Professional 2016 

 Purchased By: Department of Chemical Engineering, University of Arkansas 

 License: 02260-018-0000106-48503 

Software #2 

 Name Mendeley (v. 1803) 

 Purchased by: Ricardo R. Romo 

 License: Freeware 

Software #3: 

 Name: Matlab R2015b (v. 8.6.0.267246) 

 Purchased By: Department of Chemical Engineering, University of Arkansas 

 License: 601103 

 

Computer #2 

 Model: 15-r015x 

 Serial Number: CND4193LPN 

 Location: Home 

 Owner: Ricardo R. Romo 

Software #1 

 Name: Microsoft Office, Student 2018 

 Purchased By: Ricardo R. Romo 

 License: 00201-10029-87936-AA359 
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