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ABSTRACT 

 

Three monensin levels during a stocker phase (0, 800, 1600 g/ton in a free choice 

mineral) and two levels during finishing (0 [U] or 37.5 mg/kg diet DM [M]) were used to 

determine the effects of monensin supplementation during a stocker and subsequent finishing 

phase on beef calves. Steers (n = 605, BW = 278 ± 27 kg) were fed pearl millet hay with soybean 

hull and corn gluten feed supplement (0.5% BW daily [AF basis] Block 1) or grazed fall wheat 

(Block 2), spring wheat (Block 3), bermudagrass (Blocks 4 & 5) or wheat with mixed-grass 

baleage (Block 6). A subset of calves were transported 1,068 km to Canyon, TX (blocks 1, 2, and 

4) or 636 km to Stillwater, OK (block 6) for finishing. Rumen fluid was collected on a subset of 

cattle (n = 30) throughout the experiment to characterize rumen microbiota by next generation 

sequencing. There were no treatment × diet interactions (P ≥ 0.96) during the stocker phase or 

location × treatment interactions (P ≥ 0.19) during finishing, therefore data were pooled for 

statistical analysis. During the stocker phase, cattle consuming monensin had greater (P = 0.01) 

final BW compared with the 0 treatment. Steers on 800 and 1600 had greater ADG (P = 0.02) 

and total gain (P = 0.02) than 0. Mineral intake decreased (P < 0.01) as monensin level 

increased. Stocker × feedlot treatment interactions were not observed for feedlot performance (P 

≥ 0.50). Feedlot cattle consuming monensin had decreased (P < 0.01) DMI and increased (P < 

0.01) G:F than those that did not. Cattle consuming monensin during finishing had increased (P 

= 0.03) fat thickness. During the stocker phase, monensin treatments had decreased alpha 

community (P ≤ 0.04) compared to the 0 treatment. Cattle previously on the 0 and 1600 

treatments during the stocker phase and were fed monensin at the feedlot had decreased alpha 

diversity (P = 0.04) on feedlot d 14 compared to those that did not. 
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CHAPTER I 

INTRODUCTION 

 Monensin is one of the most widely used ionophores in food animal production and is 

routinely fed to beef cattle due its consistent improvements in animal performance and health 

(Novilla, 2011; Duffield et al., 2012). Monensin alters fermentation in the rumen by inhibiting 

less efficient acetate producing ruminal bacteria, resulting in increased propionate production, 

improved feed efficiency and decreased methane production (Callaway et al., 2003). The rumen 

microbiota plays a key role in in the efficiency of digestion and the use of a fermentation 

modifier like monensin can enhance the effects of these microbes on the host animal (Morgavi et 

al., 2013). 

 Utilizing a stocker program can be a way to increase frame size and add value of calves 

on forages at a lower cost than that of a feedlot. To maximize the returns of a stocker operation, 

producers must put weight on calves as efficiently and economically as possible (Rhinehart and 

Poore, 2012). Supplementing ionophores like monensin to stocker calves have consistently 

shown to be an inexpensive management strategy to increase weight gain of forage-fed growing 

calves over a wide range of forage systems (Potter et al., 1976; Oliver, 1975; Boling et al., 1977; 

Males et al., 1979; Beck et al., 2016). Monensin provided free-choice mineral to stocker calves 

can be effective at improving animal performance (Fieser et al., 2007; Beck et al., 2014); 

however, mineral consumption can be reduced and may not deliver an adequate dose to have a 

gain response (Horn et al., 2005; Beck et al., 2014). Monensin level may need to be adjusted to 

achieve desired intakes of mineral to deliver the monensin effectively (Horn et al., 2005). 

 Monensin is widely used in the cattle finishing industry to improve feed efficiency, 

reduce metabolic disorders from variable feed intakes, and to prevent outbreaks of coccidiosis 
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(Duffield et al., 2012). A recent survey of 49 consulting feedlot nutritionists who service over 

14,000,000 cattle annually found that 97.3% of the respondents use ionophores, of these 100% 

used monensin in their finishing diets (Samuelson et al., 2016). A meta-analysis by Duffield et 

al. (2012) concluded that including monensin in feedlot diets results in a 6.4% improvement in 

feed efficiency; however, it was reported that there were only a 2.5 to 3.5% improvement in 

trials conducted within the last 2 decades, suggesting that the efficacy of monensin may be 

declining. Due to the age of monensin feedlot research and the increased pressure from 

consumers to reduce antimicrobial feed additives in meat production, the use of monensin should 

be evaluated further in modern finishing systems. 

 The mode of action behind monensin is to eliminate certain bacterial species in the rumen 

to enrich the prevalence of more efficient species. The majority of this data is derived from pure 

culture-based bacterial isolation and estimations made from the production of various 

fermentation end products such as VFA and CH4 (Callaway et al., 2003). Recent advancements 

in next-generation sequencing techniques provide opportunities to evaluate how monensin 

affects ruminal bacterial communities in a more comprehensive way (Kim et al., 2014). 
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CHAPTER II 

REVIEW OF LITERATURE 

Overview of the rumen microbiome 

 The ruminant animal has a symbiotic relationship with its gastrointestinal microbes, and 

this relationship can play a vital role in both health and performance of the animal (Ley et al., 

2008; Serikov and Finlay, 2009). Specifically, the rumen is an important site of fermentation, in 

which a complex anaerobic microbiota composed of bacteria, archaea, fungi, protozoa and 

viruses ferment dietary components into usable end-products for the animal (Rey et al., 2013). In 

adult animals, the rumen microbial biomass is largely composed of bacteria, approximately 1010 

to 1011 cells per g-1 of ruminal fluid (Hungate, 1996). Conventional techniques of determining 

ruminal microorganisms involved culture-based isolation, which has provided valuable 

information on the diversity of the rumen microbiota. At least 200 species of bacteria have been 

identified using the culture based approach. In recent years, the diversity of the microbiota in 

humans and animals have been studied using a metaanalysis of 16S rRNA gene sequences from 

approximately 13,478 bacterial sequences. Using this genetic based analysis, the diversity of the 

rumen bacteria is estimated to be around 7,000 species, consisting of 5,271 operation taxomic 

units, and represent 19 existing phyla (Chaucheyras-Durand and Ossa, 2014). The use of this 

technology has greatly enhanced our knowledge and capabilities of studying the microbiota, 

especially one that is as complex and diverse as the rumen.   

Establishment of the rumen microbiome 

 The initial microbial community in newborn mammals is acquired from the surrounding 

metacommunity (Curtis and Sloan, 2004). This includes vaginal canal during birthing, contact 

with dam during suckling and grooming, environmental interaction, and via colostrum and milk 
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consumption (Rey et al., 2013). The establishment of the rumen microbiome early in life has 

shown to be critical to the hosts’ metabolism, health, and immune function (Cammack et al., 

2018). The neonate rumen is thought to be sterile at birth, but is initially colonized very early in 

life (Li et al., 2012; Jami et al., 2013). Although the rumen is undeveloped and non-functional in 

newborn calves, the mode of initial inoculation is thought to be attributed to swallowing of saliva 

and milk from the dam and other environmental interactions, as some ingesta is thought to pass 

the esophageal groove and enter the rumen (Hungate, 1966). Several experiments have 

investigated how the rumen microbiome develops in calves from birth to slaughter and this 

review will discuss them in more detail. 

An experiment conducted by Rey et al. (2013) analyzed the change in rumen bacterial 

populations of dairy calves from birth to weaning at 83 days of age using 16S rRNA-based 

pyrosequencing. Calves were fed colostrum until d 3, and milk replacer with pelleted concentrate 

and hay from d 4 to 83. Rumen samples were collected daily from d 1 to 10, and then on d12, 15, 

19, 22, 26, 29, 33, 36, 40, 43, 50, 62, and 83 of age. Bacterial communities were present at 2 d, 

with Proteobacteria (70%) and Bacteroidetes (14%) being the most prevalent genera and 

Pasteurellanceae (58%) being the dominant family. On d 3, the community shifted in which 

Bacteroides (21%), Prevotella (11%), Fusobacterium (5%), and Streptococcus (4%) were 

dominant genera, which continued until d 12. Following d 15, Prevotella became dominant 

(42%) with a majority of other genera decreasing or were no longer detected. This remained until 

the end of the experiment on d 83. The authors concluded that the shift in bacterial communities 

throughout the duration of the experiment was likely due to increasing feed intake, leading to the 

production of ruminal volatile fatty acids and enzymatic activities (Rey et al., 2013).  



7 
 

A similar study conducted by Meale et al. (2017) evaluated the effect of early weaning (6 

week) versus late weaning (8 week) on the ruminal microbial poplulations of dairy calves. 

Bacteroidetes and Firmicutes were the most abundant phyla in pre- and post- weaned calves, 

respectively, regardless of weaning date. This research agrees with that of Rey et al. (2013), in 

which the Bacteroidetes phylum was dominated by the genus Prevotella in all calves older than 

15 d of age, when consumption of solid feed was greater than 100 g/d. The dominance of 

Prevotella at this stage in life was no surprise to the authors, as this genus is comprised of 

species that are associated with the fermentation of non-structural carbohydrates and xylan 

(Meale et al., 2017). The β-diversity of the ruminal microbiome shifted more rapidly in early 

weaned calves, where a more gradual shift occurred for late weaned calves. This rapid shift 

compared to a more gradual shift may explain the greater decline in growth of the early weaned 

calves that was observed by the authors. They concluded that weaning later in life resulted in a 

more gradual shift in the microbial diversity in both rumen and fecal microbiota, and when 

observed with performance data, indicates a smoother transition during weaning for calves 

weaned at 8 weeks of age. The slower increase in solid feed consumption of late-weaned calves 

resulted in the development of a rumen microbiome that was better suited to perform the 

fermentative and metabolic functions before weaning, thus reducing the level of physiological 

stress associated with weaning, like what was observed in the early-weaned calves (Meale et al. 

2017). 

It appears that the rumen microbiome shifts with age and management of the host animal 

and tends to stabilize following weaning as the animal matures. An experiment conducted by 

Jami et al. (2013) evaluated the change in rumen microbiome of Holsteins from birth to two 

years of age, with sampling occurring at ages of 1 d, 3 d, 2 mo, 6 mo, and 2 yr. Calves were fed 
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colostrum from d 1 to 3, and then transitioned to consuming milk and a solid concentrate starter 

feed at the 2 mo of age sampling time. At maturity (6 mo and 2 yr of age) cattle consumed a diet 

of approximately 70% concentrate and 30% roughage. Surprisingly, the authors were able to 

detect a number of bacterial species that are abundant in mature rumens at only 1 d of age. These 

primarily consisted of Proteobacteria, Bacteroidetes, and Firmicutes. Even though the bacteria 

detected in the d 1 and 3 calves were similar in taxonomy, their abundance differences were 

quite distinct. A decrease in aerobic and facultative anaerobic bacterial species was observed as 

anaerobes such as Prevotella and Ruminococcus increased with maturity. Bacterial communities 

fluctuated early in life (1 d, 3 d, and 2 mo), but the within-group similarity increased with age (6 

mo, 2 yr), suggesting a more diverse, but homogenous and specific community as the animals 

matured compared with a more heterogeneous, less diverse initial community observed in young 

calves (Jami et al., 2013). 

Consistent findings suggest that the microbiota of the developing rumen (pre-weaning) is 

dominated by three main phylum (Bacteroidetes, Firmicutes, and Proteobacteria, although the 

relative abundance of each phyla can vary with different stages of development (Meale et al., 

2017; Li et al., 2012; Jami et al., 2013). All of the research previously discussed involved dairy 

calves, as limited data is available on how the developing rumen microbiome changes in beef 

calves. It is difficult to make interpretations between the two, given the differences in production 

systems between dairy and beef cattle. It appears that the manipulation of the rumen microbiota 

early in life can persist into maturity; therefore, this is an area of production that warrants more 

research (Cammack et al, 2018). 
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Rumen microbiome in forage-fed and grazing cattle 

 Once the rumen is developed and functional enough to handle solid feeds, calves begin to 

experience dietary shifts. Some of these dietary shifts are a result of environmental and seasonal 

changes that can alter the availability and quality of feedstuffs that require adaptation of the 

microbiome to allow continued, adequate performance of the host (Meale et al., 2017; Cammack 

et al., 2018). A prime example of this would be grazing cattle, which may experience a wide 

variety of dietary changes as forage type, quality or abundance may vary throughout the year. 

Fortunately, there is some data available on the rumen microbiome throughout several different 

pasture and forage-based systems that will be discussed. 

  High-quality forage. An experiment conducted by Pitta et al. (2016) evaluated the 

rumen microbiome of calves grazing hard red winter wheat (Triticum aestivum) and how frothy 

bloat, a common metabolic disorder that occurs with grazing wheat, can affect the rumen 

microbiome. Bloat is described as a when an excess accumulation of gas in the rumen leads to 

increased intraruminal pressure with abdominal pressure, inhibiting the eructation mechanism 

and can disrupt the homeostatic environment within the rumen.  Wheat is typically grazed in 

both the fall and spring, and this particular experiment occurred in the spring. The most abundant 

phyla observed by Pitta et al. (2016) for calves grazing wheat were Firmicutes (65%), then 

Actinobacteria (15%), Bacteroidetes (10%), and Proteobacteria (5-6%). When bloat occurred, 

bacterial phyla differed between bloated and non-bloated calves, in which Firmicutes and 

Proteobacteria were greater and Bacteroidetes and Actinobacteria were lower. At the genus level, 

wheat pasture frothy bloat did not create shifts in microbial populations but significant tradeoffs 

were observed. Clostridium, Eubacterium, and Butyrivibrio from the Firmicutes phyla were 

greater while Ruminococcus was lesser in bloated steers compared to non-bloated steers. 
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Prevotella from Bacteroidetes was reduced by half and Bacteroides and Parabacteroides 

increased for bloated calves. Furthermore, genera from Actinobacteria such as Slackia, 

Atopobium, Eggerthella, Olsenella, Bifidobacterium, Collinsella, Gordonibacter, and 

Cryptobacterium were decreased and Geobacter, Desulfovibrio, Burkhoderia, Pseudomonas, 

Shewanella, Vibrio, Pleobacter and Escherchia of Proteobacteria were more abundant in 

bloated calves. The authors concluded that the effect of frothy bloat in stocker cattle grazing 

wheat pasture on the rumen microbiome is not associated with specific microorganisms, but 

rather due to changes in the community structure across all microbe domains (Pitta et al., 2016). 

 A different, similar experiment by Pitta et al. (2014) evaluated the dynamics in bacterial 

populations of both solid and liquid ruminal fractions of steers grazing maturing wheat forage of 

changing nutritive value. The wheat was still in a vegetative state for the first 28-d with a 

moderate CP value (21%); however forage quality diminished thereafter as the forage matured. 

The predominant phyla were Bacteroidetes (59-77%) and Firmicutes (20-33%) across both 

ruminal fractions. A shift towards Firmicutes was observed as the CP of the forage decreased 

with increasing maturity. This research demonstrates the influence of fermentation activity in the 

rumen as forage matures on changes with the microbiome, which could be explained by the 

increased fiber content and decreased digestion associated with mature forage (Pitta et al., 2014). 

 The previous paper discussed changes in the rumen microbiome with changes in forage 

nutritive quality. To demonstrate the opposite effect, Pitta et al. (2010) investigated the changes 

in ruminal bacterial diversity from steers fed low-quality forage to high-quality forage. Steers 

were fed bermudagrass (Cynodon dactylon) hay (11% CP and 68% NDF) for 34 days and then 

turned out to winter wheat (Triticum aestivum) pasture (20% CP and 44% NDF) and grazed for 

28 d. Ruminal samples were obtained at the end of each forage feeding phase and analyzed using 
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a 16S-based pyrosequencing technique to characterize changes in bacterial communities between 

the different forage types. Based on these results, Prevotella and Rikenella were the predominant 

genera found in both diets. When cattle were transitioned to wheat, microbial communities 

shifted to Prevotella dominance (26% vs 52% for bermudagrass and wheat, respectively) and a 

decrease in Rikenella (21% vs 9%, for bermudagrass and wheat, respectively). The shift in 

Prevotella from bermudagrass hay to wheat is consistent with research on transitioning cows 

from forage to grain diets, in which increases in Prevotella ruminicola and Prevotella bryantii 

were observed using quantitative PCR techniques (Tajima et al., 2000). The similarities between 

the current paper of Pitta et al. (2010) and Tajima et al. (2000) on the shift of Prevotella is likely 

attributed to the introduction of highly fermentable carbohydrates and protein found in the wheat 

forage and grain compared to the hays that were used in both studies.   

 A different experiment investigated the change in ruminal bacterial communities when 

Holstein heifers were fed orchardgrass (Dactylis glomerata) as pasture or hay (Mohammed et al., 

2014). Heifers sequentially grazed orchardgrass pasture (12% CP and 55% NDF) for 28 d, then 

fed orchardgrass hay (13.3% CP and 63% NDF) ad libitum for the next 28 d, then placed back on 

pasture (24% CP and 51% NDF) for the final 28 d. A different group of animals remained on 

pasture for the entire duration of the experiment. Ruminal samples were collected on the final 3 d 

of each 28 d period and bacterial community composition was determined using automated 

ribosomal intergenic spacer analysis and by pyrotag sequencing of 16S rRNA genes. The 

bacterial community was dominated by members of the phylum Firmicutes, which accounted for 

58-86% of the sequences. The genus Butyrivibrio was the most abundant (20%), followed by 

Prevotella (2-14%) and Ruminococcus (2-7%). Butyrivibrio expressed the greatest diet-

dependent shifts when heifers were switched from pasture to hay to pasture, in which 
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Butyrivibrio decreased during the change from pasture to hay, and increased when heifers were 

changed back from hay to pasture. Abundance of Butyrivibrio did not appear to change for 

heifers maintained on pasture for the entire duration. It is noteworthy that ruminal abundance of 

Prevotella was substantially lower (<20%) in this experiment compared to what is typically 

observed (40 – 60%) in cows fed forages and concentrates. Analysis of the community diversity 

and richness showed that community richness was not related (P > 0.05) to dietary sequence or 

the diets (pasture vs hay). A Shannon index of community diversity was greater (P = 0.004) in 

the hay versus pasture treatment community; however, the Simpson index did not differ (P > 

0.05) within the comparisons. This research demonstrates that changes in the rumen bacterial 

community composition can occur by feeding a hayed version of the same forage from adjacent 

paddocks (Mohammed et al., 2014). 

 The rumen bacterial communities can change throughout the year on the same pasture, as 

this is demonstrated by the work of Noel et al. (2017) in which cows continuously grazed ad 

libitum mixed ryegrass/clover pastures. Ruminal content samples were collected at five time 

points over a years’ time, which occurred in May, August, November, February, and May of the 

following year. In months when forage was not adequate, pasture silage made from the same 

pasture type as the grazing pasture was supplemented at 30% of recommended intake. 

Supplemental silage was being provided during both May and August sampling dates. Diversity 

of rumen bacteria were determined using pyrosequencing of bacterial 16S rRNA genes. The 

bacterial community in this experiment was dominated by members of Firmicutes (82.1%) 

followed by Bacteroidetes (11.8%) and Fibrobacteres (2.4%). The largest group of genus level 

was that of undefined Clostridiales (22.9%) followed by undefined Lachnospiraceae (12.2%) 

and Butyrivibrio (10.2%). Most sequences (61%) could not be classified into the genus level.  
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The sequence analysis showed that bacterial communities remained constant among animals as 

only 0.13% and 0.59% of the total OTUs were unique to any one animal. An ANOSIM and 

Adonis analysis on the OTUs showed differences in bacterial communities across months. 

Surprisingly, a difference was detected between the months when animals were grazing pasture 

only and the months that supplemental silage was provided. This data suggests that the rumen 

microbial community adapts to changes in diet qualities throughout the year. The Noel et al. 

(2017) paper provides excellent information on how the microbiome changes with changing 

forage production and the authors conclude that this research shows the stability of the rumen 

microbes in pasture fed cows over time (Noel et al., 2017). 

 Low-quality forage. When forage is of low-quality, protein is often the first limiting 

nutrient because the forage does not contain enough nitrogen to meet the requirements of the 

ruminal microbes or the animal (Köster et al., 1996); therefore, protein supplements are often 

provided to ruminants consuming forage of poor nutritive quality to improve animal performance 

(Hersom, 2007). The response of the rumen microbiome from this management strategy is 

demonstrated by Latham et al. (2018), in which steers were used in a Latin square experiments to 

test four different protein supplements (two levels of rumen undegradable intake protein (UIP) 

and two levels of highly rumen degradable intake protein (DIP) to provide 50 or 150 mg of N/kg 

of BW daily. These treatments were tested against a non-supplemented control. The basal diet 

consisted of rice straw (4.7% CP and 72.8% NDF) and was fed to exceed ad libitum intake. 

Rumen samples were collected at 0 and 4 h post- feeding and rumen bacterial taxa were 

sequenced using a Roche 454 platform based on the 16S rRNA gene. Across all samples, 

Bacteroidetes were considered the dominant phyla, followed by Fimicutes, which accounted for 

65% and 28% of total bacterial abundance, respectively. When supplemented with protein, 
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Firmicutes had the greatest response, in which an 8.1% difference was observed between the 

control and the High UIP treatment. The families of Prevotellaceae, Ruminococcacaea and the 

genera Prevotellaceae decreased in abundance when protein with supplement compared with 

controls. The authors also noted that the greatest number of rare species was observed for the 

high DIP protein supplement, which suggests that the degradable protein available for microbial 

use provided greater diversity than the control or UIP treatments. With relatively low impacts on 

the abundance and diversity of the rumen microbes from supplementing steers consuming low-

quality forage with additional protein, it was concluded that a dietary effect could have occurred 

due to the low digestion potential of the rice straw (Latham et al., 2018). 

 When evaluating literature on what can influence the microbiome of grazing cattle, it is 

not difficult to tell that we have barely scratched the surface of what we know or what we can 

study in this area. The data on bacterial communities of grazing cattle is very limited due to the 

complexity and diversity of the production systems associated with forage fed cattle and more 

research is needed to help further our understanding of the symbiotic relationship between 

gazing cattle and the contribution of their microbes. 

Rumen microbiome of concentrate-fed cattle 

 It was previously mentioned that cattle encounter many nutritional and dietary changes 

throughout the beef production system. An even more dramatic shift in dietary structure than 

weaning or changing forage types or quality would be the placement into a feedlot and the 

transition to a high-concentrate diet. Adaptation from a high-forage diet to a high-grain diet has 

shown to significantly alter both the rumen environment and bacterial population structure (Goad 

et al., 1998). To prevent metabolic disorders, this transition is often achieved by gradually 
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reducing the levels of roughage and replacing it with grain while adapting cattle to the new diets 

and management.  

Work by Fernando et al. (2010) analyzed the rumen microbial population during this 

adaptation period. Cattle in this experiment were adapted to a high-grain diet using a step-up diet 

regimen in which animals were adapted every 7 d to diets containing grain to roughage ratios of 

20:80, 40:60, and 60:40. A final diet consisted of 80:20 concentrate to fiber was fed for the final 

7 d. Ruminal fluid was obtained from steers after 1 week of each diet step, in which the animal 

would start the next step of the diet. Microbial populations were distinguished using terminal 

restriction fragment length polymorph analysis, 16S rRNA gene libraries and quantitative real-

time PCR. Results of analysis showed a shift in microbial population by diet 3 (60% corn, 40% 

hay) and this shift was more prominent by diet 4 (80% corn, 20% hay). No significant change in 

phyla was observed until diet 3, in which the ratio of Firmicutes:Bacteroidetes decreased (1.49 

and 0.89 for high roughage and concentrate diets respectively). Steers on the high roughage diets 

had a greater abundance of bacteria in the phylum Fibrobacteres than animals consuming the 

high concentrate diet. Cattle on the final (80:20) diet displayed a greater number of the phylum 

Bacteroidetes than that of animals consuming the high-roughage diet. All of the bacteria within 

the phylum Fibrobacteres belonged to the genus Fibrobacter, whereas most of the bacteria 

within the phylum Bacteroidetes belonged to the genus Prevotella. The authors also reported a 

gradual decrease in cellulolytic bacteria including Fibrobacter succinogenes and Butyrivibrio 

fibrisolvens and an increase in amylolytic/lactate utilizing bacteria such as Megasphaera 

elsdenii, Streptococcus bovis and Selenomonas ruminantium when transitioning the rumen 

environment away from a high-roughage diet to a high-concentrate diet.  
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 A different trial by Petri et al. (2013) also evaluated the change in the rumen microbiome 

of cattle being transitions to a feedlot, but also included an acidosis challenge. In this experiment, 

beef heifers were fed a high forage diet and then transitioned to a 60% forage 30% grain diet for 

2 wk before being transitioned to an 81% grain 9% forage diet. A mineral supplement was 

included in all diets and made up for the remaining 10%. The acidosis challenge was achieved by 

restricting intake to 50% of ad libitum and pulse dosing ground barley grain into the rumen at 10 

or 20% of ad libitum intake via the ruminal cannula. Rumen sampling occurred 4-h post-feeding 

and sampling days occurred during each of the diet phases. Using real-time PCR and 

pyrosequencing analysis of 16S rRNA, the overall core microbiome was found to consist of the 

phyla Bacteroidetes (32.8%), Firmicutes (43.2%), and Proteobacteria (14.3%). The microbiota 

differed between the high forage diet and the high grain diet, in which the high forage core 

microbiota consisted of Firmicutes (55%), then Bacteroidetes (26%) followed by Proteobacteria 

(5%) whereas the high grain diet resulted in core phylums of Bacteroidetes (40%), Firmicutes 

(37%) and Proteobacteria (18%). Real time qPCR was used to evaluate target bacteria of interest, 

including: g. Ruminococcus, g. Prevotella, Selenomonas ruminantium, Fibrobacter 

succinogenes, Megasphaera elsdenii, and Streptococcus spp. Of these, Prevotella was the most 

abundant during the acidotic challenge and the lowest in heifers fed the high-forage diet. 

Selenomonas ruminantium and M. elsdenii were detected to be the smallest proportion of the 

bacterial population for the forage diet. Megasphaera elsdenii was the most abundant 12 h 

following the acidotic challenge and quickly declined during recovery, whereas S. ruminantium 

increased during this time. The authors of this paper stated that this work provided evidence that 

Streptococcus bovis is a major contributor to ruminal acidosis; however, they do not elaborate on 

this statement. It could be inferred that, given the abundance of S. bovis increasing during the 
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acidotic event and the fact that S. bovis readily produces lactate, one could assume it could have 

contributed to acidosis. 

   A study on feedlot cattle by Petri et al. (2012) evaluated the effects of diets with or 

without roughage on rumen bacterial populations. The feedlot diets were barley grain-based and 

the diet with roughage contained 15% inclusion (DMB) barley silage as the roughage source and 

the diet without roughage contained 35% inclusion (DMB) of wheat dried distillers grains. After 

14 d of diet adaptation rumen bacterial samples were collected 1 h before feeding and 3 h after 

feeding. Real-time PCR was used to evaluate the quantities of seven different bacterial species. 

A decrease was observed for the relative abundance of Fibrobacter succinogenes in cattle fed the 

diet without roughage compared to cattle that received diets with roughage. This would be 

feasible as F. succinogenes is a cellulolytic species and the low amount of substrate for it to 

adhere to in a diet with limited fiber would certainly explain a decrease in its numbers. 

Abundance of Megasphaera elsdenii tended to be greater for cattle fed the diet without roughage 

compared to the other treatment; however, Ruminobacter amylophilus tended to be greater for 

steers fed the diet that did receive roughage compared to the one that did not. This was explained 

in which R. amylophilus utilizes starch as an energy source, and the abundance of starch 

provided by the higher level of barley grain in the diet with roughage would lead to its increase 

in abundance. The authors concluded that removing roughage from the diet reduced cellulolytic 

bacterial species, as would be expected.  

 Available data that investigates the rumen microbiome of feedlot cattle that utilizes next 

generation sequencing technology for analysis seem to be heavily skewed towards research on 

adaptation-type diets in which cattle go from high-forage diets to high grain diets, or 

microorganisms associated with residual feed intake. Data on feedlot cattle is lacking in terms of 



18 
 

other aspects of production and how feedlot diets can influence the rumen bacterial community. 

If the rumen microbiome can be influenced by diet in a positive way, it may influence how we 

feed cattle in the future. Grain processing, byproduct feeds, feed additives, age of animal and 

pathogens associated with liver abscesses could be some areas of interest that would benefit with 

more research. 

Ionophores and monensin overview 

 Ionophores are compounds that facilitate specific ionic transport across biological 

membranes by forming lipid soluble, dynamically reversible complexes with cations (Novilla, 

2018).  In the livestock industry, ionophores play a significant role in improving the health and 

feed efficiency of animals that consume them (Novilla, 2011). The subclass of ionophores that 

are routinely used in livestock production are carboxylic ionophores, which has a selective 

toxicity to protozoan parasites and bacterial species, with margins of safety for the host animal 

when provided within the approved dosage ranges (Novilla, 2018). Currently there are three 

carboxylic ionophores available for ruminant animal production, these include: monensin 

(Rumensin; Elanco Animal Health, Greenfield IN), lasalocid (Bovatec; Zoetis, Parsippany, NJ), 

and laidlomycin (Cattlyst, Zoetis). Monensin was the first marketed ionophore of industry 

importance and is the longest-standing, most researched, and most widely used ionophore in beef 

cattle production (Novilla, 2011). A recent survey of 49 consulting feedlot nutritionists who 

service over 14,000,000 cattle annually found that 92.3% of nutritionists used ionophores in 

cattle receiving diets, of these, 77.3% used monensin. In finishing cattle diets, 97.3% of the 

respondents use ionophores, of these 100% used monensin in the finishing diets (Samuelson et 

al., 2016). Due to its high volume of data, and economic importance to the beef industry, 

monensin will be the sole focus of ionophores in this review. 
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Monensin mode of action 

A class of carboxylic polyether ionophore antibiotics called monensin were refined in the 

1970s as an anticoccidial feed additive in poultry diets and were eventually found to have a 

similar effect on ruminants (Bergen and Bates, 1984). It is a biologically active compound 

produced by Streptomyces cinnamonensis, which when fed to cattle, has the ability to alter 

rumen fermentation (Boling et al., 1977). It does so through its antimicrobial properties by 

interfering with the normal transport of ions through the cell membrane, with gram-positive 

ruminal bacteria being the most sensitive to the presence of monensin (Cheng and Costerton, 

1988).  This can be explained by changes in pH and the sodium-potassium balance in the cell, 

leading to cell death from critical disturbances in cellular processes. This mechanism is thought 

to occur from the monensin molecule binding the sodium cation as a salt, thus losing a proton 

from the carboxyl group, moving the cation as a complex on the opposite side of the cell 

membrane. Once this occurs, the sodium cation is release and the carboxylate anion undergoes 

protonation (Lowicki and Huczynski, 2013). Monensin sensitivity and resistance of the bacteria 

is thought to be correlated with differences in the cell wall envelope. Selectively eliminating the 

less-efficient gram-positive species results in the selection of gram-negative bacteria that appear 

to be resistant to monensin due to the fact that they have more complex cellular wall construction 

that are not permeable to large antibiotic molecules and the complexes formed by them (Lowicki 

and Huczynski, 2013). Species like Bacteroides spp., S. ruminantium and B. ruminicola which 

produce propionate from succinate are more prevalent in the presence of monensin. The 

ionophore also select against hydrogen and formate producing species (R. albus, R. flavefaciens, 

and B. fibrosolvens), thus decreasing the precursors for methane production (Demeyer and Van 

Nevel, 1988). Removing the selected bacterial species results in higher propionate to acetate 
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concentrations due to an increase in propionate-producing bacteria. Monensin in the rumen also 

results in greater protein availability because monensin inhibits proteolysis and deamination. It 

can also decrease the incidence of ruminal acidosis by maintaining a higher rumen pH from the 

removal of streptococci and lactobacilli spp., who are lactic acid producing bacteria (Russell and 

Houlihan, 2003). 

Influence of monensin on the rumen microbiome using new technology  

Recently, the development and refinement of genetic based determination of microbial 

communities have enhanced the ability to determine how monensin alters rumen microbes in 

vivo. Kim et al. (2014a) used a pyrosequencing approach to investigate how 0 or 33 mg 

monensin/kg DM feed effected ruminal bacterial communities of cannulated steers consuming a 

diet of 60% DDGS, 15% corn, 10% corn silage and 15% supplement. Collectively, the most 

predominant phylum of bacteria present were Firmicutes (50-56% of total sequences), followed 

by Bacteroidetes (38-42% of total sequences). Proteobacteria (3-4%) and Actinobacteria (2-3%) 

accounted for the third and fourth largest phyla groups, respectively. Monensin reduced the 

relative abundance of gram-positive phylum Firmicutes compared to the control diet (49.8% vs 

55.4%, respectively) and increased the gram-negative phylum Bacteroidetes compared to the 

control (41.6% vs 37.7%, respectively). At the genus level, Succiniclasticum (gram-negative), 

Ruminococcus (gram-positive), Sharpea (gram-positive), Oscillibacter (gram-negative), were at 

least two fold less abundant for cattle consuming monensin compared to the control. For 

bacterial diversity indices, monensin decreased the number of observed OTUs (733 vs 857, 

respectively) and Shannon index (6.92 vs 7.21, respectively) compared to the control, suggesting 

that feeding monensin to cattle can inhibit some rumen bacteria. 
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 A different paper by Kim et al. (2014b) examined the effect of monensin alone or in 

combination with supplemental fat on ruminal bacterial communities of dairy cows. Three 

dietary treatments included a control diet of ground corn and alfalfa hay, the control diet plus 

12g/909 kg DM monensin, and the control diet containing 12g/909 kg DM monensin and 4% 

added fat from a combination of distillers grains with solubles, roasted soybeans, and an animal-

vegetable fat blend. Rumen samples were collected after a 3-week diet adaptation period and 

analyzed using 454 pyrosequencing analysis of 16S rRNA gene amplicons to determine bacterial 

communities. In total, Firmicutes (58%) and Bacteroidetes (32%) were the top 2 most abundant 

phyla, whereas TM7 (2%) and Actinobacteria (1%) followed as third and fourth most abundant, 

respectively. Including monensin in the diet slightly reduced the proportion of Firmicutes (gram-

positive; approximately 51% vs 55%), and slightly increased the proportion of Bacteroidetes 

(gram-negative; approximately 40% vs 33%) compared to the control diet. Monensin reduced the 

abundance of gram-positive Actinobacteria and TM7; however, due to an overall low relative 

abundance, these 2 phyla may not play a significant role in rumen fermentation. At the genus 

level, monensin increased the relative abundance of the most predominant genus, Gram-negative 

Prevotella (19.0 vs 13.0%; monensin vs control treatment, respectively). Interestingly, of the top 

9 genera, the proportion of Gram-negative Syntrophococcus decreased (0.2% vs 0.7%; monensin 

vs no monensin treatment, respectively) and the proportion of Gram-positive Oribacterium 

increased (0.7% vs 0.2%; monensin vs no monensin, respectively). This experiment did not 

observe large rumen microbial shifts from gram-positive bacteria to gram-negative bacteria in 

the presence of monensin as expected based on older research. Rather, the inhibition of gram-

positive bacteria was minute and the authors hypothesis that factors other than the cell membrane 
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structure may influence the response to monensin, including abilities to resist adaptation and 

chemicophysical features of feed particles.  

 An experiment by Melchior et al. (2018) also investigated the effect of a dietary inclusion 

of monensin against a control on rumen microbial communities and methane production. Heifers 

were fed a diet consisting of 80% ground corn stalks, 10% corn silage, 7% wet distillers grains 

with solubles, and a vitamin and mineral supplement with or without 150 mg/day monensin. 

Diets were fed for approximately 53 days and rumen samples were obtained using a gastric tube 

on d 0, 18, and 53. Following collections, DNA from the samples were isolated using next-

generation sequencing of the V1-V3 hypervariable region of the 16S rRNA bacterial gene to 

determine microbial communities. A subset of animals were placed in metabolism stanchions 

prior to each rumen collection period to determine gas exchange and nutrient balance. Gas 

samples that were obtained were analyzed for CO2 and CH4 production. In contrast with the 

previous paper, no differences were observed between treatments for total gram-positive or 

gram-negative relative abundance throughout the experiment. Likewise, the ratio of Firmicutes-

to-Bacteriodetes did not differ between treatments on each of the sampling times. Monensin 

resulted in a reduction in phylum SR1 and several OTUs including: Anaerofustis (gram-

positive), Shuttleworthia (gram-positive), Order Bacteroidales (gram-negative) and others 

totaling 14 unique bacterial species (9 on d 18 and 5 on d 53).  Additionally, treatment had no 

effect on methane and carbon dioxide gas emissions or relative abundance of ruminal 

methanogenic archaea. It was concluded that monensin fed to heifers in a drylot did not 

contribute to overall shifts in Gram-positive and Gram-negative bacterial communities and may 

not be effective in reducing long-term methane production. Monensin did; however, result in 

finer microbial shifts which primarily occurred early in the experiment. Because of this, it was 
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stated that there may be a benefit from short periods of monensin supplementation, and a better 

understanding of the specific microbes that were altered is needed.  

 A more in-depth trial by Ogunade et al. (2018) used metagenomics and metabolomics 

analysis on rumen fluid to determine the effects of monensin on the functional attributes and 

metabolites of the rumen microbiota. Rumen-fistulated Holstein steers were randomly assigned 

to two treatments consisting of 0 or 200 mg/steer/d monensin. The treatment period lasted 39 d 

and steers had ad libitum access to red clover/orchard grass hay and a mineral mix was provided 

free choice. Treatments were applied by feeding a concentrate supplement of corn gluten meal, 

soy hull, and cracked corn fed at 4 kg/steer daily. Rumen samples were collected on the last day 

of the experiment at approximately 3, 6, and 9 h after feeding supplement. Collectively, 

sequences from these samples contained dominant phylotypes affiliated with Bacteroides (39.4 ± 

5.3%), Firmicutes (15.9 ± 2.0%), Proteobacteria (1.9 ± 0.9%), Actinobacteria (0.6 ± 0.08%), and 

Euryarchaeota (1.0 ± 0.9%). Statistically, no treatment effects were found at the phylum level; 

however, it was noted that the relative abundance of Gram-negative Bacteroides were 

numerically greater for steers consuming monensin (43.5 ± 3.5% vs 35.3 ± 3.1%). Using a linear 

discriminant analysis effect size (LEfSe) analysis, it was found that monensin increase relative 

abundance of genus Mitsuokella (Gram-negative), Hallella (Gram-negative), and Propionispira 

(Gram-negative) and reduced abundance of Streptococcus (Gram-positive), Sphaerochaeta 

(Gram-negaitve), Burkholderia (Gram-negative), Lachnoanaerobaculum (Gram-positive), 

Terriglobus (Gram-negative), Fusobacterium (Gram-negative), and Methanobacterium 

(Archaea). Genes obtained from the samples were aligned with the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) database using the basic local alignment search tool (BLAST) algorithm 

to obtain functional features of the genes. As determined by using KEGG orthology level 2, the 
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most predominant genes provided were that of those involved in nutrient metabolism. 

Differences in function information between the two metagenomes of each treatment were 

analyzed using a Mann Whitney test with a significance level of P ≤ 0.05. Based on this analysis, 

the relative abundance of genes associated with amino acid metabolism, lipid metabolism, and 

nucleotide metabolism were greater in the metagenome of steers consuming monensin compared 

to the control. A total of 245 metabolites were identified from the samples. From these, 

regression modeling was performed using orthogonal partial least squares discriminant analysis 

(OPLS-DA) to decrease dimension and identify group separation to determine significantly 

different metabolites. The OPLS-DA confirmed that the rumen metabolome can be altered by 

dietary monensin, which was validated using a permutation analysis (R2 = 0.99, Q2 = 0.42). 

Metabolites were differentially expressed using a t-test and fold change (FC) of the peak 

intensities. Monensin increased concentrations of 24 total metabolites, including: linoleic acid, 

L-phenylalanine, hypoxanthine, oxysporidinone, L-β-homomethionine, 2-methylgluric acid, 

isopongaflavone, catechol, pimelic acid, L-Histidine, tri-O-methylgenistein, oxysporidinone, 

formylindole, indole-3-carboxylic acid, and 8,15-DiHETE. Monensin also decreased proportions 

of acetate (52.3 vs 60.0 mM) compared to the control. This experiment demonstrates how 

monensin can change functional and metabolomic attributes of ruminal bacteria in forage-fed 

cattle. It further confirms that monensin affects rumen bacterial communities and alters ruminal 

fermentation, in which volatile fatty acid production is shifted in the favor of propionate, amino 

acid degradation is reduced, and decreasing the biohydrogenation of unsaturated fatty acids in 

the rumen. Additionally, all of the taxa that were enriched by the addition of monensin were 

Gram-negative species that play a role in propionate production. The current paper also 

concluded that both Gram-positive and Gram-negative species are suppressed by the presence of 
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monensin, which further supports the hypothesis that monensin sensitivity may be attributed to 

more than the cellular membrane structure of the bacteria as described by Kim et al. (2014b). 

Monensin effect on grazing cattle performance 

Increased production of propionate and decreased acetate:propionate ratio, as well as 

increased DM and protein digestibility, gluconeogenesis, and glucose turnover are all benefits to 

ruminants consuming monensin (McCartor et al., 1979; Schelling, 1984). Because of the 

alteration to more efficient ruminal bacteria, the use of monensin has consistently shown to 

increase weight gain of grazing cattle. Multiple experiments by Potter et al. (1976) investigated 

the effects of 0, 50, 100, 200, 300, and 400 mg monensin/head/day on performance of calves 

grazing pastures or were fed green chop, both of which contained orchard grass, alfalfa, brome 

grass, and ladino clover. Monensin treatments from 100 to 300 mg/head/d improved live weight 

gain compared to other treatments. The 200 mg/head/d treatment had the apparent and calculated 

optimal gain response, in which ADG was improved by 18%. Similarly, a grazing trial by Oliver 

(1975) supplemented steers grazing costal bermudagrass (Cynodon dactylon) with no corn, or 

0.91 kg/head/d ground, pelleted corn containing 0, 25, 50, 100, or 200 mg monensin/head/d. The 

steers consuming monensin, regardless of level, had greater BW gain compared to those 

consuming the corn only supplement (0.73 vs 0.56 kg/d).  Each monensin treatment differed 

from one another for BW gain, in which cattle consuming 100 mg/head/d monensin had the 

greatest BW gain (0.78 kg/d), followed by the 50 mg monensin treatment (0.73 kg/d), the 200 

mg monensin treatment (0.71 kg/d), the 25 mg monensin treatment (0.70 kg/d), the corn only 

treatment (0.57 kg/d) and lastly, the forage only treatment (0.46 kg/d). Rouquette et al. (1980) 

also grazed steers on bermudagrass, with treatments being bermudagrass only, bermudagrass 

plus a 14% protein supplement fed at 0.91 kg/head/d, or bermudagrass plus 14% protein 
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supplement containing 200 mg monensin/head/d. Steers consuming the supplement containing 

monensin had a 45% improvement in gain compared with negative controls (0.45, 0.47, and 0.68 

kg/d for negative controls, supplement, and supplement + monensin treatments, respectively).  

An experiment by Males et al. (1979) found that supplementing steers grazing mature tall 

fescue (Festuca arundinacea) with 200 mg/head/d fed in a dry grain supplement gained faster 

than steers that received no monensin (0.64 vs 0.57 kg/d). Two performance experiments by 

Horn et al. (1981) used heifers grazing wheat pasture in a stocker program and received no 

supplement or were fed 0.91 kg/head daily of a pelleted supplement containing 0 or 100 mg of 

monensin. In Exp. 1, heifers receiving supplement had 0.09 kg greater BW gain compared to 

those who did not receive supplement and heifers receiving monensin had an additional 0.09 kg 

improvement in BW gain than those that received supplement without monensin. In Exp. 2, 

heifers consuming supplement containing monensin had greater BW gain compared to heifers 

not receiving supplement or supplement without monensin (ADG = 0.63 vs 0.55 and 0.56 kg/d 

for heifers consuming supplement with monensin vs no supplement and supplement without 

monensin, respectively). Vendramini et al. (2015) investigated the effects of two stocking rates 

(1.2 and 1.7 animal units/ha) and two monensin treatments (0 or 200 mg/d) on gain of heifers 

grazing bahiagrass (Paspalum notatum). Monensin had no effect on performance of heifers 

grazing warm season forage with limited supplementation.  

Beck et al. (2014) investigated the effects of dried distillers grains plus solubles (DDGS) 

supplementation regime with or without monensin on performance of calves grazing warm 

season forages (primarily bermudagrass and crabgrass) or nontoxic endophyte-infected tall 

fescue. Treatments included no supplemental feed, 1.2 kg/head DDGS offered daily, 1.2 kg/head 

DDGS and 160 mg of monensin offered daily, 2.04 kg/head DDGS offered on alternate days, 
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and 2.04 kg/head DDGS and 320 mg of monensin offered on alternate days. Supplementation 

increased ADG by an average of 0.21 kg/d; however, the addition of monensin or timing of 

supplementation had no effect on performance of grazing calves.  Fieser et al. (2007) conducted 

a 2-yr experiment to investigate different supplementation strategies and delivery methods of 

monensin on performance of steers grazing winter wheat pasture. In this study, treatments 

included a control with no supplementation, a free-choice nonmedicated mineral, a free-choice 

mineral containing 1,785 mg monensin/kg of mineral, a free-choice mineral containing 1,785 mg 

monensin/kg of mineral plus soybean hulls, and a soybean hull based energy supplement 

containing 165 mg of monensin/kg of supplement. The energy supplements were fed at a rate of 

1.81 kg/steer on alternating days to achieve an average daily intake of 0.91 kg/steer. The addition 

of monensin increased daily BW gain during Yr 1 compared to the unmedicated mineral 

treatment; however, no differences were observed in Yr 2. Due to no differences in daily gain 

between the different delivery methods, it was also concluded that delivery method for energy, 

monensin, and mineral supplementation is not of importance for calves grazing winter wheat. 

Including monensin in a supplement to grazing calves appears to have a variable effect on 

supplemental efficiency, or the added BW gain per weight of supplement fed. Beck et al. (2014) 

did not observe any differences in supplemental efficiency when monensin was included in a 

DDGS supplement fed to calves grazing multiple different forages. Horn et al. (1981) found that 

including monensin in a grain-based supplement increased daily gains per supplement fed during 

one experiment, but did not during a second experiment. Similarly, Fieser et al. (2007) reported 

that providing monensin in a mineral or soybean hull based supplement improved supplement 

conversion compared to a mineral without monensin to calves grazing wheat pasture; however, 

these results varied by year. These differences in the response of monensin provided in a 
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supplement to grazing calves may be explained by Horn et al. (2005), in which supplemental 

conversion of calves grazing wheat pasture and supplemented with monensin in a grain-based 

supplement was improved in four out of five trials. It was reported that the gain response may be 

directly related to variation in supplement intake. Cattle with lesser variability in supplement 

intake tended to consume the entire daily offered amount and had a better gain response than that 

of cattle with greater variation of intake. It was suggested that when providing monensin in a 

supplement to grazing calves, those who consume greater than 150 mg/d of monensin had 

greater weight gain; therefore, supplements containing monensin should be formulated to 

achieve desired mean herd intakes and minimize variability of supplement intake (Horn et al., 

2005).  

Monensin effect on finishing cattle performance 

 The use of monensin fed to feedlot cattle has also be highly researched. Multiple 

experiments conducted by Raun et al. (1976) evaluated the effects of monensin level on 

performance and volatile fatty acids of finishing steers. In Exp. 1, steers were fed a 70% whole 

corn finishing diet containing 0, 100, 500, and 750 mg/day monensin top dressed on the ration. 

All cattle that received a monensin treatment gained equal or better that the cattle that did not. 

The treatment receiving 100 mg/d monensin had the largest gain response, where the control (0 

mg/d) had the least. In Exp. 2 and 3 by Raun et al. (1976) finishing heifers and steers were used 

to determine the dose response of 0, 2.7, 5.5, 11, 22, 33, 44, and 88 ppm monensin on 

performance and volatile fatty acids. In Exp. 2, all monensin treatments had equal or greater gain 

response to the control except the 88 ppm treatment; therefore, it was dropped and not included 

in Exp. 3. Data between Exp. 2 and 3 were pooled, no experiment by monensin interactions were 

observed in the analysis of variance. Cattle consuming monensin treatments greater than 22 ppm 
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monensin had decreased feed intake than those that were on treatments less than 22 ppm 

monensin. The treatment containing 5.5 ppm or greater monensin had improved feed efficiency 

compared to the 0 and 2.7 ppm monensin treatments. Cattle receiving the 2.7 ppm treatment had 

decrease acetate and increased propionate and treatments of 33 ppm or greater monensin had 

increased proportions of propionate than other treatments. This paper was one of the first to 

determine the appropriate levels of monensin to feed to finishing cattle. It was concluded that 11 

ppm (mg/kg) yielded the largest improvement in gain (5.2%), whereas 33 ppm (mg/kg) resulted 

in the greatest improvement in feed efficiency (17%). It was stated that these responses were, in 

part, due to the effect monensin had on ruminal fermentation and the resulting end products. 

 Another early paper by Boling et al. (1977) investigated the effects of monensin fed to 

finishing cattle on performance, VFA, and carcass traits. Steers were fed ad libitum corn silage 

and 4.54 kg of a ground corn supplement that provided 0, 100, 200, or 300 mg monensin/steer 

daily. Rumen fluid was obtained from a subset of animals on d 56 and cattle were fed for 157 d 

until harvest. Cattle consuming monensin had improved feed efficiency compared to the control 

treatment. No other differences were observed for performance. Proportions of acetate and 

butyrate decreased as monensin level increased, whereas propionate increased with increasing 

monensin. There were no differences observed for carcass characteristics among the treatment 

groups. In conclusion, monensin improved feed efficiency of finishing cattle in this experiment, 

which was most likely due to the shift in VFA production. 

 In feedlots, metabolic disorders like subacute acidosis can be costly and are often 

characterized by reduced an erratic feed intake (Fulton et al., 1979). Monensin may be used as a 

tool to help eliminate intake and intake variation of high concentrate diets as demonstrated by 

Stock et al. (1995), who evaluated the effects of monensin and monensin/tylosin on intake 
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variation and digestive deaths of finishing cattle. The experiment uses 2,904 steers fed as pens at 

4 commercial feedlots and were fed diets containing approximately 82% grain (flaked corn and 

corn silage or flaked milo and high-moisture corn), 8% roughage, 4% fat and 6 % supplement. 

Dietary treatments included: no monensin/tylosin (control), 22 mg/kg of monensin and 11 mg/kg 

tylosin, or 33 mg/kg monensin and 11 mg/kg tylosin. Cattle consuming monensin/tylosin 

treatments regardless of monensin level had decreased dry matter intake, increased daily gain, 

and improved feed efficiency compared to the control. Variation of intake among treatments did 

not differ. An individual feeding study was also conducted using a Calan gate system. Steers 

were adapted over a 12 d period to a 100% concentrate diet consisting of primarily dry-rolled 

corn and fed for 100 d. Treatments for this experiment were the dietary addition of 0 or 27 mg/kg 

monensin. It was also noted that these steers were not implanted and did not receive tylosin at 

any time during the trial. Using individual animal intake, dry matter intake variation was 

decreased from d 8 to 70 by feeding monensin than the control. The magnitude of intake 

variation was 5-10 times greater for individually fed animal compared to the commercial feedlot 

pens. It was noted that when individually fed steer intakes were averaged and treated as a pen, 

the variance of intake was reduced and not different among treatments. It was concluded that 

monensin can reduce animal intake variation; however, pen means may hide intake variation 

among individual animals.  

 More recently, finishing diets have undergone many changes since the introduction of 

monensin, including the dramatic increase in the use of distillers byproducts. Due to these 

byproducts having relatively high protein, fat, and possibly S content, interactions with monensin 

may alter its effectiveness. This was investigated by Depenbusch et al. (2008) who used finishing 

heifers and a 3 × 2 factorial arrangement of treatments. Factors included diet with treatments 
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being: a steam-flaked corn based finishing diet with 0 or 25% DMB inclusion of corn wet 

distillers grains plus solubles (WDGS) replacing a portion of the corn. The second factor was 

feed additive and treatments were: no additive, 300 mg of monensin, or 300 mg of monensin plus 

90 mg of tylosin daily. Monensin did not change live animal performance. Monensin alone 

decreased longissimus muscle (LM) area when compared to the treatment with no feed additives 

and tended to decrease LM area when compared to the monensin plus tylosin treatment. It was 

concluded that the addition of monensin or a combination of monensin and tylosin had minimal 

impacts on animal performance, indicating that they may not be as effective in steam-flaked corn 

finishing diets with or without 25% WDGS. 

 Another large change in finishing cattle diets in recent years would be the utilization of a 

Beta-adrenergic agonist (βAA), which are a class of feed additives which are fed to finishing 

cattle 20 to 40 d prior to harvest to improve daily gain and carcass weights. Thompson et al. 

(2016) evaluated the effects of different ionophores and a βAA on animal performance and 

carcass characteristics. Steers were fed a steam-flaked corn based finishing diet with wet corn 

gluten feed and feed additive treatments consisted of: a control with no additives, 12.1 mg/kg 

DM laidlomycin propionate (LP), 12.1 mg/kg DM LP plus the βAA ractopamine hydrochloride 

(RH) fed at 300mg/animal/d on final 32 d, or 36.4 mg/kg monensin plus 300 mg/animal/d RH on 

final 32 d. Cattle consuming LP alone had greater final BW and hot carcass weight compared to 

the control. All treatments containing feed additives had greater daily gain and improved feed 

efficiency compared to the control. Monensin with RH increased LM area compared to the 

control. These results suggest that utilizing feed additives may improve performance of cattle 

and that there does not appear to be a negative effect of combing monensin with a βAA like RH.  
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Other dietary factors that alter the rumen microbiome 

 Fat may be a dietary component that can alter the rumen microbiome, as stated in a paper 

by Kim et al. (2014b) that was previously described. Briefly, Holstein cows were fed three 

dietary treatments of a ground corn/alfalfa hay control diet, the control diet plus 12g/909 kg DM 

monensin, and the control diet containing 12g/909 kg DM monensin and 4% added fat from a 

combination of distillers grains with solubles, roasted soybeans, and an animal-vegetable fat 

blend. Rumen samples were analyzed using 454 pyrosequencing analysis of 16S rRNA gene 

amplicons to determine bacterial communities. When fat was added, the proportion of Firmicutes 

increased (approximately 69% vs 51%) and Bacteriodetes decreased (approximately 23% vs 

40%) when compared to the control plus monensin diet. Of 9 dominant genera, Olsenella and 

Syntrophococcus increased by ≥ 2-fold when fat was included in the diet. Additionally, fat 

decreased Shannon diversity index when compared to the treatments that did not contain fat. In 

this experiment, dietary fat shifted microbial communities in favor of Gram-positive bacteria and 

inhibited Gram-negative bacteria. It also decreased alpha diversity, or the variation of species 

present. 

Additional feed additive and growth-promoting technologies may also influence the 

microbiome. Thomas et al. (2017) investigate the effects of management type on the gut 

microbes of feedlot cattle. Treatments consisted of commercially raised steers who received a 

calf hood implant (36 mg zeranol) at 74 d of age, reimplanted (80 mg trenbolone acetate and 16 

mg estradiol) during backgrounding at 235 d of age and received a final implant (200 mg of 

trenbolone acetate and 20 mg estradiol) during the finishing phase at 330 d of age. The 

commercial treatment were also fed 478 g/ton monensin and 96 g/ton tylosin and received a βAA 

(RH) during the final 31 d prior to harvest. The second treatment consisted of naturally raised 
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cattle, which never received a hormonal implant, ionophores, βAA, feed-grade or injectable 

antibiotics or antimicrobials. All cattle in this experiment were fed a final finishing diet 

containing 40% wet corn gluten feed, 48% dry-rolled corn, 7% grass hay and 5% vitamin and 

mineral supplement. Samples of digesta from the rumen, colon and cecum were collected 

immediately after slaughter and later analyzed using metagenome sequencing. Alpha diversity, 

or diversity within a community indicated that the natural cattle had a greater Shannon index 

(4.69 vs 4.28) for rumen samples compared to the commercial cattle, indicating that the natural 

cattle had a more diversified rumen microbial community. At the phylum level, the most 

abundant were Bacteriodetes, Firmicutes, and Proteobacteria, respectively. There was no 

significant differences between the distribution of Bacteriodetes and Firmicutes in the rumen of 

natural and conventional cattle; however, the Firmicutes to Bacteroidetes ratio was greater for 

natural cattle compared to conventional (0.27 ± 0.10 vs 0.21 ± 0.06). At the genus level, 

Prevotella was the most dominant genus (39.8%) present in the rumen. Four genera belonging to 

Bacteroidetes – Spirosoma, Dyadobacter, Leadbetterella, and Zunongwangia were more 

abundant in the rumens of natural cattle compared to conventional. Gram-positive Ruminococcus 

and Fecalibacterium were reduced in the rumens of conventional steers than in the natural cattle, 

and partially replaced by Gram-negative members of the Negativicutes. Antimicrobial resistant 

genes in the GI tract of cattle from both treatments were predicted by BLAST searching 

assembled metagenome contigs against the ResFinder database to determine if antimicrobial 

technologies increase the risk of antibiotic resistant microorganisms. Antimicrobial resistant 

genes were present in both naturally and conventionally managed cattle, suggesting that 

resistance exists within microbial populations rather than induced by treatments. It was 

concluded that methods for conventionally raising cattle has an expected effect on the rumen 



34 
 

microbial populations, but no correlations between antimicrobial resistant genes in the GI tract 

microbiome and the administration of antimicrobial feed additives was observed. 

Contribution of the rumen microbiome to production 

  It is apparent many factors can influence changes in the rumen microbiome, but what is 

not so clear is how these changes can impact the host animal. Increasing knowledge of functional 

genes and their expression has helped link microbial function with animal productivity (Firkins 

and Yu, 2015). The rumen microbiome is highly dominated at the phylum level, as Firmicutes 

and Bacteroidetes account for over 90% of 16S rRNA gene sequences in most reported data sets 

(Kim et al., 2011; Creevey et al., 2014). It is also highly skewed at lower taxomic levels, in 

which Clostridia and Bacteroidia are most abundant at the class level, Bacteroidales and 

Clostridiales are the most abundant at the order level, Prevotellaceae, Lachnospiraceae, and 

Ruminococcaceae are the most abundant at the family level, and Prevotella is predominant at the 

genus level in most of the studied rumen microbiomes (Firkins and Yu, 2015).  

 The ability to efficiently digest plant components is an important function of the ruminant 

animal. Three major cellulose degrading bacteria in the rumen have been identified, which 

include: Ruminococcus albus and Ruminococcus flavefaciens from the Gram-positive Firmicutes 

phylum and Fibrobacter succinogenes from the Gram-negative Fibrobacteres phylum (Hespell, 

1981). Genome sequencing has revealed that each of these species has evolved a highly efficient 

and specific mode of plant cell wall destruction that is differential from the other two bacteria. It 

may imply that these bacterial species play complimentary roles in the degradation of fiber in the 

rumen (White et al. 2014). 

 Feed efficiency of cattle can be one of the most important factors that directly affects 

production and profitability. Paz et al. (2018) characterized the rumen microbiomes of two large 
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cohorts of cattle (steers and heifers) to identify specific bacterial members associated with feed 

efficiency traits. From their model for heifers, they determined that OTUs belonging in the 

families of Ruminococcaceae, Victivallaceae, and an unclassified OTU belonging to the order of 

Bacteroidales were associated with an increase in average daily feed intake (ADFI); whereas 

OTUs in the family Prevoellaceae and an unclassified OTU of the order Bacteroidales were 

associated with decreased ADFI. The model for steers determined that families of 

Bifidobacteriaceae, Lachnospiraceae, Paraprevotellaceae, and Veilonellaceae were associated 

with an increase in ADFI, whereas families of Lachnospiraceae, S24-7, Veillonellaceae, and an 

unclassified OTU of the Bacteroidales order were associated with a decrease in ADFI. Five of 

the six OTUs in the average daily gain (ADG) model were shared with the ADFI model in 

heifers, with the addition of the Prevotellaceae family, which was associated with increased 

ADG. The ADG model for steers only shared two OTUs with the ADFI model and consisted of 

OTUs including Lachnospiraceae, Prevotellaceae, Ruminococcaceae, S24-7, and Veillonellaceae 

families positively related to ADG. Families of Erysipelotrichaceae, Lachnospiraceae, 

Prevotellaceae, and an unclassified OTU from the order Bacteroidales were negatively associated 

with ADG. Five of the OTUs shared between the ADFI and ADG models for heifers were also 

found in the feed efficiency (G:F) model. There was an addition of the family Fibrobacteraceae 

with a negative coefficient for G:F. The G:F model for steers shared four OTUs with the ADFI 

model and four OTUs with the ADG model, with the addition of Lachnospiraceae, 

Prevotellaceae, and Spirochaetaceae families which were associated with decreased G:F. This 

experiment suggests that microbial communities can influence feed efficiency, and that 

approximately 20% of the variation in feed efficacy traits (ADFI, ADG, G:F) in beef cattle could 

be explained by the rumen microbiome.  
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Research by Shabat et al. (2016) suggest that microbe genes and species can be used to 

predict a cow’s feed efficiency phenotype, and that a lower richness, or the count of species, was 

tightly linked to greater feed efficiency. It was also determined that Megasphaera elsdenii and 

Coprococcus catus were independently found to be enriched in the microbiomes of highly 

efficient animals. They concluded that a small number of species can have a large impact on the 

productivity of the host animal.  

Conclusion 

 The rumen microbiome is a very complex ecosystem that can influence both the health 

and production of the animal. A better understanding of this symbiotic relationship could help 

improve the production efficiency of the beef cattle industry, and contribute towards the goal of 

meeting the food demands of a growing population (Cammack, 2018). As for studying microbial 

communities in the ruminant, research is challenging. This review shows that diet type, diet 

quality, and many other contributing factors can greatly influence the rumen microbiome of 

cattle, and they represent only the beginning of understanding beef cattle production through 

microbiome and metagenomics research. With recent advances in technology and techniques, 

there is still a vast amount of information out there to be discovered in terms of the rumen 

microbiome and how it can be utilized to produce beef (Myer et al., 2017).   
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ABSTRACT 

Beef cattle are commonly fed ionophores on pasture as they have shown to improve 

animal growth but often reduces consumption when offered in a free choice mineral supplement, 

leading to questionable dose levels of monensin for growth promotion. The objective of this 

research was to determine the effect of monensin (Rumensin, Elanco Animal Health, Greenfield, 

IN) intake in a free choice loose mineral on performance of grazing beef steers. Treatments 

consisted of offering ad libitum access to minerals (AMPT-A, ADM Animal Nutrition, Quincy, 

IL) with 0 g monensin/ton (0), 800 g monensin/ton (800), or 1,600 g monensin/ton (1600) with 

the hope of providing daily monensin intakes of 0, 100, and 200 mg monensin/steer. Steer calves 

(n = 605, BW = 278 ± 27 kg) were fed pearl millet (Pennisetum glaucum) hay with soybean hull 

and corn gluten feed supplement (0.5% BW daily [AF basis] Block 1) or grazed fall wheat 

(Triticum aestivum) pasture (Block 2), spring wheat pasture (Block 3), summer bermudagrass 

(Cynodon dactylon; Blocks 4 & 5) or winter wheat with mixed-grass baleage (Block 6). 

Bodyweights were determined every 28 d and mineral consumption was measured weekly. There 

were no treatment × diet interactions (P ≥ 0.96), therefore data was pooled for statistical analysis 

as a RCBD with pasture as the experimental unit using the Mixed procedure of SAS (SAS Inst. 

Inc. Cary, NC). Calves supplemented with monensin had greater (P = 0.01) final BW compared 

with the 0 treatment. Steers on the 800 and 1600 treatments had linearly greater ADG (P = 0.02) 

and total gain (P = 0.02) than 0. Mineral intake decreased linearly (P < 0.01) as monensin level 

increased, providing average monensin doses ranging from 0 to 170 mg/animal daily. 

Supplementation of monensin to stocker cattle improved growth performance compared to an 

unmedicated control. Adequate monensin for improved growth performance appeared to be 

provided by a dose of at least 109 mg/animal daily for calves grazing a broad range of forages.  
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INTRODUCTION 

The stocker cattle industry in the Southeast United States consists of purchasing calves in 

order to increase value by improving health and appearance, commingling calves into marketable 

groups, and to add BW using forage-based diets (Rhinehart and Poore, 2013). Utilizing pastures 

and forages has always been an important component to the stocker system, and producers can 

maximize the potential of their operation by putting weight on calves as efficiently and 

economically as possible (Rhinehart and Poore, 2013). Utilizing ionophores such as monensin 

have shown to be an inexpensive measure to increase weight gain of forage-fed growing calves 

compared to unmedicated supplements (Potter et al., 1976; Oliver, 1975; Boling et al., 1977; 

Males et al., 1979; Beck et al., 2016) or minerals (Fieser et al, 2007; Beck et al., 2014). The 

improved performance of calves consuming ionophores is largely attributed to changes in 

ruminal fermentation, in which an increase the production of propionate and decrease the 

acetate:propionate ratio, as well as increasing protein digestibility and gluconeogenesis are all 

benefits to ruminants consuming monensin (Fuller and Johnson, 1981; Schelling, 1984). 

Traditionally, 200 mg/head/d appears to be the level of monensin most widely used in 

supplementation research, as it has consistently shown to improve gain of forage-fed cattle 

(Males et al., 1979; Rouquette et al., 1980; Potter et al., 1986). A smaller number of studies 

suggest that a lower level of monensin (50-100 mg/d) may have performance benefit compared 

to higher level when provided to grazing cattle (Oliver, 1975; Boling et al., 1977). Monensin 

provided in free-choice mineral supplements has been proven to be effective in improving 

animal performance (Fieser et al., 2007; Beck et al., 2014); however, mineral consumption may 
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be reduced and does not always provide the full recommended dose (Horn et al., 2005; Beck et 

al., 2014). 

The objectives of this experiment were to determine the effects of monensin 

supplementation on growth performance and mineral intake of forage-fed beef steers and if 

providing monensin impacts weight gain by reducing dose from low mineral intake. Our 

hypothesis was that supplementing grazing steers with monensin in the form of a loose mineral 

will improve growth performance and decrease mineral intake compared to a control. 

MATERIALS AND METHODS 

All procedures in the following experiment conducted at the University of Arkansas 

Division of Agriculture Livestock & Forestry Research Station near Batesville, AR (35°50′N, 

91°48′W; elevation 150 m) were approved by the University of Arkansas Institutional Animal 

Care and Use Committee (Protocol #17018). 

Treatments and Cattle Blocks 

 This research was replicated over a 14 mo period using multiple groups of cattle and 

multiple forage types at the University of Arkansas Livestock and Forestry Research Station 

located near Batesville, Arkansas. The area consisted of peridge silt loam soil, which is deep, 

well drained and of moderate fertility. Treatments consisted of offering calves free choice access 

to nonmedicated mineral (0; AMPT-A; ADM Animal Nutrition, Quincy, IL), or supplemented 

with monensin via mineral containing 800g/ton monensin (800; AMPT-A MON 800; ADM 

Animal Nutrition) or 1,600g/ton monensin (1600; AMPT-A RU; ADM Animal Nutrition). 

Target daily mineral intake was 113 g/steer in order to provide monensin intakes of 0, 100, and 

200 mg monensin/steer/day. 
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Block 1. On October 10 and 24, 2016, crossbred beef steers (n = 167) of similar age and 

bodyweight were obtained from the University of Arkansas Livestock and Forestry Research 

Station herd (n = 63) or were supplied by a local cooperator (n = 104) and transported to the 

University of Arkansas Livestock and Forestry Research Station in Batesville, AR.  On 

December 7, 2016, approximately one-half of these calves (n = 84, BW = 302 ± 25 kg) were 

allocated to 1 of 12, 0.45 ha pastures (7 calves/pasture) with little residual forage mass and were 

allowed ad libitum access to large round bales of pearl millet hay (Pennisetum glaucum, Table 1) 

fed in ring-style feeders and replaced as needed. Additionally, calves were supplemented each 

day with a soybean hull/corn gluten feed blend fed at 0.5% of BW (as-fed basis).  

Block 2. The remaining steers (n = 83, BW = 260 ± 28 kg) not used in block 1 were 

allowed to graze wheat forage (Triticum aestivum, Table 2) in 1 of 24 (3 or 4 calves/pasture) 1.6 

ha dedicated wheat fields from December 7, 2016 to February 17, 2017 or March 1, 2017. Wheat 

pastures were established using similar methods described by Beck at al. (2019). Briefly, the 

fields were prepared using one of two methods. Approximately one-half of the fields were 

prepared using a conventional tilled method, in which fields were chisel plowed twice then 

disked twice with an offset disk and finished by disking an additional 2 times prior to planting to 

achieve a residual cover of <5% before planting. The remaining fields were established via a no-

till method, in which they were subjected to a summer chemical fallow by applying 4.68 L/ha of 

glyphosate [N-(phosphononmethyl) glycine; Roundup Original Max, Monsanto Co., St. Louis, 

MO] twice during the summer prior to planting to prevent residual plant growth. Wheat seed was 

drilled into the previous crop residue. All pastures were planted at a rate of 101 kg/ha using a 

grain drill in 17.8 cm rows at a depth of approximately 2.5 cm on August 15, September 1, and 
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September 15, 2016. Each pasture was fertilized in September with 68 kg of N/ha as ammonium 

nitrate.   

Block 3. A set of preconditioned crossbred steer (n = 240, 284 ± 24 kg) arrived from a 

local cattle supplier on February 22, 2017 and were placed on 1 of 30 (8 steers/pasture) 1.6 ha 

wheat pastures on March 3, 2017 to graze out spring wheat (Table 2) from the previous block. 

Pastures were established as described above and were fertilized with an additional 68 kg of 

N/ha as ammonium nitrate in February before the initiation of spring grazing. Calves were 

removed on April 6, April 21, and April 27, 2017 once forage matured and became limiting to 

animal performance, with TDN < 70% (NRC, 1996).  

Blocks 4 and 5. On May 24 2017, crossbred steers (n = 126) were obtained from the 

Livestock and Forestry Research Station herd (Block 4, n = 70, 237 ± 25 kg) or a local supplier 

(Block 5, n = 56, 335 ± 20 kg) and placed on 18 1.6 ha (7 steers/pasture) bermudagrass pastures 

(Cynodon dactylon, Table 2). Pastures were pre-established and fertilized on May 25, 2017 with 

336 kg/ha of 19-19-19 to provide 64 kg of N, P, and K per ha. An additional 135 kg of urea/ha 

was applied on July 6, 2017 to provide 62 kg/ha of N. Cattle remained on pasture until August 

17, 2017 for block 5 and September 14, 2017 for block 4.  

Block 6. Steer calves (n = 72, BW = 251 ± 38 kg) from the University herd were placed 

on 18 1.6 ha (4 steers/pasture) wheat pastures (Table 2.) on November 29, 2017 and grazed until 

February 14, 2018. Pastures were established using similar methods described for block 2 and 

were planted between September 1 and September 11, 2017. Due to poor forage availability, 

calves were also supplied with mixed grass baleage (Table 1) to extend the grazing period. 

Baleage was cut and wrapped at approximately 65% moisture using an inline bale wrapper. 

Baleage was offered ad libitum in ring style hay feeders and replaced as needed. 
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Cattle Management 

 All steers in this experiment were implanted with 40 mg trenbolone acetate, 8 mg 

estradiol, 20 mg of tylosin (Component TE-G with Tylan, Elanco Animal Health, Greenfield, IN) 

on the day of placement onto pasture. Cattle were individually weighed, unshrunk, for two 

consecutive days at the initiation and termination of each experimental block. Additionally, 

steers were weighed full on 28 d intervals. Once in pasture, cattle had free choice allowance to 

well-sourced drinking water accessed in an automatic-fill, freeze-proof water tanks (Mirafount 

3390; MIRACO Livestock Water Systems, Grinnell, IA). Mineral was offered in covered feeders 

(Ground Mineral Feeders, Sioux Steel Co., Sioux Falls, SD). Each mineral contained 14-16% Ca 

from CaCO3 and CaHPO4, 4% P from CaHPO4, 19-23% NaCl from salt, and 3% Mg from 

MgCO3. They also contained vitamins (440,925 IU of Vitamin A/kg, 11,023 IU of Vitamin 

D3/kg; and 220 IU of Vitamin E/kg) and trace minerals (150 mg/kg of Co from CoCO3, 1,200 

mg/kg of Cu from CuCl2, 200 mg/kg of I from ethylenediamine dihydriodide, 3,600 mg/kg of 

Mn from MnO, 25 mg/kg of Se from Na2SeO3, and 4,200 mg/kg of Zn from ZnO). Mineral was 

weighed each week by removing any remaining mineral from the feeder and placing into a 

container on a zeroed portable scale to determine weekly mineral intake. After it was weighed, 

the remaining mineral was returned to the feeder and the amount that was consumed was 

replenished. 

Forage Sampling and Analysis 

 Forage samples were collected at the beginning and end of each 28-d period. Forage mass 

was determined using a calibrated rising plate meter with 20 sampling points per pasture 

(Michell and Large, 1983). Calibration forage samples were obtained at each sampling by 

clipping all forage within a single 0.1m² frame in each pasture to a 2.5-cm stubble height. 
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Clipped calibration samples were dried to a constant weight at 50°C under forced air. These 

weights were used to relate forage mass (kg of DM/ha) to plate height using linear regression for 

forage mass prediction. 

During the same time of forage mass sampling, additional samples within each pasture 

were collected to represent diets consumed by grazing calves. Multiple grab samples were 

obtained from all pastures to mimic forage selected by grazing steers (Gregorini et al., 2006). 

Samples were dried under forced air at 50ºC, and then ground to pass a 2-mm screen (Thomas A. 

Wiley Laboratory Mill, Model 4, Thomas Scientific, Swedesboro, NJ) and analyzed for nutrient 

composition using near-infrared reflectance spectroscopy (Feed and Forage Analyzer model 

6500, FOSS North America, Eden Prairie, NM). Total digestible nutrient (TDN) content was 

calculated based on species specific equations (wheat TDN, % = 73.5 + 0.62 × % CP - 0.71 × % 

ADF; bermudagrass TDN, % = 111.8 + 0.95 × % CP – 0.36 × % ADF – 0.70 × % NDF) that 

were developed using Arkansas forages (Davis et al., 2002). 

Statistical Analysis 

Forage DM mass and nutritive quality data were analyzed as a repeated measures using 

the Mixed procedure of SAS (SAS Institute, Cary, NC). The model included treatment, sampling 

month, and the treatment × month interaction. The repeated measure was month within each 

cattle block and the subject was pasture. Least square means were separated using the predicted 

differences option in SAS. There were no treatment × forage type interactions (P ≥ 0.96) for 

performance data, therefore data was pooled for statistical analysis. Performance data including 

initial BW, final BW, total weight gain and ADG for the stocker phase were analyzed as a 

randomized complete block design using the Mixed procedure of SAS. Pasture was included as 

the experimental unit and block was included as the random effect. Contrasts used to separate 
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means were: (1) 0 vs monensin and (2) 800 vs 1600. Mineral intake and monensin consumption 

were analyzed as a randomized complete block design using the Mixed procedure of SAS (SAS 

Institute), as repeated measures. For the repeated measures analysis, the model included 

treatment, time, and the treatment × time interaction. Compound symmetry was used as the 

covariance structure. Contrasts that were used to separate means include: (1) 0 versus 800 and 

1600 and (2) 800 vs 1600. Due to a treatment × time interaction (P < 0.01) for mineral intake, 

treatment least square means were separated within time to using the predicted differences option 

of SAS. Significance was declared with P ≤ 0.05 and tendencies declared at P > 0.05 and P ≤ 

0.10. 

RESULTS AND DISCUSSION 

Forage Mass and Nutritive Content 

 The mean CP (% DM basis), NDF (% DM basis), ADF (% DM basis), TDN (% DM 

basis), forage mass (kg of DM/ha) and forage allowance (kg of forage DM/kg of steer BW) are 

presented by month in Table 2. No differences among treatments were observed for CP 

(treatment P = 0.44; treatment × month P = 0.62), NDF (treatment P = 0.56; treatment × month 

P = 0.57), ADF (treatment P = 0.58; treatment × month P = 0.44), or TDN (treatment P = 0.53; 

treatment × month P = 0.92). In addition, no differences were observed among treatments for 

forage mass (treatment P = 0.46; treatment × month P = 0.83) or forage allowance (treatment P = 

0.22; treatment × month P = 0.75) throughout the duration of each grazing period. 

Animal Performance 

The effect of monensin level supplemented to grazing steers is presented in Table 3. The 

final BW of steers fed the monensin treatments did not differ (P = 0.59) but were greater (P < 

0.01) than that of the control treatment. This response can be explained by differences in growth 
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rate among treatments, in which cattle consuming monensin gained 0.09 kg/d more (P < 0.01) 

and gained a total of 7 kg more (P < 0.01) during the grazing period compared to cattle that did 

not receive monensin. This gain response agrees with that of Horn et al. (1981), who reported 

that heifers who received 100 mg of monensin on wheat pasture also had a 0.09 kg improvement 

of daily gain compared to heifers who received an unmedicated supplement. It also agrees with 

that of Oliver (1975) who found that supplementing calves grazing bermudagrass with monensin 

levels ranging from 25 to 200 mg/head/d improved BW gain compared to a treatment without 

monensin. Likewise, Males et al. (1979) found that supplementing steers grazing mature tall 

fescue (Festuca arundinacea) with 200 mg/head/d fed in a dry grain supplement gained faster 

than steers that received no monensin. It appears that monensin can be effective at improving 

weight gain of calves consuming a wide range of forages. In the current experiment, monensin 

improved daily gain by 6.0% for calves consuming the hay and corn gluten/soybean hull 

supplement, 8.6% for calves grazing wheat pasture, and 9.6% for calves grazing bermudagrass 

compared to calves that did not have access to monensin. Additionally, monensin delivered in a 

free choice mineral may be effective at improving gain of grazing calves when compared to 

suppling unmedicated mineral. Fieser et al. (2007) reported that providing monensin in a free 

choice mineral improved ADG by 31% in yr 1 and 5.5% in yr 2 for calves grazing wheat pasture 

compared to a treatment consuming an unmedicated mineral. Similarly, Beck et al. (2014) found 

that supplementing monensin in a mineral increased ADG of calves on wheat pasture by 6.1% 

compared to a mineral without monensin.  

No differences were observed for ADG (P = 0.96) or total BW gain (P = 0.90) between 

the two treatments containing monensin (target intakes of 100 and 200 mg). This disagrees with 

that of Oliver (1975), who found that grazing steers supplemented with 0, 25, 50, 100, or 200 mg 
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monensin/head/d had the greatest gain response at 100 mg/head/d followed by the 50 mg/head/d, 

suggesting a lower level may result in better growth performance compared to a higher level of 

monensin. This contrasts with Potter et al. (1976), who supplemented grazing calves with 0, 50, 

100, 200, 300, and 400 mg monensin/head/day and found that the optimal gain response 

occurred for calves consuming 200 mg/head/d monensin. Based on data from previous research 

and the current experiment, the effect on monensin level on BW gain can be variable; however, 

regardless of monensin level, gain responses are likely for grazing calves supplemented with an 

appropriate amount of monensin compared to cattle that do not consume monensin. 

Mineral Intake 

Actual monensin intakes based on mineral consumption calculated to be 0, 109, and 170 

mg/head/d for the 0, 800, and 1600 treatments, respectively. Daily mineral consumption for the 

steers were 142, 124, and 96 g/d for the 0, 800, and 1600 treatments, respectively. Including 

monensin in the mineral decreased (P < 0.01) overall consumption compared to the unmedicated 

mineral. This agrees with Fieser et al. (2007); who reported that including monensin in a mineral 

mixture decreased intake of the mixture by 63% in year 1 and 55% in year 2. A study by Beck et 

al. (2014) found that providing monensin in a free choice mineral decreased mineral intake 

compared to an unmedicated control, and that in general, intake of the unmedicated mineral was 

in excess of the targeted intake. In the current trial, cattle consuming the higher level of 

monensin (1600) had decreased (P < 0.01) mineral consumption compared to the lower level 

treatment (800), which has the potential to be an economical advantage to producers, given 

similar gain responses with less required mineral. Beck et al. (2014) determined that 

supplementing monensin reduced the total cost per kg of gain compared to an unmedicated 
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mineral, and that suppling monensin in a free choice mineral reduced total cost per kg of gain 

compared to suppling monenin in a pressed protein block.  

A treatment × time interaction (P < 0.01) was observed for mineral intake; therefore, 

treatment mean differences were evaluated within each week (Figure 1). No differences were 

observed for mineral intake for the first 3 weeks of the experiment. At week 4 and for the 

remainder of the study, cattle on the 0 treatment had the greatest (P < 0.01) mineral 

consumption, whereas the cattle on the 1600 treatment had the least. The 800 treatment cattle 

had intermediary intakes between the other two treatments. 

IMPLICATIONS 

 These results indicate that monensin supplementation provided in a mineral can improve 

final BW and gain of steer calves in a variety of forage systems. Additionally, it confirms that 

monensin may be used as an intake limiter of free-choice loose mineral provided to calves on 

pasture and ensures this is not detrimental to response to monensin. It was also concluded that 

feeding a higher level of monensin did not have any additional benefits compared with the lower 

level, with the exception of reducing mineral consumption.   

 

 

 

 

 

 

 

 

 



55 
 

LITERATURE CITED 

 

Beck, P., T. Hess, D. Hubbell, G. D. Hufstedler, B. Fieser, and J. Caldwell. 2014. Additive  

 effects of growth promoting technologies on performance of grazing steers and  

 economics of the wheat pasture enterprise. J. Anim. Sci. 92:1219-1227.  

 doi:10.2527/jas2013-7203. 

 

Beck, P., W. Galyen, D. Galloway, E. B. Kegley, R. Rorie, D. Hubbell, J. Tucker, T. Hess, M.  

 Cravey, J. Hill, and C. Nichols. 2016. Effect of supplementation of developing  

 replacement heifers with monensin or bambermycins on gain and pregnancy rates. Prof.  

 Anim. Sci. 32:619-626. 

 

Beck, P. A., M. B. Sims, D. Hubbell III, W. Galyen, H. Meador, C. P. Weiss, and T. Hess. 2019.  

 Effects of tillage method and planting date of wheat pasture on forage production and  

 beef calf performance. Appl. Anim. Sci. 35:269-277. doi: 10.15232/aas.2018-01829. 

 

Boling, J. A., N. W. Bradley and L. D. Campbell. 1977. Monensin levels for growing and  

 finishing steers. J. Anim. Sci. 44:867-871. 

 

Davis, G. V., M. S. Gadberry, and T. R. Troxel. 2002. Composition and nutrient deficiencies of  

 Arkansas forages for beef cattle. Prof. Anim. Sci. 18:127-134. 

 

Fieser, B. G., G. W. Horn, and J. T. Edwards. 2007. Effects of energy, mineral supplementation,  

 or both, in combination with monensin on performance of steers grazing winter wheat  

 pasture. J. Anim. Sci. 85:3470-3480. doi: 10.2527/jas.2007-0127. 

 

Fuller, J. R. and D. E. Johnson. 1981. Monensin and lasalocid effects on fermentation in vitro.  

 1981. J. Anim. Sci. 53:1574-1580. doi: 10.27/jas1982.5361574x. 

 

Gregorini, P., M. Eirin, R. Refi, M. Ursino, O. E. Ansin, and S. A. Gunter, 2006. Effects of  

 timing of herbage allocation in strip grazing: Effects on grazing pattern and performance  

 of beef heifers. J. Anim. Sci. 84:1943-1950. doi: 10.2527/jas.2005-537. 

 

Horn, G. W., T. L. Mader, S. L. Armbruster, and R. R. Frahm. 1981. Effect of monensin on  

 ruminal fermentation, forage intake and weight gain of wheat pasture stocker cattle. J.  

 Anim. Sci. 52:447-454. Doi:10.2527/jas1981.523447x. 

 

Horn, G. W., P. A. Beck, J. G. Andrae, and S. I. Paisley. 2005. Designing supplements for  

 stocker cattle grazing wheat pasture. J. Anim. Sci. 83(E. Suppl.):E69-E78. 

 

Males, J. R., C. W. Hunt, and D. D. Lee Jr. 1979. Monensin supplemented winter pasture for  

 growing feeder calves. J. Anim. Sci. 48:1295-1298. 

 

Michell, P., and R. V. Large. 1983. The estimation of herbage mass of perennial ryegrass swards:  

 A comparative evaluation of a rising-plate meter and a single probe capacitance meter  

 calibrated at or above ground level. Grass Forage Sci. 38:295-300. 



56 
 

 

NRC. 1996. Nutrient Requirements of Beef Cattle. 7th ed. Natl. Acad. Press, Washington, DC. 

 

Oliver, W. M. 1975. Effect of monensin on gains of steers grazed on coastal Bermudagrass. J.  

 Anim. Sci. 41:999-1001. 

 

Potter, E. L., C. O. Cooley, L. F. Richardson, A. P. Rahn and R. P. Rathmacher. 1976. Effect of  

 monensin of performance of cattle fed forage. J. Anim. Sci. 43:665-669. 

 

Rhinehart, J. D. and M. H. Poore. 2013. SOUTHERN SECTION INTERDISCIPLINARY BEEF  

 CATTLE SYMPOSIUM: Opportunities for stocker cattle in the southern United States. J.  

 Anim. Sci. 2013.91:501-502. doi:10.2527/jas2012-6095. 

 

Rouquette, F. M., J. L. Griffin, R. D. Randel, and L. H. Carroll. 1980. Effect of monensin on  

 gain and forage utilization by calves grazing bermudagrass. J. Anim. Sci. 51:521-525. 

 

Schelling, G. T. 1984. Monensin mode of action in the rumen. J. Anim. Sci. 58:1518-1527. 

 

 

 

 

 

 

 

 



57 
 

TABLES AND FIGURES 

 

Table 1. Nutrient composition of additional forages provided to grazing calves.1 

Item Hay Baleage 

Dry matter, % 88.4 36.9 

Crude protein, % 15.7 12.7 

NDF, % 64.1 63.9 

ADF, % 37.5 42.4 
1Hay = pearl millet hay fed to block 1; Baleage = mixed-grass baleage fed to steers in block 6. 
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Table 2. Forage mass, forage allowance and nutritive quality of pastures grazed by steers. 

 Sampling Time1 

Item 1 2 3 4 5 

Block 2 (Winter Wheat)      

   Forage Mass, kg of DM/ha 1,792 1,570 1,169 - - 

   Forage Allowance, kg DM/kg BW     3.13     2.14     1.46 - - 

   Crude Protein, % 27.3 22.1 24.3 - - 

   NDF, % 38.2 49.2 49.1 - - 

   ADF, % 18.2 25.3 27.0 - - 

   TDN, % 82.0 74.2 72.3 - - 

Block 3 (Spring Wheat)      

   Forage Mass, kg of DM/ha 1,462 1,832 2,250 - - 

   Forage Allowance, kg DM/kg BW     2.33     2.56     3.03 - - 

   Crude Protein, % 29.7 23.1 18.7 - - 

   NDF, % 39.0 45.4 53.2 - - 

   ADF, % 17.8 24.0 31.0 - - 

   TDN, % 82.5 75.6 67.8 - - 

Blocks 4 and 5 (Bermudagrass)      

   Forage Mass, kg of DM/ha 2,704 3,359 3,740 4,158 4,519 

   Forage Allowance, kg DM/kg BW     4.47     5.04     5.36     5.47     6.38 

   Crude Protein, % 20.8 15.2 20.8 16.7 11.0 

   NDF, % 49.6 61.1 59.3 64.3 70.9 

   ADF, % 27.5 34.2 29.5 32.1 38.9 

   TDN, % 71.7 64.2 69.5 66.6 59.0 

Block 6 (Winter Wheat)      

   Forage Mass, kg of DM/ha 1,179 506 - - - 

   Forage Allowance, kg DM/kg BW     2.14     0.66 - - - 

   Crude Protein, % 30.7 30.6 - - - 

   NDF, % 35.6 43.9 - - - 

   ADF, % 18.1 21.7 - - - 

   TDN, % 82.2 78.1 - - - 
1Includes month in which pastures were sampled for each block. Block 2: November = 1, 

February = 3; Block 3: February = 1, April = 3; Blocks 4 and 5: May = 1, September = 5; Block 

6: November = 1, February = 2. 
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Table 3. Effect of monensin supplementation on performance and mineral intake of grazing steers. 

 Treatment1  Contrast2 

Item 0 800 1600 SEM 1 2 

Initial BW, kg 278 279 277 14.74   0.98 0.46 

Final BW, kg 351 359 357 11.21 <0.01 0.59 

ADG, kg/d         0.96         1.05         1.05   0.10 <0.01 0.96 

Total gain, kg     73.0     80.4     80.1   8.19 <0.01 0.90 

Mineral intake, g/head/d   141.9   123.7     96.4   6.62 <0.01 <0.01 
1Steers given free choice access to nonmedicated mineral (0; AMPT-A; ADM Animal Nutrition, Quincy, IL), or supplemented with 

monensin via mineral containing 800g/ton monensin (800; AMPT-A MON 800; ADM Animal Nutrition) or 1,600g/ton monensin 

(1600; AMPT-A RU; ADM Animal Nutrition). 
2Treatment least square means were separated using the contrasts: 1 (0 vs 800 and 1600) and 2 (800 vs 1600). 
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Figure 1. Effect of monensin supplementation on free-choice mineral intake of beef steers over time. Treatments without 

common superscript at each time point differ (P ≤ 0.05).   
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ABSTRACT 

Three experiments were conducted to determine the effects of monensin supplementation 

during the stocker and finishing phase on feedlot performance and carcass characteristics of beef 

steers. In Exp. 1 and 2, steers (n = 61, BW = 345 ± 20 kg and n = 70, BW = 298 ± 26 kg) were 

fed hay and supplement or grazed wheat pasture (Exp. 1) or bermudagrass (Exp. 2) and then 

transported 1,068 km to Canyon, TX for finishing. For Exp. 3 steers (n = 59, BW = 322 ± 31 kg) 

grazed wheat pasture and then transported 636 km to Stillwater, OK for finishing. Treatments 

were arranged as a 3 × 2 factorial with three monensin levels during the stocker phase (0, 800, 

1600 g/ton fed in a free choice mineral) and two levels during finishing (0 [U] or 37.5 mg/kg diet 

DM [M]). There were no location × treatment interactions (P ≥ 0.19) for performance or carcass 

measurements, therefore data were pooled across locations. Stocker × feedlot treatment 

interactions were not observed for performance data (P ≥ 0.50), but were observed for carcass 

characteristics. Cattle consuming M in the feedlot had decreased (P < 0.01) DMI and increased 

(P < 0.01) G:F compared with U. Cattle on 1600U treatment had the greatest LM area whereas 

0U had the least (103.4 vs 96.3 cm2). Steers on the 800U and 1600U treatments had decreased 

YG and 800M had the greatest (2.31 and 2.22 vs 2.75). Cattle consuming M during finishing had 

increased (P = 0.03) fat thickness compared to U. Supplementation of monensin to stocker cattle 

may have minimal impact on subsequent feedlot performance. Providing monensin in feedlot 

diets still decreases DMI and improves feed efficiency of feedlot cattle. 

Key words: monensin, feedlot, finishing 
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INTRODUCTION 

In the livestock industry, ionophores play a significant role in improving the health and 

feed efficiency of animals that consume them (Novilla, 2011). Specifically, monensin is a 

carboxylic polyether ionophore which has the ability to alter ruminal fermentation through its 

antimicrobial properties when fed to ruminants (Boling et al., 1977). This modification of 

ruminal fermentation results in increased production of propionate and decreased 

acetate:propionate ratio, as well as increased DM and protein digestibility, gluconeogenesis, and 

glucose turnover in ruminants consuming monensin (McCartor et al., 1979; Schelling, 1984). 

Feeding monensin has consistently shown to increase weight gain of grazing cattle (Potter et al., 

1976; Oliver, 1975; Boling et al., 1977; Males et al., 1979) and improve feed efficiency of 

feedlot cattle (Raun et al., 1976; Boling et al., 1977; Duffield et al., 2012) compared to 

unmedicated controls. A meta-analysis by Duffield et al. (2012) of 40 peer-reviewed articles of 

the impact of monensin on growing and finishing cattle concluded that using monensin results in 

a 6.4% improvement in feed efficiency; however, it was reported that there were only a 2.5 to 

3.5% improvement in trials conducted within the last 2 decades. This suggests that the efficacy 

of monensin may be declining, which may be related to cattle types and diet components 

changing. Additionally, current research on monensin is specific to single stages of beef cattle 

production; therefore, data is limited on whether monensin fed in early phases of production 

impact performance in later phases. 

The objective of this experiment was to determine the effect of dose and monensin 

consumed during a stocker phase on performance and carcass characteristics of beef steers 

during a subsequent finishing phase. The hypothesis was that supplementing growing calves with 
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monensin during a stocker phase would diminish its effects later in production, once cattle were 

placed in a feedlot. 

MATERIALS AND METHODS 

All procedures in the following experiment conducted at the University of Arkansas 

Division of Agriculture Livestock & Forestry Research Station near Batesville, AR (35°50′N, 

91°48′W; elevation 150 m) were approved by the University of Arkansas Institutional Animal 

Care and Use Committee (Protocol #17018). 

Cattle Management and Treatments 

 Cattle used in this experiment were derived from the same cattle in the experiment 

described in the previous chapter. A subset of 63 animals from block 1 of the stocker trial (n = 42 

from wheat pasture and n = 21 from hay dry lots) were transported 1,068 km to the West Texas 

A&M Research Feedlot located near Canyon, TX for finishing immediately following the 

termination of the grazing trial. A second group of steers (n = 70) from block 2 of the stocker 

phase were also transported to the same Canyon, TX feedlot for finishing once the stocker phase 

was complete. A third set of steers (n = 60) from block 6 of the grazing trial were transported 

636 km to feedlot in Stillwater, OK for finishing.  

Treatments for this experiment were arranged as a 3 × 2 factorial with factors consisting 

of level of monensin provided during the previous stocker phase, and whether or not monensin 

was provided in the feedlot diet following the stocker phase. Treatments during the stocker phase 

consisted of offering grazing calves a free choice loose mineral (AMPT-A, ADM Animal 

Nutrition) with 0 g monensin/ton (0), 800 g monensin/ton (800), or 1600 g monensin/ton (1600) 

designed to supply a daily dose of 0, 100, or 200 mg of monensin/d. Cattle were placed in  

feedlot pens by the three previous treatments and two finishing phase treatments in which 
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monensin was provide at 0 mg/kg diet DM (U) or 37.5 mg/kg diet DM (M) provided in the diet, 

for a total of 6 treatments. 

Canyon Location. Cattle arrived at the Canyon feedlot on March 2, 2017 and September 

14, 2017. During initial processing, steers received an implant consisting of 200 mg trenbolone 

acetate and 40 mg of estradiol (Revalor-XS; Merck Animal Health, Madison, NJ) and ivermectin 

(Noromectin, Norbrook Laboratories, Newry, UK). Cattle were blocked by pasture-off weights 

and allocated randomly, within previous stocker treatment to new treatment and pen (12 pens per 

turn, 5 to 7 animals per pen). Steers were housed in outdoor, uncovered 6.1 × 26.9 m soil surface 

pens providing at least 23 m2 of pen space per steer. Feed bunks were observed daily at 0700h 

before feed delivery. The amount of feed offered was increased 0.31 kg of DM per steer if there 

was no residual feed remaining at the time of observation for 2 consecutive days. Steers were fed 

a starter ration for 10 d following arrival. After 10 d, the steers were transitioned by feeding a 

50:50 blend of the starter ration and a step-up ration for 2 d, then the step-up ration for 10 d, 

followed by a 50:50 blend of the step-up and final finishing diet before feeding the finishing diet 

for the remainder of the experiment (Table 4). Following a confirmed diagnosis of coccidiosis, 

all pens of cattle from group 1 were administered amprolium (Corid 1.25% Crumbles; Merial 

LTD., Boehringer Ingelheim, Duluth, GA) by mixing in feed following the manufacturer’s label 

recommendations. Data from two animals were not included in the dataset: an 800U died 16 d 

after feedlot arrival due to illness unrelated to treatment; and a 1600U animal diet on d 27 from 

an unknown cause. The steers were shipped for harvest by 2 weight blocks, in which heavy 

blocks of cattle shipped earlier than light blocks. Cattle at the Canyon feedlot were fed for 132 

and 163 d for group 1 and 171 and 199 d for group 2. 
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Stillwater Location. Steers arrived to the Stillwater feedlot on 15 February 2018 and 

received a vaccine for bovine respiratory disease (Titanium 5 + PH-M, Elanco Animal Health, 

Greenfield, IN), a vaccine for clostridial (Vision 7 with spur; Merck Animal Health), a dewormer 

(fenbendazole, Safe-Guard, Merck Animal Health) and an implant of 80 mg trenbolone acetate 

and 16 mg estradiol (Revalor-IS; Merck Animal Health) at initial processing. Additionally, cattle 

in Stillwater were reimplanted on d 85 with 200 mg trenbolone acetate and 20 mg estradiol 

(Revalor-200; Merck Animal Health). Steers were also blocked by pasture off-weights and 

randomly allocated within treatment to new treatment and pen (n = 12 pens, 2 per treatment). 

The cattle were transitioned to a finisher diet by feeding a starter diet for 9 consecutive days, and 

then then were stepped up every 5 d until the final finisher diet was fed throughout the remainder 

of the trial (Table 5.). Feed bunks were managed to contain trace amounts of remaining feed 

prior to feeding. Cattle were housed in partially covered pens. One animal from 0R was removed 

from the data on d 58 due to an injury. Cattle in Stillwater were fed for 175 d. 

In total, steers (n = 190; initial BW = 321 ± 26 kg) were fed for an average of 169 days. 

A total of 36 feedlot pens (6 per treatment) were used with 5-7 steers per pen. Individual animal 

weights were determined every 28 d. Finisher diets in this experiment included 10.2 mg/kg of 

tylosin (Tylan, Elanco Animal Health) and cattle were fed a targeted 250 mg/steer/d of 

ractopamine hydrochloride (Optaflexx; Elanco Animal Health) approximately 30 d prior to 

shipping for harvest.  

Carcass data collection. Once cattle were visually estimated to have 1.27 cm of backfat, 

steers from both feedlot locations were transported to a commercial abattoir (Tyson Fresh Meats, 

Amarillo, TX) for harvest. Carcass data were obtained by trained personnel from the West Texas 

A&M University Beef Carcass Research Center (Canyon, TX). Hot carcass weight (HCW) was 
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determined on the day of harvest and longissimus muscle (LM) area, subcutaneous fat thickness, 

percentage of KPH fat, and marbling score were determined after a 48 h period of refrigeration. 

These measurements were used to calculate USDA yield grade (2.50 + (2.5 × fat thickness) + 

(0.2 × % KPH fat) + (0.0038 × HCW) – (0.32 × LM area)). Dressing percent was calculated by 

dividing HCW by the final live BW.  

 Statistical Analysis. A preliminary analysis was conducted with a fixed effects model of 

feedlot location × stocker treatment × feedlot treatment. Interactions were nonsignificant for 

performance data (P ≥ 0.19), and for carcass measurements (P ≥ 0.26); therefore, data were 

pooled across locations. Data were analyzed with pen as the experimental unit using the MIXED 

procedure of SAS (SAS Inst. Inc., Cary, NC). The model included stocker treatment, feedlot 

treatment, and the stocker × feedlot treatment interaction. Location, block within location, and 

the location × block within location were considered random. Frequency distributions of 

carcasses that graded USDA quality grade of choice or greater (choice, premium choice, prime) 

or less (select, standard) were analyzed as binomial proportions using the GLIMMIX procedure 

of SAS. Mean differences were considered significant at P ≤ 0.05 and tendencies at P > 0.05 and 

P ≤ 0.10. 

RESULTS AND DISCUSSION 

 There were no stocker × feedlot treatment interactions observed (P ≥ 0.49) for live 

animal performance; therefore, only main effects of each will be discussed. Data representing the 

effects of monensin supplementation during a stocker phase and a following finishing phase on 

feedlot performance is represented in table 3. A main effect of stocker treatment was observed (P 

< 0.01) for initial BW, in which cattle previously on the 800 and 1600 treatments were 12.6 and 

9.3 kg heavier (P < 0.01), respectively, compared to 0 at the initiation of the finishing phase. 
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This can be explained by the improvement of growth rate from supplementing monensin that was 

observed during the stocker phase and discussed in the previous chapter, which resulted in 

heavier calved being placed into the feedlot. Interestingly, no differences were observed (P ≥ 

0.12) for BW on d 28, 56, 84 or at the conclusion of the feedlot phase, suggesting that cattle not 

previously on monensin were able to compensate for BW early in the finishing phase.  

The response in BW might be explained by ADG, in which a stocker treatment main 

effect tendency was observed (P = 0.09), in which cattle previously on monensin treatments 

during the stocker phase gained approximately 0.4 kg less (P ≤ 0.07) during the first 27 d of 

finishing than cattle not previously supplemented with monensin. A main effect tendency of 

stocker phase treatment was also observed for ADG from d 56 to 83, in which cattle previously 

on the 1600 treatment had greater (P = 0.03) ADG than that of the 0 treatment. No other 

differences were observed (P ≥ 0.24) for ADG or total gain during the finishing period (P ≥ 

0.54) across all treatments. 

 An effect of feedlot treatment were observed (P < 0.01) for DMI throughout the entire 

experiment, in which cattle on the M treatments consumed 0.6 kg of DM per day less than the U 

treatments. This agrees with that of Raun et al. (1976), who observed a decrease in DMI for 

cattle consuming finishing diets containing greater than 22 mg/kg of monensin. Likewise, Stock 

et al. (1995) reported that including monensin at 22 or 33 mg/kg in finishing diets decreased 

DMI compared to an unmedicated treatment. Stock et al. (1995) also reported that including 

monensin in a finishing diet reduced DMI variation of individually fed steers and suggests that 

monensin may decrease the severity of metabolic disorders by modulating changes in dry matter 

intake. 
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The comparable values for gain along with the reduction in intake for cattle consuming M 

resulted in a 6.9% improvement in feed efficiency for cattle on the M treatments compared to the 

U treatments (G:F; 0.170 vs 0.159 for M and U, respectively; P < 0.01). The results agree with a 

meta-analysis over a total of 40 peer-reviewed articles and 24 trial reports conducted by Duffield 

et al. (2012), who reported that monensin, on average, improved feed efficiency of finishing 

cattle by 6.4%. In the current experiment, the improvements in feed efficiency by including 

monensin in the finishing diet appear to have occurred after d 28. No difference was observed (P 

= 0.86) between feedlot treatments for the first 27 d, however the inclusion of monensin 

increased (P ≤ 0.02) G:F from d 28 through the end of the experiment. Boling et al. (1977) also 

observed an improved in feed efficiency by feeding monensin to finishing cattle. It was 

explained by a measured alteration in volatile fatty acid profiles, in which proportions of acetate 

and butyrate decreased as monensin level increased, whereas propionate increased with 

increasing monensin. In the current experiment, a stocker treatment main effect tendency was 

observed (P = 0.06) for G:F in the first 27 d, in which cattle previously on the 0 treatment tended 

to have greater (P ≤ 0.06) G:F compared to cattle that were on the monensin treatments during 

the stocker phase, which may have contributed to the compensatory gain that was observed early 

in the finishing phase. 

 The results for the effect of monensin during a stocker and feedlot phase on carcass 

characteristics is presented in table 4. A stocker × feedlot treatment interaction was observed (P 

= 0.03) for LM area. Cattle on the 1600U had the greatest LM area compared to the 0U 

treatment, which had the least (103.4 vs 96.3 cm; P < 0.01). The remaining treatments were 

intermediary, in which 800U, 0M, and 1600M treatments did not differ (P ≥ 0.12) from the 

1600U but were greater (P ≤ 0.04) than the 0U treatment. The 800M treatment did not differ (P ≤ 
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0.10) from the 0U, 800U, 0M and 1600M treatments but had a decreased (P = 0.05) LM area 

than the 1600U treatment. Depenbusch et al. (2008) reported that including monensin in 

finishing diets decreased LM area when compared to a treatment with no feed additives; 

however, in the current study it is difficult to directly relate the difference in LM area with 

monensin alone. A treatment interaction was also observed (P = 0.01) for USDA yield grade. 

Steers on the 800M had a greater (P ≤ 0.02) yield grade compared to the 800U, 1600U, 0M, and 

1600M treatments, but not different (P = 0.16) from the 0U cattle. The 800U and 1600U 

treatments had decreased (P ≤ 0.06) yield grade compared to the 0U and 800M treatments, but 

did not differ (P ≥ 0.13) from the 0M and 1600M treatments. Limited data suggests that 

monensin influences yield grade, and in the current experiment it is difficult to interpret that 

monensin treatment had a direct effect on yield grade, and that other factors including fat and 

muscle composition may have influenced these results. 

 A main effect for stocker treatment was observed (P = 0.05) for marbling score. Steers 

previously on the 1600 treatment during the stocker phase had decreased (P ≤ 0.04) marbling 

score when compared to the 0 and 800 stocker treatments. Additionally, a feedlot treatment main 

effect was observed (P = 0.03), in which cattle consuming M in the feedlot had greater (P = 

0.03) fat thickness at harvest compared to the U cattle. It could be that including monensin in the 

diets altered energy supply during the middle phase of the growth curve, thus altering body 

composition via altering mature size. This can result in earlier maturing cattle and enhanced 

fattening at lighter slaughter weights (Owens et al., 1993). 

CONCLUSION 

  Cattle supplemented with monensin during a stocker phase may compensate to similar 

bodyweights early during finishing; therefore, minimal impacts of monensin supplied early in 
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production on performance later on is expected. The inclusion of monensin in finishing diets 

resulted in a reduction in intake and improvement in feed efficiency throughout much of the 

feedlot phase. Additionally, monensin may alter age of maturity and tissue deposition, resulting 

in cattle that are ready for market earlier than cattle not consuming monensin in the feedlot.  
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TABLES AND FIGURES 

 

Table 4. Ingredient composition of each diet fed at the Canyon location. 

Item, % DM Starter Step Finisher 

Steam-flaked corn 13.9 27.9 37.3 

Corn gluten feed1 56.4 48.0 43.5 

Corn stalks 19.1 11.5   4.3 

Corn oil -   1.9   3.8 

Molasses   7.3   7.3   7.3 

Supplement2   3.3   3.4   3.8 
1Cargill Sweet Bran, Dalhart, TX. 
2Formulated to meet or exceed the vitamin and mineral recommendations from the  

 NRC (2016) and to provide 0 or 37.5 mg/kg or monensin (Rumensin; Elanco  

 Animal Health, Greenfield, IN) and 10 mg/kg of tylosin (Tylan; Elanco Animal Health). 

 

Table 5. Ingredient composition of each diet fed at the Stillwater location. 

Item, % DM Starter Step 1 Step 2 Step 3 Step 4 Finisher 

Dry-rolled corn 15.1 22.6 34.8 42.9 50.0 60.7 

Corn gluten feed1 51.9 41.1 29.0 29.1 29.2 20.9 

Prairie hay 28.0 31.1 31.0 22.8 15.6   8.2 

Liquid supplement2 - - - - -   5.3 

Dry supplement3   5.0   5.2   5.2   5.2   5.2   4.9 
1Cargill Sweet Bran, Dalhart, TX. 
2Liquid supplement, Westway Feed Products, New Orleans, LA. 
3Formulated to meet or exceed the vitamin and mineral recommendations from the  

 NRC (2016) and to provide 0 or 37.5 mg/kg or monensin (Rumensin; Elanco  

 Animal Health, Greenfield, IN) and 10 mg/kg of tylosin (Tylan; Elanco Animal Health). 
 

Table 6. Nutrient composition of final finisher diets for each treatment at each location. 

 Canyon  Stillwater 

Item, % DM Unmedicated Monensin  Unmedicated Monensin 

Dry matter, % 71.3 70.6  77.5 77.1 

Crude protein, % 14.3 14.5  12.7 13.1 

TDN, % 86.7 88.1  84.8 86.9 

NEm, Mcal/kg   2.1   2.2  2.1 2.2 

NEg, Mcal/kg   1.5   1.5  1.4 1.5 

Ca, %   1.00   0.93  0.45 0.43 

P, %   0.58   0.58  0.45 0.46 
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Table 7. Effect of monensin during the stocker phase and subsequent feedlot phase on feedlot performance of beef steers. 

 Stocker1  Feedlot1 

Item 0 800 1600 SEM P-value2  Unmed Mon SEM P-value2 

Initial BW, kg    314    327    324 13.85   <0.01     321    322 13.82 0.78 

d 28 BW, kg    370    373    370 16.46 0.79     369    373 16.38 0.31 

d 56 BW, kg    435    437    433 15.53 0.64     436    434 15.45 0.54 

d 84 BW, kg    504    510    514 26.04 0.12     508    511 25.96 0.46 

Final BW, kg    636    644    638 11.50 0.67     638    640 10.97 0.74 

ADG, kg/d           

     d 0 to 27        1.95        1.57        1.62 0.51 0.09         1.76        1.66 0.51 0.49 

     d 28 to 55        2.39        2.39        2.34 0.07 0.74         2.35        2.40 0.06 0.47 

     d 56 to 83        2.70        2.86        3.13 0.53 0.09         2.80        2.99 0.52 0.24 

     d 0 to end        1.89        1.87        1.86 0.07 0.76         1.86        1.89 0.07 0.58 

DMI, kg/d           

     d 0 to 27        8.05        8.12        8.21 0.57 0.71         8.36        7.90 0.57 0.01 

     d 28 to 55      11.19      11.23      11.24 0.47 0.97       11.52      10.92 0.46   <0.01 

     d 56 to 83      12.29      12.52      12.23 0.44 0.44       12.76      11.92 0.43   <0.01 

     d 0 to end      11.28      11.41      11.31 0.33 0.80       11.64      11.03 0.32   <0.01 

G:F, kg/kg           

     d 0 to 27      0.236      0.190      0.198 0.048 0.06        0.207      0.209 0.048 0.86 

     d 28 to 55      0.215      0.214      0.209 0.013 0.70        0.205      0.221 0.013 0.02 

     d 56 to 83      0.227      0.234      0.259 0.047 0.08        0.225      0.256 0.047 0.01 

     d 0 to end      0.167      0.163      0.163 0.007 0.60        0.159      0.170 0.006   <0.01 

Total BW gain, kg    322    317    315 11.13 0.64     316    319 10.64 0.67 
1Steers given free choice access to nonmedicated mineral (0; AMPT-A; ADM Animal Nutrition, Quincy, IL), or supplemented with monensin via mineral 

containing 800g/ton monensin (800; AMPT-A MON 800; ADM Animal Nutrition) or 1,600g/ton monensin (1600; AMPT-A RU; ADM Animal Nutrition) 

during the stocker phase and with 0 (Unmed) or 37.5 (Mon) mg/animal daily of monensin supplied in a TMR during the feedlot phase. 
2No stocker phase × feedlot phase interactions were observed (P ≥ 0.15). 
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Figure 2. Effect of monensin treatment during a stocker phase and subsequent feedlot phase on ribeye area (cm2)  

of steers. A stocker phase × feedlot phase interaction was observed (P = 0.03), bars without a common superscript  

differ (P ≤ 0.05). 

 

 

Table 8. Effect of monensin during the stocker phase and subsequent feedlot phase on carcass characteristics of steers. 

 Stocker1  Feedlot1 

Item 0 800 1600 SEM P-value2  Unmed Mon SEM P-value2 

HCW, kg   391   401   393   7.45 0.13   393  396   7.13 0.50 

Dressing %     61.26     61.91     61.40   0.34 0.06     61.48    61.57   0.32 0.71 

Marbling score   445   447   423 17.46 0.05   434  442 16.99 0.37 

Fat thickness, cm       1.21       1.31       1.22   0.05 0.17       1.19      1.30   0.05 0.03 
1Steers given free choice access to nonmedicated mineral (0; AMPT-A; ADM Animal Nutrition, Quincy, IL), or supplemented with monensin via mineral 

containing 800g/ton monensin (800; AMPT-A MON 800; ADM Animal Nutrition) or 1,600g/ton monensin (1600; AMPT-A RU; ADM Animal Nutrition) 

during the stocker phase and with 0 (Unmed) or 37.5 (Mon) mg/animal daily of monensin supplied in a TMR during the feedlot phase. 
2No stocker phase × feedlot phase interactions were observed (P ≥ 0.19). 

7
5
 



76 
 

 
Figure 3. Effect of monensin treatment during a stocker phase and subsequent feedlot phase on yield grade  

of steers. A stocker phase × feedlot phase interaction was observed (P = 0.01), bars without a common superscript  

differ (P ≤ 0.05). 
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ABSTRACT 

Three monensin levels during a stocker phase (0, 800, 1600 g/ton fed in a free choice 

mineral) and two levels during finishing (0 [U] or 37.5 mg/kg diet DM [M]) were used to 

determine the effects of monensin supplementation during a stocker and subsequent finishing 

phase on rumen bacterial communities of beef steers. Thirty calves were fed pearl millet hay 

with soybean hull and corn gluten feed supplement or grazed wheat pasture during a stocker 

phase and then placed in a feedlot for finishing. Rumen fluid was collected throughout the 

experiment and microbiota were characterized by next generation sequencing. Alpha diversity 

measures were analyzed using the Wilcoxon Rank Sum Test. Beta diversity was measured using 

the Bray-Curtis distance matrices and analyzed using the ANOSIM command. The relative 

abundance of OTUs were analyzed using the MIXED procedure of SAS using repeated 

measures. During the stocker phase, monensin treatments of cattle consuming the hay diet had 

decreased alpha community (Shannon, P = 0.01) compared to the 0 treatment. At the end of the 

stocker phase, cattle consuming the hay diet on the 1600 treatment had decreased (Shannon, P = 

0.04) alpha diversity compared to the control. On d 28 of the stocker phase, alpha diversity of 

calves grazing wheat pasture on the 1600 treatment decreased (Shannon, P = 0.02) and tended to 

decrease (Shannon, P = 0.07) for the 800 treatment compared to the 0 treatment. Cattle that were 

previously on the 0 and 1600 treatments during the stocker phase and were fed monensin at the 

feedlot had decreased alpha diversity (Shannon, P = 0.04) on feedlot d 14 compared to those that 

did not. The most predominant abundance of OTUs for cattle consuming hay with supplement 

belonged to the genus Prevotella (20.1%), unclassified Bacteroidetes (13.8%), unclassified 

Firmicutes (9.9%), and unclassified Lachnospiraceae (8.6%). Cattle grazing wheat pasture had 

the most abundant OTUs belonging to the genus Prevotella (17.8%), unclassified 
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Lachnospiraceae (11.7%), unclassified Bacteroidetes (11.0%), and unclassified Firmicutes 

(8.9%). In the feedlot, the most abundant OTUs included Prevotella (22.2%), unclassified 

Lachnospiraceae (17.2%), unclassified Clostridiales (6.1%), unclassified Bacteroidetes (5.8%), 

and unclassified Bacteroidales (5.1%).  

Key words: monensin, rumen, microbiome, bacteria 

 

INTRODUCTION 

 Monensin is a class of carboxylic polyether ionophore antibiotics which has the ability to 

modify rumen fermentation when fed to cattle (Schelling, 1984). It is effective through 

antimicrobial properties by interfering with the normal transport of ions through microbial cell 

membranes (Cheng and Costerton, 1988). Monensin can benefit ruminants by selectively 

eliminating more sensitive, less efficient ruminal bacteria species and enriching propionate 

producing bacteria that appear to be less sensitive (Lowicki and Huczynski, 2013). Decreasing 

selected bacterial species can result in more energetically favorable propionate to acetate 

concentrations, thus improving feed utilization efficiency (Boling et al., 1977). Additionally, 

monensin has been reported to decrease methane producing microorganisms and decrease the 

incidence of ruminal acidosis by maintaining a higher rumen pH from the reduction in lactic acid 

producing bacteria, both of which can result in improved animal performance (Russell and 

Houlihan, 2003). A majority of the assumptions about monensin altering rumen microbial 

communities are derived from traditional culture-based population estimates and the production 

of various fermentation end products such as VFA and CH4 (Callaway et al., 2003). Recent 

advancements in next-generation sequencing techniques provide opportunities to evaluate how 

monensin affects ruminal bacterial communities in a more specific and complete manner (Kim et 
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al., 2014). Using such techniques have shown that monensin can alter the rumen microbiota of 

cattle (Kim et al., 2014a; Kim et al., 2014b; Ogunade et al., 2018; Melchior et al., 2018); 

however, data is limited on its effects over multiple stages of beef production. 

 The objective of this experiment was to evaluate the effects of monensin on the diversity 

of ruminal microbial communities of forage-fed beef calves throughout the duration of a stocker 

phase and subsequent feedlot phase. Our hypothesis was that monensin would decrease 

microbial diversity and relative abundance of gram-positive bacterial species in the rumen, 

regardless of production stage. 

MATERIALS AND METHODS 

Animal Management 

 Experimental procedures were approved by the University of Arkansas Animal Care and 

Use Committee (protocol #17018). Crossbred beef steers (n = 30, initial BW = 285 ± 29 kg) 

were obtained from the University of Arkansas Livestock and Forestry Research Station herd 

and were stratified by BW and assigned randomly to pasture and treatment. Treatments were 

arranged as a 3 × 2 factorial with factors consisting of monensin provided during the stocker 

phase, and if monensin was provided in the feedlot diet following the stocker phase. Treatments 

during the stocker phase consisted of offering grazing calves a free choice loose mineral (AMPT-

A, ADM Animal Nutrition) with 0 g monensin/ton (0), 800 g monensin/ton (800), or 1600 g 

monensin/ton (1600) with the hope of providing monensin intakes of 0, 100, and 200 mg 

monensin/steer/day. When the stocker phase was complete, cattle were placed in a feedlot where 

monensin was provide at 0 mg/kg diet DM (U) or 37.5 mg/kg diet DM (R) in a TMR. 

 Calves in this experiment were a subset of blocks 1 and 2 from the experiment previously 

described; therefore, management of cattle has already been discussed in detail. Briefly, steers 
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were backgrounded and then half of these calves were placed into pastures and had free-choice 

access to pearl millet hay (Pennisetum glaucum) and were supplemented daily with a soybean 

hull/corn gluten feed blend. The second half of the calves were placed into pastures and allowed 

to graze wheat pasture (Triticum aestivum). After the stocker phase, steers were transported to 

the West Texas A&M Research Feedlot located near Canyon, TX for finishing. At the feedlot, 

cattle were transitioned to a high-concentrate finisher diet for the first 28-d by replacing portions 

of corn stalks with steam-flaked corn weekly. The final diet consisted of steam-flaked corn 

(37.3% of diet DM), corn gluten feed (43.5%), corn stalks (4.3%), corn oil (3.8%), molasses 

(7.3%), and a vitamin and mineral premix supplement (3.8%). Cattle remained on this diet for 

the remainder of the study until approximately 30-d prior to harvest, in which the beta-adrenergic 

agonists ractopamine hydrochloride (Optaflexx, Elanco Animal Health, Greenfield, IN) was 

included in the diet at 250 mg/head/d. Cattle were on feed for 132 and 164 d for the heavy and 

light blocks, respectively. Once cattle were visually determined to be market ready, cattle were 

transported to a commercial abattoir for harvest. 

Sample Collection 

 Ruminal fluid were collected immediately prior to the initiation of the stocker phase, on d 

28, 56, and at the end of the stocker phase before leaving the Batesville Station. Samples were 

then collected approximately 12 hr following the arrival to the feedlot in West Texas. Cattle did 

not have access to feed but did have ad libitum access to water between arriving to the feedlot 

and collecting the d 0 feedlot sample. Rumen content samples were also obtained 14, 28, and 56 

d after arrival to the feedlot and immediately before a diet change to include ractopamine 

hydrochloride (Optaflexx, Pre-Ba, 101 and 131 DOF), approximately 30 days before harvest. A 

final sample (Final, 131 and 161 DOF) was collected prior to shipping cattle to a commercial 
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abattoir for harvest. The samples were obtained via the mouth using a sterilized stomach tube 

into 50 mL conical tubes and immediately placed in an insulated receptacle that contained dry 

ice and kept until transported to the laboratory. After arrival, samples were stored at -20°C until 

analysis. 

DNA Extraction, Library Preparation, and Sequencing 

 The DNA from rumen samples were isolated using a commercial microbial DNA 

isolation kit (DNeasy PowerSoils Kit, Qiagen Inc., Germantown, MD) following the 

manufacturer’s protocol. Following isolation, DNA concentrations were determined using a 

spectrophotometer (Nanodrop One/C, Fisher Scientific, Hanover Park, IL) and then diluted to 10 

ng of DNA as required for library preparation. Samples were amplified by PCR using dual index 

primers, selected to amplify the V4 region of the 16S rRNA gene in bacteria. Successful 

amplification was checked by using agarose gel electrophoresis and then the samples were 

normalized using a normalization kit (SequalPreptm Normalization Kit, Life Technologies, Grand 

Island, NY). Following normalization, 5 μL aliquots from each sample were pooled to create a 

library. The library was sequenced using a next generation sequencer (Illumina MiSeq® v2, San 

Diego, CA) at the University of Arkansas Biomass Research Center in Fayetteville. 

 Sequences were processed using the mothur program (version 1.39.1) following the 

MiSeq SOP as described by Kozich et al. (2013) and sequences longer than 275 base pairs were 

removed (Schloss et al., 2009). The sequences were aligned with the SILVA release 128 

database (Quast et al., 2013). To remove excess noise and reduce sequencing error, sequences 

were removed if they contained more than 2 mismatched during the pre-cluster method (Huse et 

al., 2010) and any chimeras that were identified were also removed from the samples (Edgar et 

al., 2011). Operational taxonomic units (OTU) were classified at the genus level using the 
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Bayesian method (Cole et al., 2009) with a limit of 97% similarity. Sequences were subsampled 

at 3,000 reads and used to determine alpha and beta diversity measures. 

Statistical Analysis 

 Alpha diversity measures including the Shannon Diversity Index (Shannon and Weaver, 

1949) and the number of Observed OTUs, were analyzed using the Wilcoxon Rank Sum Test in 

RStudio (RStudio Inc., Boston, MA). Beta diversity was measured using the Bray-Curtis 

distance matrices (Bray and Curtis, 1957) and analyzed in mothur (version 1.39.1) using the 

ANOSIM command (analysis of similarity). The relative abundance of OTUs that made up 

greater than or equal to 1% of total relative abundance at each sampling time were analyzed 

using the MIXED procedure of SAS using repeated measures. Animal was considered the 

experimental unit and sampling day was used as the repeated measure with steer as the subject. 

The model for the stocker phase included monensin treatment within each dietary forage, 

sampling day, and the interaction. The feedlot phase model included the previous stocker 

treatment, feedlot treatment, sampling day, stocker treatment × feedlot treatment, stocker 

treatment × day, feedlot treatment × day and stocker treatment × feedlot treatment × day. Least 

square means were separated within time to using the predicted differences option of SAS. 

Significance was declared at P ≤ 0.05 and tendencies at 0.05 < P ≤ 0.10.  

RESULTS AND DISCUSSION 

Alpha Diversity Measures 

Alpha (within community) diversity was evaluated using the Shannon index (Shannon 

and Weaver, 1949) and the number of observed OTUs for the rumen of steers throughout a 

stocker and feedlot phase. During the stocker phase (Figure 1), community differences of the 

rumens for cattle consuming hay and supplement did not differ on d 0 (Shannon, P ≥ 0.14; 
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observed OTUs, P ≥ 0.30). On d 28 of the stocker phase, cattle consuming monensin with the 

hay diet had decreased alpha community (Shannon, P = 0.01; observed OTUs, P ≤ 0.02) 

compared to the 0 treatment, however the monensin treatments did not differ each other 

(Shannon, P = 1.0; observed OTUs, P = 0.40). Additionally, at the end of the stocker phase (d 

85), cattle consuming the hay diet on the 1600 treatment had decreased (Shannon, P = 0.04; 

observed OTUs, P = 0.01) alpha diversity compared to the control and the 800 treatment tended 

to have a decreased (Shannon, P = 0.10; observed OTUs, P = 0.04) alpha diversity compared to 

the 0 treatment. The two monensin treatments did not differ (Shannon, P = 1.0: observed OTUs, 

P = 0.83) from each other on the final day of the stocker phase for cattle consuming a hay diet.   

Alpha diversity did not differ (Shannon, P ≥ 0.68; observed OTUs, P ≥ 0.40) on d 0 of 

the stocker phase for calves grazing wheat pasture; however, on d 28 alpha diversity for the 1600 

treatment decreased (Shannon, P = 0.02; observed OTUs, P = 0.02) and tended to decrease 

(Shannon, P = 0.07; observed OTUs, P = 0.07) for the 800 treatment compared to the 0 

treatment. No differences (Shannon, P ≥ 0.40; observed OTUs, P ≥ 0.10) in alpha diversity were 

observed at the end of the stocker phase for calves grazing wheat pasture.  

In the feedlot, alpha diversity (Figure 2; Figure 3) did not differ (Shannon, P ≥ 0.14; 

observed OTUs, P ≥ 0.53) on d 0; however, including monensin in the feedlot diet decreased 

alpha diversity on d 14 for cattle previously on the 0 treatment (Shannon, P = 0.04; observed 

OTUs, P = 0.11) and cattle previously on the 1600 treatment (Shannon, P = 0.04; observed 

OTUs, P = 0.02). Interestingly, the opposite occurred on d 28, in which cattle consuming 

monensin in the feedlot tended to have greater alpha diversity for cattle previously on the 0 

treatment (Shannon, P = 0.10; observed OTUs, P = 0.06) and the 1600 treatment (Shannon, P = 

0.10; observed OTUs, P = 0.04). On d 56, cattle previously on the 0 treatment that consumed 
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monensin in the feedlot tended to have a greater (P = 0.06) Shannon index compared to cattle 

that did not have monensin. No differences (P ≥ 0.11) were observed among treatments for 

Shannon index throughout the remainder of the finishing phase, including the pre beta-agonist 

and final samples. Providing monensin in the feedlot diet decreased the number of OTUs for 

cattle previously on 800 treatment (P = 0.02) and 1600 (P = 0.04) and tended to decrease for the 

0 treatment (P = 0.06) on the pre beta-agonist sample compared to cattle that did not receive 

monensin in the feedlot. Additionally, cattle consuming monensin in the feedlot that previously 

did not during stocker phase had decreased (P = 0.01) number of OTUs on the final sampling 

date compared to cattle that did not receive monensin at either phases of production. 

Alpha diversity represents the diversity within each community and a greater alpha 

diversity would indicate a greater variety of bacterial species would indicate a greater variety and 

distribution of species present. In the current experiment, the effect of monensin on alpha 

diversity early within each phase agrees with that of Kim et al. (2014), in which monensin 

decreased Shannon index values. The mode of action of monensin is to selectively eliminate 

certain species of ruminal microbes (Schelling, 1984); therefore, decreasing the variety of 

bacterial species in the rumen would be expected. Limited data exists on how monensin impacts 

microbial communities over time; however, in the current study, it appears that these effects 

primarily occur early within each production phase and may be more consistent on lower quality 

diets.  

Beta Diversity Measures 

 Beta diversity, the diversity in microbial communities between different environments, 

differed (Bray-Curtis, ANOSIM P < 0.01) in community structure and membership on d 0 of the 

stocker phase (Figure 4) between the 0 and 800 treatments; however, no other differences (P ≥ 



86 
 

0.10) in beta diversity was observed during the stocker phase. In the feedlot (Figure 5), 

community structure and membership differed between the 1600R and 1600U treatments on d 14 

(P = 0.02), d 28 (P = 0.02) and tended to differ (P = 0.08) immediately prior to including a beta-

agonist. Beta diversity also differed (P < 0.01) between the 800R and 800U treatments prior to 

the beta-agonist. No other differences (P ≥ 0.13) in community membership and structure was 

observed in this experiment.  

OTU Distribution 

The most abundant OTUs at the phylum level in the rumen of stocker calves belonged to 

Bacteroidetes (43.1%) followed by Firmicutes (42.2%) and Actinobacteria (2.7%). In the 

feedlot, the most abundant phyla included those that belonged to Firmicutes (44.9%), 

Bacteroidetes (37.2%), Proteobacteria (6.1%) and Actinobacteria (5.9%). The most predominant 

abundance of OTUs for cattle consuming hay with supplement (Figure 6) belonged to the genus 

Prevotella (20.1%), unclassified Bacteroidetes (13.8%), unclassified Firmicutes (9.9%), and 

unclassified Lachnospiraceae (8.6%). Similarly, cattle grazing wheat pasture (Figure 6) also had 

the most abundant OTUs belonging to the genus Prevotella (17.8%), unclassified 

Lachnospiraceae (11.7%), unclassified Bacteroidetes (11.0%), and unclassified Firmicutes 

(8.9%). In the feedlot (Figure 7), the most abundant OTUs at the genus level included Prevotella 

(22.2%), unclassified Lachnospiraceae (17.2%), unclassified Clostridiales (6.1%), unclassified 

Bacteroidetes (5.8%), and unclassified Bacteroidales (5.1%). 

Stocker cattle consuming hay and supplement 

 A treatment main effect was observed (P = 0.05) for relative abundance of OTUs 

belonging to the genus Prevotella, in which cattle on the 1600 treatment had greater (P = 0.01) 

abundance of Prevotella compared to the 0 treatment. A treatment × time interaction was 
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observed (P = 0.04) for relative abundance of unspecified bacteria. The 0 treatment had greater 

(P < 0.01) relative abundance of unspecified bacteria compared to the 800 and 1600 treatments 

on d 28 of the stocker phase and greater (P = 0.01) abundance than the 800 treatment on d 85. A 

treatment × time interaction was also observed (P < 0.01) for relative abundance of 

Paraprevotella, in which cattle on the 800 and 1600 treatments had greater (P ≤ 0.01) relative 

abundance of Paraprevotella on d 28 compared to the control. Additionally, a treatment main 

effect trend was observed (P = 0.09) as cattle on the 0 treatment tended to have greater relative 

abundance of the OTU Saccharofermentans compared to the 800 treatment. 

Stocker cattle grazing wheat pasture 

 A treatment × time interaction was observed (P = 0.04) for OTUs belonging to 

Bacteroidetes, in which relative abundance was greater on d 28 (P = 0.02) and d 85 (P = 0.05) 

for the 800 treatment compared to the 1600 treatment. A main effect for treatment was observed 

(P = 0.02) for relative abundance of Ruminococcaceae, in which cattle on the 0 treatment had a 

greater (P < 0.01) abundance than 800 and tended to have a greater (P = 0.09) abundance than 

the 1600 treatment. Additionally, steers on the 800 treatment had decreased (P = 0.02) relative 

abundance compared to the 0 treatment and tended to have decreased (P = 0.06) presence 

compared to the 1600 treatment of Clostridiales. A treatment × time interaction was observed (P 

= 0.03) for abundance of OTUs belonging to unspecified bacteria. Cattle on the 0 treatment had 

decreased (P ≤ 0.04) relative abundance of unspecified bacteria on d 0 compared to the other 

treatments. On d 28, steers receiving the 1600 treatment had decreased (P = 0.02) unspecified 

bacteria compared to the 0 treatment and tended to have decreased (P = 0.06) unspecified 

bacteria compared to the 800 treatment; however, no differences (P ≥ 0.49) were observed for 

this OTU on d 85. A treatment × time interaction (P < 0.01) also occurred for the relative 
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abundance of Coriobacteriaceae. On d 28, steers on the 800 treatment had a greater (P < 0.01) 

presence than the other two treatments. On d 85, cattle belonging to the 0 treatment had 

decreased (P ≤ 0.05) relative abundance of Coriobacteriaceae compared to the 800 and 1600 

treatments, and the 1600 treatment tended to have a greater (P = 0.10) abundance of this OTU 

compared to the 800 treatment. Additionally, a treatment × time interaction (P = 0.02) occurred 

for the abundance of the OTU Succiniclasticum. On d 0, the 800 treatment had decreased (P < 

0.01) abundance compared to the other treatments and tended to have decreased (P = 0.07) 

abundance compared to the 1600 treatment on d 28, but no differences (P ≥ 0.13) occurred on d 

85 for relative abundance of Succiniclasticum. 

Feedlot Cattle 

 In the feedlot, cattle consuming monensin had decreased (P = 0.01) relative abundance of 

the OTU genus Prevotella compared to cattle that did not. A feedlot treatment × day interaction 

was observed (P < 0.01) for the relative abundance of Firmicutes, in which cattle consuming 

monensin in the feedlot tended to have decreased (P = 0.09) abundance on d 14 and had 

decreased (P < 0.01) abundance of Firmicutes on d 28 of the finishing phase. This agrees with 

that of Kim et al. (2014a) and Kim et al. (2014b), who also reported that including monensin in 

cattle diets decreased the abundance of Firmicutes. A stocker treatment × time interaction (P = 

0.02) occurred for the relative abundance of Clostridiales. Interestingly, cattle previously on the 

1600 treatment had greater (P = 0.03) abundance of Clostridiales on d 56 compared to the 0 

treatment, and had lower (P = 0.05) abundance compared to the 0 treatment on the sampling date 

prior to starting a beta-agonist, and a lower (P ≤ 0.02) abundance of Clostridiales than cattle 

previously on the 0 or 800 treatments at the final sampling time. A feedlot treatment × time 

interaction also occurred for the relative abundance of Clostridiales, as cattle consuming 
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monensin in the feedlot had decreased abundance on d 28 (P = 0.03) and prior to starting the 

beta-agonist (P <0.01). Ogunade et al (2018) also reported that monensin reduces the relative 

abundance of multiple species within the Clostridium genus. A stocker treatment × time 

interaction was observed (P < 0.01) for relative abundance of Ruminococcaceae. Cattle on the 0 

treatment during the stocker phase had greater abundance of Ruminococcaceae compared to the 

1600 treatment on d 14 (P < 0.01), d 28 (P = 0.04), prior to the beta-agonist (P = 0.01), and 

tended to be greater at the end of the finishing phase (P = 0.10). Additionally, cattle previously 

on the 800 treatment had greater (P < 0.01) relative abundance of Ruminococcaceae compared to 

the 1600 treatment prior to the beta-agonist and greater (P ≤ 0.04) abundance than the other two 

treatments at the final sampling time. A feedlot treatment × time interaction (P < 0.01) also 

occurred for relative abundance of Ruminococcaceae as steers not receiving monensin in the 

feedlot diet had greater presence of Ruminocooccaceae compared to cattle that did on d 14 (P < 

0.01), prior to the beta-agonist (P = 0.04), and at the end of finishing (P < 0.01). A stocker 

treatment main effect was observed (P = 0.03) for relative abundance of the OTU belonging to 

Bacteroidales, in which cattle that were supplemented with monensin during the stocker phase 

had decreased (P ≤ 0.03) abundance of Bacteroidales during the finishing phase compared to 

cattle previously on the 0 treatment. A stocker × feedlot treatment interaction (P = 0.03) occurred 

for the relative abundance of Gammaproteobacteria, in which cattle consuming the 0R treatment 

had decreased abundance compared to the 1600R (P = 0.05) and the 1600U (P = 0.02) 

treatments. Steers receiving the 0U feedlot treatment had a lower (P = 0.04) abundance of the 

OTU Gammoproteobacteria compared to the 1600U treatment, and the 800U treatment had a 

lower (P < 0.01) abundance compared to the 800R, 1600R, or 1600U treatments. A stocker 

treatment main effect (P = 0.04) occurred for the presence of the OTU Olsenella, in which cattle 
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previously on the 800 treatment had greater (P = 0.01) abundance during finishing compared to 

the 0 treatment and tended to have greater (P = 0.07) abundance during finishing compared to 

the 1600 treatment. Additionally, a feedlot treatment × time interaction was observed for the 

relative abundance of Olsenella. Feeding monensin in the feedlot increased (P = 0.04) the 

abundance of Olsenella on d 14, and then decreased (P < 0.01) the abundance on d 28.  

 It appears that the microbial shifts in the rumen of cattle fed monensin occurred early, as 

a majority of the effects monensin had on these communities occurred on d 28 or less, regardless 

of production phase. This agrees with that of Melchior et al. (2018), who found that the most 

numerous shifts in rumen gram-positive and gram-negative bacterial species in response to 

monensin occurred on d 18 of the experiment and were minimal thereafter. Additional data on 

the effects of monensin on the rumen microbiome over time is limited; however, these studies 

suggest that there may be a benefit from short periods of monensin supplementation and 

additional research is needed. 

The dogma of the effect monensin has on rumen bacteria is that monensin targets gram-

positive bacterial species and inhibits them more than gram-negative bacteria. The mode of 

action that monensin has on bacteria is thought to be correlated with differences in the microbial 

cell wall structure (Cheng and Costerton, 1988). Gram-positive bacteria lack the complex 

cellular wall construction that gram-negatives have. These are not permeable to large antibiotic 

molecules and the complexes formed by them which allow gram-negative bacteria to be less 

sensitive to the presence of monensin (Lowicki and Huczynski, 2013). The current study 

partially disagrees with this principle based on how monensin effected the relative abundance of 

certain classes of bacteria. During the stocker phase, monensin did inhibit the abundance of 

gram-positive Saccharofermentans, Ruminococcacea, and Clostridiales and enriched the 
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presence of gram-negative Prevotella and Paraprevotella; however, at one point it also enriched 

the abundance of gram-positive Coriobacteriacea. Additionally, feeding monensin in a feedlot 

diet inhibited gram-positive Firmicutes, Clostridiales, and Ruminococcaceae but also inhibited 

gram-negative Prevotella and enriched gram-positive Olsenella. This is supported by that of Kim 

et al. (2014a), Kim et al. (2014b), Ogunade et al. (2018) and Melchior et al. (2018) who also 

reported mixed effects of monensin on gram-positive and gram-negative rumen bacteria in cattle. 

The conclusion from this data is that the dogma from culture-based techniques that suggest 

monensin inhibits gram-positive bacteria but not gram-negative bacteria is not the case. 

Monensin may inhibit numerous minor species rather than gram-positive bacteria as a whole. It 

also suggests that monensin sensitivity may not be directly related to microbial cell wall structure 

and that other factors including dietary chemophysical features and specific species ability to 

adapt to monensin may influence its efficacy (Kim et al. 2014b). 

CONCLUSION 

 Supplementing monensin was successful in altering rumen bacterial communities of beef 

calves during multiple stages of production. Inconsistencies of these changes that was observed 

between the different production stages suggest that dietary factors may influence the effect 

monensin has on rumen bacteria. Additionally, the greatest effect of monensin appears to occur 

early and additional research may be beneficial in determining the ideal strategy for monensin 

supplementation. It was also determined that monensin targets specific species, rather than just 

gram-positive bacteria as previously reported. 
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FIGURES 

 
Figure 4. Alpha diversity measures for rumen microbiome of stocker calves consuming hay and 

wheat diets. Treatment (x-axis) includes steers given free choice access to nonmedicated mineral 

(0), or supplemented with monensin via mineral containing 800g/ton monensin (800) or 

1,600g/ton monensin (1600).  
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Figure 5. Shannon Index values (y-axis) for alpha diversity of feedlot steers with treatments (x-

axis) including steers given free choice access to nonmedicated mineral (0), or supplemented 

with monensin via mineral containing 800g/ton monensin (800) or 1,600g/ton monensin (1600) 

during the stocker phase and with 0 (U) or 37.5 (M) mg/animal daily of monensin supplied in the 

diet during the feedlot phase. 
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Figure 6. Observed OTUs (y-axis) for alpha diversity of feedlot steers with treatments (x-axis) 

including steers given free choice access to nonmedicated mineral (0), or supplemented with 

monensin via mineral containing 800g/ton monensin (800) or 1,600g/ton monensin (1600) 

during the stocker phase and with 0 (U) or 37.5 (M) mg/animal daily of monensin supplied in the 

diet during the feedlot phase. 
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Figure 7. Bray-Curtis Index (PC1: 25.15%; PC2: 6.18%) of beta diversity measure for calves 

throughout the stocker phase. 
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Figure 8. Bray-Curtis Index (PC1: 25.15%; PC2: 6.18%) of beta diversity measure for cattle 

throughout the feedlot phase. 
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Figure 9. Relative abundance of the top 30 OTUs present in the rumen microbiome of stocker calves on each day of sample collection 

during the stocker phase. 
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Figure 10. Relative abundance of the top 30 OTUs present in the rumen microbiome on each day of sample collection during the 

finishing phase. 
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CHAPTER VI 

CONCLUSION 

 In stocker cattle, supplementing monensin in a free-choice mineral increased BW gain of 

calves compared to an unmedicated control on a variety of forage systems. Mineral consumption 

was reducing by including monensin; however, targeted intakes were still achieved and a gain 

response was observed. No differences were observed between the low and high dose of 

monensin for animal performance, with the exception of mineral intake. Decreasing mineral 

intake with similar gain responses by feeding a higher level might be an economical advantage 

that producers should consider. Feeding cattle monensin in the feedlot resulted in decreased feed 

intake and improved feed efficiency compared to cattle that did not. Feedlot diets containing 

monensin also resulted in greater fat thickness at finishing, suggesting that cattle consuming 

monensin were ready for market sooner and may have reduced the number of days required on 

feed; however, this was not measured in this experiment. It did not appear that previous 

supplementation of monensin altered performance in later stages of production. The use of 

monensin did alter rumen microbial communities in all stages of production, but not in a way 

that is described by early research. This suggests that further research is needed on the rumen 

microbiome using next-generation sequencing techniques.  
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