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Abstract  

Scaling relations in tributary network geomorphology are well understood with respect to 

optimality. However, the scaling relations between structure and dynamics in distributary 

network geomorphology are less well understood. This is primarily due to the fact that 

nourishment area boundaries are difficult to map compared to tributary network catchment area 

boundaries. Furthermore, most previous work has focused either on the distributary channel 

networks or the delta’s partitioning of discharge. Here we show that, on the Wax Lake Delta 

(WLD) in Louisiana, the asymmetry in nourishment areas and downstream nourishment 

boundary width (∏) at a channel bifurcation, acts as a control upon the partitioning of discharge 

thereby influencing delta dynamics. We found that relationships between nourishment width, 

channel width, nourishment area, and discharge can be adequately described by power law 

functions. Linear power law relationships between discharge and nourishment width show 

demonstrate a link between a channel network’s structure and dynamics. This confirms that 

individual channel structure is a function of the dynamical competition amongst channels for 

unchannelized nourishment width and therefore individual channels cannot be considered 

independently. The uniformity of flux across the downstream nourishment boundary 

demonstrates the optimality of distribution of water and sediment flux across the unchannelized 

delta front and suggests self-regulation of the channel structure to achieve maximum entropy of 

the system. Leave one out cross validation shows that discharge can be predicted with increased 

accuracy using nourishment width compared to predictions using channel width. This 

empirically derived scaling relationship will allow for more accurate prediction of discharge 

partitioning using remote sensing and has important implications for delta geomorphology. 

These relationships have potential use in future monitoring and management of deltas.  
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1   Introduction 

     River deltas play an important role in human civilization.  An estimated 500 million people 

live on river deltas around the world and many more gain sustenance from their fertile soils 

(Ericson et al. 2006; Syvitski and Saito 2007). Ancient river delta systems include substantial 

energy reservoirs of both oil and natural gas (Rainwater 1966; Ericson et al. 2006). Due to a 

combination of rising sea levels and the damming of many river systems, many deltas are going 

from progradation to retrogradation (Ericson et al. 2006; Edmonds et al. 2011; Foufoula‐

Georgiou et al. 2011). Distributary channel networks are the primary control on the distribution 

of water and sediment across the delta (Tejedor et al. 2017).  Primary channels distribute water 

and sediment through the system and into the receiving basin while secondary channels connect 

the primary channels to the inundated island interiors (Shaw, Mohrig, and Whitman 2013). The 

partitioning of water and sediment through the channels within the network determine channel 

erosion and deposition as well as delta front evolution (Van Heerden and Roberts 1988; Wellner 

et al. 2005). The coupled channelized and unchannelized system set the structure of the delta. 

The dynamics are set by the concomitant partitioning of discharge across a downstream 

nourishment end boundary. Using a combination of remote sensing and field data, this study 

seeks to empirically characterize the scaling relationships between the structure and the 

dynamics of the Wax Lake Delta (WLD) in coastal Louisiana. 

     Distributary channel networks have obvious equivalents in the tributary river networks that 

supply them, as both are dendritic structures which transport water and sediment. In tributary 

networks, scaling relationships have been discovered which connect channel hydraulics, 

catchment area, and the principle of optimality, the concept that systems will self-regulate to 

minimize energy expenditure (MEE) and maximize entropy production (MEP). Therefore, 
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comparing the scaling relationships found in distributary networks to those found tributary 

networks could provide insight into the geomorphology of distributary networks.  

 The foundational scaling relationships found for the hydraulics of tributary channels were 

presented by Leopold, Wolman, and Miller [1964].  They empirically derived power law scaling 

relationships between a channel’s width, depth, velocity, and discharge.  (1) 

 

𝑤 = 𝑎𝑄𝑏 𝑑 =  𝑐𝑄𝑓 𝑢 = 𝑘𝑄𝑚  𝑄 = 𝑎𝑄𝑏 ∙ 𝑐𝑄𝑓 ∙ 𝑘𝑄𝑚                    (1) 

𝑤ℎ𝑒𝑟𝑒 𝑏 + 𝑓 + 𝑚 = 1 𝑎𝑛𝑑 𝑎 ∙ 𝑐 ∙ 𝑘 = 1                     

where w is channel width, d is channel depth, u is velocity, Q is discharge, and a,b,c,f, and m are 

constants which vary depending on network characteristics such as bank cohesiveness and 

sinuosity. 

     Analysis of the empirical data led Leopold, et al [1964] to conclude that discharge increases 

much faster than depth of water in a channel. These scaling relations not only furthered our 

understanding of channel hydraulics and geomorphology they also provided a means for 

predicting discharge from satellite imagery. Gleason and Smith [2014] measured channel widths 

from remote imagery and used the scaling relationship between channel width and discharge to 

approximate discharge rating curves for continental scale riverine systems. Verification, using 

gauging stations, of the calculations for reach-averaged discharge found root-mean-square error 

of 20-30%(Gleason and Smith 2014). 

Hack [1957] found an empirical scaling relationship between the area of a drainage basin, 

designated as A, and the length of its longest channel, L. (2) 

 𝐿 = 1.4(𝐴)0.6                         (2)  
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     The area of the drainage basin is the average width of the drainage basin, 𝑤, multiplied by the 

length of the longest channel so that  𝐴 = 𝑤 ∙ 𝐿. 

      

Substituting into equation 2, 

𝐿 = 1.4 (𝑤 ∙ 𝐿)0.6 

                        𝐿1.66 = 1.75(𝑤 ∙ 𝐿)        (3) 

The ratio of average width to length, 

                             
𝑤

𝐿
= 0.57/𝐿0.33                     (4) 

     The ratio of width to length, therefore, increases inversely as the third power of the length and 

must decrease as the length increases. As a catchment area grows in the downstream direction it 

becomes longer and narrower as the channel length increases. The larger the basin the more 

elongate it is demonstrating that the overall shape of the drainage basin is geometrically 

connected to the geometry of the tributary network (Hack 1957). 

     Horton [1945] used the hydraulic mechanics of infiltration capacity, transmission capacity, 

and Manning’s formula to derive the rational equation of peak discharge from a drainage basin 

which relates discharge in a tributary network and its catchment area. (5) 

𝑄 = 𝑐𝑖𝐴 (5) 

where Q is peak discharge, c is a runoff coefficient based upon ground cover, i is rainfall 

intensity and A is catchment area. 

 

    This equation shows the relationship between catchment area and discharge in tributary 

networks and is a principle equation in many landscape evolution models. 
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     The scaling relationships found in tributary networks have been related to the system’s 

optimality. Rodriguez-Iturbe et al. [1992] theorized a connection between energy dissipation, 

runoff production and the structural characteristics of tributary networks to explain their 

geomorphology.  After comparing digital elevation maps of tributary networks to optimal 

channel network configurations they found ratios of bifurcations, channel length, and catchment 

area in agreement with Hack’s scaling relationships. This was found to imply that the tributary 

channel network self-organized to minimize energy expenditure of the flow through the system 

(Rodríguez‐Iturbe et al. 1992). 

     In distributary channel networks, scaling relationships for channel hydraulics are relatively 

well understood. Mikhailov [1970] empirically investigated distributary channel hydraulic 

relationships at bankfull discharge of the Volga, Danube, Kura, Amu-Darya, and Terek deltas. 

Andén [1994] empirically investigated the hydraulic geometry relationships found in the 

Laitaure Delta, Swedish Lappland.  Both Mikhailov and Andén found that the scaling 

relationships between channel width, depth, velocity, and discharge in deltaic environments to be 

compatible to the scaling relationships found by Leopold et al. [1964] albeit with marginally 

varied constants. These results imply that the fluid dynamics for channelized tractional flow 

remain consistent even under conditions of backwater flow.  

     Edmonds, et al. [2011] established the quantitative metric of nourishment area to differentiate 

and evaluate diverse delta systems. The nourishment area is a specific area of the delta which is 

supplied by sediment from a given channel cross section.  This is analogous to the catchment 

area in tributary networks.  Edmonds [2011] found that nourishment area scales well with 

channels length because as length grows the nourishment area also grows congruently. This 

finding disagrees with the elongation of catchment area seen in Hack’s law. Hack [1945] found 
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the ratio of width to length in drainage basins increased inversely to the third power of the 

length.   

          Relatively few studies have included the unchannelized system when analyzing 

distributary channel networks. As the channelized flow moves basinward, the flux from the 

primary channels into the secondary channels and inundated island interiors increases due to 

friction and shallowing of the channels (Hiatt and Passalacqua 2015). The lateral out flow results 

in a significant amount of flux (23-54%) escaping the channels into the unchannelized area 

(Shaw, Mohrig, and Wagner 2016; Hiatt and Passalacqua 2015). This substantial amount of flux 

using unchannelized pathways necessitate that the unchannelized region be considered when 

analyzing the dynamics of a distributary network system. Ke et al [2019] showed that 

distributary channel growth can be entirely understood by this outflow. 

The study of scaling relationships in distributary networks remains limited because the 

nourishment boundaries cannot be derived from topography, unlike tributary systems in which 

unchannelized flow patterns are generally inferred from the gradients of topography 

(Passalacqua et al. 2010, 2015). However, biofilm streaklines provide a means of estimating the 

unchannelized flow patterns on deltas. Biofilm streaklines have been used to track sub-mesoscale 

sea surface flow fields (Johannessen et al. 1996; Seppke, Gade, and Dreschler-Fischer 2013). As 

streaklines are tangential to flow direction the resulting geometries can provide a synoptic view 

of the flow patterns (Shaw, Mohrig, and Wagner 2016).  Two assumptions are necessary for this 

method to be accurate.  First that the streakline patterns do not vary significantly through 

relevant timescales.  Second, that the resulting flow direction are a function of depth averaged 

flow and not secondary flow patterns.  For the purposes of this study we used streakline derived 

flow as a means of delineating the nourishment boundaries. 
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     Another complicating factor in the study of scaling relationships in distributary networks is 

the fact that downstream nourishment boundary can be theoretically placed anywhere from the 

shoreline to far into the receiving basin. For the purposes of this study we define the downstream 

nourishment boundary of the area as a line of equipotential head. If this head is relatively large, 

the line is proximal, if this head is relatively small the line is relatively distal. For ease in 

evaluating connections between delta structure, dynamics, and optimality we introduce the 

nourishment area end boundary width as a metric unto itself (∏) (Figure 1). The placement of 

this boundary is of vital importance because the state of the flow field at the chosen distance 

greatly effects the nourishment area and nourishment width.  It will be shown that proximal 

placements of nourishment width are at regions where the flow is out of equilibrium with the 

receiving basin as it is transitioning from confined to unconfined flow. This results in 

nourishment area and nourishment width measurements which are not representative of the 

discharge. 

     Optimality in distributary channel systems has been analyzed in terms of maximum entropy 

production (MEP). Entropy in distributary networks is the measure of uncertainty in the 

pathways of the water and sediment flux or in other words the degree of diversity of flux 

distribution across the delta (Tejedor et al. 2017). A distributary network with low entropy would 

consist of one primary channel conveying the predominance of the flux whereas a distributary 

network with high entropy would be composed of multiple primary channels creating numerous 

potential pathways. 

     Tejedor et al. [2017] represented the distributary channel network geometry of 10 field and 6 

Delft3D deltas as nodes and links to analyze the uncertainty of the flux pathways compared to 

105 randomizations of flux partitioning to analyze the nonlocal entropy rates of the deltas.  While 
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none of the deltas were perfectly optimal all were found to have a nonlocal entropy rate above 

the 90th percentile.  This demonstrated that the coevolution of the structure of the distributary 

channel network and the flow dynamics allows for the delta to self-regulate in an attempt to 

optimally distribute water and sediment uniformly across the shoreline (Tejedor et al. 2017).       

      

 

Figure 1: A conceptual diagram showing the measured components with downstream 

nourishment width mapped at 3 equipotential surfaces. The dotted lines are nourishment 

boundaries that may be derived from streaklines, W is channel width, and ∏P is nourishment 

width proximally, ∏F placed at the delta front, and ∏D placed distally. Nourishment area AN is 

the area between W, nourishment boundaries, and a downstream boundary width. 

     The goal of this study is to characterize the scaling within the coupled channelized and non-

channel system by measuring nourishment width, channel width, discharge, nourishment area, 

and sediment fluxes in the WLD.  In order to assess these connections between individual 

channel components and the unchannelized area we (1) quantify the partitioning of discharge 

across the delta by using cross sectional velocity profiles collected at asymmetrical bifurcations 
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and connecting them to their measured nourishment area and nourishment width (2) compare the 

empirically derived scaling relationships to comparable relationships found in tributary 

networks, (3) validate the empirically derived scaling relationships, given the colinear nature of 

the measured components leave one out cross validation will be used for prediction model 

validation, (4) investigate the related time scales of the metrics, and (5) compare the integrated 

results from the above with current theories related to optimality.  The conclusions drawn from 

these analyses will further our understanding of the geomorphology of prograding river 

dominated deltas. 

2   Site Description 

 
Figure 2: a) Map of Louisiana with the research area  highlighted. (Sources: National 

Geographic, Esri, DeLorme, HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, 

GEBCO, NOAA, iPC) b) Sentinel 2 image acquired March 22, 2018. Note the streaklines 

present on the delta front. 

 

     Located in coastal Louisiana the Wax Lake Delta (WLD) is approximately 150 km southwest 

of New Orleans (Figure 2). The result of dredging by the Army Corps Of Engineers in 1942, the 
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WLD receives 40% of the flow discharge from the Atchafalaya River (Hiatt 2013).In 1973, the 

WLD became subaerial exposed and has continued to prograde into the Atchafalaya Bay 

(Roberts et al., 1997). The geometry of the distributary channel system on the WLD is a 

bifurcating network of seven primary channels and multiple secondary channels with few loops.  

Beyond the subaqueous delta front the topology of the bed becomes predominantly uniform 

(Shaw et al. 2016; Whaling, 2019). The sheltered nature of the Atchafalaya Bay, in which the 

WLD is located, allows for the streaklines composed of floating biofilms, coming from the 

vegetated unchannelized regions, to remain coherent. The presence of these streaklines is 

required for our method of mapping nourishment area and nourishment width. The WLD was 

chosen as the research area for this study because of its progradational nature, geometry of the 

distributary channel system, and the existence of streaklines.  As it is one of the few places 

located on the Louisiana coast which is land is growing it is an ideal place to study the 

geomorphology of a growing delta.  The rarity of loops within the distributary channel structure 

and the sheltered nature of the bay ensure that measurements of discharge taken at channel cross 

sections are an accurate reflection of the partitioning of discharge. 

3   Methodology 

     The methodology for this study was composed of analysis of empirical data obtained from 

remote sensing and field work on the WLD. Added to this data was empirical data collected by 

Hiatt (2013). 

Remote Sensing 

     Channel widths, nourishment widths, and nourishment areas were calculated in ArcMap using 

Sentinel 2, acquired March 22, 2018, and Landsat 5 TM, acquired November 2, 2011, images of 

the WLD (Figure 3a and 3b). The NIR band for each image (Sentinel 2 Band 8 and Landsat 5 
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Figure 3: a) Sentinel 2 image T15RXN_20180322T163939 Band 8 (acquired March 22, 2018) 

with nourishment areas mapped with the downstream nourishment boundary placed at 3 

equipotential surfaces, ∏P is nourishment width proximally, ∏F placed at the delta front, and ∏D 

placed distally. b) Landsat 5 image LT05_L1TP_023040_20111102_20160830_01_T1 band 4 

(acquired November 2, 2011) with nourishment areas mapped with downstream nourishment 

boundary placed at same location as 2018 ∏D. 

Band 4) were chosen for mapping purposes because of well-defined channels and levies and 

streaklines allowing for easier measurements. In cases of links created by a secondary channel 

connecting with another primary channel, the nourishment area and width were mapped as a 

commensurate slice of the receiving primary channel’s nourishment area, based on our reasoning 

that the disproportionally smaller contribution of the secondary channel would be entrained in 

the primary channel. In contrast to the method used by Edmonds et al. (2011) which included the 

entire receiving primary channel’s nourishment area.  Channel width remote imagery 

measurements for the 2018 data were validated in the field.   
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     Biofilm streaklines were used for delineation of the boundaries between nourishment areas. A 

flow net was constructed by using the streaklines as flow lines and then constant head lines were 

demarcated by inscribing lines perpendicular to the flow lines. Nourishment area and the 

nourishment width were then calculated using ArcMap. 

Errors and Accuracy 

     Manually digitizing nourishment area boundaries inherently introduces error into final 

measurements. These errors include: 1) resolution and accuracy of the remote image, 2) the 

accuracy and precision of placed polygon boundaries, 3) potential variability of using a 

streakline as a synoptic tracer for flow. 

     Carisio (2012) defined total surface area error, E as a combination of total measurable 

uncertainty, E1, and potential variability error, E2: 

            𝐸 = 𝐸1 + 𝐸2                                 (6) 

            𝐸1 = √𝐴 + (𝑝 + 𝑢) + √2            (7) 

            𝐸2 = 𝐴 ∗ 𝑣                                       (8) 

Where A is area of the polygon, p is the horizontal uncertainty of the source image, u is the 

horizontal uncertainty, and v is potential variability error. 

     Imagery errors depend on the source of the image. The horizontal position error for both 

Sentinel 2 and Landsat TM 5 images is ≤ 12 m (Wiedermann et al. 2014; Borgeson, Batson, and 

Kieffer 1985). Horizontal accuracy of polygon boundaries placed along streaklines is a function 

of the scale of the map created and can be quantified by using standards employed by the United 

States Geological Survey’s National Mapping Program standards (USGS 2017). For the purposes 
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of this study, the horizontal accuracy was calculated, using the USGS standards, to be 16.94 

meters for the Sentinel 2 and 20.33 meters for the Landsat 5 image by using the scale at which 

the features were mapped. For the purposes of this study, and to account for all other potential 

errors, a relatively high 5% value was used for potential variability error. 

Field Data 

     Discharges were measured by doing quadruplicate transects at each parent and daughter 

channel of 13 asymmetrical bifurcations using a boat mounted Teledyne RiverPro Acoustic 

Doppler Current Profiler collected from March 20 to March 23, 2018. This study also used 

discharge data collected by Hiatt [2013] from February 04 to February 07, 2012, which measured 

a substantial portion of the delta including the same bifurcations measured in 2018.  

Data Analysis 

     Nourishment width, channel width, nourishment area, and discharge data were compiled and 

then analyzed to assess the relationships between the partitioning of discharge, nourishment 

width, and nourishment area. Owing to the colinear nature of the components, Leave One Out 

Cross Validation (LOOCV) was used for discharge prediction model validation. LOOCV is a 

technique by which a data point is removed from the dataset and then its value is predicted using 

the remaining data for a given metric. This is then repeated for every data point in the data set 

and the predicted values are then compared to the actual values (Johnson and Wichern 2007).    

4   Results 

     Normal hydraulic geometry relations predict that channel width and depth will scale with 

discharge. When 𝑤 = 𝑎𝑄𝑏 𝑑 =  𝑐𝑄𝑓 𝑢 = 𝑘𝑄𝑚 the 2018 data for the WLD show a = 9.56 ±5.73, 

b = 0.514 ±0.08, c = 0.338 ±0.043, f = 0.33 ±0.065, k = 0.299 ±0.043, and m = 0.162 ±0.021 (± 1 
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standard error).  These results are comparable with results from past studies of both tributaries 

and other bifurcating deltas implying that scaling relationships for channel discharge, width, 

depth and velocity are consistent in both tributary and distributary networks. 

     Regression analysis of the scaling relationship between nourishment area with a distal 

downstream boundary and the discharge of a given channel cross section demonstrated a quasi-

linear relationship with scaling exponents of 1.05 ± 0.039 for 2012 and 1.082 ± 0.017 for 2018 

(Figure 4). Discharge measured at the USGS gauging station 07381590 for the Wax Lake Outlet 

at Calumet, LA was 7080 cubic meters per second during the 2018 fieldwork and 4250 cubic 

meters per second during the 2012 fieldwork. The ratio between incoming discharge at Calumet 

between 2012 and 2018 is 0.6 and the ratio of the scaling law coefficients for the dataset’s 

regression (0.53) are comparable (Figures 4).  With identical placement of the end boundary, 

under varying flow conditions, and six years apart the distribution of discharge remains 

comparable while the absolute discharge varies. The similar regression fittings show that the 

linear relationship displayed in the data is related to the proportionality of the flow and not of the 

absolute flow. To normalize the discharge, the values were dividing by the associated discharge 

measurement at the gaging station at Calumet. To normalize the nourishment area and 

nourishment width, the values were divided by the nourishment area and width of the entire delta 

with the end boundary placed distally (Figure 3a). The scaling relationship between the 

normalized values demonstrate an equivalent quasilinear relationship and more clearly reveals 

the relationship between distribution of nourishment area and the partitioning of discharge 

(Figure 5).    

     The measured nourishment areas, and therefore the results, were dependent upon the selection 

of the downstream end boundary of the nourishment area (Figure 1).  In this study we measured  
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Figure 4: Comparison of Nourishment Area with Nourishment Width placed distally and 

Discharge with power law fits for the Wax Lake Delta in 2012 and 2018. Nourishment areas are 

mapped in Figures 3 and 3b. 

 

 

 
Figure 5: Comparison of normalized Nourishment Area with Nourishment Width placed distally 

and normalized Discharge with power law fits for the Wax Lake Delta in 2012 and 2018. 
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nourishment areas for the 2018 data with the downstream nourishment boundary defined at three 

nourishment areas for the 2018 data with the downstream nourishment boundary defined at three 

locations: the shoreline, the subaqueous delta front, and at an equipotential surface beyond the 

subaqueous delta front. (Figure 3a) The empirically derived scaling relationship was influenced 

by the end boundary placement (Figure 6). Proximal placement of the end boundary resulted in 

an exponent less than one with a greater standard deviation and a low coefficient of 

determination. Placement at the delta front resulted in a quasi-linear scaling relationship with a 

lower standard deviation and a significant coefficient of determination. Distal placement resulted 

in similar quasi-linear power law scaling and a marginally higher coefficient of determination.   

 

Figure 6: Comparison of Nourishment Area with Nourishment Width placed proximally, at the 

delta front, and distally and Discharge with power law fits for the Wax Lake Delta in 2018. 

Nourishment areas are mapped in Figures 3a. 
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     Regression analysis of the scaling relationship between nourishment width with a distal 

downstream placement and the discharge of a given channel cross section demonstrated a 

comparable quasi-linear relationship with scaling exponents of 0.989 ± 0.058 for 2012 and 1.071 

± 0.027 for 2018 (Figure 7).  

 
Figure 7: Comparison of Nourishment Width and Discharge with power law fits for the Wax 

Lake Delta in 2012 and 2018. Nourishment widths are mapped in Figures 3a and 3b. 

 

     Similarly, the relationship for normalized data demonstrates the connection between 

proportion of the nourishment width and proportion of discharge (Figure 8). Analysis of the 2018 

nourishment widths, with the downstream nourishment boundary defined at three locations: the 

shoreline, the subaqueous delta front, and at an equipotential surface beyond the subaqueous 

delta front, departed from the nourishment area data showing quasi-linear relationships at all 

placements (Figure 9). 
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Figure 8:  Comparison of normalized Nourishment Width and normalized Discharge with power 

law fits for the Wax Lake Delta in 2012 and 2018. 

 
Figure 9 Comparison of Nourishment Width with Nourishment Width placed proximally, at the 

delta front, and distally and Discharge with power law fits for the Wax Lake Delta in 2018. 

Nourishment widths are mapped in Figures 3a. 
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     Then, for the 2018 data, we divided discharge by nourishment width to evaluate the flux 

across nourishment width proximally, at the delta front, and distally (Table 1). Proximal 

placement produces a substantial standard deviation with a large coefficient of variability 

signifying the disequilibrium of the hydraulics with this equipotential line as the flow is 

transitioning from confined to unconfined flow. The mean showed a decrease in flux per meter 

of nourishment width as the standard deviation diminished and the coefficient of variation 

decreased with distance.  An equipotential surface with maximum entropy production would be 

perfectly evenly distributed, i.e. Coefficient of variation would be zero. These trends demonstrate 

the evolution of the flow as it approaches an equipotential line of MEP. 

 

Table 1: Discharge (Q) of a given transect divided by Nourishment Width (∏) placed 

proximally, at the delta front, and distally for the Wax Lake Delta in 2018.  

 Q / Proximal ∏(m2/s) Q / Delta Front ∏(m2/s) Q / Distal ∏(m2/s) 

Mean  0.505603 0.293229 0.262881 

Standard 

Deviation 0.451242 0.147725 0.057432 

Coefficient 

of Variation 0.892484 0.503787 0.218472 

 

     We used Leave One Out Cross Validation (LOOCV) to compare the predictive strength of 

channel width, nourishment area, and nourishment width for water discharge. The resulting 

predictions are then compared to the actual values. This prediction model validation for 

discharge prediction indicates that, for the Wax Lake Delta, nourishment width is the best 

predictor of discharge with nourishment area being essentially equivalent while channel width 

was found to only be a fair predictor (Figure 10).  
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Figure 10: Results of the LOOCV for predicting Discharge on the Wax Lake Delta using 

Channel Width, Nourishment Area, and Nourishment Width using a) 2018 data and b) 2012 

data.  Note the values are the log of discharge. 
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5   Discussion  

Optimality 

     When nourishment width was evaluated at a proximal equipotential line the scaling 

relationship between discharge and nourishment area was found to be non-linear (Figures 6 and 

9). However, the scaling relationship between discharge and nourishment area were found to be 

quasi-linear with placement of nourishment width at equipotential lines located distally or at the 

delta front.  We interpret the change in scaling behavior from proximal to distal equipotential 

surfaces to be associated with a transition from highly variable flux along a surface to quasi-

uniform flux along a surface. As the relatively high velocity flows from the primary channels 

transition from confined to unconfined flow there is significant lateral flow expansion due to 

friction and shallowing of the channels. As the relatively low velocity flows from the secondary 

channels and unchannelized areas transition there is contraction of flow as the velocity increases.  

     At a sufficient distance, downstream the bed topography is predominantly uniform(Shaw et 

al. 2016; Whaling 2019). We propose that at this distance the combination of uniform 

topography, flow expansion, flow contraction, friction, and the low bed slope result in the water 

surface slope becoming virtually uniform and subsequently the flow velocity becomes quasi-

uniform. The combination of uniform velocity and consistent depth results in the discharge per 

unit length being quasi-uniform along this equipotential line.  The uniformity of the downstream 

nourishment boundary, under dynamic conditions found at this equipotential line implies that 

this is a curvilinear sink for the point sourced input discharge. This is comparable to tributary 

networks were the line sourced discharge enter the point sink of the downstream channel. 

     Optimality, in tributary systems, is evaluated in terms of MEE because the potential energy 

can be measured anywhere in the system using the water surface slope.  While MEE cannot be 
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directly measured in distributary systems, it is possible to measure discharge and discharge 

partitioning which allows for optimality in distributary systems to be assessed in terms of MEP.  

Furthermore, given the principle that deltas grow due to the distribution of fluxes across the delta 

top, through channel network evolution, rather than a single pathway it is more appropriate to 

calculate distributary networks in term of MEP.  In terms of MEP the equipotential line is where 

the flux has attained its dynamically accessible maximum entropy rate. The entire water and 

sediment flux distributed by the system is divided equally per unit length of the nourishment 

width for the entire delta, creating an equal probably of pathways.  

Structure and Dynamics 

     Here we show how the nourishment area connects the structure and the dynamics of the 

WLD. Deltas are extremely dynamic systems with topology and discharge partitioning 

coevolving.  The delta’s topology sets the structure of the delta. The dynamics are set by the 

discharge partitioning across a downstream nourishment boundary width which determines 

channel erosion and deposition as well as delta front evolution. The power law scaling 

relationships show the interconnection between a channels discharge, nourishment area, and 

nourishment width (Figures 5 & 8).  The scaling relationships between the structure and the 

discharge partitioning of the WLD were seen to be consistent under conditions of two discharges 

and six years apart, indicating that these relationships are consistent for the WLD. If these power 

laws adequately describe partitioning on the WLD, connections between the structure and 

dynamics can be illustrated with two thought experiments. First, we can imagine a dynamic 

change as an increase in discharge down a particular distributary channel with associated 

decrease in the remainder of the network. This channel’s width, depth, velocity, nourishment 

area and boundary width would also increase and cause lateral shifts of nourishment boundaries. 
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These increases would result in decreases of proportion of discharge, nourishment area, and 

boundary width of adjacent channels and in turn the entire network, thus changing the structure. 

Second, changes to a channels structure would result in changes to its discharge and to the 

partitioning of discharge across the delta.   So, it could be imagined that if a channel were to 

receive a greater fraction of the discharge it’s width, depth, velocity, nourishment area and 

boundary width would also increase. These increases would result in decreases of proportion of 

discharge, nourishment area, and boundary width of adjacent channels and in turn the entire 

network. Equally, changes to a channels structure would result in changes to its discharge and to 

the partitioning of discharge across the delta. 

     These scaling relationships, if applicable elsewhere, could improve remote sensing analyses 

of inaccessible deltas. Currently the calculation of discharge of inaccessible deltas is done by 

analyzing satellite imagery to measure channel widths (Kraaijenbrink 2012). The widths were 

then used in conjunction with Leopold’s channel hydraulic scaling relationships to calculate 

discharge.  The results of this study imply that, for remote deltas which have conditions such that 

nourishment areas and boundary widths can be mapped through streaklines (such as the 

Mackenzie Delta in the Northwest Territories, Canada), discharge and discharge partitioning can 

be better predicted using either nourishment area (85.2%) or nourishment width (92.7%) 

compared with discharge predictions using channel width (68.3%) (Figure 10).  

    The interconnection between morphodynamical changes and nourishment area has several 

implications including using remote sensing to deduce dynamic changes from nourishment 

changes and controlled diversion management. Drastic changes in the deltas structure in 

response to perturbations, such as avulsions dredging, choking, and abandonment of channels 
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would be reflected in changes to all of the nourishment areas and nourishment area end boundary 

widths of the entire delta.  

     Lastly, the results have interesting implications for the management of controlled sediment 

diversions that are planned in coastal Louisiana (CPRA 2012).   For example, deepening or 

widening a channel through dredging would cause an increase of discharge which would alter the 

distribution of nourishment areas and discharge partitioning. By analyzing overall discharge 

partitioning of a delta and then altering it, while considering how it would influence the rest of 

the network, it would theoretically be possible to control the position of areas of deposition and 

erosion. Thereby, influencing conservation, growth, and loss of land on the delta. 

Nourishment Width and Nourishment Area 

     Nourishment area was found to scale linearly with discharge (Figure 4). In tributary settings, 

the relationship between catchment area and discharge is the result of uniform precipitation (a 

spatially distributed source) over a catchment area and is a central and easily justified assumption 

in many landscape evolution models (Equation 5). In contrast water leaves deltas through the 

uniform equipotential line that acts as a curvilinear sink at the downstream boundary that is 

optimized to uniform water flux (Table 1). While a linear scaling relationship between discharge 

and nourishment width is physically justified (see Optimality), the relationship between 

discharge and nourishment area need not hold. This is demonstrated by the non-linear scaling 

relationship between nourishment area and discharge with a proximal end boundary (Figure 6). 

     We use geometric reasoning to justify the linear scaling between discharge and nourishment 

area found when the nourishment width is placed at the delta front or distally. The channel width, 

nourishment width, and the length of the nourishment boundaries form a shape that can be 
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closely approximated with a quadrilateral. Therefore, the nourishment area can be approximated 

by: 

𝐴𝑁 = (
𝑊 + ∏

2
) ∗ 𝐿           (9) 

Where AN is nourishment area, W is channel width, ∏ is nourishment width, and L is length of 

the nourishment boundaries 

     The channel widths range from 35-885 meters whereas nourishment width ranges from 200-

18,100 meters and are predominantly at least an order of magnitude larger that the given channel 

width. Therefore, as the channel width is insignificant compare to the nourishment width, we can 

disregard channel width and equation 6 becomes: 

𝐴𝑁 = (
∏

2
) ∗ 𝐿           (10) 

The length of the side boundaries was found to have little correlation with discharge (r2 =0.48) due 

to the fact that, aside from the apex, there are asymmetrical bifurcations at all distances of the 

channel network and therefore for a given length there can be greatly varying discharges. 

Therefore, we can disregard length of the nourishment boundary and equation 7 becomes: 

𝐴𝑁 = (
∏

2
)           (11) 

As we have seen that discharge(Q) scales with nourishment width we can substitute that into 

equation 11: 

𝐴𝑁 = (
Q

2
)           (12) 

Thus, we propose than a channels nourishment area is set primarily by its nourishment width 

resulting in an equivalent quasi-linear scaling relationship. 
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Time Scales  

     The time scales at which natural channel networks respond to drastic changes in water and 

sediment supply varies greatly ranging from years to decades to thousands of years (Howard 1982). 

In contrast nourishment area and nourishment width have relatively instantaneous reaction times 

of hours to days because they are the consequence of shallow water flow. This disparity potentially 

explains why nourishment widths are better predictors of discharge than channel width (Figures 

11a and 11b). The tight connection between nourishment area, nourishment width, and discharge 

could also explain how the system is able to maintain high entropy after avulsion events which 

drastically reduce localized entropy. The nourishment area/nourishment width quickly changes 

and provides a buffer which stabilizes the system while the channel network slowly returns to 

dynamic equilibrium. 

6   Conclusions 

     We conclude that the quasilinear scaling relationship seen between nourishment width, 

nourishment area, and discharge of a given cross section on the Wax Lake Delta is a clear 

indication of the connection between a channel network’s structure and dynamics. This 

relationship indicates that the dynamics of an individual distributary channel cannot be 

considered independently from its neighboring channels due to the competition between 

channels which influences the distribution of nourishment areas and nourishment widths across 

the delta. It is the interaction and competition between channels within the network which 

maximizes entropy and provides a stabilizing influence. The relatively fast reaction time of 

nourishment area and nourishment width to changes in discharge potentially demonstrates the 

mechanism by which the delta self regulates.  
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Appendix A: Data Summary 

Data for this research that were deemed too extensive for placement in the manuscript proper 

have been placed here for the interested reader. 

Table 2: Coordinates of the Wax Lake Delta field data collected from 03/20/2018 – 03/22/2018 

ID Right Bank Coordinates Left Bank Coordinates 

1U 91°25'55.8135"W  29°32'28.725"N 91°25'41.5715"W  29°32'18.5437"N 

1R 91°26'1.7688"W  29°32'24.9705"N 91°25'59.1"W  29°32'16.3871"N 

1L 91°25'57.8563"W  29°32'14.1807"N 91°25'43.3311"W  29°32'12.8059"N 

5U 91°26'39.3161"W  29°31'23.6537"N 91°26'19.0256"W  29°31'1.0689"N 

5R 91°26'47.324"W  29°31'22.1358"N 91°26'49.3162"W  29°31'20.1425"N 

5L 91°26'49.0437"W  29°31'14.0981"N 91°26'29.0985"W  29°30'53.0219"N 

6U 91°26'49.0437"W  29°31'14.0981"N 91°26'29.0985"W  29°30'53.0219"N 

6R 91°27'13.4913"W  29°31'0.431"N 91°27'10.0913"W  29°30'51.3839"N 

6L 91°27'3.9596"W  29°30'46.2243"N 91°26'40.8043"W  29°30'38.803"N 

7U 91°27'28.9228"W  29°30'55.0106"N 91°27'24.9157"W  29°30'47.0997"N 

7R 91°27'33.8426"W  29°30'54.2555"N 91°27'34.0305"W  29°30'53.2047"N 

7L 91°27'34.9963"W  29°30'50.4226"N 91°27'31.3185"W  29°30'44.1228"N 

8U 91°28'9.9294"W  29°30'36.2919"N 91°28'3.1336"W  29°30'29.5095"N 

8R 91°28'18.1314"W  29°30'35.819"N 91°28'19.3972"W  29°30'33.977"N 

8L 91°28'16.0985"W  29°30'29.8651"N 91°28'7.6693"W  29°30'25.8487"N 

9U 91°28'44.6926"W  29°30'11.4215"N 91°28'38.6647"W  29°30'3.213"N 

9R 91°28'51.9332"W  29°30'10.8166"N 91°28'51.5487"W  29°30'4.9784"N 

9L 91°28'50.724"W  29°30'0.1664"N 91°28'46.2797"W  29°29'56.7743"N 

10U 91°27'15.506"W  29°30'20.5501"N 91°26'53.029"W  29°30'12.5528"N 

10R 91°27'27.6901"W  29°30'10.8074"N 91°27'18.7444"W  29°30'0.7548"N 

10L 91°27'4.5689"W  29°29'56.7437"N 91°26'54.3979"W  29°29'56.883"N 

12U 91°28'22.8233"W  29°29'35.2258"N 91°28'7.6503"W  29°29'25.0381"N 

12R 91°28'21.3341"W  29°29'36.4277"N 91°28'8.1857"W  29°29'25.3666"N 

12L 91°27'57.7944"W  29°29'31.2232"N 91°27'59.6946"W  29°29'30.2996"N 

13U 91°28'26.2126"W  29°29'31.9556"N 91°28'10.3515"W  29°29'21.8031"N 

13R 91°28'30.1551"W  29°29'30.4537"N 91°28'30.191"W  29°29'28.0561"N 

13L 91°28'29.3228"W  29°29'25.0207"N 91°28'14.7579"W  29°29'16.2241"N 

14U 91°28'36.6263"W  29°28'42.387"N 91°28'55.8918"W  29°28'46.836"N 

14R 91°28'59.9138"W  29°28'41.9311"N 91°28'48.5054"W  29°28'32.3119"N 

14L 91°28'41.7149"W  29°28'33.1626"N 91°28'35.7914"W  29°28'35.1576"N 

24U 91°28'38.1761"W  29°29'12.8412"N 91°28'24.1144"W  29°29'4.5663"N 

24R 91°28'46.6521"W  29°29'8.3656"N 91°28'46.6763"W  29°29'6.75"N 

24L 91°28'46.6204"W  29°28'59.6843"N 91°28'32.5463"W  29°28'52.269"N 
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Table 3: Summary of Wax Lake Delta field data collected from 03/20/2018 –03/22/2018 and 

measurement made from Sentinel 2 image T15RXN_20180322T163939 Band 8 acquired 

03/22/2018. Locations correspond to those listed in Table 2. 

ID Date of Transects Q(m^3/s) 

Channel 

Width(m) NA(km^2) PI(m) 

1U 20-Mar-18 5421.4 495 174.6 18120 

1R 20-Mar-18 670.0 274 23 3080 

1L 20-Mar-18 4919.1 393 151.4 15030 

5U 20-Mar-18 2986.7 885 73.5 10990 

5R 20-Mar-18 105.5 82 1.4 280 

5L 20-Mar-18 2881.2 842 71.6 10710 

6U 20-Mar-18 2881.2 842 71.6 9840 

6R 20-Mar-18 940.1 293 20.9 3640 

6L 20-Mar-18 1813.0 664 47.6 6200 

7U 20-Mar-18 880.8 266 20.6 3010 

7R 20-Mar-18 21.8 33 0.9 100 

7L 20-Mar-18 792.9 218 19.5 2910 

8U 20-Mar-18 792.9 278 18.2 3270 

8R 20-Mar-18 75.5 66 2.2 300 

8L 20-Mar-18 717.4 258 15.8 2970 

9U 20-Mar-18 717.4 300 14.8 3090 

9R 20-Mar-18 313.9 180 7.3 1300 

9L 20-Mar-18 293.4 159 7.2 1790 

10U 20-Mar-18 1851.5 653 45.8 6630 

10R 20-Mar-18 1417.0 392 32.2 4120 

10L 20-Mar-18 402.5 274 13.2 2510 

12U 22-Mar-18 1287.3 467 29.4 4150 

12R 22-Mar-18 1241.5 515 26.8 3990 

12L 22-Mar-18 45.7 58 2.3 160 

13U 22-Mar-18 1241.5 529 26.8 3610 

13R 22-Mar-18 29.7 74 1.2 160 

13L 22-Mar-18 1211.8 477 24.9 3450 

14U 22-Mar-18 969.4 537 21.4 3770 

14R 22-Mar-18 788.2 427 16.1 3290 

14L 22-Mar-18 54.5 171 3 480 

24U 22-Mar-18 1211.8 456 23.9 4550 

24R 22-Mar-18 38.0 50 1.7 200 

24L 22-Mar-18 1173.8 443 21.4 4350 
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