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ABSTRACT 

 The microbiotas play vital roles in health and diseases of both humans and animals. 16S 

rRNA genes sequence analysis is one of the most popular and commonly used methods in the 

analysis of microbiotas associated with hosts. In this dissertation, the microbiotas of chickens 

(broilers, breeders, and layers) and turkeys were evaluated by 16S rRNA gene sequencing. 

Characterization of the culturable subpopulations of Lactobacillus in the chicken gut can serve as 

a valuable resource for probiotic development. In Chapter 2, Lactobacillus subpopulations 

recovered on MRS from chicken gut were defined comprehensively for the first time using 16S 

rRNA gene profiling, where they varied with different regions (cecum vs. ileum) and locations 

(lumen vs. mucosa) with in the same region. In Chapter 3, we investigated the effect of cell 

densities as determined by varying levels of sample dilution on the culture-enriched microbiota 

profiles using MRS agar medium as a model system. The dilution levels of original samples was 

found to alter the resulting culture-enriched microbiota profiles via unknown density-dependent 

mechanisms. In chapter 4, Bacillus isolates (B. subtilis and B. amyloliquefaciens) were used to 

evaluate their therapeutic and prophylactic effects against Salmonella Enteritidis, and found their 

potentialities to reduce S. Enteritidis colonization and improve the intestinal health in broiler 

chickens possibly through altering the composition and functions of gut microbiota. In chapter 5, 

we investigated the cecal microbiota and egg production in two strains of Hy-Line (Brown and W-

36) housed in conventional cages (CC) and enriched colony cages (EC), and noticed differences 

in egg production and cecal microbiota between strains and housing types. In chapter 6, we 

performed a comprehensive survey of the litter microbiotas using booty swab samples in the 5 

commercial turkey farms of the Northwest Arkansas. The litter microbiotas were found to differ 

between farms, and flocks which were further affected by the ages of turkeys. In Chapter 7, we 



developed and evaluated the nested TaqMan probe based qPCR assay for the quantitative detection 

of Clostridium septicum that targets the alpha toxin gene (csa).   
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CHAPTER ONE 

1.1 Review of  Literature 

1.1.1 Common Terminologies Used in the Microbial Community Analysis 

 After the initiation of the Human Microbiome Project (HMP) in 2007 (Turnbaugh et al., 

2007), intensive researches were focused on gut microbiome, and it is now widely accepted that 

the gut microbiome affects health and physiology of mammalian hosts through their various roles 

in nutrition, immunology, gut development, and regulation of host physiology. Microbiome 

studies have significantly increased nowadays because of the decrease in the cost of sequencing 

and advancement in computational methods.  

There are different terminologies used in microbiome studies and sometimes people used 

those terms interchangeably, although there are differences. In 2015, Marchesi and Ravel 

described the terms such as microbiome, microbiota, metagenome, and metagenomics, and 

emphasized the need of uniform use of those vocabulary in the microbiome research (Marchesi 

and Ravel, 2015).  

The term microbiota, which was first defined by Lederberg and McCray (Lederberg and 

McCray, 2001), is the collection of microorganisms existing in a defined environment. When 

microbial community is analyzed through amplifications and sequencing of certain marker genes 

such as 16S ribosomal RNA (rRNA) genes, 18S rRNA genes, or other marker genes and genomic 

regions, this should be termed as microbiota. In contrary, the term microbiome denotes to both 

biotic and abiotic factors and includes the microorganisms (bacteria, viruses, archaea, and 

eukaryotes), their genomes, and the environmental conditions. On the other hand, metagenome 
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refers to the assemblage of genes and genomes of microbiota. Thus, the term metagenome 

highlights the genetic capacity and potentials of the microorganisms, while the term microbiome 

emphasizes both genes and genomes of the microbiota, their products and the host environment 

which is characterized through one or combinations of approaches such as metagenomics, 

metabolomics, metatranscriptomics, and metaproteomics in combination with clinical or 

environmental metadata (Marchesi and Ravel, 2015).  

Alpha diversity is defined as a diversity within a sample or community. Richness and 

evenness are two main factors that need to be taken account for calculating alpha diversity of 

samples (Kim et al., 2017). Richness measures number of different species present in a sample, 

whereas evenness measures the relative abundance of different species present in a sample. Thus, 

evenness compares how uniformly different species are distributed within a sample. Beta diversity 

refers to the diversity among different samples or communities. It is used to compare the diversity 

among samples based on the distance or dis (similarity) between each sample pair (Kim et al., 

2017). 

1.1.2 Status and Limitations of the Current Research on Animal Gut Microbiota 

 Almost any metazoan, either invertebrates or vertebrates harbor gut microbiota (Lee and 

Hase, 2014). Previously, around 1014 bacteria was estimated to be present in the alimentary tract 

of the human (Luckey, 1972), and the ratio of total bacteria to the total number of somatic and 

germ cells present in human was estimated to be 10:1. However, recent study shows the variations 

in gut bacterial number from 107 (Stomach, Duodenum, and Jejunum) to 1014 (Colon), and 

estimates the ratio of total bacteria to total number of human cells as ~1:1 (Sender et al., 2016). 

The human genome contains around 20,000 genes (Turnbaugh et al., 2007) whereas around 3.3 
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million non-redundant genes are found to be present in metagenome of the gastrointestinal tract. 

More than 99% of these genes belongs to 1,000 to 1,150 different bacterial species (Qin et al., 

2010) representing diverse and complex human gut microbiota. Like human, different animals 

have also abundant and diverse gut microbiotas. Based on sequencing of 16S rRNA gene, around 

375 unique OTUs were reported in pig gastrointestinal tract (Leser et al., 2002), and around 613 

OTUs were reported in the rumen of cows (Kong et al., 2010). In addition, 915 and 464 OTUs 

have been described in chicken and turkey, respectively (Wei et al., 2013).  

Traditionally, gut microbiota composition was studied using culture-dependent methods. 

Since most of the bacterial species in gut (around 80%) are unculturable (Eckburg et al., 2005), 

culture dependent methods cannot provide comprehensive information on gut microbiota 

composition. Recently, microbiome studies (16S rRNA gene profiling) have been increased along 

with the development and application of speedy and cost-effective sequencing platforms like 

Roche 454 pyrosequencing and Illumina MiSeq/HiSeq (Guinane and Cotter, 2013). For taxonomic 

classification of gut microbiota, 16S rRNA gene has been most frequently targeted because of its 

universal presence in all prokaryotes, and variable regions. However, due to the limited resolution 

of 16S rRNA gene based microbiome profiling method, need of genome-wide approaches to 

characterize intraspecies strains diversity in human have been recently described (Ellegaard and 

Engel, 2016).  

In recent years, studies focusing on gut microbiome have been increased in livestock like 

chicken, pig, and cattle. However, they are very less as compared to human, and mainly based on 

16S rRNA based profiling method (Kim et al., 2011; Isaacson and Kim, 2012; Yeoman et al., 

2012; Waite and Taylor, 2015). Beside livestock, microbiome of various wildlife species like black 

howler monkey, red and giant panda, koala, and Tasmania devil have been recently studied (Xue 
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et al., 2015; Amato et al., 2013; Kong et al., 2014; Alfano et al., 2015; Cheng et al; 2015). In 

addition to terrestrial animals, gut microbiome studies have also been extended to both marine and 

fresh water aquatic species (King et al., 2012; Lyons et al., 2016). Regarding animal model, the 

laboratory mice are most commonly used in order to study the impacts of gut microbiota on 

physiology, and the development of diseases on host (Clavel et al., 2016). However, invertebrates 

like drosophila, and honeybee have also been gaining popularity as a model for gut microbiota 

since their gut microbiota are less complex, and greater coverage of all microbiota can be assessed 

through sequencing of metagenome samples (Ellegaard and Engel, 2016). 

Based on the above information, we can say that several studies related to gut microbiota 

have been conducted in a wide range of animals with the objectives of either identifying their own 

gut microbiome and their various roles in host, or as a model animal to get valuable information 

for human gut microbiota. Initially, more researches were focused on characterization of 

microbiota throughout various regions and locations of the gastrointestinal tract of the animals 

(Yeoman and White, 2014). Nowadays, researchers are more concerned to investigate different 

factors that can affect microbiome of animals in order to address their differences between 

ecosystems, species, and/or populations (Bahrndorff et al., 2016). Host genetics, diet, 

environmental exposure, and health have already been identified as some of the contributing 

factors for microbiome evolution (Yeoman et al., 2011). However, limited number of studies have 

been conducted to investigate the role of gut microbiota on animal’s health as compared to human. 

Similarly, most of the researches on animal’s microbiota are based on 16S rRNA gene sequencing, 

and there are very few based on metagenomics approaches (Yeoman et al., 2012) as compared to 

human. Because of the limited resolution of 16S rRNA sequencing method, mostly information of 

animal’s gut microbiota is limited to genus level.   
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1.1.3 Characterization of Microbial Community by 16S rRNA Genes Analysis 

The 16S rRNA gene sequence was used by Carl R. Woese and George E. Fox in 1977 for 

the first time in phylogenetic studies, which proposed the eubacteria, archaebacterial, and 

ukaryotes as three important aboriginal lines of descent (Woese and Fox, 1977). Sequence analysis 

of 16S rRNA genes is the most commonly used method for the study of microbial community 

residing in the host. All the procedures that involve in the 16S rRNA genes sequence analysis can 

be broadly categorized into two steps; 1. Activities that are carried out in the lab for library 

preparation and sequencing and 2. Computational work for sequence data analysis.   

1.1.3.1 Library Preparation and Sequencing 

After the proper experimental design and completion of the experiment, the samples need 

to be collected aseptically, brought to the lab maintaining cold temperature or using preservatives 

and processed immediately or stored at -20 °C/-80 °C depending upon the time of analysis. It is 

very important to follow proper preservation methods as they can impact stability (Song et al., 

2016) and eventually gut microbiota profiling (Zhao et al., 2011; Chen et al., 2019), although the 

effect is small as compared to the DNA extraction methods (Costea et al., 2017). On contrary, the 

composition and diversity of stool microbiota were not affected significantly after preservation for 

3 or 7 days at four different temperatures (-80, 7, 22,  and 37°C) either in dry or RNAlater® (Al et 

al., 2018). A wide range of commercial kits are available for the extraction of microbial genomic 

DNA. Depending upon the sample types, judicial selection of DNA extraction kits is strongly 

recommended because the DNA extraction methods have significant effects on microbiota 

composition and diversity (Costea et al., 2017). Moreover, inclusion of mechanical disruption step 

such as bead beating is also desirable for more comprehensive profiling of gut microbiota (Lim et 
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al., 2018). Likewise, extraction of DNA from samples should be carried out with a negative control 

at each time, since the reagents and laboratory contamination impact both 16S rRNA gene 

sequence and shotgun metagenomics analysis to a greater extent (Salter et al., 2014). 

 Since 16S rRNA gene sequence analysis is polymerase chain reaction (PCR) based 

method, it is necessary to either design the new primer sets based on the 16S rRNA gene sequences 

or use the previously designed primers available elsewhere. Nine hypervariable regions (V1-V9) 

are found in bacterial 16S rRNA genes, which contain substantial sequence variations among 

different bacterial species and can be used for their identification (Van de Peer et al., 1996). The 

16S rRNA gene is around 1,550 base pairs and also contain well-conserved regions between 

variable regions and thus allows designing primers that target the hypervariable regions (Clarridge, 

2004). Various primers that amplify the different variable regions of 16S rRNA gene were already 

developed and used in the study of composition and diversity of microbial community (Baker et 

al., 2003; Clarridge, 2004; Chakravorty et al., 2007; Klindworth et al., 2013; Barb et al., 2016). 

Six different primers sets that target V2, V3, V4, V6-7, V8, and V9 regions of 16S rRNA gene 

were compared using mock samples and reported variations on the performance of primers for the 

proper identification of bacterial family and genus of mock communities (Barb et al., 2016). 

Among these, primers sets that target V2, V4, and V6-7 gave the lowest divergence, while primer 

set that target V9 produced the highest divergence as compared to the mock samples.  

The primers should be designed in such a way that they can amplify most bacterial 16S 

rRNA gene sequences (“universal primers”) and allow maximum phylogenetic resolution (Fuks et 

al., 2018). However, none of the primer pairs were perfect and universal, and thus right primer 

pairs should be selected to avoid accumulative bias (Klindaworth et al., 2013). For sequencing of 

large number of samples in a single run, PCR is performed using primer sets that contain unique 
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barcodes on both forward and reverse primers or only in one primer followed by pooling samples 

together at equimolar concentration (Multiplexing). Several library preparation protocols for high 

throughput next generation sequencing such as “MiSeq Wet Lab SOP” (Kozich et al., 2013) and 

“Earth Microbiome Project 16S Illumina Amplicon Protocol” (Thompson et al., 2017) are readily 

available online. In our projects, previously described dual index primers (27F and 533R) that 

target the V1-V3 regions of 16S rRNA gene were used (Mandal et al., 2016; Adhikari and Kwon, 

2017), in addition, single index primer sets 515F (Parada et al., 2016) and 806R (Apprill et al., 

2015) that target V4 region of 16S rRNA gene were also used. Chapters two, three, and four are 

based on the dual index primers, while chapters 5 and 6 are based on single index primers.  

Minor changes during library preparation, sequencing procedures and platforms, and 

sequence analysis can significantly alter the results which demands the proper use of quality 

controls and standard operating procedures throughout laboratories (Hiergeist et al., 2016; Sinha 

et al., 2017; Bender et al., 2018). In each run of PCR, negative control should be included like in 

DNA extraction steps and all negative controls should be sequenced along with samples for the 

purpose of quality control. In addition, mock sample that contain the known microbial 

communities should be included in each sequencing run and its analysis. Illumina is the most 

commonly used sequencing platform for 16S rRNA genes analysis, however, other DNA 

sequencing platforms such as 454 pyrosequencing, Ion Torrent and Pacific Biosciences were also 

widely used.  
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1.1.3.2 Computational Analysis of 16S rRNA Gene Sequences 

1.1.3.2.1 Quality Filtering and Preprocessing of Reads 

Approximately 20-25 million paired end reads are obtained from a single Illumina MiSeq 

run using MiSeq reagent kits v3. The sequence reads are in FASTQ format whose quality needs to 

be checked using algorithms such as FastQC (Andrews, 2010) before further processing of reads. 

The adaptor and primer sequences should be removed using NGS read preprocessing tools such as 

Cutadapt (Martin, 2011) followed by trimming and filtering of low quality reads using tools such 

as Trimmomatic (Bolger et al., 2014). Further processing and analysis of amplicon reads can be 

done either independently or using established software. Among different options, QIIME1 

(Caporaso et al., 2010), which has been now succeeded by QIIME2 (Bolyen et al., 2018), and 

Mothur (Schloss et al., 2009) are the two most popular software that contain comprehensive 

packages of tools and algorithms necessary for the thorough analysis of amplicon reads. Another 

important step is the removal of chimeric sequences since chimeric sequences are formed during 

PCR which can contribute to false identification of taxa and inflated estimation of sample alpha 

diversity (Haas et al., 2011). Some of the commonly used tools for chimeric detection of 16S 

rRNA sequences include DECIPHER (Erik et al., 2011), USEARCH (Edgar, 2010), and 

VSERACH (Rognes et al., 2016).  

1.1.3.2.2 Taxonomic Composition Analysis  

Further analysis of amplicon data starts with construction of operation taxonomic units 

(OTUs) by clustering of reads that differ by less than certain percentage of dissimilarity, which is 

most commonly 3% (Westcott and Schloss, 2015; Kopylova et al., 2016). Although the OTUs 

based methods have still been used, new methods including DADA2 (Callahan et al., 2016), 
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UNOISE2 (Edgar, 2016), and Deblur (Amir et al., 2017) have recently been developed that can 

distinguish amplicon sequence variants (ASVs) differing by a single nucleotide. The ASV based 

methods remove Illumina amplicon sequencing errors, and moreover, ASVs are reusable through 

studies, reproducible and are not restricted by incomplete reference database as compared to the 

OTUs. Therefore, it is argued that these methods should replace OTUs based methods (Callahan 

et al., 2017). Furthermore, these methods can perform quality filtering and chimera detection while 

clustering the unique sequences in the reads. Figure 1 shows simple illustration of OTUs and ASVs 

based clustering.  

 After the generation of OTUs table or ASV feature table (containing ASVs and their 

counts), those OTUs or ASVs should be assigned into different levels of taxonomy using different 

pairs of the classifiers and databases. For taxonomic assignment of the OTUs or ASVs, QIIME1 

use UCLUST clustering method by default (Edgar, 2010), while QIIME2 use a naïve Bayes 

classifier (Bokulich et al., 2018). In addition, Mothur uses the naïve Bayesian RDP classifier 

(Wang et al., 2007) for the taxonomic assignments of OTUs. These classifier use different 

reference database such as Greengenes (McDonald et al., 2012), NCBI (Federhen, 2012), RDP 

(Cole et al., 2013), or SILVA (Yilmaz et al., 2013) for taxonomic classification of query 

sequences. Following taxonomic assignments, microbial taxa at different levels of taxonomy can 

be summarized and statistical analysis is performed using various methods such as Univariate 

statistics (t-test/ANOVA or Mannn-Whitney/Kruskal-Wallis test) metagenomoeSeq (Paulson et 

al., 2013), edgeR (Robinson et al., 2009), DESeq2 (Love et al., 2014), ANCOM (Mandal et al., 

2015), LEfSe (Segata et al., 2011), and Random Forest (Breiman et al., 2001) to identify important 

features or taxa differentially present among different groups. Since the sequencing data contain 

high level of systematic variability which can reduce the statistical power and introduce false 
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positive, it is highly desirable to rarefy and/or normalize the OUT/feature table before 

summarization of the taxa, calculation of diversity, and any statistical comparisons. Alternatively, 

several normalization methods have been developed and compared (Pereira et al., 2018) including 

cumulative sum scaling (Paulson et al., 2013) and rarefaction (McMurdie et al., 2013).  

1.1.3.2.3 Microbial Diversity Analysis  

1.1.3.2.3.1 Alpha Diversity Analysis 

 The microbial diversity within a sample or community is called alpha diversity. Richness 

and evenness are two important factors that need to be considered for calculating alpha diversity 

of samples (Kim et al., 2017). Richness measures number of different species present in a sample, 

whereas evenness measures the relative abundance of different species present in a sample. Thus, 

evenness compares how uniformly different species are distributed with in a sample. Normally, 

alpha diversity is calculated as a certain numerical value for each sample. In 16S rRNA genes 

analysis, alpha diversity is usually calculated at OTUs or ASVs level. Commonly used metrics for 

calculating alpha diversity are described below.  

Chao1 

Chao1 is a nonparametric estimator of total species richness in a sample (Chao, 1984). It 

is also called a qualitative metric because it only consider presence or absence of species rather 

than the frequencies of each species in a sample (Lozupone and Knight, 2008). However, it 

considers the frequency of singletons (species having only one count) and doubletons (species 

having only two count) to incorporate information of rare species in a sample. Thus, it is simply 

calculated by adding frequency of rare species on the number of observed species by the equation 

shown below:  
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SChao1 = Sobs + F1 (F1 –1)/ 2(F2+1) 

where Sobs refers to the observed species and F1 and F2 refers to the frequencies of singletons and 

doubletons, respectively.  

Shannon Index (H′) 

Shannon Index is a quantitative diversity metric which measures both species richness and 

evenness. Thus, it accounts for both the number of species and their frequencies present in a given 

sample or community. Although, it estimates both species richness and evenness, it provides more 

emphasis on species richness (Kim et al., 2017). The value increases along with the increase in 

number of species and their evenness distribution in a sample, and higher value of Shannon index 

indicates higher diversity (Lemos et al., 2011). It is calculated by the following formula:  

𝐻′ =  − ∑(𝑝𝑖 ln 𝑝𝑖)

𝑠

𝑖=1

 

Where s refers to the number of OTUs and pi refers to the proportion of the community associated 

with OTUi.  

Simpson Index (D) 

Like Shannon index, Simpson index also measures the richness and evenness present in a 

sample or community. However, it gives more weightage to the evenness than richness (Kim et 

al., 2017). The sample or community having equal abundance of most species are considered to 

be more even. In contrary to evenness, dominance refers to those highly abundant species present 

in a sample or community. Simpson index refers the probability of choosing two individuals from 

same species randomly, and thus indicates species dominance (Lemos et al., 2011). Its value 
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ranges from 0 to 1, where higher value indicates lower diversity and vice versa. It is calculated by 

the following formula:  

D = 1/ ∑ p𝑖
2𝑠

𝑖=1
 

Where s refers to the number of OTUs and pi refers to the proportion of the community associated 

with OTUi (Simpson, 1949; Kim et al., 2017). The data needs to be normalized before calculating 

both Shannon and Simpson’s index to avoid biasness due to variation of sequences among samples.  

Phylogenetic Diversity (PD) 

Phylogenetic diversity (PD) has been defined as “the minimum total length of all the 

phylogenetic branches required to span a given set of taxa on the phylogenetic tree” (Faith, 1992; 

Faith and Baker, 2007). It is based on phylogenetic differences among different taxa and thus, it 

accounts for an evolutionary history of taxa. Higher value of PD indicates higher diversity. 

In sum, different metrics based on species richness, evenness, or phylogenetic relationship 

have been used to calculate certain value as a measure of alpha diversity which is summarized in 

table 1.  

1.1.3.2.3.2 Beta Diversity Analysis 

Beta diversity refers to the diversity among different samples or communities. It is used to 

compare the diversity among samples based on the distance or dis (similarity) between each 

sample pair. While comparing more than two samples, it is calculated for each pair and create a 

distance/dissimilarity matrix. Simply, it can be calculated based on the overlapping taxa/OTUs by 

the equation 𝛽 = (𝑛1 − 𝑐) +  𝑛2 − 𝑐), where n1 and n2 represents the number of taxa in samples 1 

and 2 respectively, and c represent the shared taxa between them (Morgan and Huttenhower, 
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2012). However, there are different beta diversity metrics available which are broadly divided 

based on two main categories: a) either phylogenetic (eg. UniFrac metrics) or non-

phylogenetic/species based (eg. Bray-Curtis and Jaccard index), b) either quantitative (using 

sequences abundance, eg. weighted UniFrac and Bray-Curtis) or qualitative (based on presence or 

absence of sequences, eg. unweighted UniFrac and Jaccard index), as described earlier (Goodrich 

et al., 2014).  Some of the commonly used beta diversity metrics in microbiome study are described 

below. 

Bray-Curtis Index 

It is a non-phylogenetic statistical method that measures compositional dissimilarity of 

different samples or communities, based on their sequences counts. This method is an abundance 

based method which was developed by J. Roger Bray and John T. Curtis in 1957 (Bay and Curtis, 

1957). It is commonly used as either similarity or dissimilarity index (1-similarity index). It is a 

modified version of Sørensen index by including additional abundance information (Chao et al., 

2006). The Bray-Curtis dissimilarity value ranges from 0 to 1 where 0 stands for no difference in 

species composition and 1 stands for complete difference in species composition between two 

communities. The Bray-Curtis dissimilarity index is calculated by the following formula.  

BC𝑖𝑗 = 1 −
2𝐶𝑖𝑗

𝑆𝑖 + 𝑆𝑗
 

Where Si and Sj are the number of species present in populations i and j, Cij is the sum of lesser 

values for only those common species of both sites.  
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Although, this method is widely used to identify compositional dissimilarity between 

communities, it bears large bias when sampling fractions are unequal, and thus cannot be 

recommended to use unless sampling fractions are equal (Chao et al., 2006).   

Unique Fraction Metric (UniFrac) 

Nowadays, Unifrac distances between communities is the most common and widely used 

statistical method to measure beta diversity (Lozupone et al., 2011). UniFrac measures a distance 

between microbial communities based on phylogenetic information of OTUs/taxa present in a 

phylogenetic tree (Lozupone and Knight, 2005). Unifrac is either weighted or unweighted. 

Unweighted UniFrac  

Unweighted UniFrac only considers presence or absence of an OUT/taxa in a sample or 

community rather than its abundance, and thus, it is a qualitative measure of beta diversity. The 

UniFrac distance between two communities is measured as the fraction of branch length in a 

phylogenetic tree that leads to members of either community but not both (Lozupone et al., 2011). 

The unweighted UniFrac has always values between 0 and 1 for identical and nonoverlapping 

communities, respectively. Unweighted UniFrac is more useful while comparing communities that 

differ primarily by what present inside them and thus, it can be better suited to detect the effects 

of various founding populations such as, the effect of temperature on microbial growth, sources of 

newborn mice gut colonization etc. (Lozupone et al., 2007). 

Weighted Unifrac 

Weighted Unifrac is a quantitative measure of beta diversity which measures weights of 

the branches of a phylogenetic tree based on the abundance information (Lozupone et al., 2007). 
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Thus, it considers not only which taxa or OTUs are present but also their abundance, which can be 

an important factor for describing community changes. While calculating weighted UniFrac, the 

raw value is calculated by the following equation: 

𝑢 = ∑ 𝑏𝑖

𝑛

𝑖

× |
𝐴𝑖

𝐴𝑇
−

𝐵𝑖

𝐵𝑇
| 

Where n represents the total number of branches in a tree and bi represents the length of branch i. 

Likewise, Ai and Bi,  represents the number of sequences from branch i, and AT and BT represents 

the total number of sequences, in communities A and B, respectively. In some situations such as, 

for correcting unequal sampling effort or difference in evolutionary rates between taxa, 

normalization of weighted UniFrac can be done by the average distance of members of the two 

communities to the root. This gives the value of normalized weighted UniFrac between 0 and 1 as 

unweighted UniFrac (Lozupone et al., 2007). Weighted UniFrac is more useful while comparing 

communities that differ primarily by the relative taxon abundance and thus, it can better detect the 

effects of transient factors such as nutrient availability where certain taxa can flourish because of 

the availability of limiting nutrient (Lozupone et al., 2007). 

1.1.3.2.3.3 Principal Coordinate Analysis (PCoA)  

In order to compare beta diversity in more than two samples, a distance/dis (similarity) 

matrix is created by comparing every pair of samples. In general, to visualize distances between N 

samples, we need N-1 dimensions which will be hard to visualize. Thus, for better visualization of 

data present in beta diversity distance matrix, two or three dimensional scatter plots are created by 

assigning each sample a location known as PCoA plots. PCoA converts distance matrix into a new 

sets of orthogonal axes known as principal coordinate axes which preserve the distances of each 

individuals (Gower, 1966). The main difference between PCoA and principal component analysis 
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(PCA) is in the type of dataset they used as input. PCA uses a table containing the frequency of 

each phylotype observed in each sample or environment, whereas PCoA uses a dis (similarity) 

matrix as input (Lozupone et al., 2007).  

Each axis has an eigenvalue whose magnitude reflects the fraction of variation in the data 

set explained by that axis. Each axis eigenvalue is used to calculate the proportion of variation 

captured by them in comparison to the total eigenvalues. Thus, the percentage in each axis of PCoA 

plots is defined as the percentage of variations in the data set explained by that axis. The first axis 

(PC1/axis 1) explains maximum amount of variation in the data set followed by PC2/axis2 and so 

on. 

Further comparing of diversity between two groups, there are different statistical tests like 

Adonis (Oksanen et al., 2007), PERMANOVA (Anderson, 2001) and Analysis of similarities 

(ANOSIM) (Clarke, 1993). ANOSIM is a nonparametric tests that is used to compare the statistical 

significances among groups through permutations. It gives R and P values as shown in Figure 5. 

R is a test statistic whose values varies from 0 to 1, where 0 indicates no difference between groups 

analyzed, whereas 1 indicates complete different between groups.  P <0.05 indicates statistical 

significance.  

1.1.3.2.4 Functional Prediction of 16S rRNA Gene Sequences 

 Metagenomic content and putative biological functions of microbial community can be 

predicted through linking 16S rRNA gene sequences with the available microbial genomes. For 

this purpose reference based OUT table is needed. There are already different tools and packages 

such as PanFP (Jun et al., 2015), PICRUSt (Langille et al., 2013), PAPRICA (Bowman et al., 

2015), Piphillin (Iwai et al., 2016), SINAPS (Edgar, 2017), Tax4Fun (Aßhauer et al., 2015), 
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Vikodak (Nagpal et al., 2016) that can predict functional potentialities of marker gene data. There 

are different functional databases available, among them KEGG (Kanehisa et al., 2008) and 

MetaCyc (Caspi et al., 2006) are very popular and widely used. For statistical analysis of predicted 

functional profiles, STAMP (Parks et al., 2014) is a graphical software package that is widely use 

among others.  

1.1.4 Research Approaches to Improve 16S rRNA Based Sequencing Resolution 

In an approach to improve taxonomic resolution of 16S rRNA based amplicon sequencing, 

a new supervised computational method called “Oligotyping” was developed which was initially 

used to investigate the diversity of Gardnerella vaginalis (Eren et al., 2011), and later validated in 

environmental samples too (Eren et al., 2013). This method uses Shannon entropy as a default 

method to identify small but reproducible nucleotide variation within 16S rRNA gene sequences 

of same operational taxonomic units (OTUs), which is then used to generate oligotypes for 

distinguishing closely related organism beyond species level. Similarly, based on the same core 

principle of oligotyping, minimum entropy decomposition (MED) algorithm was developed in 

2015 which is unsupervised, and don’t require prior clustering, and pairwise alignment of the 

sequences in comparison to oligotyping (Eren et al., 2015). Another method, commonly known as 

low-error amplicon sequencing (LEASeq), was reported in 2013 (Faith et al., 2013) in order to 

demonstrate the stability of bacterial strains in human feces over time through sequencing of 16S 

rRNA gene. This method was based on initial tagging of template DNA at one end using diluted 

primer in a linear PCR extension, followed by exponential PCR. By doing so, they claimed 

reduction in PCR errors, and assigned taxonomy up to strain level with high precision and depth. 

Recently, an attempt was made to sequence nearly full length of 16S rRNA genes from human 

skin samples using Illumina MiSeq platform (Burke and Darling, 2016). This approach was the 
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modification of the previous method (Faith et al., 2013), and used dual tagging of template DNA 

at both ends instead of previous single end tagging followed by tagmentation, and amplification 

of both ends before sequencing and assembly of reads. This method can be robust in removing 

chimeras and PCR errors, however sequencing error from this method is unclear.  

In addition to the above methods, single-molecule analysis technologies that can provide 

longer read lengths have been adopted during these days. Pacific Biosciences (PacBio) platform 

based on single molecule sequencing technology has been used successfully for sequencing 16S 

rRNA gene for few years (Fichot and Norman, 2013; Mosher et al., 2014; Schloss et al., 2016; 

Singer et al., 2016). Initially, PacBio sequencing platform possessed higher sequencing error rates, 

and low throughput (Fichot and Norman, 2013). Besides, increased in read length that can be 

sequenced by PacBio, the sequencing error rates had claimed to be low and comparable with those 

of other most widely used sequencing platforms, like Roche 454 and illumina’s MiSeq platform 

(Schloss et al., 2016; Wagner et al., 2016). However, high quality reads obtained from PacBio 

platform was less as compared to those obtained from MiSeq platform. Recently, PacBio circular 

consensus sequencing was used in combination of DADA2 sequence analysis pipelines to identify 

full-length 16S sequence variants with near-zero error rate (Callahan et al., 2018). Besides PacBio, 

a portable MinIONTM sequencing platform was developed by Oxford Nanopore Technologies 

(ONT) in 2014 which was also based on single-molecule analysis technology, and was used 

previously for sequencing complete bacterial genome (Quick et al., 2014). Recently, species level 

identification in mock community was reported using the same platform (Benítez-Páez et al., 

2016). Although they were able to construct almost full length of 16S rRNA sequences, there is 

still need to improve per base accuracy and nucleotide bias. Thus, continuous efforts have been 
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made to improve 16S rRNA based sequencing methods to achieve longer quality read lengths for 

higher taxonomic resolution and functional profiling of microbiomes. 

1.1.5 An introduction to Clostridial Dermatitis (Cellulitis) in Turkey 

The frequency and severity of clostridial dermatitis, often called as cellulitis, has increased 

within the last two decades and has become a serious problem of the commercial turkey industry 

(Lighty et al., 2016).  

Clostridium septicum (CS) is considered as a primary causative agent of cellulitis in 

commercial turkeys (Tellez et al., 2009). Although C. septicum has been reported as a primary 

causative agent of cellulitis in turkey, C. perfringens, C. sordellii, and S. aureus have also been 

described as potential etiological agents (Tellez et al., 2009; Clark et al., 2010; Thachil et al., 2010; 

Lighty et al., 2016). Unlike other diseases, cellulitis in turkey do not fulfill Koch’s postulates 

because not all isolates of CS recovered from cellulitis lesions caused cellulitis after intravenous 

injection of those isolates in health turkeys. In addition, the authors weren’t able to isolate CS in 

every filed cases of turkey cellulitis (Tellez et al., 2009). Various factors such as, flock type, breed, 

weight, litter condition, stress, and stocking density can affect the incidence of cellulitis in turkey 

(Clark et al., 2010; Huff et al., 2013; Lighty et al., 2016).  

Because of limited availability of experimental data, the pathogenesis of cellulitis in turkey 

is still poorly understood. There is still debate among researchers regarding the involvement of 

“inside-out” or “outside-in” theory associated with turkey cellulitis. Through damaged intestinal 

wall, pathogenic Clostridia, toxin, or both can enter into blood stream, localize under skin, and 

produce enterotoxins causing cellulitis. In addition, Clostridia from contaminated environment can 

cause infection through oral route. This is called as “inside-out” theory. Alternatively, Clostridia 
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can enter directly through skin abrasions which is known as “outside in” theory. (Clark et al., 

2010). 

  Any factors described above, can serve as stressor which can affect on intestinal 

permeability (Caso et al., 2008; Gareau et al., 2008) resulting localization of pathogenic Clostridia 

under skin via hematogenous route. C. septicum isolate was isolated from blood of asymptomatic 

turkey, which may suggests the possibility of hematogenous route of infection during turkey 

cellulitis (Neumann and Rehberger, 2009). However, “outside-in” theory also cannot be neglected 

and more studies should be conducted to understand the detail mechanism of pathogenesis in 

turkey cellulitis in future.  

1.1.6 An Introduction to Food Borne Pathogens with Emphasis on Salmonella 

There are several foodborne pathogens that are typically asymptomatic to animals, 

however, can cause severe illness in humans. Once these pathogens are shed in the feces, they are 

transmitted to animals, humans, and food products through different vectors. Centers for disease 

control and prevention (CDC) estimates around 48 million people become sick, out of which 

128,000 gets hospitalized and 3,000 die annually from foodborne illness in the United States 

(CDC, 2017). A study that was published in 2011 reported 31 pathogens that are known to cause 

food borne illness in the United States (Scallan et al., 2011). Among those pathogens, Norovirus 

was reported to contribute highest foodborne illness while nontyphoidal Salmonella spp. was 

reported as a major causative agent for hospitalization and deaths of patients. In addition, they 

reported Norovirus, nontyphoidal Salmonella spp., Clostridium perfringens, Campylobacter spp., 

Toxoplasma gondii, and Listeria monocytogenes as major pathogens responsible for either illness, 

hospitalization or deaths. Overall health-related cost associated with food borne illness from those 
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pathogens was estimated to be around $51.0 and $77.7 billion based on basic and enhanced model 

respectively, as described earlier (Scharff, 2012). 

Among different food borne pathogens, Salmonella is a genus of gram-negative rod-shaped 

bacilli associated with Enterobacteriaceae family that are facultative anaerobes, motile and non-

spore formers. It was previously broadly divided into three different species: S. typhi, S. cholera-

suis, and S. enterica (Hanes, 2003). However, recent nomenclature has divided Salmonella genus 

into two species: S. bongori and S. enterica, where the latter is further divided into six subspecies 

(Su and Chiu, 2007) which contain more than 2,500 serotypes based on O (somatic) and H 

(flagellar) antigens. S. enterica subspecies are associated with warm blooded animals whereas S. 

bongori with cold blooded animals (Tortora, 2008). S. enterica subsp. enterica contains both 

nontyphoidal serovars (S. Typhimurium and S. Enteritidis) and typhoidal serovars (S. Typhi and 

S. Paratyphi), and are mostly associated with food borne illness. 

Salmonella contamination has been reported in meat and meat products of chicken, turkey, 

and other animal species. Salmonella was detected at a higher percentage in ground turkey (49.9%) 

and chicken (44.6%) meat. In addition, it was also detected at ready to eat meats (3.1%), ground 

beef (7.5%), market hogs (8.7%), steers and heifers (1%), and pasteurized eggs (14.6%) (Naugle 

et al., 2006). Salmonella contamination can occur at any stages of food chain from farm to table 

as reviewed earlier (Rajan et al., 2017). For instances, possible routes of contamination start from 

agricultural practices, primary breeder farms, broiler farms, feed production, transportation, 

slaughter house operation, processing plants, distribution channels etc. (Rajan et al., 2017).  

Salmonella species are prevalent as a normal inhabitant of gastrointestinal tract (GIT) in 

most of the livestock species including poultry, cattle, swine and sheep (Doyle and Erickson, 

2006). The typhoidal strains of Salmonella cause enteric fever whereas non typhoidal strains cause 
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food poisoning manifested by typical symptoms of gastrointestinal illness including diarrhea, fever 

and abdominal pain, and thus serve as most common pathogen of gastroenteritis worldwide (Chen 

et al., 2013; Gal-Mor et al., 2014). A study that was conducted in US based on data available from 

2000-2008 and population of 2006 estimates 11% of foodborne illness contributed by non 

typhoidal Salmonella spp. Similarly, these species were found to contribute 35% and 28% 

respectively, among those are hospitalized and deaths, which is equivalent to approximately one 

million of illness, 19,000 hospitalized, and 380 deaths every year (Scallan et al., 2011) with an 

estimated cost of $4,312 and $11,086 per case based on basic and enhanced model respectively, 

as described earlier (Scharff, 2012). Similarly, another study conducted by Majowicz et al. 

estimated 93.8 million cases of gastroenteritis and 155,000 deaths caused by Salmonella species 

annually (Majowicz et al., 2010). Interestingly, 80.3 million cases were estimated to be foodborne 

suggesting Salmonella as a notorious food borne pathogen and burden to both developed and 

developing countries. A total of 69,663 cases of human Salmonellosis was reported in EU/EEA, 

2015 by 20 serovars of Salmonella, where Enteritidis, Typhimurium and Monophasic 

Typhimurium (1,4,[5],12:i:-) were three most contributing serovars (EFSA and ECDC, 2016). 

1.2 References 

Adhikari, B., & Kwon, Y. M. (2017). Characterization of the culturable subpopulations of 

lactobacillus in the chicken intestinal tract as a resource for probiotic development. Front. 

Microbiol. 8, 1389. 

Al, K. F., Bisanz, J. E., Gloor, G. B., Reid, G., and Burton, J. P. (2018). Evaluation of sampling 

and storage procedures on preserving the community structure of stool microbiota: A simple at-

home toilet-paper collection method. J. Microbiol. Methods 144, 117-121. 

Alfano, N., Courtiol, A., Vielgrader, H., Timms, P., Roca, A. L., and Greenwood, A. D. (2015). 

Variation in koala microbiomes within and between individuals: effect of body region and 

captivity status. Sci. Rep. 5, 10189. 



 

23 
 

Amato, K. R., Yeoman, C. J., Kent, A., Righini, N., Carbonero, F., Estrada, A., et al. (2013). 

Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal 

microbiomes. The ISME J. 7, 1344. 

Amir, A., McDonald, D., Navas-Molina, J. A., Kopylova, E., Morton, J. T., Xu, Z. Z., et al. (2017). 

Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191-16. 

Anderson, M. J. (2001). A new method for non‐parametric multivariate analysis of 

variance. Austral Ecol. 26, 32-46. 

Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Available 

online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc. 

Apprill, A., McNally, S., Parsons, R., and Weber, L. (2015). Minor revision to V4 region SSU 

rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. 

Ecol. 75, 129–137.  

Aßhauer, K. P., Wemheuer, B., Daniel, R., and Meinicke, P. (2015). Tax4Fun: predicting 

functional profiles from metagenomic 16S rRNA data. Bioinformatics 31, 2882-2884. 

Bahrndorff, S., Alemu, T., Alemneh, T., and Lund Nielsen, J. (2016). The microbiome of animals: 

implications for conservation biology. Int. J. Genomics 2016, 5304028. 

Baker, G. C., Smith, J. J., and Cowan, D. A. (2003). Review and re-analysis of domain-specific 

16S primers. J. Microbiol. Methods 55, 541-555. 

Barb, J. J., Oler, A. J., Kim, H. S., Chalmers, N., Wallen, G. R., Cashion, A., et al. (2016). 

Development of an analysis pipeline characterizing multiple hypervariable regions of 16S rRNA 

using mock samples. PLoS One 11, e0148047. 

Bender, J. M., Li, F., Adisetiyo, H., Lee, D., Zabih, S., Hung, L., et al. (2018). Quantification of 

variation and the impact of biomass in targeted 16S rRNA gene sequencing studies. Microbiome 

6, 155. 

Benítez-Páez, A., Portune, K. J., and Sanz, Y. (2016). Species-level resolution of 16S rRNA gene 

amplicons sequenced through the MinION™ portable nanopore sequencer. GigaScience 5, 4. 

Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., et al. (2018). 

Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-

feature-classifier plugin. Microbiome 6, 90. 

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina 

sequence data. Bioinformatics 30, 2114-2120. 

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C., Al-Ghalith, G. A., et al. 

(2018). QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. 

PeerJ Preprints 6, e27295v2. 

Bowman, J. S. and Ducklow, H. W. (2015). Microbial communities can be described by metabolic 

structure: A general framework and application to a seasonally variable, depth-stratified microbial 

community from the coastal West Antarctic Peninsula. PLoS One, 10, e0135868. 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc


 

24 
 

Bray, J. R., and Curtis, J. T. (1957). An ordination of the upland forest communities of southern 

Wisconsin. Ecol. Monogr. 27, 325-349. 

Breiman, L. (2001). Random forests. Machine learning 45, 5-32. 

Burke, C. M. and Darling, A. E. (2016). A method for high precision sequencing of near full-

length 16S rRNA genes on an illumina MiSeq. PeerJ 4, e2492. 

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P. 

(2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nature 

Methods 13, 581. 

Callahan, B. J., Wong, J., Heiner, C., Oh, S., Theriot, C. M., Gulati, A. S., et al. (2018). High-

throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide 

resolution. BioRxiv 392332. 

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., et 

al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature 

Methods 7, 335. 

Caso, J. R., Leza, J. C., and Menchen, L. (2008). The effects of physical and psychological stress 

on the gastrointestinal tract: Lessons from animal models. Curr. Mol. Med. 8, 299-312. 

Caspi, R., Foerster, H., Fulcher, C. A., Hopkinson, R., Ingraham, J., Kaipa, P., et al. (2006). 

MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res. 34, 

D511-D516. 

Centers for disease control and prevention (CDC). Retrieved on December, 11, 2017 from: 

https://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html.  

Chakravorty, S., Helb, D., Burday, M., Connell, N., and Alland, D. (2007). A detailed analysis of 

16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. 

Methods, 69, 330-339. 

Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scand. J. 

Stat. 265-270. 

Chao, A., Chazdon, R. L., Colwell, R. K., & Shen, T. (2006). Abundance‐based similarity indices 

and their estimation when there are unseen species in samples. Biometrics 62, 361-371. 

Chen, H., Wang, Y., Su, L., and Chiu, C. (2013). Nontyphoid Salmonella Infection: Microbiology, 

Clinical Features, and Antimicrobial Therapy. Pediatr. Neonatol. 54, 147–152. 

Chen, Z., Hui, P. C., Hui, M., Yeoh, Y. K., Wong, P. Y., Chan, M. C., et al. (2019). Impact of 

Preservation Method and 16S rRNA Hypervariable Region on Gut Microbiota 

Profiling. mSystems 4, e00271-18. 

Cheng, Y., Fox, S., Pemberton, D., Hogg, C., Papenfuss, A. T., and Belov, K. (2015). The 

Tasmanian devil microbiome—implications for conservation and management. Microbiome 3, 76. 

https://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html


 

25 
 

Clark, S., Porter, R., McComb, B., Lippert, R., Olson, S., Nohner, S., and Shivaprasad, H. (2010). 

Clostridial dermatitis and cellulitis: An emerging disease of turkeys. Avian Dis. 54, 788-794. 

Clarke, K. R (1993). Nonparametric multivariate analyses of changes in community structure. 

Aust. J. Ecol. 18: 117– 143. 

Clarridge, J. E. (2004). Impact of 16S rRNA gene sequence analysis for identification of bacteria 

on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17, 840-862. 

Clavel, T., Lagkouvardos, I., Blaut, M., and Stecher, B. (2016). The mouse gut microbiome 

revisited: From complex diversity to model ecosystems. Int. J. Med. Microbio. 306, 316-327.  

Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., et al. (2013). Ribosomal 

Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633-

D642. 

Costea, P. I., Zeller, G., Sunagawa, S., Pelletier, E., Alberti, A., Levenez, F., et al. (2017). Towards 

standards for human fecal sample processing in metagenomic studies. Nature Biotechnol. 35, 

1069-1076. 

Doyle, M. and Erickson, M. (2006). Reducing the carriage of foodborne pathogens in livestock 

and poultry. Poult. Sci. 85, 960-973. 

Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., et al. (2005). 

Diversity of the human intestinal microbial flora. Science 308, 1635-1638. 

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than 

BLAST. Bioinformatics 26, 2460-2461. 

Edgar, R. C. (2016). UNOISE2: improved error-correction for Illumina 16S and ITS amplicon 

sequencing. BioRxiv, 081257. 

Edgar, R. C. (2017). SINAPS: Prediction of microbial traits from marker gene sequences. bioRxiv, 

124156. 

EFSA and ECDC. (2016). The European Union summary report on trends and sources of zoonoses, 

zoonotic agents and food-borne outbreaks in 2015. EFSA J. 14, 4634. 

Ellegaard, K. M. and Engel, P. (2016). Beyond 16S rRNA community profiling: intra-species 

diversity in the gut microbiota. Front. Microbiol. 7, 1475.  

Eren, A. M., Maignien, L., Sul, W. J., Murphy, L. G., Grim, S. L., Morrison, H. G., & Sogin, M. 

L. (2013). Oligotyping: differentiating between closely related microbial taxa using 16S rRNA 

gene data. Methods Ecol. Evol. 4, 1111-1119. 

Eren, A. M., Morrison, H. G., Lescault, P. J., Reveillaud, J., Vineis, J. H., and Sogin, M. L. (2015). 

Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-

throughput marker gene sequences. The ISME J. 9, 968. 



 

26 
 

Eren, A. M., Zozaya, M., Taylor, C. M., Dowd, S. E., Martin, D. H., and Ferris, M. J. (2011). 

Exploring the diversity of Gardnerella vaginalis in the genitourinary tract microbiota of 

monogamous couples through subtle nucleotide variation. PLoS One 6, e26732. 

Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1-10. 

Faith, D. P., and Baker, A. M. (2007). Phylogenetic diversity (PD) and biodiversity conservation: 

Some bioinformatics challenges. Evol. Bioinform. 2, 121-128. 

Faith, J. J., Guruge, J. L., Charbonneau, M., Subramanian, S., Seedorf, H., Goodman, A. L., et al. 

(2013). The long-term stability of the human gut microbiota. Science 341, 1237439.  

Federhen, S. (2012). The NCBI Taxonomy database. Nucleic Acids Res.40, D136-43. 

Fichot, E. B. and Norman, R. S. (2013). Microbial phylogenetic profiling with the Pacific 

Biosciences sequencing platform. Microbiome 1, 10. 

Fierer, N., Lauber, C. L., Zhou, N., McDonald, D., Costello, E. K., and Knight, R. (2010). Forensic 

identification using skin bacterial communities. Proc. Natl. Acad. Sci. U S A 107, 6477-6481. 

Fuks, G., Elgart, M., Amir, A., Zeisel, A., Turnbaugh, P. J., Soen, Y., et al. (2018). Combining 

16S rRNA gene variable regions enables high-resolution microbial community profiling. 

Microbiome 6, 17. 

Gal-Mor, O., Boyle, E. C., and Grassl, G. A. (2014). Same species, different diseases: How and 

why typhoidal and non-typhoidal salmonella enterica serovars differ. Front. Microbiol. 5, 391. 

Gareau, M. G., Silva, M. A., & Perdue, M. H. (2008). Pathophysiological mechanisms of stress-

induced intestina damage. Curr. Mol. Med. 8, 274-281. 

Goodrich, J. K., Di Rienzi, S. C., Poole, A. C., Koren, O., Walters, W. A., Caporaso, J. G., et al. 

(2014). Conducting a microbiome study. Cell 158, 250-262. 

Gower, J. C. (1966). Some distance properties of latent root and vector methods used in 

multivariate analysis. Biometrika 53, 325-338. 

Guinane, C. M. and Cotter, P. D. (2013). Role of the gut microbiota in health and chronic 

gastrointestinal disease: understanding a hidden metabolic organ. Therap. Adv. Gastroenterol. 6, 

295-308. 

Haas, B. J., Gevers, D., Earl, A. M., Feldgarden, M., Ward, D. V., Giannoukos, G., et al. (2011). 

Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR 

amplicons. Genome Res. 21, 494-504. 

Hanes, D. (2003). Nontyphoid Salmonella. In M. D. Milliotis (Ed.) and J. W. Bier (Ed.). 

International handbook of foodborne pathogens, 146-147. New York, NY: Marcel Dekker.  

Hiergeist, A., Reischl, U., and Gessner, A. (2016). Multicenter quality assessment of 16S 

ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability. Int. J. 

Med. Microbiol. 306, 334-342.  



 

27 
 

Huff, G., Huff, W., and Rath, N. (2013). Dexamethasone immunosuppression resulting in turkey 

clostridial dermatitis: A retrospective analysis of seven studies, 1998–2009. Avian Dis. 57, 730-

736. 

Isaacson, R. and Kim, H. B. (2012). The intestinal microbiome of the pig. Anim. Health Res. 

Rev. 13, 100-109. 

Iwai, S., Weinmaier, T., Schmidt, B. L., Albertson, D. G., Poloso, N. J., Dabbagh, K., and 

DeSantis, T. Z. (2016). Piphillin: improved prediction of metagenomic content by direct inference 

from human microbiomes. PLoS One 11, e0166104. 

Jun, S. R., Robeson, M. S., Hauser, L. J., Schadt, C. W., and Gorin, A. A. (2015). PanFP: 

pangenome-based functional profiles for microbial communities. BMC Res. Notes 8, 479. 

Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., et al. (2007). KEGG for 

linking genomes to life and the environment. Nucleic Acids Res. 36, D480-D484. 

Kim, B. R., Shin, J., Guevarra, R., Lee, J. H., Kim, D. W., Seol, K. H., et al. (2017). Deciphering 

diversity indices for a better understanding of microbial communities. J. Microbiol. 

Biotechnol. 27, 2089-2093.  

Kim, H. B., Borewicz, K., White, B. A., Singer, R. S., Sreevatsan, S., Tu, Z. J., et al. (2011). 

Longitudinal investigation of the age-related bacterial diversity in the feces of commercial 

pigs. Vet. Microbiol. 153, 124-133.  

King, G. M., Judd, C., Kuske, C. R., and Smith, C. (2012). Analysis of stomach and gut 

microbiomes of the eastern oyster (Crassostrea virginica) from coastal Louisiana, USA. PLoS 

One 7, e51475. 

Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., et al. (2013). Evaluation 

of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-

based diversity studies. Nucleic Acids Res. 41, e1-e1. 

Kong, F., Zhao, J., Han, S., Zeng, B., Yang, J., Si, X., et al. (2014). Characterization of the gut 

microbiota in the red panda (Ailurus fulgens). PLoS One 9, e87885. 

Kong, Y., Teather, R., and Forster, R. (2010). Composition, spatial distribution, and diversity of 

the bacterial communities in the rumen of cows fed different forages. FEMS Microbiol. Ecol. 74, 

612-622.  

Kopylova, E., Navas-Molina, J. A., Mercier, C., Xu, Z. Z., Mahé, F., He, Y., et al. (2016). Open-

source sequence clustering methods improve the state of the art. mSystems 1, e00003–e00015. 

Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., and Schloss, P. D. (2013). 

Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon 

sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112-

5120. 



 

28 
 

Langille, M. G., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., et al. 

(2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene 

sequences. Nature Biotechnol. 31, 814. 

Lederberg, J. and McCray AT. (2001). ‘Ome sweet ‘omics - a genealogical treasury of words. 

Scientist 15, 8–8. 

Lee, W. and Hase, K. (2014). Gut microbiota-generated metabolites in animal health and 

disease. Nat. chem. biol. 10, 416-424.  

Lemos, L. N., Fulthorpe, R. R., Triplett, E. W., and Roesch, L. F. (2011). Rethinking microbial 

diversity analysis in the high throughput sequencing era. J. Microbiol. Meth. 86, 42-51. 

Leser, T. D., Amenuvor, J. Z., Jensen, T. K., Lindecrona, R. H., Boye, M., and Moller, K. (2002). 

Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota 

revisited. Appl. Environ. Microbiol. 68, 673-690.  

Lighty, M. E., Elvinger, F., Evans, R. D., Sriranganathan, N., LeRoith, T., and Pierson, F. W. 

(2016). Incidence of clostridial dermatitis (cellulitis) and factors for development of the disease in 

turkeys. J. Appl. Poult. Res. 25, 104-112. 

Lim, M. Y., Song, E. J., Kim, S. H., Lee, J., and Nam, Y. D. (2018). Comparison of DNA extraction 

methods for human gut microbial community profiling. Syst. Appl. Microbiol. 41, 151-157. 

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion 

for RNA-seq data with DESeq2. Genome Biol. 15, 550. 

Lozupone, C. A., and Knight, R. (2008). Species divergence and the measurement of microbial 

diversity. FEMS Microbiol. Rev. 32, 557-578. 

Lozupone, C. A., Hamady, M., Kelley, S. T., and Knight, R. (2007). Quantitative and qualitative 

beta diversity measures lead to different insights into factors that structure microbial 

communities. Appl. Environ. Microbiol. 73, 1576-1585.  

Lozupone, C., and Knight, R. (2005). UniFrac: A new phylogenetic method for comparing 

microbial communities. Appl. Environ. Microbiol. 71, 8228-8235. 

Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J., and Knight, R. (2011). UniFrac: An 

effective distance metric for microbial community comparison. ISME J., 5, 169-172.  

Luckey, T. D. (1972). Introduction to intestinal microecology. Am. J. Clin. Nutr. 25, 1292-1294. 

Lyons, P.P., Turnbull, J.F., Dawson, K.A., and Crumlish, M. (2016). Phylogenetic and functional 

characterization of the distal intestinal microbiome of rainbow trout Oncorhynchus mykiss from 

both farm and aquarium settings. J. Appl. Microbiol. 122, 347-363. 

Majowicz, S. E., Musto, J., Scallan, E., Angulo, F. J., Kirk, M., O'brien, S. J., et al. (2010). The 

global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 50, 882-889. 



 

29 
 

Mandal, R. K., Jiang, T., Al-Rubaye, A. A., Rhoads, D. D., Wideman, R. F., Zhao, J., et al. (2016). 

An investigation into blood microbiota and its potential association with Bacterial 

Chondronecrosis with Osteomyelitis (BCO) in Broilers. Sci. Rep. 6, 25882. 

Mandal, S., Van Treuren, W., White, R. A., Eggesbø, M., Knight, R., and Peddada, S. D. (2015). 

Analysis of composition of microbiomes: a novel method for studying microbial 

composition. Microb. Ecol. Health Dis. 26, 27663. 

Marchesi, J.R. and Ravel, J. (2015). The vocabulary of microbiome research: a proposal. 

Microbiome 3, 31.  

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing 

reads. EMBnet. J. 17, 10-12. 

McDonald, D., Price, M. N., Goodrich, J., Nawrocki, E. P., DeSantis, T. Z., Probst, A., et al. 

(2012). An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary 

analyses of bacteria and archaea. ISME J. 6, 610-618. 

McMurdie, P. J., and Holmes, S. (2013). phyloseq: an R package for reproducible interactive 

analysis and graphics of microbiome census data. PLoS One, 8, e61217. 

Mosher, J. J., Bowman, B., Bernberg, E. L., Shevchenko, O., Kan, J., Korlach, J., et al. (2014). 

Improved performance of the PacBio SMRT technology for 16S rDNA sequencing. J. Microbiol. 

Methods 104, 59-60. 

Nagpal, S., Haque, M. M., and Mande, S. S. (2016). Vikodak-A modular framework for inferring 

functional potential of microbial communities from 16S metagenomic datasets. PLoS One 11, 

e0148347. 

Naugle, A. L., Barlow, K. E., Eblen, D. R., Teter, V., and Umholtz, R. (2006). US food safety and 

inspection service testing for salmonella in selected raw meat and poultry products in the United 

States, 1998 through 2003: analysis of set results. J. Food Prot. 69, 2607-2614. 

Neumann, A. P., and Rehberger, T. G. (2009). MLST analysis reveals a highly conserved core 

genome among poultry isolates of clostridium septicum. Anaerobe 15, 99-106. 

Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Stevens, M. H. H., Oksanen, M. J., et al. (2007). 

The vegan package. Community Ecology Package, 10, 631-637. 

Parada, A. E., Needham, D. M., and Fuhrman, J. A. (2016). Every base matters: assessing small 

subunit rRNA primers for marine microbiomes with mock communities, time series and global 

field samples. Environ. Microbiol. 18, 1403–1414.  

 Parks, D. H., Tyson, G. W., Hugenholtz, P., & Beiko, R. G. (2014). STAMP: statistical analysis 

of taxonomic and functional profiles. Bioinformatics 30, 3123-3124. 

Paulson, J. N., Stine, O. C., Bravo, H. C., and Pop, M. (2013). Differential abundance analysis for 

microbial marker-gene surveys. Nature Methods 10, 1200. 



 

30 
 

Pereira, M. B., Wallroth, M., Jonsson, V., and Kristiansson, E. (2018). Comparison of 

normalization methods for the analysis of metagenomic gene abundance data. BMC Genomics 19, 

274. 

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., et al. (2010). A human 

gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59-65. 

Quick, J., Quinlan, A. R., and Loman, N. J. (2014). A reference bacterial genome dataset generated 

on the MinION™ portable single-molecule nanopore sequencer. Gigascience 3, 22. 

Rajan, K., Shi, Z., and Ricke, S. C. (2017). Current aspects of salmonella contamination in the US 

poultry production chain and the potential application of risk strategies in understanding emerging 

hazards. Crit. Rev. Microbiol. 43, 370-392. 

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edgeR: a Bioconductor package for 

differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140. 

Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016). VSEARCH: a versatile open 

source tool for metagenomics. PeerJ 4, e2584. 

Salter, S. J., Cox, M. J., Turek, E. M., Calus, S. T., Cookson, W. O., Moffatt, M. F., et al. (2014). 

Reagent and laboratory contamination can critically impact sequence-based microbiome 

analyses. BMC Biol. 12, 87. 

Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., et al. 

(2011). Foodborne illness acquired in the United States--major pathogens. Emerg. Infect. Dis. 17, 

7-15. 

Scharff, R. L. (2012). Economic burden from health losses due to foodborne illness in the United 

States. J. Food Prot. 75, 123-131. 

Schloss, P. D., Jenior, M. L., Koumpouras, C. C., Westcott, S. L., and Highlander, S. K. (2016). 

Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system. PeerJ 

4, e1869. 

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., et al. (2009). 

Introducing mothur: open-source, platform-independent, community-supported software for 

describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537-7541. 

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., and Huttenhower, 

C. (2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60. 

Sender, R., Fuchs, S., and Milo, R. (2016). Revised estimates for the number of human and bacteria 

cells in the body. PLoS Biol. 14, e1002533.  

Simpson, E. H. (1949). Measurement of diversity. Nature 163, 688. 



 

31 
 

Sinha, R., Abu-Ali, G., Vogtmann, E., Fodor, A. A., Ren, B., Amir, A., et al. (2017). Assessment 

of variation in microbial community amplicon sequencing by the Microbiome Quality Control 

(MBQC) project consortium. Nat. Biotechnol. 35, 1077-1086. 

Singer, E., Bushnell, B., Coleman-Derr, D., Bowman, B., Bowers, R. M., Levy, A., et al. (2016). 

High-resolution phylogenetic microbial community profiling. ISME J. 10, 2020. 

Song, S. J., Amir, A., Metcalf, J. L., Amato, K. R., Xu, Z. Z., Humphrey, G., and Knight, R. (2016). 

Preservation methods differ in fecal microbiome stability, affecting suitability for field 

studies. mSystems 1, e00021-16. 

Su, L. H., and Chiu, C. H. (2007). Salmonella: clinical importance and evolution of nomenclature. 

Chang Gung Med. J. 30, 210-9.  

Tellez, G., Pumford, N. R., Morgan, M. J., Wolfenden, A. D., and Hargis, B. M. (2009). Evidence 

for clostridium septicum as a primary cause of cellulitis in commercial turkeys. J. Vet. Diagn. 

Invest. 21, 374-377. 

Thachil, A. J., McComb, B., Andersen, M. M., Shaw, D. P., Halvorson, D. A., and Nagaraja, K. 

V. (2010). Role of clostridium perfringens and clostridium septicum in causing turkey 

cellulitis. Avian Dis. 54, 795-801. 

Thompson, L. R., Sanders, J. G., McDonald, D., Amir, A., Ladau, J., Locey, K. J., et al. (2017). 

Earth Microbiome Project Consortium. A communal catalogue reveals Earth’s multiscale 

microbial diversity. Nature, 551, 457-463. 

Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M., Knight, R., and Gordon, J. I. 

(2007). The human microbiome project. Nature 449, 804-810. 

Van de Peer, Y., Chapelle, S., and De Wachter, R. (1996). A quantitative map of nucleotide 

substitution rates in bacterial rRNA. Nucleic Acids Res. 24, 3381–3391. 

Wagner, J., Coupland, P., Browne, H. P., Lawley, T. D., Francis, S. C., and Parkhill, J. (2016). 

Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification. BMC 

Microbiol. 16, 274. 

Waite, D. W. and Taylor, M. W. (2014). Characterizing the avian gut microbiota: membership, 

driving influences, and potential function. Front. Microbiol. 5, 223. 

Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naive Bayesian classifier for rapid 

assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 

5261-5267. 

Wei, S., Morrison, M., and Yu, Z. (2013). Bacterial census of poultry intestinal microbiome. Poult. 

Sci. 92, 671-683.  

Westcott, S. L. and Schloss, P. D. (2015). De novo clustering methods outperform reference-based 

methods for assigning 16 S rRNA gene sequences to operational taxonomic units. PeerJ 3, e1487. 



 

32 
 

Woese, C. R. and Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: the primary 

kingdoms. Proc. Natl. Acad. Sci. 74, 5088-5090. 

Wright, E. S., Yilmaz, L. S., and Noguera, D. R. (2012). DECIPHER, a search-based approach to 

chimera identification for 16S rRNA sequences. Appl. Environ. Microbiol. 78, 717-725. 

Xue, Z., Zhang, W., Wang, L., Hou, R., Zhang, M., Fei, L., et al. (2015). The bamboo-eating giant 

panda harbors a carnivore-like gut microbiota, with excessive seasonal variations. MBio 6, 

e00022-15. 

Yeoman, C. J. and White, B. A. (2014). Gastrointestinal tract microbiota and probiotics in 

production animals. Annu.Rev.Anim.Biosci. 2, 469-486.  

Yeoman, C. J., Chia, N., Jeraldo, P., Sipos, M., Goldenfeld, N. D., and White, B.A. (2012). The 

microbiome of the chicken gastrointestinal tract. Anim. Health Res. Rev. 13, 89-99. 

Yeoman, C. J., Chia, N., Yildirim, S., Miller, M. E. B., Kent, A., Stumpf, R., et al. (2011). Towards 

an evolutionary model of animal-associated microbiomes. Entropy 13, 570-594.  

Yilmaz, P., Parfrey, L. W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., et al. (2013). The SILVA 

and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643-

D648. 

Zhao, J., Li, J., Schloss, P. D., Kalikin, L. M., Raymond, T. A., Petrosino, J. F., et al. (2011). Effect 

of sample storage conditions on culture-independent bacterial community measures in cystic 

fibrosis sputum specimens. J. Clin. Microbiol. 49, 3717-3718. 

 

 

 

 

 

 

 

 

 

 

 



 

33 
 

1.3 Tables and Figures 

Table 1. Summary of different metrics used for calculation of alpha diversity. 

Metrics Qualitative/ 

Quantitative 

Other features Limitations 

Chao 1 Qualitative Species richness Only species richness 

Shannon’s index Quantitative Species richness and 

evenness 

More weightage on 

species richness 

Simpson’s index Quantitative Species richness and 

eveness 

 

More weightage on 

species eveness 

Phylogenetic Diversity 

(PD) 

Qualitative Phylogeny based Challenges to address 

phylogenetic tipping 

points, and some 

cases PD losses.  

Other metrics like ACE, 

Rarefaction 

Qualitative Species richness Only species richness 
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Figure 1. Illustration of the simple concept behind the generation of Operational taxonomic units 

(OTUs) and amplicon sequence variants (ASVs).  
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2.1 Abstract 

 To gain better understanding of the distributions of the culturable Lactobacillus species in 

the chicken intestinal tract, we collected ceca, and distal ileum from 10 3-weeks-old broiler 

chickens. Lactobacillus strains from cecal lumen contents (M-CL), and those associated with 

mucosa of ceca (M-CM) and ileum (M-IM) were recovered on de Man, Rogosa and Sharpe (MRS) 

agar plates, and used for microbiota analysis. The total cecal content (T-CL) was also used directly 

for microbiota analysis. We purposefully focused on MRS-recovered populations to gain 

understanding of the culturable subpopulations of Lactobacillus, since the culturability is an 

important phenotype in order to exploit the chicken gut microbiota as a resource for development 

of probiotics. The V1–V3 regions of 16S rRNA gene was amplified from genomic DNA samples, 

and the pooled amplicons were analyzed by MiSeq sequencing with paired-end read 300 cycle 

option. Among MRS groups, Firmicutes were significantly higher in M-IM and M-CL as 

compared to M-CM, whereas Proteobacteriawere significantly higher in M-CM as compared to 

M-IM and M-CL at p < 0.05. Among Lactobacillus, L. salivarius (36%) and L. johnsonii (21%) 

were higher in M-IM as compared to M-CL (L. salivarius, 28%; L. johnsonii, 15%), and M-CM 

(L. salivarius, 20%; L. johnsonii, 11%). L. crispatus was found significantly higher in M-CL as 

compared to M-IM (p < 0.01) whereas L. gasseri was found significantly higher in M-IM as 

compared to M-CM (p < 0.05). L. aviarius, and L. fornicalis were only observed in T-CL. In 

summary, Lactobacillus populations recovered on MRS vary with different regions and locations 

in chicken GIT, which might indicate their distinct functional roles in different gastrointestinal 

tract (GIT) niches, and some species of Lactobacillus are not culturable on MRS agar media. This 

study is the first attempt to define culturable Lactobacillus subpopulations in the chicken intestinal 

tract comprehensively using 16S rRNA gene profiling, and the findings of this study will be used 



 

37 
 

as a platform to develop a new strategy for isolation of effective Lactobacillus probiotic candidates 

based on comparative analyses of chicken gut microbiota. 

Keywords: broiler, gastrointestinal tract, Lactobacillus, microbiota, probiotics 
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2.2 Introduction 

 Due to the increased risk associated with the development of antibiotic resistance in 

bacteria, the use of antibiotic growth promoters (AGPs) in animal industry has been completely 

banned in Europe since January 1, 2006 and has been in the process of reduction or complete 

elimination in several countries, including the United States (Dibner and Richards, 

2005; Huyghebaert et al., 2011). The use of probiotics as an alternative to AGP has been rapidly 

increasing in recent years (Ahasan et al., 2015). Microbes that are commonly used as probiotics 

include various species of the genera Lactobacillus, Bifidobacterium, and Enterococcus (Moreira 

et al., 2005). Although the microbial communities are distributed throughout the GIT, their 

composition was found heterogeneous along the different regions of GIT in chicken (Yeoman et 

al., 2012; Choi et al., 2014; Ranjitkar et al., 2016), pigs (Looft et al., 2014), and cattle (Mao et al., 

2015). The variations in microbial composition can occur not only in different segments along 

GIT, but can also at different locations (lumen vs. mucosa) in the same region (Gong et al., 

2002; Looft et al., 2014). Diverse groups of microbes reside in various regions and locations of 

the GIT and this might indicate differential functional roles they play in maintaining host health. 

Thus, in this study we characterized the bacterial communities across the different regions and 

locations of the GIT of chickens with a focus on the genus Lactobacillus, which have been most 

commonly considered for probiotics, through microbiota analysis of the bacterial cells recovered 

on MRS agar plates. By characterizing bacterial cells recovered on MRS agar plates, we eliminate 

unculturable Lactobacillus strains from the downstream analysis, retaining only culturable strains. 

If necessary, this step can be followed by identification and isolation of the species that 

demonstrate promising utility as probiotics based on comparative metagenomic analysis (16S 

rRNA gene profiling, and/or shot-gun metagenomics). For example, when a comparative 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B10
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B10
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B21
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B31
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B31
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B49
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B49
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B38
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B25
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B28
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B28
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B16
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B16
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B25


 

39 
 

microbiota/microbiome analysis indicates particular species (or strains) as effector species (or 

strains), the culturability of the corresponding species can be first confirmed by the presence of 

corresponding DNA signatures in culture-recovered bacterial populations before any attempt can 

be made to isolate the target species (strains) for further evaluation as promising probiotics. It is 

important to note that current method for 16S rRNA gene profiling using Illumina sequencing has 

a limited resolution and often cannot differentiate even at a species-level, while a strain-level 

analysis is impossible. It is mainly due to short lengths of the target regions in 16S rRNA gene that 

are sequenced, and inevitable sequencing errors from PCR and sequencing step. However, with 

the increasing interest in exploring intra-species variations, novel methods have been developed 

to overcome the current limitations enabling microbiota analysis at a strain-level (Ellegaard and 

Engel, 2016). 

 Lactobacillus strains were found to enhance tight junctions, and thereby reducing intestinal 

permeability in both in vitro studies with Caco-2 cells (Anderson et al., 2010; Miyauchi et al., 

2012) and in vivo study with mice (Xu et al., 2016). However their distribution at species level, 

and functional activity may differ in different regions and locations of the 

GIT. Lactobacillus strains that are tightly associated with mucosa might possess better properties 

as probiotics than those found in lumen, and detailed characterization of Lactobacillus populations 

in both lumen and mucosa of different regions may be very helpful in the quest for isolating good 

probiotic candidates. Although MRS agar is the most commonly used medium for isolation 

of Lactobacillus strains, the scope of the culturability on MRS agar for 

diverse Lactobacillus species has not been systematically evaluated. In addition, since the use of 

candidate Lactobacillus strains for probiotic applications would require the culturability of the 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B13
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B13
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B30
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B30
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B47
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strains, in this study we adopted the approach of characterizing Lactobacillus strains recovered on 

MRS agar plates. 

The precise identification of Lactobacillus isolates by phenotypic method is difficult, 

because phenotypic properties beyond the common fermentation tests are often required, and 

around 17 phenotypic tests are required to identify Lactobacillus at species level (Moreira et al., 

2005). Only around 30% of the total vaginal and intestinal lactobacilli from humans were identified 

correctly at the species level by the most commonly used commercially available biochemical kit 

(Song et al., 1999). Alternatively, taxonomic identification of the strains belonging to 

genus Lactobacillus can be performed at species level with high accuracy based on DNA 

sequencing of the variable regions in 16S ribosomal RNA (16S rRNA) gene (Woo et al., 

2002; Piotrowska et al., 2016). 

Hence, the main aim of this study is to analyze bacterial populations recovered on MRS 

agar media via deep sequencing of the V1–V3 region of 16S rRNA gene in order to better 

understand the structure and distribution of the culturable subpopulations of Lactobacillusin 

different regions and locations of the GIT of broiler chickens. 

2.3 Materials and Methods 

2.3.1 Sample Collection and Processing 

Cobb 500 broiler chickens were provided ad libitum access to water and an antibiotic-free 

corn-soybean meal diet. At the age of 3 weeks, 10 birds were humanely sacrificed, and ceca and 

distal end of ileum (5 cm) were aseptically collected according to the animal use protocol approved 

by the IACUC committee at the University of Arkansas. The age of 3 weeks was chosen because 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B31
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B31
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B42
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B46
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B46
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B34
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the gut microbiota are established stably around this age (Ranjitkar et al., 2016). Cecal lumen 

contents were serially diluted and plated on MRS agar plates. To isolate bacteria associated with 

cecal mucosa or ileal mucosa, each mucosa sample was washed in sterile PBS buffer (pH 7.4) after 

removing luminal contents for four times, and homogenized in 20 ml PBS using Bullet 

Blender® (Next Advance). The supernatant was collected, serially diluted, and plated on MRS agar 

plates. The MRS agar plates were incubated overnight at 37°C under microaerophilic condition. 

Bacterial pellets were recovered from MRS plates with lowest dilutions (1 plate per sample) by 

resuspending all colonies in 5 ml PBS followed by centrifugation. The lowest dilutions were used 

to maximize the number of colonies collected for each sample: 10-fold dilution was used for M-

CL and the supernatant without dilution was for M-CM and M-IM. The average log10CFUs per 

sample (mean ± standard error) was 6.02 ± 0.18, 3.71 ± 0.18, and 3.23 ± 0.21 for M-CL, M-CM, 

and M-IM samples, respectively. 

2.3.2 DNA Extraction and PCR 

 Genomic DNA was extracted from each pellet (equal amount) by using DNeasy Blood and 

Tissue Kit (Qiagen). Genomic DNA of total bacteria in cecal lumen was also extracted directly 

without culturing on MRS plates using QIAamp Fast DNA Stool Minikit (Qiagen). Thus, we had 

altogether 40 genomic DNA samples: 10 MRS-recovered cells from each of cecal lumen (M-CL), 

cecal mucosa (M-CM), and ileal mucosa (M-IM), and 10 total bacterial cells from cecal lumen (T-

CL). The V1–V3 region of the 16S rRNA gene was amplified from the genomic DNA samples 

using barcode-tagged universal primers; 27F (5′-AGRGTTYGATYMTGGCTCAG-3′) and 533R 

(5′-TTACCGCGGCTGCTGGCAC-3′) with attached Illumina adapters. Details regarding 

primers, enzymes, and PCR conditions were previously described (Mandal et al., 2016). The 

amplicons were purified from 0.7% agarose gel electrophoresis after verifying the length of 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B38
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B27
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amplicons. After the concentration of each amplicon sample was measured using Qubit dsDNA 

broad range assay kit (Life Technologies, United States), the amplicons were pooled at an equal 

amount. The pooled sample was gel-purified from 6% TBE gel (Invitrogen, United States), and 

sent for Illumina sequencing at the University of California (Riverside, CA, United States) using 

MiSeq paired-end reads with 300 cycles. 

2.3.3 Data Analysis 

 All MiSeq paired-end sequence reads were analyzed by Quantitative Insights into 

Microbial Ecology, QIIME version 1.9.1 (available at http://qiime.sourceforge.net/; Caporaso et 

al., 2010). General pipelines for data analysis was previously described in details (Mandal et al., 

2016). Forward and reverse ends sequences were joined together by using join_paired_ends.py 

command followed by formatting barcodes using customized Perl script, before extracting 

barcodes using extract_barcodes.py option. Demultiplexing and quality filtering were performed 

by split_libraries_fastq.py with default options. OTU picking was performed by using reference 

sequences from NCBI RefSeq 16S RNA database (O’Leary et al., 2016) and Swarm algorithm 

(Mahé et al., 2014). Taxonomic classification was performed by using reference taxonomy file 

from NCBI RefSeq 16S RNA sequences and SortMeRNA algorithm (Kopylova et al., 2012). 

NCBI RefSeq 16S RNA sequences are curated, non-redundant and quality controlled (Pruitt et al., 

2007; O’Leary et al., 2016). We used this database instead of greengenes database for better 

taxonomic assignment at species level. Cumulative sum scaling (CSS) method with QIIME was 

used to normalize the OTU BIOM (biological observation matrix) before taxonomic assignment 

and alpha diversity calculation. Beta diversity estimates were calculated by using 

beta_diversity_through_plots.py options of QIIME with even sampling depth of 8000. Analysis of 

similarities (ANOSIM) between groups were performed using unweighted UniFrac distance 

http://qiime.sourceforge.net/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B27
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B27
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B33
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B26
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B24
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B35
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B35
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B33
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metric (compare_categories.py, QIIME). Statistical significance in alpha diversity indices and 

different taxa among various groups were measured using one-way analysis of variance (ANOVA) 

followed by post hoc Student’s t-test using JMP Genomics 7 software. 

2.4 Results 

After demultiplexing and quality filtering, there was 1,350,414 assembled sequence reads 

ranging from 444 to 574 bp with median sequence length 546 bp. Summarizing raw vs. CSS 

normalized otu biom table resulted in mean sample depth of 33,760.35 ± 3,311.22 and 1,488 ± 

11.72 reads per sample, respectively. CSS normalized otu biom table was used further for 

taxonomy assignment and alpha diversity analysis. 

2.4.1 Taxonomy Assignment 

2.4.1.1 Phylum Level 

Taxonomic analysis among MRS groups revealed Firmicutes (83.83%) as the predominant 

phylum followed by Proteobacteria (13.83%). Firmicutes were found significantly higher in cecal 

lumen (M-CL) and ileal mucosa (M-IM) as compared to cecal mucosa (M-CM) at p < 0.05 (Figure 

1), but there was no significant difference between M-CL and M-IM. On the 

contrary, Proteobacteria were found significantly higher in M-CM as compared to M-IM and M-

CL at p < 0.05 (Figure 1). 

2.4.1.2 Genus Level 

 Relative abundance of different genera recovered from MRS groups (≥1% of all MRS 

groups) is shown in Figure 2. Lactobacillus, Enterococcus, and Citrobacter were the major 
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predominant genera recovered from MRS groups. Lactobacillus was observed significantly higher 

in M-IM and M-CL as compared to M-CM (p < 0.01), whereas Citrobacter was significantly 

higher in M-CM as compared to M-IM (p < 0.05). Although Lactobacillus was predominant genus 

in each MRS group, recovery of other genera demonstrated that MRS agar medium also supports 

the growth of the strains belonging to Enterococcus and Citrobacter. 

2.4.1.3 Species Level 

 Among the major Lactobacillus species identified, relative abundance of L. salivarius was 

highest in all three groups followed by L. johnsonii. Both L. salivarius (36%) and L. 

johnsonii (21%) were higher in M-IM as compared to M-CL (L. salivarius, 28%; L. johnsonii, 

15%) and M-CM (L. salivarius, 20%; L. johnsonii, 11%) as shown in Figure 3. L. crispatus was 

found higher in M-CL as compared to M-CM and M-IM, but significant difference was found only 

between M-CL and M-IM (p < 0.01). Similarly, L. gasseri was found significantly higher in M-

IM as compared to M-CM (p < 0.05). 

2.4.1.4 OTU Heatmap at Species Level 

 The OTU heatmap that consists of only Lactobacillus species, constructed with QIIME, 

revealed that L. aviarius and L. fornicalis were detected only from the total bacterial group (T-CL) 

as shown in Figure 4. Although these species were found only in a subset of T-CL samples, their 

relative abundance was significantly high as indicated by the green colors. Some 

other Lactobacillus species such as L. aviarius, L. equigenerosi, L. agilis, L. gallinarum, L. 

satsumensis, and L. capillatus were also detected in negligible amounts, in only one or two 

samples of the total bacterial group or MRS groups, which may be due to the errors during PCR 

or Illumina sequencing step. 
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2.4.2 Alpha Diversity 

 The observed OTUs ranged from 20 to 71 for all samples together. The alpha diversity 

measured with observed OTU metric was not significantly different among M-CL, M-CM, and 

M-IM. But as expected, the alpha diversity was significantly higher in the samples for which 

genomic DNA was directly isolated from total bacteria (T-CL) as compared to the samples 

recovered from MRS medium at p < 0.01 as shown in Figure 5.  

2.4.3 Beta Diversity 

 Unweighted unifrac distance metric was used to calculate ANOSIM. ANOSIM results 

showed that there were significant differences in bacterial community structure among different 

groups (M-CL, M-CM, M-IM, and T-CL; R = 0.67, p = 0.001) as illustrated in PCoA plot 

in Figure 6A. Similarly, the difference in bacterial community structure was observed among the 

groups of samples isolated from MRS medium (M-CL, M-CM, and M-IM; R = 0.13, p = 0.01) as 

shown in Figure 6B, and also between cecal and ileum mucosal samples (R = 0.18, p = 0.02) as 

shown in Figure 6C. 

2.5 Discussion 

Although the use of different species of Lactobacillus as probiotics in chickens has shown 

beneficial effects (Zhang et al., 2007; Mappley et al., 2013; Saint-Cyr et al., 2017), there is still a 

lack of solid scientific basis for probiotic actions, and thus effective strategies to isolate promising 

probiotic strains. Comprehensive investigation of Lactobacillus populations in chicken GIT might 

provide important insights for better understanding of their roles in host function, and therefore 

for development of better screening strategies to identify more effective probiotic strains. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B50
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B29
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B39
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Comprehensive characterization of chicken gut microbiota through the use of high throughput next 

generation sequencing (HT-NGS) has been limited as compared to human gut microbiota (Shaufi 

et al., 2015). It has already been reported that the relative abundance of Lactobacillus varies among 

different segments of the GIT in chickens (Gong et al., 2007; Ranjitkar et al., 2016) using culture 

independent method. Only one study reported the analysis of mucosa associated microbiota in 

chicken GIT via high-throughput sequencing of 16S rRNA gene sequences (Gong et al., 2007). 

Thus, there is very limited information available regarding topological differences 

of Lactobacillus population found in chicken GIT. 

Gong et al. (2002) reported differences in bacterial populations between lumen and mucosa 

of chicken caeca through terminal restriction fragment length polymorphism (T-RFLP). The 16S 

rRNA gene-based analysis of mucosa-associated bacterial populations in chicken GIT 

revealed Lactobacillus as a predominant genera in upper GIT where L. salivarius and L. 

aviarius were predominant species in genus Lactobacillus (Gong et al., 2007). Similarly previous 

studies reported Lactobacillus species higher in ileum than cecum (Ranjitkar et al., 2016; Wang et 

al., 2016). We also noticed higher percentage of L. salivarius and L. johnsonii in ileal mucosa as 

compared to cecal lumen and cecal mucosa, albeit there was no significant differences among 

them. This is in agreement with our findings at phylum level where Firmicutes were higher in ileal 

mucosa as compared to cecal lumen and cecal mucosa, but significant difference was observed 

only between ileal mucosa and cecal mucosa. Observation of other genera that do not belong to 

lactic acid bacteria (LAB), such as Citrobacter and Bacillus, among the MRS groups suggests the 

limited selectivity of MRS agar for LAB strains as demonstrated earlier (Hartemink and 

Rombouts, 1999; Quartieri et al., 2016). Our report on the limited selectivity of MRS agar should 

be considered carefully when MRS agar is used as a means to estimate CFUs of LAB strains 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B40
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B40
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B17
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B38
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B17
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B16
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present in animal GIT samples. We reported L. salivarius to be a predominant species in all regions 

and locations of the GIT, which is in agreement with recent studies in chickens that reported higher 

percentage of L. salivarius in both cecum and ileum at the age of 36 (Ranjitkar et al., 2016), and 

at ileal mucosa at the age of 35 (Wang et al., 2016). These recent findings are in agreement with 

the previous reports that L. salivarius are consistently detected in older birds (Knarreborg et al., 

2002; Guan et al., 2003). In this study, L. crispatus was found significantly higher in cecal lumen 

than ileal mucosa whereas L. gasseri was found significantly higher in ileal mucosa as compared 

to cecal mucosa. L. crispatus can be found in vertebrate GIT and is a Lactobacillus species 

frequently isolated from human vaginal tract (Witkin et al., 2007; El Aila et al., 2009). However, 

we should consider different factors including age, diet, litter type, horizontal gene transfer, 

chicken type, geography, climate, environment, feed additive, etc. before direct comparison of the 

present study with other findings, since these factors can affect chicken GIT microbiota (Qu et al., 

2008; Danzeisen et al., 2011; Wang et al., 2016). 

We observed L. aviarius and L. fornicalis only in total bacterial group. Failure to recover 

these species from MRS agar may be due to the followings reasons; these species either (i) require 

strictly anaerobic condition (L. aviarius), or (ii) grow well under anaerobic condition although 

being facultative anaerobic (L. fornicalis) as compared to microaerophilic condition at 37°C, 

which was used in this study (Fujisawa et al., 1984; Dicks et al., 2000; Baele et al., 2003). 

Alternatively, some of these species may have unique metabolic requirements that are not provided 

in MRS media. Observation of significantly higher alpha and beta diversity in total bacterial group 

(T-CL) as compared to MRS groups is obvious. Among the MRS groups (M-CL, M-CM, and M-

IM), alpha diversity was observed higher in cecal lumen followed by cecal mucosa and ileal 

mucosa, although there was no significant difference. This was in agreement with ANOSIM results 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B38
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B44
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B23
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B23
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B19
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B45
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B36
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B36
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B44
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B15
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B11
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5526839/#B4


 

48 
 

which showed differences in bacterial community structure among different MRS groups. Thus 

results from both alpha and beta diversity revealed difference in bacterial diversity between cecum 

and ileum, which is similar with the previous findings (Shaufi et al., 2015; Ranjitkar et al., 2016). 

In summary, L. salivarius was found as a dominant species in all three regions of the GIT. 

Relative abundance of Lactobacillus not only varied with different regions of the GIT but also 

varied between lumen and mucosa of the same region. All the Lactobacillus species present in 

chicken GIT samples may not be cultured on MRS agar media. Analysis of alpha diversity and 

beta diversity revealed differences in the structure of MRS-recovered bacterial communities 

among different regions and locations of the GIT. 

To our knowledge, in most studies to isolate effective probiotics in poultry as well as in 

other food-producing animals, the first step is isolation of strains that belong to the target 

taxonomic group (e.g., Lactobacillus genus), followed by a screening of the strains for various 

desirable phenotypes, including resistance to acidic pH or bile acid, ability to inhibit the growth of 

pathogenic bacteria in vitro, and particular enzymatic properties among others (Asghar et al., 

2016; Kizerwetter-Świda and Binek, 2016). However, this approach has the following inherent 

limitations: (1) the screening is conducted with randomly picked strains from a large pool of 

bacterial strains, (2) the number of strains screened is critically limited due to the labor and time 

required for the process, and (3) the suitability of the screening criteria for in vivo efficacy remains 

questionable (Morelli, 2000). For these reasons, this current approach remains ineffective, limiting 

our ability to exploit the gut microbiota as a rich resource for development of more effective 

probiotics. 
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On the other hand, the use of culture-independent approaches (16S rRNA gene profiling, 

and shot-gun metagenome analysis) have provided new insights on the function of gut microbiota 

in overall body functions (Singh et al., 2014; Choi et al., 2015; Yan et al., 2017), and are expected 

to reveal some core members of gut microbiota that play crucial roles in promoting gut health and 

thus growth performance in poultry. For example, Stanley et al. (2016) attempted to identify 

probiotic candidates for broilers based on their association with desirable productivity outcomes 

using microbiota analyses. Although the lack of consistency in the microbial shifts across the three 

animal trials was shown as a major challenge for this effort, this new approach demonstrated 

in Stanley et al. (2016) has a great potential for identification of effective probiotics. On the other 

hand, Buffie et al. (2015) identified Clostridium scindens as a species associated with resistance 

to C. difficilegut colonization in both mice and humans using comparative microbiota analysis and 

mathematical modeling, and experimentally demonstrated that oral administration of C. 

scindens significantly enhanced resistance to C. difficile colonization in mice. 

In the study by Buffie et al. (2015) the use of the C. scindens strain originated from 

different source was successful in demonstrating the probiotic efficacy, suggesting that the genetic 

capacity conferring resistance is probably well-conserved within the C. scindensspecies. However, 

an increasing body of studies are pointing to the fact that intra-species variations on genetic 

capacity is quite common (Greenblum et al., 2015). In some cases, different strains from the same 

species can act in an opposite manner as previously reported by Fåk and Bäckhed (2012) that L. 

reuteri ATCC PTA 4659 was linked to weight loss while L. reuteri L6798 was linked to weight 

gain in mice. These findings suggests that the probiotic candidates identified by comparative 

microbiota analysis should be strain-specific in some cases and thus need to be isolated from 

appropriate samples used for the microbiota analysis. 
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However, when the target species or strains are identified, the next step to isolate the strains 

represented by the identified signature DNA sequences (e.g., specific 16S rRNA gene sequences) 

would encounter multiple challenges to overcome, primarily due to the complex microbiota 

background from which the target strains are to be isolated. One major challenge can be the 

culturability of the target strains, because DNA sequence data do not provide information 

regarding culturability of each member of a microbiota. However, a comparative microbiota 

analysis between culture-recovered bacteria such as shown in our study (e.g., M-CL) and direct 

microbiota (e.g., T-CL) can identify the culturable members in the microbiota as illustrated 

in Figure 4. This information would ensure that the efforts to retrieve target strains is an achievable 

goal, although the practical strategies to isolate the strains based on DNA signatures still remains 

to be developed. 

We reason that the conventional approach to isolate probiotics should move toward this 

new direction to fully exploit gut microbiota in poultry as a valuable resource to develop probiotics 

that would be more effective in positively modulating gut microbiota, thereby preventing diseases, 

and promoting health and growth performance in poultry. Our study is conducted on a small scale, 

but it is the first attempt to define MRS-recovered Lactobacillus subpopulations in GIT of 

chickens with the long-term goal of developing more effective Lactobacillus probiotic candidates 

based on system-wide comparative microbiota analyses. 
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Figures 

 

FIGURE 1. Relative abundance of different phyla. Different letters indicate significance at p < 

0.05. Total bacterial cells from cecal lumen (T-CL). MRS-recovered cells from cecal lumen (M-

CL), cecal mucosa (M-CM), and ileal mucosa (M-IM). 
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FIGURE 2. Relative abundance of different genera. MRS-recovered cells from cecal lumen (M-

CL), cecal mucosa (M-CM), and ileal mucosa (M-IM). 
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FIGURE 3. Relative abundance of different Lactobacillus species. MRS-recovered cells from 

cecal lumen (M-CL), cecal mucosa (M-CM), and ileal mucosa (M-IM). 
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FIGURE 4. Heatmap of normalized OTU table consisting of Lactobacillus species only. Heatmap 

was constructed with make_otu_heatmap.py option of QIIME with log transformation where all 

zeros were set to a small value (1/2 the smallest non-zero entry), and data was translated to non-

negative after log transformation, and num_otu_hits was set to 0. The abundance 

of Lactobacillus species decreases as the intensity of color decreases from green to yellow. Total 

bacterial cells from cecal lumen (T-CL). MRS-recovered cells from cecal lumen (M-CL), cecal 

mucosa (M-CM), and ileal mucosa (M-IM). 
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FIGURE 5. Alpha diversity in different groups measured with Observed_otus metric. Bars with 

different letters represent statistical significance at p < 0.01. Total bacterial cells from cecal lumen 

(T-CL). MRS-recovered cells from cecal lumen (M-CL), cecal mucosa (M-CM), and ileal mucosa 

(M-IM). 
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FIGURE 6. PCoA plots showing significant difference in bacterial community 

structure. (A) Among all groups analyzed; MRS-recovered cells from cecal lumen (M-CL), cecal 

mucosa (M-CM) and ileal mucosa (M-IM), and total bacterial cells from cecal lumen (T-CL) (R = 

0.67, p = 0.001). (B) Among MRS groups; M-CL, M-CM, and M-IM (R = 0.13, p = 

0.01). (C) Between two different regions of gut; M-CM and M-IM (R = 0.18, p = 0.02).  
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CHAPTER THREE 

 

Cell density alters bacterial community structure in culture-enriched 16S rRNA gene microbiota 

profiling 
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3.1 Abstract  

Microbial community profiling using 16S rRNA gene has provided invaluable insights into 

diverse microbial communities. Recently a few studies have attempted to use 16S rRNA gene 

microbiota profiling in combination with the conventional culture methods to explore bacterial 

communities. In this “culture-enriched microbiota profiling” approach, microbes in a sample are 

cultured on solid media, and the resulting colonies are combined and subjected to 16S rRNA gene 

microbiota profiling. In this study, we investigated the effect of cell densities as determined by 

varying levels of sample dilution on the culture-enriched microbiota profiles using De Man, 

Rogosa and Sharpe (MRS) agar medium as a model system. Cecal samples collected from 10 

healthy chickens were serially diluted to 102 fold (M-LOW), 104 fold (M-MEDIUM), and 106 fold 

(M-HIGH), and the dilutions were plated on MRS agar. 16S rRNA gene profiling showed that the 

relative abundance of certain genera showed gradual increase (Pediococcus and Enterococcus) or 

decrease (Lactobacillus and Turicibacter) with higher dilutions, though it was significant only for 

Pediococcus (p<0.05). The result indicates that the dilution levels of original samples can alter the 

resulting culture-enriched microbiota profiles via unknown density-dependent mechanisms, and 

thus should be considered for designing experiments using culture-enriched microbiota profiling.  

Key words: microbiota, culture-enriched, cell density, 16S rRNA gene sequencing, MRS agar 
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3.2 Introduction 

Studies on gut microbiota have been expanded greatly during recent years due to the 

increasingly common use of high-throughput sequencing for 16S rRNA gene-based microbiota 

profiling of gut microbiotas. Studies focused on chicken gut microbiota have also increased 

remarkably during these years, though they are fewer in comparison to humans and other 

vertebrates1. Similar to other species, chickens also harbor complex and diverse gut microbiota 

dominated by bacteria2,3. These diverse and complex communities of gut microbes were shown to 

play an important role in maintaining health, development, immune systems, and productivity of 

animals4,5.  

One of the goals of exploring gut microbiota in food-producing animals is to exploit the 

abundant bio-resources in gut microbiota and environment to promote gut health, control of enteric 

diseases and thus overall growth performance of the animals6–8. Microbiota profiling using MiSeq 

sequencing of 16S rRNA gene will continue to be an indispensable tool to accomplish the goal. 

However, some inevitable limitations in 16S rRNA gene microbiota profiling approach and the 

need for retrieval of cultured live bacteria for subsequent use for research purpose and as probiotics 

have created the need to combine culture-independent microbiota profiling approach with 

conventional culture methods9,10. This new branch in microbiomics, called “culture-enriched 

molecular profiling” or “culture-enriched microbiota profiling”, attempts to use the culture 

methods to grow live microbes, which are then further analyzed by culture-independent 16S gene 

microbiota profiling method11.  

In the study by Sibley et al. (2011), the authors directly evaluated the cultivability of the 

airway microbiota by analyzing samples from 6 cystic fibrosis patients in depth using culture-

enriched molecular profiling, which combines culture-based methods with the molecular profiling 
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methods using terminal restriction fragment length polymorphisms (T-RFLP) and 16S rRNA gene 

sequencing. The results of the study demonstrated that combining culture-dependent and culture-

independent approaches enhances the sensitivity of either approach alone. In a more recent study 

by Lau et al. (2016), the similar approach was used to investigate the portions of the fecal 

microbiotas that were readily recovered on culture media12. By applying 16S rRNA gene 

sequencing method to culture-enriched bacteria using 66 culture conditions as well as directly to 

the fecal metagenomic DNA samples, they demonstrated that the majority of OTUs detected from 

metagenomics DNA could be detected through culture-enriched molecular profiling, and culture-

enriched profiling detected greater diversity than culture-independent method12. The utility of the 

culture-enriched molecular profiling was further demonstrated by successful target culturing of the 

family Lachnospiraceae based on the microbiota profiles indicating specific growth conditions 

where the relative abundance of this family was significantly enriched among 66 conditions 

evaluated12.     

In another study employing this approach, Browned et al. (2016) studied human fecal 

microbiota by culturing bacteria on a broad-range agar medium, and analyzing the recovered 

colony populations by MiSeq sequencing of 16S rRNA gene13. When these culture-enriched 

molecular profiles were compared to those obtained directly from metagenomic DNA, there was 

a statistically significant correlation between the two types of profiles at the species level 13. In 

another study, similar approach was used to investigate bacterial populations recovered on aerobic 

plate count (APC) Petrifilm and Campy-Cefex selective media14. Our group also previously 

analyzed the bacterial populations recovered on MRS agar by MiSeq sequencing of 16S rRNA 

gene to compare the lactic acid bacterial populations in different regions of chicken GIT15.   
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On the other hand, Lagier et al. (2016) combined a culture method representing diverse 

growth conditions with a rapid method for taxonomic identification such as MALDI-TOF to enable 

high-throughput taxonomic identification of hundreds of thousands of recovered colonies. The 

study showed that the use of “culturomics” allowed the culture of microbes corresponding to 

sequences previously unidentified by comparatively analyzing the results of the metagenomic and 

culturomic analyses16.       

We expect this new trend in the study of microbial communities of employing conventional 

culture methods will continue to grow in its applications to understand and exploit gut microbiotas 

in humans as well as food-producing animals. From this perspective, we wanted to explore the 

experimental variables that might have influence on the microbiota profiles obtained from culture-

enriched bacterial populations. Specifically, we were interested in cell density as determined by 

dilution levels of the microbiota samples as a potentially important variable in assessing the 

structure of culture-recovered bacterial populations. In this study, we used MRS agar medium as 

a simple model system to study the role of the dilution factor in the composition and structure of 

MRS-recovered bacterial populations originated from chicken cecal contents.   

3.3 Materials and Methods 

3.3.1 Cecal Sample Collection and Processing 

Ten breeder hens of 32 weeks old were slaughtered humanely, and one whole cecum from 

each hen was collected aseptically according to the animal use protocol approved by the IACUC 

committee at the University of Arkansas. The cecal contents were removed, serially diluted with 

1X PBS to 102 fold (M-LOW), 104 fold (M-MEDIUM), and 106 fold (M-HIGH) dilutions. These 

dilutions were plated on MRS agar plates and incubated for 24 hours under a microaerophilic 
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condition at 37°C. The average log10 colonies forming units (CFUs) per ceca recovered on MRS 

plates was 9.84±0.157 (mean ± standard error). There were on average 125 27.76 CFUs/plate on 

M-HIGH group for 10 cecal samples.  

3.3.2 DNA Extraction and PCR 

Pellets recovered from MRS agar plates were used to extract genomic DNA using QIAamp 

DNA Mini Kit, Qiagen. In addition, DNA was also extracted from cecal contents directly without 

culturing using QIAamp Fast DNA Stool Minikit, Qiagen which represent total bacterial group 

(T-ZERO). Thus, altogether 40 DNA samples were used to amplify V1-V3 region of 16S rRNA 

gene using barcode-tagged universal primers: 27F (5′-AGRGTTYGATYMTGGCTCAG-3′) and 

533R (5′-TTACCGCGGCTGCTGGCAC-3′) with attached Illumina adapters as described 

previously15,17. The amplicons of desired length were purified from 0.7% agarose gel and the 

concentration of each amplicon was measured by QubitR DNA broad range assay kit 

(InvitrogenTM, USA). The amplicons were pooled together by mixing in an equal amount, purified 

from 6% TBE gel, and sent for MiSeq sequencing at the University of California (Riverside, CA, 

USA) with paired-end read 300 cycle option. 

3.3.3 Data Analysis 

Quantitative Insights into Microbial Ecology, QIIME version 1.9.1 was used to analyze the 

MiSeq Illumina paired- end reads18. After joining two ends by join_paired_ends.py script, 

barcodes were formatted using customized Perl script and extracted using extract_barcodes.py 

script of QIIME. Quality filtering and demultiplexing were performed by split_libraries_fastq.py 

option of QIIME with default option. Reference sequences and taxonomy file from NCBI RefSeq 

16S RNA database were used for picking operational taxonomic unit (OTU)19 and taxonomic 
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classification using closed OTU picking options of QIIME (pick_closed_reference_otus.py). Since 

closed OTU picking method was used which keeps only those sequences that are present in 

reference database (curated and chimera checked), we skipped the chimeric checking step. OTU 

BIOM (biological observation matrix) table was normalized with cumulative sum scaling (CSS) 

method with QIIME20. Beta diversity estimate was calculated by using 

beta_diversity_through_plots.py options of QIIME. Analysis of similarities (ANOSIM) between 

groups was performed using both Weighted and Unweighted UniFrac distance metrics 

(compare_categories.py, Qiime)21. Statistical significance of alpha diversity indices and different 

taxa among various groups were measured by using one-way analysis of variance (ANOVA) and 

post-hoc Tukey-Kramer HSD. 

3.4 Results 

3.4.1 Summary of Sequencing Analysis and Composition of Microbiotas 

There were total 1,707,295 reads after demultiplexing and quality filtering whose sizes 

ranged from 410 to 580 bp with median sequence length of 546 bp. Summarizing OTU biom table 

after removing low coverage samples (<100) and CSS normalization resulted mean sample depth 

of 115.71±6.93 reads per sample. Taxonomic analysis among MRS selected groups revealed 

mainly two major phyla: Firmicutes (93.31%) and Proteobacteria (6.41%), where Firmicutes was 

significantly higher (p<0.0001) as compared to Proteobacteria in all dilution groups. However, 

no significant difference was observed in regards to each of both phyla among the dilution groups 

as shown in Figure 1. At genus level, there were mainly five major genera (>1%) recovered on 

MRS agar plates from three different dilutions as shown in Figure 2. Among them, Lactobacillus 

(76.16%) was dominant genera followed by Enterococcus (11.59%), Citrobacter (4.97%), 

Turicibacter (2.03%), and Pediococcus (1.67%). Occurrence of different genera that do not belong 
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to Lactic acid bacteria (LAB) suggested non-stringent selectivity of MRS agar plates, which 

confirms our previous observation15. When compared at species level, among the major 

Lactobacillus species recovered on MRS agar from different dilutions, L. salivarius (21.44%) was 

the predominant one followed by L. agilis (12.62%), L. crispatus (11.21%), L. gasseri (10.07%), 

L. ingluviei (6.77%), L. johnsonii (4.09%), and L. saerimneri (3.17%). Additionally, L. helveticus 

(2.75%), L. amylovorus (1.90%), L. ultunensis (0.98%), and L. reuteri (0.87%) were also recovered 

as minor members from MRS agar plates as shown in Figure 3. L. salivarius and L. agilis were 

consistently predominant across all dilutions. The detailed information of all OTUs detected in 

MRS dilution groups is shown in Table S1 with their taxonomic assignment and relative 

abundance levels in each group.  

3.4.2 Comparison of Alpha Diversity 

The result of alpha diversity analysis as measured by observed OTUs metric showed that 

the alpha diversity was similar among the 3 MRS groups, while T-ZERO group had significantly 

higher alpha diversity as compared to the 3 MRS dilution groups (p<0.05)(Figure S1). The result 

agrees with the expectation, because only subset of bacterial species in the cecal samples can grow 

on MRS agar medium while T-ZERO should capture all species that are represented in the 

extracted metagnomic DNA.   

3.4.3 Impact of the Dilution Levels on the Structure of MRS-Recovered Bacterial Communities  

To investigate the effect of cell density in cecal samples as determined by dilution levels 

on the relative abundance of different taxonomic groups, we performed statistical analysis as 

summarized in Table 1. The relative abundance of all OTUs found in MRS groups were also 

determined from the directly isolated DNA samples (T-ZERO) and included in the statistical 
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analysis as a reference for comparison. At the phylum level, there was no significant difference in 

the relative abundance of either Firmicutes or Proteobacteria across directly isolated DNA (T-

ZERO) and different dilution groups (M-LOW, M-MEDIUM, and M-HIGH) (Table 1). Although 

there was no statistical significance, the relative abundance of Firmicutes was consistently higher 

in MRS groups as compared to T-ZERO, which is largely due to the enrichment of the dominant 

genus Lactobacillus on MRS agar plates as expected. At genus level, Turicibacter showed the clear 

trend of decreasing relative abundance levels as the dilution level increased (11.8%, 3.1%, 1.9%, 

and 1.2% in T-ZERO, M-LOW, M-MEDIUM, and M-HIGH, respectively). In case of 

Lactobacillus, similar decreasing trend was observed with increasing dilutions among MRS groups 

(81.2%, 77.8%, and 70.0% in M-LOW, M-MEDIUM, and M-HIGH, respectively). On the 

contrary, two genera Enterococcus and Pediococcus showed increasing levels of relative 

abundance as the dilution increased. However, statistical difference was observed only with 

Pediococcus across the different groups (p<0.05). Interestingly, no Pediococcus was found in both 

T-ZERO and M-LOW, while it increased to 1.3% (M-MEDIUM) and 3.5% (M-HIGH) with higher 

dilutions. In addition to Pediococcus, other genera such as Streptococcus and Bacillus were not 

also recovered from the T-ZERO, while recovered on MRS groups. When the relative abundance 

of all LAB (Enterococcus, Pediococcus, and Streptococcus) excluding genus Lactobacillus was 

compared, it showed consistently increasing trends as the dilution increased (p<0.05). At species 

level focused only on the genus Lactobacillus, L. johnsonii and L. ultunensis, which were not 

detected in T-ZERO, were found at variable levels in MRS groups with no clear correlation with 

the dilution levels. On the contrary, L. reuteri present at 6.8% in T-ZERO was significantly lower 

or not detected among MRS groups (<0.05).    
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3.4.4 Comparison of Beta Diversity  

To understand the difference in microbial community structure due to the sample dilution 

levels, we conducted beta diversity analysis (Unweighted UniFrac distance metric) using all 4 

groups (Figure S2). As expected, T-ZERO group was clustered separately away from other MRS 

dilution groups. When the same analysis was conducted only for the 3 MRS groups, we observed 

that the different dilution samples originated from the same cecal samples were tightly clustered 

together for 3 samples, indicating the community structure was not altered by sample dilutions in 

those samples (Figure S3).  

We reasoned that the separation of T-ZERO from MRS dilution groups (shown in Figure 

S2) could be due to the OTUs that were exclusively present in T-ZERO because they could not be 

cultured on MRS agar plates. Therefore, we filtered the reads in T-ZERO to retain only the OTUs 

that were also present in MRS dilution groups, which was then used for beta diversity analysis 

along with MRS dilution groups. The PCoA plot based on Weighted UniFrac distance metric 

showed that the separate clustering of T-ZERO disappeared and T-ZERO group shared the similar 

space with MRS groups (Figure 4). The similar PCoA plot based on Unweighted UniFrac distance 

metric is also shown in Figure S4.   

3.5 Discussion 

Since the 16S rRNA gene profiling by high-throughput sequencing was developed and 

became easily accessible to the researchers, this culture-independent method to study the bacterial 

communities has dominated the field of microbiota analysis22. This advance has greatly increased 

our understanding on the microbial communities from diverse environmental niches. Due to the 

straightforward and comprehensive nature of the approach, researchers have assumed that culture-

dependent approach using deep sequencing of 16S rRNA gene can provide a comprehensive 
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nonbiased analysis of the complex microbial communities. However, further investigations of the 

microbiota profiles have revealed that 16S rRNA gene sequencing approach suffers many biases 

that are originated during multiple steps of the sample and data processing23. Other studies have 

shown that 16S rRNA gene profiling method failed to capture certain members of bacterial 

communities for various reasons, low efficiency in DNA extraction and limited coverage of the 

PCR primer pairs being the major ones9,13,23.  

On the other hand, recent approaches attempting to characterize microbial community in a 

high-throughput manner using bacterial colonies recovered on various agar media have 

successfully isolated novel bacterial species and spore-formers that have escaped detection by 

culture-independent method alone9,12. The culture-enriched microbiota profiling using various 

media was used successfully to enrich rare target bacterial species, which was on the list for the 

most wanted from the Human Microbiome Project (HMP)10. In addition, multiple studies using 

culturomics approach has successfully isolated numerous novel species, which remained 

previously uncultured members 16,24–26.  On the contrary, studies in which the microbiota profiles 

were compared between culture-dependent and culture-independent approaches have reported that 

each approach captured unique subsets of micoorganims10,27. Although the presence of 

microoganisms that are difficult to culture was predicted, detection of microorganisms only by 

culture in the studies was rather surprising. One plausible explanation was that a large majority of 

the culture only strains belong either spore formers or species with cell membranes that are difficult 

to lyse9. These studies strongly suggest that the limitation of 16S rRNA gene profiling approach 

can be overcome at least partially by the use of culture-enriched microbiota profiling or 

culturomics approaches. These studies also suggest that the research communities on microbiota 

analysis will increasingly use these approaches in the coming years.  
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In the present study, we sought to evaluate the hypothesis that the relative abundance levels 

of bacterial taxa in microbial communities as determined by 16S rRNA gene profiling of culture-

enriched bacteria change with different levels of sample dilution. The hypothesis was built on the 

followings: (1) there are a number of antagonistic mechanisms operating among the bacterial cells 

in microbial community, including colicins, bacteriocins, contact-dependent growth inhibition 

systems, or type VI secretion systems among others 28, and (2) the assumption that the cell density 

of the samples, which in turn changes the physical distance between the cells on solid medium 

when plated, would influence those antagonistic interactions during formation of colonies on solid 

media.  

In the recent studies using culture-enriched microbiota profiling, the researchers used 

slightly different procedures to recover the bacterial colonies to represent taxa that are recovered 

on a solid media in terms of the dilution levels of the original samples. For example, Browne et al. 

(2016) plated serial dilutions of the samples, and the lowest dilutions that allowed the growth of 

distinct colonies on agar plates were used to collect the colonies for microbiota profiling13. Rettedal 

et al. (2014) combined multiple dilutions (2-3 consecutive dilutions) of the human fecal samples 

from each media in equal proportions to better represent the bacteria capable of growing on each 

media, and cells were typically recovered from samples diluted 100,000 to 1,000,000-fold10. In 

our previous study, bacterial colonies recovered on MRS agar plates plated with 10-fold dilution 

of intestinal samples were used to perform 16S rRNA microbiota profiling. Similarly, the chicken 

carcass rinsates, which are similar equivalent to 10-fold dilution, were used for plating on APC 

Petrifilim or Campy-Cefex selective media, and the recovered colonies were used for 16S rRNA 

microbiota profiling14.  
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The results in this study demonstrated that the levels of dilution of the chicken cecal 

samples plated on MRS plates changed the resulting microbiota profiles in a dilution level-

dependent manner. The changes in many taxa at phylum, genus and species levels were not 

random, but they followed the patterns closely associated with the level of dilution, suggesting that 

the observed changes in relative abundance are based on cell concentration-dependent 

mechanisms. There are number of antagonistic mechanisms among the members in microbial 

communities, including colicins, bacteriocins, contact-dependent growth inhibition systems, or 

type VI secretion systems among others28. One of the clear trend observed was that the relative 

abundance of the genus Lactobacillus decreased consistently as the dilution increased, indicating 

the presence of concentration-dependent inhibition mechanism by Lactobacillus against non-

Lactobacillus (Table 1). However, closer examination at species level revealed that the responses 

are dependent on specific species of Lactobacillus. The result in Table 1 shows that the different 

Lactobacillus species displayed different patterns of relative abundance in relation to varying 

levels of sample dilution. For example, unlike other Lactobacillus species, L. reuteri was 6.7% in 

T-ZERO, but was reduced significantly in all MRS-dilution groups (p<0.05). On the contrary, L. 

johnsonii and L. ultunensis, which were not detected in T-ZERO, became detectable in MRS-

groups at various levels. Although the relevant explanation is lacking for these observations, future 

studies based on these observations will lead to the discovery of the underlying inhibitory 

mechanisms. It was interesting to observe that some genera such as Pediococcus, Streptococcus, 

and Bacillus were detected only in MRS groups, while undetected in T-ZERO. More interestingly, 

the similar observation was made for particular species of Lactobacillus, such as L johnsonii and 

L. ultunensis. The reasons for these observations are currently unknown, but they challenge some 
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of the assumptions we currently have regarding culture-dependent and culture-independent 

microbiota profiling approaches.  

Since the antagonistic action would be more effective in a close physical distance, the 

colony growth on the plates with the samples of high cell density would be altered by the inhibition 

mechanisms. On the contrary, when the samples are diluted to an appropriate level the inhibitory 

effects would be reduced significantly or completely disappeared, leading to unhindered growth 

of all colonies. This line of reasoning suggests that the microbiota profiles from the samples highly 

diluted would resemble the profiles of the direct profiling more closely. However, the result shown 

Figure 4 does not support this hypothesis in a clear way. It might be possible that the samples in 

M-LOW (102-fold diluted) were already diluted sufficiently to allow unhindered growth of the 

colonies.    

 This study was conducted in a small scale using only MRS media as a model system. 

Therefore, it remains to be tested if similar concentration-dependent changes of culture-enriched 

microbiota profiles would happen when different microbiota samples and culture conditions (e.g. 

media and gas atmosphere) are used. However, considering the common presence of various 

mechanisms of cell-to-cell interactions suggests that similar result would be expected in general 

when other microbiota samples are analyzed using various culture conditions. Therefore, it would 

be important to consider dilution factors for future studies using culture-enriched microbiota 

profiling approach.  
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3.10 Tables and Figures 

Table 1. Summary of the relative abundance levels of different taxonomic groups.  

Level Taxa T-ZERO 

(%) 

M-LOW (%) M-MEDIUM 

(%) 

M-HIGH 

(%) 

Phylum Firmicutes (82.03±7.52)a (93.35±3.82)a (94.91±3.97)a (91.68±5.84)a 

Proteobacteria (17.97±7.52)a (6.12±3.33)a (5.09±3.97)a (7.98±5.85)a 

Genus Lactic acid bacteria (LAB) 

Lactobacillus (69.01±6.15)a (81.21±4.48)a (77.82±5.27)a (70.01±5.07)a 

Enterococcus (1.24±1.24)b (5.62±2.31)ab (12.11±3.66)a 16.37±5.64)a 

Pediococcus (0.00±0.00)b (0.00±0.00)b (1.31±0.67)ab (3.50±1.47)a 

Streptococcus (0.00±0.00)a (1.78±1.22)a (0.49±0.49)a (0.66±0.66)a 

Other than LAB 

Bacillus (0.00±0.00)a (0.59±0.59)a (0.00±0.00)a (0.00±0.00)a 

Turicibacter (11.76±1.72)a (3.11±1.85)b (1.93±0.99)b (1.16±0.77)b 

Citrobacter (1.69±1.69)a (4.03±3.40)a (4.03±4.03)a (6.74±5.96)a 

Other grouping 

Non Lactobacillus (30.99±6.15)a (18.79±4.48)a (22.18±5.27)a (29.99±5.07)a 

LAB other than 

Lactobacillus* 

(1.24±1.24)c (7.99±2.98)bc (13.91±4.08)ab (20.52±5.24)a 

Other than LAB (29.74±6.00)a (10.80±4.80)b (8.27±3.90)b (9.47±5.76)b 

 

Species 

 

L. johnsonii (0.00±0.00)b (4.66±1.44)a (4.56±1.23)a (3.12±1.39)ab 

L. reuteri (6.76±1.77)a (1.70±0.84)b (0.00±0.00)b (1.00±1.00)b 

L. salivarius (16.38±1.56)b (18.85±1.74)ab 21.66±2.13)ab (23.53±3.19)a 

L. ultunensis (0.00±0.00)b (0.64±0.64)ab (1.72±0.87)a (0.54±0.54)ab 

Values are presented in means ± SEM (Standard Errors of Means). Different letters across each 

row show statistically significance at P<0.05 (ANOVA, Student t-test). L. acidophilus only present 

on M-HIGH, absent in all other groups (0.33±0.33) %. Other species didn’t show any significant 

differences among different groups.  
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Figure 1. Relative abundance of different phyla. Different letters indicate significance at p < 

0.0001. M-LOW, M-MEDIUM, and M-HIGH represent bacterial population recovered on MRS 

from 102, 104, and 106 fold dilutions respectively.  
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Figure 2. Relative abundance of major bacterial genera recovered on MRS plates from different 

dilutions. M-LOW, M-MEDIUM, and M-HIGH represent bacterial population recovered on MRS 

from 102, 104, and 106 fold dilutions respectively.  
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Figure 3. Relative abundance of major Lactobacillus species recovered on MRS plates from 

different dilutions. M-LOW, M-MEDIUM, and M-HIGH represent bacterial population recovered 

on MRS from 102, 104, and 106 fold dilutions respectively.  
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Figure 4. PCoA plot showing the distances among total bacteria (T-ZERO) and MRS-selected 

dilution groups (M-LOW, M-MEDIUM, and M-HIGH) based on Weighted UniFrac distance 

metric. For T-ZERO in this analysis, only the OTUs in T-ZERO that were also found in MRS-

dilution groups were used.   
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4.1 Abstract 

Restrictions of in-feed antibiotics use in poultry has pushed researches towards finding their 

appropriate alternatives such as Direct-Fed Microbials (DFM). In this study, previously tested 

Bacillus isolates (B. subtilis and B. amyloliquefaciens) were used to evaluate their therapeutic and 

prophylactic effects against Salmonella Enteritidis in broiler chickens. For this purpose, initial 

antibacterial activity of Bacillus-DFM (104 spores/g or 106 spores/g) against S. Enteritidis 

colonization in crop, proventriculus and intestine was investigated using in vitro digestive model. 

Furthermore, to evaluate therapeutic and prophylactic effects of Bacillus-DFM (104 spores/g) 

against S. Enteritidis colonization, 60 and 30 1-d old broiler chickens were randomly allocated to 

either DFM or Control group (without Bacillus-DFM), respectively. Chickens were orally gavaged 

with 104 cfu of S. Enteritidis per chicken at 1-d old, and cecal tonsils (CT) and crop were collected 

at 3 and 10 days later during therapeutic study, whereas they were orally gavaged with 107 cfu of 

S. Enteritidis per chicken at 6-d old and CT and crop were collected 24 h later from two 

independent trials during prophylactic study. Serum superoxide dismutase (SOD), FITC-d and 

intestinal IgA levels were reported for both chicken studies, in addition of cecal microbiota 

analysis from therapeutic study. DFM significantly reduced S. Enteritidis concentration in intestine 

compartment, and in both proventriculus and intestine compartments as compared to the Control 

when used at 104 spores/g and 106 spores/g, respectively (p<0.05). DFM significantly reduced 

FITC-d and IgA, and SOD and IgA levels (p<0.05) as compared to the Control in therapeutic and 

prophylactic studies, respectively. Interestingly, in the therapeutic study, there was significant 

difference in bacterial community structure between DFM and Control. Likewise, phylum 

Actinobacteria and the genera Bifidobacterium, Roseburia, Proteus, and cc_115 were decreased, 

while the genus Streptococcus was enriched significantly in DFM group as compared to the 
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Control (MetagenomeSeq, p<0.05). Thus, the overall results suggest that the Bacillus-DFM can 

reduce S. Enteritidis colonization and improve the intestinal health in chickens through 

mechanism(s) that might involve the modulation of gut microbiota and their metabolic pathways. 

The prophylactic and therapeutic effects of Bacillus-DFM at higher dose (106 spores/g) in broiler 

chickens are currently being evaluated.  
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4.2 Introduction 

Antibiotics have been widely used in animal production for decades not only for therapeutic 

purposes, but also as antimicrobial growth promoters (AGPs) to enhance growth rate and feed 

conversion efficiency (Dibner and Richards, 2005; Huyghebaert et al., 2011). Although the use of 

AGPs has a significant positive economic impact in commercial animal production systems, there 

is a greater concern regarding possibilities of their use in developing antimicrobial resistance 

(AMR) in bacterial populations. Because of this reason, the use of in-feed antibiotics has been 

completely banned in Europe since January 1st, 2006 (EC Regulation No. 1831/2003) and has also 

been restricted to several non-European countries including Taiwan and South Korea (Maron et 

al., 2013). Since January 2017, medically important antibiotics to human health are no longer 

allowed in animal production for growth promotion or feed efficiency in the United States, and 

require licensed Veterinarian prescription to use them for prevention, control, and treatment of 

animal diseases (FDA’s Guidance #213).  

Poultry industry is the fastest growing animal industry and is expected to grow continuously 

as demand for meat and eggs is accelerating due to growing populations, increasing incomes and 

urbanization (Mottet and Tempio, 2017). However, due to ban or restrictions on AGPs, there are 

growing challenges for poultry industry to cope up with enteric pathogens such as Salmonella. 

This has created huge demands for finding alternatives to AGPs and thus, several possible 

alternatives such as enzymes, (in) organic acids, probiotics, prebiotics, etheric oils, and 

immunostimulants have already been widely studied (Huyghebaert et. al., 2011; Hernandez-Patlan 

et al., 2019a).  
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Among those alternatives, probiotics or Direct-Fed Microbials (DFM) which were defined 

as “a live microbial feed supplement that beneficially affects the host animal by improving its 

intestinal microbial balance” (Fuller, 1989) have generated significant interest during the last two 

decades to all sectors of animal production. The majority of microbes used as DFM are bacteria 

that belong to around 40 different species in 7 bacterial genera including Lactobacillus, 

Bifidobacterium, Propionbacterium, Enterococcus, Pediococcus, Bacillus, and Bacteroides. In 

addition to these bacteria, yeast (Saccharomyces cerevisiae) and molds (Aspergillus niger and 

Aspergillus oryzae) were also reported as DFM (Buntyn et al., 2016). Moreover, certain strains of 

Clostridium such as Clostridium butyricum MIYAIRI 588 was also used as potential probiotic 

(Hagihara et al., 2018). Unlike other bacteria whose vegetative cells are used as DFM, spores from 

Bacillus sps. can be used as DFM because they are  more stable and heat tolerant (Nicholson, 2002; 

Setlow et al., 2006; Moeller et al., 2009), and thus well suited for its application in pelleted feeds 

(Wolfenden et al., 2011). Previous studies reported the ability of Bacillus spores to germinate and 

enumerate within the gastrointestinal tract of the poultry (Lu et al., 2003; Barbosa et al., 2005; 

Latorre et al., 2014). In poultry, several studies have reported beneficial effects of Bacillus isolates 

when used as DFM on production parameters and pathogens inhibition (Fritts et al., 2000; Vilà et 

al., 2009; Dersjant-Li, 2014) which might be achieved through increasing nutrient digestibility, 

improving intestinal morphology, balancing intestinal microbiota, and modulating immunity (Lee 

et al., 2013; Lei et al., 2015; Latorre et al., 2017). Moreover, our previous studies based on the 

selected candidates of Bacillus sps. reported the reduction in the recovery of Salmonella 

Typhimurium in both chicks and poults after experimental infection in preliminary laboratory trials 

(Shivaramaiah et al., 2011), as well as in poults during the brooding phase of commercial turkey 

production (Wolfenden et al., 2011). However, the modes of action for improved performance by 
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Bacillus species were not well defined, and performance parameters were varied within species or 

strains, demanding appropriate screening and characterization of Bacillus isolates prior to 

commercialization (Grant et al., 2018).  

NorumTM (Eco-Bio/Euxxis Bioscience LLC, Fayetteville, AR) is a Bacillus spore direct 

DFM culture consisting of two isolates of Bacillus amyloliquefaciens and one isolate of Bacillu 

subtilis which were isolated in our laboratory and screened based on in vitro enzyme production 

profiles and Clostridium perfringens reduction (Latorre et al., 2015a). In addition, these isolates 

were shown to reduce digesta viscoscity, bacterial translocation, improve performance, bone 

quality parameters, and balance intestinal microbiota in chickens raised with rye based diets or 

corn distillers dried grains with solubles (Latorre et al., 2015b, 2017). However, the effect of 

dietary supplementation of NorumTM has not been evaluated in vivo in an established Salmonella 

challenge model until now. Thus, the objectives of this study were to evaluate the antimicrobial 

effects of NorumTM  DFM against S. Enteritidis in an in vitro digestion model that simulates the 

pH and enzymatic conditions present in the crop, proventriculus and intestine of broiler chickens, 

as well as the therapeutic and prophylactic effects against S. Enteritidis colonization in crop and 

cecal tonsil (CT), aside from its effects on intestinal health parameters, and cecal microbiota 

composition in broiler chickens.  

4.3 Materials and Methods 

4.3.1 Preparation of Treatments and Diets 

NorumTM (Eco-Bio/Euxxis Bioscience LLC, Fayetteville, AR) is a Bacillus spore DFM 

culture, consisting of three isolates: two Bacillus amyloliquefaciens and one Bacillu subtilis. The 

product contains a concentration of stable Bacillus spores (∼3 X 1011 spores/g). DFM was added 
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into the feed to obtain the experimental diet with a final concentration of 104 or 106 spores/g feed. 

Samples of feed containing the DFM were subjected to 100 °C for 10 min to eliminate vegetative 

cells and validate the number of spores per gram of feed after inclusion and mixing steps. 

Following heat-treatment, 10-fold dilutions of the feed samples were plated on TSA, letting spores 

in the feed sample germinate to vegetative cells after incubation at 37 °C for 24 h, hence 

representing the number of spores present per gram of feed. The experimental diet used in this 

study was formulated to approximate the nutritional requirements of broiler chickens as 

recommended by the National Research Council (1994), and adjusted to breeder’s 

recommendations (Cobb-Vantress Inc., 2015). No antibiotics were added to the diet (Table 1). All 

animal handling procedures complied with the Institutional Animal Care and Use Committee 

(IACUC) at the University of Arkansas, Fayetteville.    

4.3.2 Bacterial Strain and Culture Conditions  

The organism used in all experiments was a poultry isolate of Salmonella enterica serovar 

Enteritidis (S. Enteritidis), bacteriophage type 13A, obtained from the USDA National Veterinary 

Services Laboratory, (Ames, IA, United State). This strain was resistant to 25 µg/mL of novobiocin 

(NO, catalog no.N-1628, Sigma) and was selected for resistance to 20 µg/mL of nalidixic acid 

(NA, catalog no.N-4382, Sigma) in our laboratory. For the present studies, 100 µL of S. Enteritidis 

from a frozen aliquot was added to 10 mL of tryptic soy broth (Catalog no. 22092, Sigma) and 

incubated at 37°C for 8 h, and passed three times every 8 h to ensure that all bacteria were in log 

phase as previously described (Lin et al., 1995). Post-incubation, bacterial cells were washed 3 

times with sterile 0.9% saline by centrifugation at 1,864 × g for 10 min, reconstituted in saline, 

quantified by densitometry with a spectrophotometer (Spectronic 20D+, Spectronic Instruments 

Thermo Scientific, Rochester, NY, United States), and finally diluted to an approximate 
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concentration of 1 × 108 , 4 × 104 and 4 × 107 cfu/mL. Concentrations of S. Enteritidis were further 

verified by serial dilution and plating on brilliant green agar (BGA, Catalog no. 70134, Sigma) 

with NO and NA for enumeration of actual cfu used to in the experiments. 

4.3.3 Experiment 1.  In vitro Digestion Model 

In this experiment, the antimicrobial activity of two different concentrations of DFM (104 

or 106 spores/g) against S. Enteritidis was determined using an in vitro digestion model previously 

described (Annett et al., 2002; Latorre et al., 2015a) that simulates the pH and enzymatic 

conditions present in the crop, proventriculus, and intestine of broilers. Experiments were run in 

quintuplicate. Briefly, 5 g of feed with or without DFM were placed inside 50 mL polypropylene 

centrifuge tubes, followed by the addition of 1 ml of 1 × 108 cfu/ml S. Enteritidis suspension in 

each tube. Subsequently, the media and corresponding enzymes to simulate each compartment of 

the in vitro digestion model were added to the tubes, respecting the stirring conditions and 

incubation times established. Finally, in each compartment 1 mL of sample was collected to 

enumerate S. Enteritidis.  

4.3.4 Experiment 2.  Effect of Therapeutic Administration of DFM on Salmonella Enteritidis 

This experiment was performed to evaluate the therapeutic effect of 104 spores/g DFM in 

broiler chickens infected with S. Enteritidis. Sixty one-day-old male Cobb-Vantress broiler 

chickens (Fayetteville, AR, USA) were challenged with 1 × 104 S. Enteritidis cfu per bird and 

randomly allocated to one of two groups (n=30 chickens/group): 1) Control group challenged only 

with S. Enteritidis  and 2) DFM group challenged with S. Enteritidis and also with 104 spores/g 

NorumTM. On days 3 and 10 post-S. Enteritidis challenge, 15 chickens were euthanized by CO2 

inhalation, and the crop and CT from 12 birds per group were aseptically collected to evaluate S. 
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Enteritidis recovery. Blood samples were collected from the femoral vein and centrifuged (1000×g 

for 15 min) to separate the serum for the determination of fluorescein isothiocyanate-dextran 

(FITC-d) concentration and superoxide dismutase (SOD) activity at day 10. The concentration of 

FITC-d administered was calculated based on group body weight at day 9 post-S. Enteritidis 

challenge. Furthermore, intestinal samples for total intestinal IgA levels were also collected. 

4.3.5 Experiment 3.  Effect of Prophylactic Administration of DFM on Salmonella Enteritidis 

In this experiment, two independent trials were conducted to evaluate the prophylactic 

administration of 104 spores/g DFM in reducing the incidence of S. Enteritidis in broiler chickens. 

In each trial, 30 day-of-hatch male Cobb-Vantress broiler chickens (Fayetteville, AR, USA) were 

randomly allocated to one of two groups (n = 15 chickens): 1) Control group challenged only with 

S. Enteritidis  and 2) DFM group challenged with S. enteritidis and also with 104 spores/g 

NorumTM. Chicks were placed in heated brooder batteries with a controlled age-appropriate 

environment and provided with their respective diet and water ad libitum. At day 6, all chickens 

were orally gavaged with 1 × 107 cfu of S. Enteritidis per bird. Chicks were euthanized by CO2 

inhalation 24 h post-S. Enteritidis challenge, and the crop and CT from12 birds per group were 

aseptically collected to evaluate S. Enteritidis recovery. Blood samples were collected from the 

femoral vein and centrifuged (1000×g for 15 min) to separate the serum for the determination of 

FITC-d and SOD. The concentration of FITC-d administered was calculated based on group body 

weight at 6-d old. Furthermore, intestinal samples for total intestinal IgA levels were also collected. 

4.3.6 Salmonella Recovery 

The crop and ceca-cecal tonsils collected in experiments 2 and 3 were homogenized and 

diluted with saline (1:4  w/v), and ten-fold dilutions were plated on BGA with NO and NA, 
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incubated at 37°C for 24 h to enumerate total S. Enteritidis colony forming units. Following plating 

to enumerate total S. Enteritidis, the crop and CT samples were enriched in double strength 

tetrathionate enrichment broth and further incubated at 37°C for 24. Enrichment samples were 

streaked onto Xylose Lysine Tergitol-4 (XLT-4, Catalog No. 223410, BD DifcoTM) selective 

media for confirmation of Salmonella presence. 

4.3.7 Serum Determination of FITC-d Leakage 

FITC-d (MW 3-5 KDa; Sigma-Aldrich Co., St. Louis, MO) was used as a marker of 

paracellular transport and mucosal barrier dysfunction (Yan et al., 2009; Baxter et al., 2017). In 

both in vivo experiments, 1 h before the chicks were euthanized by CO2 inhalation, 12 broiler 

chickens from each group were given an oral gavage dose of FITC-d (8.32 mg/kg of body weight), 

and the rest were used as controls. The concentrations of FITC-d from diluted sera (1:5 PBS) were 

measured fluorometrically at an excitation wavelength of 485 nm and an emission wavelength of 

528 nm (Synergy HT, Multi-mode microplate reader, BioTek Instruments, Inc., VT, USA). FITC-

d concentrations were reported as ng of FITC-d/mL of serum (Baxter et al., 2017).  

4.3.8 Enzyme-Linked Immunosorbent Assay for Total IgA Levels 

Total IgA levels in both in vivo experiments were determined in 12 gut rinse samples each 

as previously described (Merino-Guzmán et al., 2017).  A commercial indirect ELISA set was 

used to quantify IgA according to the manufacturer’s instructions (Catalog No. E30-103, Bethyl 

Laboratories Inc., Montgomery, TX 77356). 96-well plates (Catalog No. 439454, Nunc MaxiSorp, 

Thermo Fisher Scientific, Rochester, NY) were used, and samples diluted 1:100 were measured at 

450 nm using an ELISA plate reader (Synergy HT, multi-mode microplate reader, BioTek 
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Instruments, Inc., Winooski, VT, USA). Total intestinal IgA levels obtained were multiplied by 

the dilution factor (100) to determine the amount of chicken IgA in the undiluted samples. 

4.3.9 Serum Superoxide Dismutase Determination 

Serum superoxide dismutase activity was measured in 12 serum samples per group using 

a commercial assay kit (item No. 706002, Cayman chemical company, Ann Arbor, Michigan, 

United States) following the manufacturer's instructions. The three types of SOD (Cu/Zn, Mn, and 

FeSOD) were determined in samples diluted 1:5. Samples were measured at 450 nm using an 

ELISA plate reader (Synergy HT, multi-mode microplate reader, BioTek Instruments, Inc., 

Winooski, VT, USA). 

4.3.10 Data and Statistical Analysis 

Log cfu/g of S. Enteritidis, total intestinal IgA, SOD activity and serum FITC-d 

concentrations were subjected to analysis of variance (ANOVA) as a completely randomized 

design, using the General Linear Models procedure of SAS (SAS Institute Inc., 2002). Significant 

differences among the means were determined by Duncan’s multiple-range test at P<0.05. 

Enrichment data were expressed as positive/total chickens (%), and the percent recovery of S. 

Enteritidis was compared using the Chi-Squared test of independence (Zar, 1984), testing all 

possible combinations to determine the significance (P<0.05). 
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4.3.11 Cecal Microbiota Analysis 

4.3.11.1 DNA Extraction and PCR 

Six cecal samples from each group (Control and DFM groups) from the therapeutic study 

at day 10 post-S. Enteritidis challenge were used for the cecal microbiota study. About 200 mg of 

ileal content from each sample was used for genomic DNA extraction using QIAamp® fast DNA 

stool mini kit (Qiagen, Catalog # 51604) following manufacturer’s instructions with addition 

incorporation of bead beating step. For bead beating, pellet from each sample was resuspended in 

1 ml inhibit Ex buffer provided with kit and transferred to 2 ml microcentrifuge tubes with screw 

cap (Thermofisher Scientific, Catalog # 3468) containing 0.25 ml of sterile 0.1mm glass leads 

(BioSpec, Mfr # 11079101). Bead beating was performed using Bead mill 24 (Fisher Scientific) 

for 6 cycles where each cycle contained run time 0.30 sec and stopping time 0.11 sec between each 

cycle. V1-V3 region of 16S rRNA gene from each 10 ng genomic DNA samples was amplified by 

using unique barcoded universal primers as described previously (Adhikari and Kwon, 2017). PCR 

was performed using Q5® High-Fidelity DNA Polymerase (NEB; New England Biolabs) in a final 

volume of 50 μl following manufacturer’s instructions. The PCR condition included initial 

denaturation at 98 °C for 30 sec followed by 30 cycles of exponential amplifications using 

denaturation at 98 °C for 10 sec, annealing at 58 °C for 30 sec, extension at 72 °C for 30 sec, and 

final extension at 72 °C for 2 min. Amplicons were purified from 0.7% agarose gel, measured 

concentration using Qubit dsDNA broad range assay kit (Life Technologies, United States), and 

equal concentration (20 ng/μl) of amplicons were pooled together. The purified pooled amplicons 

were sequenced using MiSeq illumina 300 cycle paired end options at University of California 

(Riverside, CA, United States).  
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4.3.11.2 16S rRNA Gene Sequence Analysis 

Raw sequence reads were analyzed using Quantitative Insights into Microbial Ecology, 

QIIME version 1.9.1 (Caporaso et al., 2010) at Jetstream cloud computing platform (Towns et al. 

2014; Stewart et al. 2015). Paired end reads were joined together using join_paired_ends.py 

command of QIIME with fastq-join option (Aronesty, 2011). After joining, barcodes positions 

were formatted using customized Perl script and barcodes were removed using 

extract_barcodes.py command of QIIME. Split_libraries_fastq.py command of QIIME was used 

for demultiplexing and quality filtering of joined reads. Reads having Phred quality score less than 

20 were discarded. The chimeric sequences were identified using USEARCH version 6.1.544 

(Edgar, 2010) and chimeric sequences along with shorter sequences (<100 bp) were excluded for 

downstream analysis. The OTU picking was performed using pick_open_reference_otus.py 

command of QIIME with uclust method (Edgar, 2010). Taxonomy was assigned based on green 

genes taxonomy and reference database version 13_8 (DeSantis et al., 2006) with RDP classifier 

(Wang et al., 2007).  

For further statistical analysis and visual exploration, OTU table with taxa in plain format 

and metadata file were uploaded to the MicrobiomeAnalyst tool (Dhariwal et al., 2017). Data were 

filtered using options: minimum count 4 and low count filter based on 20% prevalence in samples. 

Alpha diversity analysis was calculated based on Shannon Index. Data were normalized using 

cumulative sum scaling before any statistical comparisons (Paulson et al., 2013). Significant 

differences in alpha diversity among different groups were calculated based on ANOVA/T-test 

where significant difference level was set at p<0.05. Beta diversity was calculated based on 

Weighted UniFrac distance metric (Lozupone et al., 2011) and statistical comparisons among 

groups were performed with Analysis of Similarities method (ANOSIM). To determine 
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differentially abundant phyla and genera among different groups, MetagenomeSeq (Paulson et al., 

2013) that uses zero-inflated Gaussian fit model was used, where the level of significance was set 

at p<0.05. PICRUSt ver. 1.1.3 (Langille et al., 2013) was further utilized to predict the functional 

pathways from 16S rRNA gene sequencing data using closed OTU table created with the 

Greengenes database 13.8. The statistical analysis and visualization in the third level KEGG 

pathways predicted by PICRUSt between two groups were performed using the Statistical 

Analysis of Metagenomic Profiles (STAMP ver. 2.1.3) (Parks et al., 2014).  

4.4 Results 

4.4.1 In vitro Digestion Model 

The antibacterial effect of DFM at two different concentrations (104 spores/g and 106 

spores/g) against S. Enteritidis colonization in crop, proventriculus, and intestine using the in vitro 

digestive model is shown in Table 2. When DFM was used at 104 spores/g of feed significantly 

reduced S. Enteritidis colonization in intestinal compartment (p<0.05), while at higher 

concentration (106 spores/g) significantly reduced S. Enteritidis colonization in both proventriculus 

and intestine (p<0.05) as compared to the control group (Table 2). However, the antibacterial 

effect of DFM was more pronounced at higher dose and especially in intestine, where it reduced 

the S. Enteritidis colonization by more than 7 log10 and brought to the undetectable level.  

4.4.2 Prophylactic Effects of DFM 

4.4.2.1 Effect on Salmonella Enteritidis Cecal Tonsil (CT) and Crop Colonization 

The prophylactic effect of DFM (104 cfu/g) on Salmonella Enteritidis cecal tonsil (CT) and 

crop colonization in broiler chickens is shown in Table 3. Although there were no significant 
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differences, there were clear tendencies in reducing S. Enteritidis count and its incidence in both 

trials and tissues of chickens in DFM group as compared to the control group (Table 2). In trial 1, 

the S. Enteritidis incidence was reduced by 17% in both CT and Crop in DFM group as compared 

to the Control. Similarly, in trial 2, the S. Enteritidis recovery was decreased by 17 and 23% 

respectively in CT and Crop in DFM group in comparison with the Control group. In addition, S. 

Enteritidis count was reduced by less than half log10 and more than 1 log10 in CT and Crop, 

respectively in both trials when comparing the DFM group with control group (Table 3).  

4.4.2.2 Superoxide Dismutase (SOD) Activity, Serum FITC-d Concentration and Total Intestinal 

IgA Levels 

The SOD activity, serum FITC-d concentration and total intestinal IgA levels in broiler 

chickens with or without receiving DFM into the diet are shown in Table 4. DFM significantly 

reduced SOD activity and total intestinal IgA levels as compared to the control group (p<0.05). 

However, no significant difference was observed with FITC-d between two groups as shown in 

Table 4.  

4.4.3 Therapeutic Effects of DFM 

4.4.3.1 Effect on Salmonella Enteritidis Cecal Tonsil (CT) and Crop Colonization 

The therapeutic effect of DFM (104 cfu/g) on S. Enteritidis cecal tonsil (CT) and crop 

colonization in broiler chickens is shown in Table 5. Although there were no significant 

differences, there were tendencies in reducing S. Enteritidis count and its incidence in both ages 

and tissues of chickens in DFM group as compared to the control group (Table 5). At 3-d old, the 

S. Enteritidis count and its incidence in CT were reduced by ~2 log10 and 25%, respectively by 



 

99 
 

DFM group as compared to the control group. In addition, at 10-d old, DFM reduced the S. 

Enteritidis count in CT and crop by more than 1 log10 as compared to the control group, while the 

incidence of  S. Enteritidis was decreased by 17 and 16%, respectively (Table 5).    

4.4.3.2 SOD Activity, Serum FITC-d Concentration and Total Intestinal IgA Levels 

The SOD activity, serum FITC-d concentration and total intestinal IgA levels in broiler 

chickens with or without receiving DFM into the diet at day 10 post-S. Enteritidis challenge are 

shown in Table 6. DFM significantly reduced FITC-d and intestinal IgA levels as compared to the 

control (p<0.05). In case of SOD activity, there was numerical reduction in DFM group compared 

to the control group, however, no significant difference was observed.  

4.4.4 Cecal Microbiota  

Summarization of the OTU table resulted a total of 441,934 reads that ranges from 27,654 

to 43,856 reads per sample. The total number of OTUs after data filtering was 1,108.  

4.4.4.1 Cecal Microbiota Composition at Phylum Level 

Firmicutes was found as a predominant phylum in both groups (Control group, 88.71%; 

DFM group, 86.68%) followed by Proteobacteria and Actinobacteria as shown in Figure 1. 

Actinobacteria was significantly reduced in DFM group as compared to the Control group 

(p<0.05).  

4.4.4.2 Cecal Microbiota Composition at Genus Level 

The relative abundance of different genera present in Control and DFM groups is shown 

in Figure 2. Ruminococcus was found as a predominant genus in both groups (Control group, 
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14.48%; DFM group, 19.14%) followed by Lactobacillus (Control group, 8.91%; DFM group, 

3.40%) and Streptococcus (Control group, 0.15%; DFM group, 3.68) in Control and DFM, 

respectively.  

The genera Bifidobacterium, Roseburia, Proteus, and cc_115 were significantly decreased, 

while the genus Streptococcus was significantly enriched in DFM group as compared to the 

Control group (MetagenomeSeq, p<0.05). In addition, some of the notable genera such as 

Enterococcus, Dorea, Coprobacillus, Coprococcus, Eubacterium, and Blautia were numerically 

reduced in DFM group as compared to the Control group.  

4.4.4.3 Alpha Diversity 

Alpha diversity of Control and DFM groups as measured by Shannon index is shown in 

Figure 3. The average Shannon index in the Control group was 4.61±0.09 (Mean±SE), while 

4.27±0.22 in case of the DFM group. However, there was no significant difference observed 

between both groups.  

4.4.4.4 Beta Diversity 

Beta diversity between Control and DFM groups as measured by Unweighted UniFrac 

metric is illustrated in PCoA plot (Figure 4). Analysis of similarities (ANOSIM) result showed 

significant difference in microbial community structure between the two groups (R=0.35, p<0.01).  

4.4.4.5 Functional Potentialities of Cecal Bacterial Community 

The predicted functions of cecal microbiota in the Control and DFM groups by PICRUSt 

and their analysis by STAMP are shown in the Figures 5 and 6. The PCA plot shows that the third 
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level KEGG pathways of DFM group are relatively distinct in comparison to the Control group 

(Figure 5). More specifically, many bacterial genes that are involved in various metabolic 

pathways such as bile acid synthesis (primary and secondary), carbohydrate metabolism (pentose 

phosphate pathway and other glycan degradation,), and nucleotide metabolism (purine) were 

predicted to be enriched in the Control group. On the other hand, bacterial genes that could involve 

in amino acid metabolism (Glycine, Serine, and Threonine) and alkaloids biosynthesis 

(isoquinoline, tropane, piperidine, and pyridine alkaloids) were predicted to be enriched in the 

DFM group (Figure 6). 

4.5 Discussion 

Previous study reported nontyphoidal Salmonella sps., Clostridium perfringens, 

Campylobacter sps., and Escherichia coli as some of the most important foodborne bacterial 

pathogens in the United States. (Scallan et al., 2011). Overall health-related cost associated with 

the food borne illness from those pathogens was estimated to be around $51.0 and $77.7 billion 

based on basic and enhanced model respectively, as described earlier (Scharff, 2012). 

Nontyphoidal Salmonella sp. was reported as a major causative agent for hospitalization and 

deaths of patients in the United States (Scallan et al., 2011). S. enterica serotype Enteritidis (S. 

Enteritidis) that emerged as an important human illness during 1980s is currently one of the most 

common non typhoidal Salmonella serotypes worldwide, especially in developed countries 

(Patrick et al., 2004). Poultry and their products (eggs and meat) are considered as one of the most 

important source of S. Enteritidis infection in humans, however, S. Enteritidis was also isolated 

from non-poultry sources such as market hog carcass, steer and heifer carcass, cow and bull 

carcass, and ground beef  (White et al., 2007; Gantois et al., 2009; Antunes et al., 2016). 
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Several studies have been conducted with the objective to reduce S. Enteritidis load in 

poultry and their products using various approaches such as antibodies, bacteriophages, probiotics, 

prebiotics, vaccines, and integrated farm management (Fulton et al., 2002; Fiorentin et al., 2005; 

Donalson et al., 2008; Trampel et al., 2014; Kilroy et al., 2016). Although several approaches have 

already been studied, there is still need to find better products that can work effectively with 

reproducible results. In the present study, we evaluated the effects of NorumTM (DFM) to reduce 

S. Enteritidis colonization using both in vitro and in vivo trials in broiler chickens. Our previous 

study using in vitro digestion model showed reduction of C. perfringens by the isolates used in 

NorumTM in different non-corn based diets demonstrating their antibacterial property against this 

Gram-positive bacteria (Latorre et al., 2015a). The antimicrobial activity of various species of 

Bacillus including B. subtilis and B. amyloliquefaciens were studied elsewhere and found to be 

effective mainly against Gram-positive bacteria (Cladera-Olivera et al., 2004; Yilmaz et al., 2006; 

Baindara et al., 2013; Kadaikunnan et al., 2015). In the current study, we also observed the 

reduction of S. Enteritidis by DFM in the intestinal compartment simulated in the model and in 

both proventiculus and intestinal compartments, when using 104 spores/g and 106 spores/g DFM, 

respectively. These findings further suggest that DFM exhibit a wide range of antibacterial 

activities which can be effective for both Gram-positive and negative bacteria. Although the 

detailed mechanism is not well understood, these antibacterial properties of DFM might be 

achieved not only through competitive exclusion and production of antimicrobial peptides 

(AMPs), but also might be indirectly through one or several beneficial effects exhibited by them 

including secretion of exogenous enzymes, alternation of immunity, gut microbiota and 

morphology (Latorre et al., 2015a; Latorre et al., 2016; Nawawi et al., 2017; Grant et al., 2018). 

The AMPs secreted by Bacillus sps. are diverse in nature with different chemical structure 
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(Cladera-Olivera et al., 2004) and include bacteriocins, glycopeptides, lipopeptides, and cyclic 

peptides (Baindara et al., 2013). 

The antibacterial activity of Bacillus isolates in NorumTM against Clostridium perfringens 

(Latorre et al., 2015a), S. Enteritidis, Escherichia coli, and Clostridium difficile (Latorre et al., 

2016) was evaluated earlier using in vitro model and reported as promising DFM candidates. In 

addition, this was found to mitigate the negative impacts of necrotic enteritis in broiler chickens 

using a laboratory challenge model (Hernandez-Patlan et al., 2019b). In this study, we evaluated 

the therapeutic and prophylactic effectes of those isolates in NorumTM against S. Enteritidis CT 

and crop colonization in broiler chickens. Although there were no significant differences, there 

were tendencies in reducing S. Enteritidis count and its incidence in both ages (3d and 10 d) and 

tissues (CT and Crop) of chickens by DFM as compared to the control during therapeutic study. 

Similar tendencies were also reported in both trials during the prophylactic study. This may be due 

to the lower dose of Bacillus spores (104 spores/g of feed) used during the in vivo trials, because 

the antibacterial effect was more pronounced with higher dose compared to the lower dose as 

demonstrated by in vitro digestion model (Table 2). A similar dose dependent antimicrobial 

response of Bacillus-DFM against Necrotic enteritis was observed earlier where higher dose (106 

cfu/g of feed) mitigated negative impacts of NE more than the lower dose (104 cfu/g of feed) 

(Tactacan et al., 2013). The antibacterial effect of NorumTM against S. Enteritidis with higher dose 

is currently under evaluation.   

Several enteric pathogens including Salmonella sps. disrupt the intestinal tight junctions 

leading to the increase in gut permeability; commonly known as “leaky gut” (Berkes et al., 2003; 

Awad et al., 2017). Serum FITC-d increases with inflammation and is considered as a good 

indicator to measure enteric inflammation induced gut permeability in broiler chickens (Vicuña et 
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al., 2015). The significant reduction of serum FITC-d level by DFM as compared to the control 

group in the therapeutic study might be due to the alleviation of negative impacts of S. Enteritidis 

by increasing the regulation of tight junction proteins (Chichlowski et al., 2007; Grant et al., 2018) 

. Antioxidant enzymes such as SOD play a vital role to degrade superoxide anions and hydrogen 

peroxide produced during an inflammatory process. There was significant and numerical increase 

of SOD activity in Control group of the prophylactic and therapeutic study, respectively.  

The increased SOD activity in Control group could be related to the response of increase in 

oxidative stress due to severe intestinal damage caused by S. Enteritidis, since SOD play a key role 

in lowering oxidative stress (Carillon et al., 2013). Similarly, the significant increase in IgA level 

in both in vivo trials might be associated with disruption of intestinal epithelium, since secretion 

of intestinal IgA serves as the first line of defense to protect the intestinal epithelium from enteric 

toxins and pathogenic microorganism, as well as to antagonizes the inflammatory processes and 

enhance the nonspecific defense mechanisms (Mantis et al., 2011; Merino-Guzmán et al., 2017). 

In contrary, the decrease of SOD activity and IgA level by DFM could be related to its anti-

inflammatory and immune modulating properties to mitigate the negative impacts of S. Enteritidis, 

reducing the gut morphological and immunological alterations through expression of the 

cytoprotective proteins and modulation of various cytokines (Lee et al., 2010; Lee et al., 2013; 

Dersjant-Li et al., 2016; Wang et al., 2017; Grant et al., 2018; Wu et al., 2018).  

Along with the advancement in sequencing technologies, the cost of sequencing has 

significantly reduced during these days making the microbiota studies more affordable. It is now 

well accepted fact that the gut microbiota plays a key role in health and diseases of both humans 

and animals which have been reviewed elsewhere (Sekirov et al., 2010; Liang et al., 2018; 

Adhikari et al., 2018; Brugman et al., 2018). Although detailed mechanisms are unknown, the 
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supplementation of various alternatives to antibiotics including Bacillus-DFM can improve overall 

intestinal health and growth in chickens. Modulation of gut microbiota is one of the important 

mechanism of action exhibited by alternatives to antibiotics in order to exert beneficial effects on 

the host (Huyghebaert et al., 2010; Allen et al., 2014; Tellez and Latorre, 2017; Grant et al., 2018; 

Kim et al., 2018). Moreover, inclusion of Bacillus-DFM have shown to alter the cecal (Lei et al., 

2015) and ileal (Latorre et al., 2017) microbiota in broiler chickens.  

The cecum of chicken harbors the greatest bacterial diversity and is an important organ for 

water regulation and production of short chain fatty acids (SCFA) through carbohydrate 

fermentation (Oakley et al., 2014; Grant et al., 2018). The ceca of young chickens are mainly 

dominated by the phylum Firmicutes, Proteobacteria, and Actinobacteria, whereas the relative 

abundance of Bacteriodetes increase with age and was detected only after 15 days in broiler 

chickens (Ranjitkar et al., 2016). We also reported Firmicutes as dominated phyla in both groups 

followed by Proteobacteria and Actinobacteria. Actinobacteria was significantly lowered by the 

DFM which could be due to the antibacterial activity of DFM against S. Enteritidis since 

Actinobacteria was increased in chickens infected with S. Enteritidis (Mon et al., 2015; Hernandez-

Patlan et al., 2019). The genus Proteus that was previously reported on intestinal dysbiosis 

(Janssens et al., 2018) was significantly higher in the Control group. Similarly, the genus cc_115 

that belong to the family Erysipelotrichaceae was also significantly higher in the Control group. 

The bacterial family Erysipelotrichaceae was found to be associated with several diseases 

including ulcerative colitis, irritable bowel syndrome, and colorectal cancer (Janssens et al., 2018). 

Thus, increase of Proteus and cc_115 in the Control might be associated with gut dysbiosis and 

inflammation caused by S. Enteritidis (Videnska et al., 2013), whereas their decrease in DFM 

group might be due to the antibacterial property of DFM. This is further supported by the numerical 
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increase of intestinal dysbiosis associated genera such as Enterococcus, Dorea, Coprobacillus, 

Coprococcus, and Blautia in the Control group (Janssens et al., 2018). Furthermore, increase of 

Bifidobacterium and Roseburia in the Control group might be due to the inflammatory response, 

since these genera were found to have anti-inflammatory properties (Scott et al., 2015; O'Callaghan 

et al., 2016). Although some of the species of Streptococcus cause infection in poultry (Chadfield 

et al., 2005; Sekizaki et al., 2008) they are commensal organism present in the GI tract of chickens 

and have been used as potential probiotics (Owings et al., 1990; Herrera et al., 2012) because of 

their ability to reduce pathogen colonization through competitive exclusion and reduction of the 

pH through lactic acid production (Roto et al., 2015). Thus, increase in Streptococcus by DFM in 

the present study may be playing a vital role in reducing the colonization and incidence of S. 

Enteritidis, however, higher resolution to the strain level is needed to understand the actual effects 

as two strains of same species can do complete opposite roles (Fåk and Bäckhed, 2012).  

DFM not only affected the bacterial composition in the ceca of broiler chickens, but also 

the community structure as indicated by the beta diversity analysis. However, in case of alpha 

diversity, although there was numerically higher diversity in the Control group, but no significant 

difference was observed between the two groups. This may be related to one of the theories that 

the DFM promotes growth of the host by reducing the number and diversity of the commensal 

microbiota which will allow increase nutrient utilization by intestinal epithelial cells and lower 

detrimental effects of microbial metabolites (Gadde et al., 2017). These regulations by DFM might 

be achieved through changes in bacterial genes involved in various metabolic pathways (Figures 

5 and 6). One of the important metabolic pathway predicted to be enriched in the Control group 

was bile acid synthesis. Bile acids are considered as important regulators of the gut microbiota and 

reduced levels of bile acids in the gut are associated with bacterial overgrowth and intestinal 
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inflammation (Ridlon et al., 2014; Jia et al., 2018). Enrichment of bile acid synthesis pathway in 

the Control group might be a response to lower level of bile acids and inflammation caused by S. 

Enteritidis and other dysbiosis associated bacteria colonization in the gut. Similarly, other glycan 

degradation pathway was enriched in the Control group, this might be related to the response of 

mucinogeneis as a result of S. Enteritidis inflammation and the overgrowth of Bifidobacterium in 

the Control group which can degrade the host derived glycans (Zúñiga et al., 2018). Amino acids 

serve as precursors for microbial derived SCFA such as acetate, proprionate, and butyrate which 

has been reviewed elsewhere (Lin et al., 2017). Increased in the metabolic pathways associated 

with aminoacid metabolism (glycine, serine, and threonine) in the DFM group could be related to 

the amino acid fermenting ability of the Bacillus-DFM (Neis et al., 2015) to produce SCFA. SCFA 

serves as nutritents for colonocytes and other gut epithelial cells, and plays a key role in shaping 

the gut microbiota of the host (Koropatkin et al., 2012). Future investigation of the effects of DFM 

in the Salmonella challenged model by metagenomics and metabolomics analysis will reveal more 

functional potentialities of DFM.  

In summary, the overall results of the present study suggest that the Bacillus-DFM 

(NorumTM) can be used for the prevention and treatment of S. Enteritidis infection, since it has 

potential to reduce S. Enteritidis colonization and mitigate its negative effects in broiler chickens. 

These effects of NorumTM could be achieved through mechanism(s) that might involve the 

modulation of gut microbiota and their metabolic pathways. Effects of NorumTM against S. 

Enteritidis at a higher dose (106 spores/g) may disclose more promising results, and is currently 

under evaluation.  
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4.9 Tables and Figures 

Table 1.  Ingredient composition and nutrient content of a basal starter diet used in the experiments 

on as-is basis. 

Item Corn soybean-based diet 

Ingredients (g/kg)  

Corn  574.5 

Soybean meal  346.6 

Poultry oil 34.5 

Dicalcium phosphate 18.6 

Calcium carbonate 9.9 

Salt 3.8 

DL-Methionine 3.3 

L-Lysine HCL 3.1 

Threonine 1.2 

Choline chloride 60 % 2.0 

Vitamin premix1 1.0 

Mineral premix2 1.0 

Antioxidant3 0.5 

Calculated analysis   

Metabolizable energy (MJ/kg) 12.7 

Crude protein (g/kg) 221.5 

1Vitamin premix supplied per kg of diet: Retinol, 6 mg; cholecalciferol, 150 µg; dl-α-tocopherol, 

67.5 mg; menadione, 9 mg; thiamine, 3 mg; riboflavin, 12 mg; pantothenic acid, 18 mg; niacin, 60 

mg; pyridoxine, 5 mg; folic acid, 2 mg; biotin, 0.3 mg; cyanocobalamin, 0.4 mg. 2Mineral premix 

supplied per kg of diet: Mn, 120 mg; Zn, 100 mg; Fe, 120 mg; copper, 10 to 15 mg; iodine, 0.7 

mg; selenium, 0.2 mg; and cobalt, 0.2 mg. 3Ethoxyquin. 

 

 



 

118 
 

Table 2. Evaluation of the antibacterial activity of different DFM ratios on Salmonella Enteritidis† 

in an in vitro digestive model using the plating method.‡ 

Treatment Crop Proventriculus Intestine 

Control 7.78  0.00 a 5.03  0.12 a 7.23  0.00 a 

DFM (104 spores/g) 7.78  0.00 a 5.11  0.03 a 5.31  0.10 b 

DFM (106 spores/g) 7.66  0.01 ab 4.22  0.04 b 0.00  0.00 c 

a,b Values within treatment columns for each treatment with different superscripts differ 

significantly (P < 0.05). 
*Each mean is represented by five observations (n=5)  S. Enteritidis. 
†Inoculum used 108 cfu/ml of S. Enteritidis. 
‡Data expressed in log10 cfu/ml. 
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Table 3.  Effect of prophylactic administration of DFM (104 cfu/g) on Salmonella Enteritidis cecal 

tonsil (CT) and crop colonization in broiler chickens. 

Treatments CT Log10 cfu/g CT + / - (%) Crop Log10 cfu/g Crop + / - (%) 

  Trial 1   

Control 4.01  0.29 a 12/12 (100%) 2.68  0.47 a 9/12 (75%) 

DFM 3.72  0.55 a 10/12 (83%) 2.11  0.66 a 6/12 (58%) 

  Trial 2   

Control 3.94  0.22 a 12/12 (100%) 2.69  0.48 a 9/12 (75%) 

DFM 3.75  0.56 a 10/12 (83%) 2.08  0.64 a 5/12 (42%) 

1Data expressed in Log10 cfu /g (Mean ± SE) of tissue from 12 chickens, where different letters 

indicate statistical significant difference at P < 0.05. 
2Chickens were orally gavaged with 107 cfu of S. Enteritidis per chicken at 6-d old, samples were 

collected 24 h later. 
3Data expressed as positive/total chickens (%). 
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Table 4. Evaluation of Superoxide dismutase (SOD) activity, serum fluorescein isothiocyanate-

dextran (FITC-d) concentration and total intestinal IgA in broilers chickens with or without 

consuming DFM into the diet1. 

Treatments SOD (U/mL) FITC-d (g/mL) IgA (g/mL) 

Control 4.50  0.31 a 0.591 ± 0.055 b 14.21 ± 0.83 a 

DFM 1.97  1.85 b 0.664 ± 0.063 b 10.57 ± 0.82 b 

1Data expressed Mean ± SE from 12 chickens, where different letters indicate statistical significant 

difference at P < 0.05. 
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Table 5.  Effect of therapeutic administration of DFM (104 cfu/g) on Salmonella Enteritidis cecal 

tonsil (CT) and crop colonization in broiler chickens. 

Treatments CT Log10 cfu/g CT + / - (%) Crop Log10 cfu/g Crop + / - (%) 

  Trial 3-d   

Control 6.44  0.15 a 12/12 (100%) 3.18  0.46 a 10/12 (83%) 

DFM 4.66  0.82 a 9/12 (75%) 3.05  0.45 a 10/12 (83%) 

  Trial 10-d   

Control 6.61  0.21 a 12/12 (100%) 2.93  0.65 a 7/12 (58%) 

DFM 5.49  0.76 a 10/12 (83%) 1.78  0.65 a 5/12 (42%) 

1Data expressed in Log10 cfu /g (Mean ± SE) of tissue from 12 chickens, where different letters 

indicate statistical difference at P < 0.05. 
2Chickens were orally gavaged with 104 cfu of S. Enteritidis per chicken at 1-d old, samples were 

collected 3 and 10 days later. 
3Data expressed as positive/total chickens (%). 
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Table 6. Evaluation of Superoxide dismutase (SOD) activity, serum fluorescein isothiocyanate-

dextran (FITC-d) concentration and total intestinal IgA in broilers chickens with or without 

receiving DFM into the diet at day 10 post-S. Enteritidis challenge1. 

 

Treatments 

 

 

SOD (U/mL) 

 

FITC-d (g/mL) IgA (g/mL) 

Control 10.34  0.67 a 0.700 ± 0.020 a 14.34 ± 2.81 a 

DFM 9.29  0.88 a 0.531 ± 0.013 b 6.21 ± 2.31 b 

1Data expressed as Mean ± SE from 12 chickens, where different letters indicate statistical 

significant difference at P < 0.05. 
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Figure 1. Relative abundance of major phyla in two different treatment groups (Control and 

DFM). NA refers to those reads that aren’t assigned to any phyla.  
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Figure 2. Relative abundance of major genera in two different treatment groups (Control and 

DFM). NA refers to those reads that aren’t assigned to any genera. Genera having counts less than 

100 are merged together in “Others”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

125 
 

 

 

 

 

Figure 3. Alpha diversity of two different groups (Control and DFM) as measured by Shannon 

Index. No significant difference was observed between them (T-test, p>0.05). 
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Figure 4. PCoA plot showing difference in microbial community structure between Control and 

DFM groups (ANOSIM; R = 0.35 and p<0.01). 
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Figure 5. PCA plot comparing third level KEGG pathways between Control and DFM groups. 

The third level KEGG pathways were predicted using PICRUSt followed by the generation of 

PCA plot using STAMP.  
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Figure 6. Extended error bar plot generated by STAMP showing differential abundant third level 

KEGG pathways between Control and DFM group. Only significant features with p<0.05 

(Welch’s t-test) were included in the plot. 
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5.1 Abstract  

Due to animal welfare issues, EU banned the use of conventional cages (CC) for laying 

hens, and non-EU countries including the US are also under constant public pressure to restrict 

their use in egg production. Enriched colony cages (EC) were developed to provide hens more 

comfort movement and allow natural behaviors. Although previous studies have investigated the 

performance parameters and welfare of laying hens housed in CC and EC, there is very limited 

information regarding the changes in gut microbiota and their possible roles in egg production. 

Thus, this study was conducted to explore the effects of CC and EC on egg production and cecal 

microbiota of two commercial laying hen strains, Hy-Line W36 White Leghorn (WL) and Hy-

Line Brown (HB). Hens were assigned in a 2x2 factorial arrangement in a completely randomized 

design: HB in CC (120) and EC (311), and WL in CC (120) and EC (355). Hen-day egg production 

(HDEP) was recorded weekly, and cecal samples (n=6/group) were collected at 53, 58, 67, and 72 

weeks of age for microbiota analysis by MiSeq sequencing of 16S rRNA gene. Statistical analysis 

of HDEP data was carried out in a 2x2 factorial design for each week with significance level set 

at P<0.05, whereas sequence reads were analyzed using QIIME2 ver. 2018.8. Differentially 

abundant taxa were identified by LEfSe (P<0.05, LDA score>2.0) analysis. Although, hens housed 

in CC had higher HDEP compared to EC throughout all time points, no significant differences 

were observed. On contrary, significant interaction effect of house and strains was observed at 53 

weeks, where HDEP of WL hens was significantly higher as compared to the HB in CC housing 

(P<0.05). Likewise, the main effect of strains was observed at 72 weeks, where WL had 

significantly higher HDEP as compared to HB (65% vs. 56%). Moreover, the composition and 

diversities of cecal microbiota were affected by breed, housing, and age in descending order. At 

phylum level, Actinobacteria was significantly enriched in WL at all time points as compared to 

HB, while Synergistetes, Spirochaetes, and both were significantly higher  in HB as compared to 
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WL at 53, 58, and 67 weeks, respectively. However, Firmicutes was significantly higher in CC as 

compared to EC at 67 weeks. In contrast, Spirochaetes at 53 and 58 weeks, and Bacteroidetes and 

Proteobacteria at 67 and 72 weeks, respectively were higher in EC as compared to CC. At genus 

level, 51, 48, 58, and 15 differentially abundant taxa were revealed between HB and WL at 53, 58, 

67, and 72 weeks, respectively. Interestingly, Bifidobacterium was significantly enriched in WL 

at all time points, and in addition, butyrate producing genera such as Butyricicoccus and 

Subdoligranulum were significantly higher in WL as compared to HB at 58 and 72 weeks. 

Moreover, 13, 8, 23, and 8 differentially abundant taxa between CC and EC housing were observed 

at 53, 58, 67, and 72 weeks, respectively. At 72 weeks, the phylum Proteobaceria and its associated 

genera such as Campylobacter and the unknown genus of family Campylobacteriaceae and 

Helicobacteriaceae were significantly enriched in EC which might be associated with reduced egg 

production in EC. Likewise, there were significant differences in both alpha and beta diversity 

between HB and WL at all time points, while a significant difference was observed between CC 

and EC only at 67 week (P<0.05). Moreover, functional metabolic pathways associated with 

energy and nucleotide metabolism, and amino acids and vitamin B biosynthesis were differentially 

presented between CC and EC in a strain dependent manner. The overall results suggest that the 

difference in egg production between HB and WL, and CC and EC might be achieved at least 

partially through alterations of cecal microbiota.  

Keywords: laying hens, egg production, enriched colony cage, convention cage, cecal microbiota 
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5.2 Introduction 

Poultry industry is the fastest growing animal industry which is expected to grow 

continuously since demand for meat and eggs is increasing as a result of growing human 

populations (Mottet and Tempio, 2017). In order to feed the growing human population which is 

expected to reach 9.8 billion by 2050 (UNDESA, 2017), there is a huge demand to accelerate 

animal production including poultry. Traditionally, people focused mainly on the strategies to 

maximize the profit and productivity of poultry, and conventional cage (CC) system is one of those 

strategies developed during 1930s and has been used in the traditional egg production since 1950s 

(Yilmaz Dikmen et al., 2016). Although the CC system has been considered as one of the most 

efficient housing method of laying hens for a long time, it is now widely accepted to have negative 

impacts on the welfare of hens (Craig and Swanson, 1994; Tactacan et al., 2009; Lay et al., 2011; 

Yilmaz Dikmen et al., 2016; Hartcher and Jones, 2017). The negative impacts of CC are mainly 

due to the limited space for movement that can cause musculoskeletal weakness, and low 

complexities of the environment which can abolish many of their natural behaviors such as nesting, 

roosting, dust bathing, perching, and foraging (Baxter, 1994; Lay et al., 2011; Hartcher and Jones, 

2017).  

Because of the increased public concerns about animal welfare, conventional cage systems 

have been banned in EU since 2012 (Council Directive 1999/74/EC). In addition, non-EU 

countries including USA, Canada, and Australia are also under constant public pressure to restrict 

the use of convention cage systems for egg production (Van Staaveren et al., 2018). As an 

alternative, enriched cages were developed that provide more space for movement and comfort 

behaviors, and allow for some dust bathing, nesting, foraging, and perching (Appleby et al., 2002). 

Although previous studies have conducted to investigate the performance parameters and welfare 
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of laying hens in conventional and enriched cages (Tactacan et al., 2009; Karcher et al., 2015), 

there is very limited information regarding the changes in intestinal microbiota with those housing 

systems. Furthermore, several host factors such as breeds or strains within the same breed can 

affect the intestinal microbiota in chicken (Kers et al., 2018), but those variations were less studied 

in laying hens in comparison to broilers. Thus, the aim of this study was to investigate the effects 

of conventional cage (CC) and enriched colony cage (EC) systems on egg production and cecal 

microbiota of two commercial laying hen strains, Hy-Line Brown (HB) and Hy-Line W36 White 

Leghorn (WL).  

5.3 Materials and Methods  

5.3.1 Hens and Husbandry 

The animal care experimental protocol was approved by the Institutional Animal Care and 

Use Committee at Mississippi State University. Both strains (HB and WB) of hens were purchased 

from Mansfield Pullet Co., at MO. Hens were reared in top two tiers of both A- frame type 

conventional cage (CC; dimension: 1.6’ x 2’) and enriched colony cage (EC; dimension: 4’ x 12’) 

at Mississippi State University Poultry Research Farm located in Starkville, MS. Enriched colony 

had scratch pads, perches and nesting area for hens. Hens were housed with four hens per cage in 

CC and 50 per cage in the EC system. Four groups of hens were assigned as WL in CC (120), HB 

in CC (120), WL in EC (355) and HB in EC (311). The lighting schedule was 16 h light and 8 hour 

darkness and were provided ad libitum commercial laying hen ration according to the Hy-Line 

management guide recommendation containing 2,760 Kcal ME/kg and 16% CP (Table 1). Hen-

day egg production (HDEP) data was calculated from eggs collected from every week 

continuously from 53 to 72 weeks of age. The number of samples in each group used for egg 

production analysis is summarized in Table 2.  



 

134 
 

5.3.2 Cecal Microbiota Analysis 

5.3.2.1 Sample Collection and Processing 

At 53, 58, 67 and 72 weeks of age, six hens per group were humanely euthanized with Co2. 

One cecum from each hen was collected aseptically and stored at -20°C until microbiota analysis. 

The number of samples from each group used for microbiota analysis is summarized in Table 2. 

5.3.2.2 DNA Extraction, PCR, and Library Preparation for Sequencing 

Quick-DNA™ Fecal/Soil Microbe Kits (Catlog No. D6012, ZymoResearch, USA) was 

used to extract genomic DNA from approximately 150 mg of ileal content per sample following 

the manufacturer’s instructions. V4 region of 16S rRNA gene from genomic DNA of each sample 

was amplified using the primers 515F (Parada et al., 2016) and 806R (Apprill et al., 2015). The 

library of amplicons for sequencing was prepared according to the 16S Illumina PCR protocol 

described in the Earth Microbiome project (http://www.earthmicrobiome.org; Thompson et al., 

2017) with slight modifications. In brief, Platinum™ II Hot-Start Green PCR Master Mix (2X) 

(Thermofisher Scientific, Catalog No. 14000013) was used to conduct PCR in a 25 μl final reaction 

volume through 30 cycles. The thermocycling condition of PCR included an initial denaturation 

step at 94 °C for 2 min, followed by 35 cycles of 0.5 min at 94 °C, 0.5 min at 60 °C, and 0.5 min 

at 68 °C, and a final extension of 5 min at 68 °C.  

The length of amplified products was confirmed with 1% agarose gel electrophoresis and 

equal amounts (~300 ng) of amplicons from all sample as measured by Qubit dsDNA BR Assay 

Kit (ThermoFisher Scientific, Catalog No. Q32850) were pooled together. The pooled amplicons 

were finally ran on 1% agarose gel electrophoresis, purified using Zymoclean Gel DNA Recovery 
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Kit (Zymo Research, Catalog No. D4007), and sequenced with Illumina MiSeq paired end 300 

cycle options at University of California at Davis. 

5.3.3 Data Analysis  

5.3.3.1 Egg Production 

Data were analyzed in a 2×2 factorial arrangement (house type × strain) using JMP 

Genomics 9, where the significance level was set at P < 0.05. The values are presented as LS 

means ± Standard Error (SE), where the mean difference was separated using Tukey HSD.  

5.3.3.2 Amplicons Sequence Analysis 

Nebula cloud computing platform of the University of Arkansas was used to process raw 

sequencing reads in QIIME 2 version 2018.8 (Bolyen et al., 2018) utilizing the pipelines developed 

for paired-end data types. In sum, “demux emp-paired” method of q2-demux plugin was used to 

demultiplex sequencing reads followed by quality filtering and denoising with “dada2 denoise-

paired” method of q2-dada2 (Callahan et al., 2016) plugin available at QIIME 2. The truncation 

length of forward and reverse reads was set at 240 and 200 bp, respectively, which is based on the 

quality score criteria (≥30). Taxonomic assignments was performed using a Naive Bayes classifier 

(Pedregosa et al., 2011) pre-trained with Greengenes (Version 13.8) 99% OTUs (DeSantis et al., 

2006) and q2-feature-classifier plugin, where the sequences have been trimmed to include only the 

V4 region of the 16S rRNA gene bound by the 515F/806R primer pair. The core-metrics-

phylogenetic method at a sampling depth of 31,060 was used to analyze Alpha and Beta diversity. 

Shannon’s diversity index (Shannon, 1948) and UnWeighted UniFrac distance metric (Lozupone 

et al., 2011) were used to calculate alpha and beta diversity, respectively. All figures were created 

using ggplot2 packages of R (Wickham, 2016). Statistical differences among treatment groups at 
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different taxonomic assignments were calculated using LEfSe. The significant differences in alpha 

diversity were calculated using the alpha-group-significance command of QIIME2 which uses 

Kruskal-Wallis test. In the contrary, statistical differences in beta diversity among groups were 

calculated by PERMANOVA (Anderson, 2001) test using the beta-group-significance command 

of QIIME2 with pairwise option. For both diversities analysis, the corrected P values for multiple 

comparisons (q) were used to report a significant difference between two groups, where the level 

of significance was set at q < 0.05. PICRUSt2 (Langille et al., 2013) was used to predict the 

metabolic pathways of cecal microbiota and MetaCyc database (Caspi et al., 2016) was used to 

describe the predicted pathways. Differentially abundant features were identified using Welch’s t-

test inbuilt in STAMP software (Parks et al., 2014), where features were filtered using P>0.05 and 

difference in mean proportions (%) <0.03 criteria. 

5.4 Results 

5.4.1 Egg Production  

 There was a significant interaction effect of house and strain type at 53 weeks, where WL 

had significantly higher HDEP as compared to the HB raised in CC housing (89% vs 72%, 

P<0.05). At 58 and 67 weeks, although the HDEP of WL was numerically higher than HB, no 

significant differences were observed. At 72 weeks, the main effect of strain was observed, where 

HDEP of WL was significantly higher as compared to HB (65% vs. 56%). On the contrary, 

although the hens reared in CC had numerically higher HDEP compared to those housed in EC 

throughout all four time points, no significant differences were observed between the two groups. 

The results of egg production are summarized in Table 3.  
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5.4.2 Cecal Microbiota 

Summarization of the feature table resulted 5,568,578 number of sequence reads from 90 

samples that range from 31,060 to 88,097 reads per sample. The median and mean±SE reads per 

sample were 63,893.50 and 61,873.09±1,270.94, respectively. In addition, there were altogether 

1,759 unique features (amplicon sequence variants) from these samples. The summary of average 

reads per sample in different groups is summarized in Table 2.  

5.4.2.1 Cecal Microbiota Composition at the Phylum Level 

Taking consideration of all samples, 99.36% of total sequence reads were assigned to 15 

different bacterial phyla, while 0.63% of total sequence reads were assigned to domain Archaea. 

In addition, 0.01% of total sequence reads which were only assigned to Kingdom Bacteria but not 

assigned to the lower level of taxonomy. Among those phyla, Bacteroidetes (49.05%) was the 

predominant phylum followed by Firmicutes (45.05%). Other important phyla whose relative 

abundance was greater than 0.2% were Actinobacteria (2.70%), Proteobacteria (0.77%), 

Spirochaetes (0.52%), Synergistetes (0.41%), and WPS-2 (0.34%). The relative abundance levels 

of major phyla that were presented in two different housing at four different time points were 

shown in Figure 1. The relative abundance of Bacteroidetes was the highest followed by Firmicutes 

in both HB and WL irrespective of housing types and ages, except in WL hens housed in CC 

housing at 67 weeks where the Firmicutes (51.96%) was found as a predominant phylum (Figure 

1). Likewise, the relative abundance of Actinobacteria was found higher especially in WL 

irrespective of housing as shown in Figure 1.  
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5.4.2.2 Differentially Abundant Phyla 

The differentially abundant phyla in two different hen strains and housing types as 

identified by LEfSe (P<0.05 and LDA score > 2.0) are summarized in Table 4. The phylum 

Actinobacteria was significantly enriched in WL group throughout all four different ages as 

compared to the HB group. However, the phyla Synergistetes and Spirochaetes were significantly 

abundant in HB group at 53 and 58 weeks, respectively, and both Synergistetes and Spirochaetes 

at 67 weeks as compared to WL. At 72 weeks, no significant difference was observed at any phyla 

between HB and WL groups.  

Regarding housing effects, the phylum Spirochaetes was significantly higher in EC group 

in both 53 and 58 weeks as compared to the CC. On the contrary, Bacteroidetes and Firmicutes 

were significantly enriched in the EC and CC group, respectively, at 67 weeks. At 72 weeks, 

Proteobacteria was significantly higher in EC as compared to the CC group.  

5.4.2.3 Cecal Microbiota Composition at the Genus Level 

Out of 99.36% of total sequence reads that were assigned to one of the bacterial phyla, 

68.45% were properly assigned to one of the 89 bacterial genera while taking account of all 

samples. The remaining reads were assigned to low level of bacterial taxa such as family, order, 

class, and phylum. Among those genera, Bacteroides (17.60%) was the predominant genus 

followed by Prevotella (10.20%), Ruminococcus (7.91%), Lactobacillus (4.83%), 

Fecalibacterium (3.60%), Phascolarctobacterium (3.41%), and Megamonas (3.37%). Other 

notable genera included Coprococcus, Blautia, Peptococcus, genus S24-7, and Turicibacter whose 

relative abundance ranges from 1.21 to 1.91%. The relative abundance of major genera that were 

presented in two different housing and breed types at four different time points were shown in 
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Figure 2. Bacteroides that ranged from 13.57% (EC-WL at 53 weeks) to 21.69% (CC-HB at 58 

weeks) was the predominant genus in both hen strains housed in either CC or EC except in WL 

housed at EC at 53 weeks and 58 weeks, where Prevotella (16.13%) and Lactobacillus (15.65%) 

were the predominant genera in respective ages (Figure 2). The relative abundance of Prevotella 

ranged from 5.49% to 9.78% in HB (Figure 2; left half), whereas it ranged from 8.62% to 16.13% 

in WL (Figure 2; right half). Similarly, the relative abundance of Ruminococcus ranged from 

4.83% to 9.75% in HB, while it ranged from 5.93% to 9.84% in WL. In addition, Lactobacillus 

ranged from 2.59% to 4.72% in HB, but it ranged from 2.35% to 15.65% in WL. Another important 

observation was the genus Megamonas which was found the highest (13.75%) in WL housed at 

67 weeks in CC housing.  

5.4.2.4 Differentially Abundant Genera in Two Different Hen Strains 

The strains effect was more pronounced than housing effect and the bacteria taxa that were 

differentially abundant in WL and HB strains at 53, 58, 67, and 72 weeks are shown in Figures 3-

6, respectively. The number of bacterial taxa at the genus level that were significantly higher in 

WL were 15, 27, 4, and 8 at 53, 58, 67, and 72 weeks, respectively. The genus Bifidobacterium 

was significantly enriched in WL as compared to the HB throughout all time points. In addition, 

Butyricicoccus (except, 67 weeks), unidentified genera of phylum Actinobacteria (except, 67 

weeks), Bulleidia and Pseudoramibacter-Eubacterium (except 72 weeks) were significantly 

higher in WL at all time points. Other notable genera that were significantly abundant in WL were 

Candidatus Arthromitus (except 58 and 67 weeks) and Subdoligranulum (except 53 and 67 weeks.) 

as shown in Figures 5-8. Moreover, Prevotella, Collinsella, Flexispira, and Slackia were presented 

significantly higher in WL only at 58 weeks, whereas Succinatimonas was presented significantly 

higher only at 72 weeks.   
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On the contrary, the number of bacterial taxa at the genus level that was significantly higher 

in HB were 36, 21, 54, and 7 at 53, 58, 67, and 72 weeks, respectively. Turicibacter, genus 02d06 

of Clostridiaceae family, the unidentified genus that belongs to family Barnesiellaceae, and that 

belong to phylum Verrucomicrobia were significantly enriched in HB throughout all time points 

as shown in Figures 3-6. In addition, the genus Akkermansia, and unidentified genera that belong 

to phylum Synergistetes, and that belong to family Christensenellaceae were also significantly 

higher in HB at all time points except at 72 weeks. Similarly, Paraprevotella, Clostridium, 

Dehalobacterium, and the unidentified genera that belong to family Ruminococcaceae, 

Preptostreptococcaceae, and that belong to order Bacteroidales were significantly higher in HB as 

compared to WL only at 53 and 72 weeks. Moreover, Megamonas, Oscillospira, Desulfovirbrio, 

Megasphaera, Treponema, Alistipes, cc_115, Butryricicoccus, Collinsella, and Coprobacillus 

were presented significantly higher in HB, but only at 67 weeks of age.  

Interestingly, some of the archaeal taxa were also found to be differentially presented 

between two strains of laying hens throughout all time points except at 72 weeks. 

Methanobrevibacter and 3 unknown genera that were assigned as Methanobacteria, 

Methanobacteriales, and Methanobacteriaceae respectively were significantly higher in WL (at 53 

and 58 weeks), while unknown genera that were assigned as Methanomicrobia, 

Methanomicrobiales, and Methanocorpusculaceae were significantly higher in HB (except 72 

weeks). 

5.4.2.5 Differentially Abundant Genera in Two Different Housing Types 

The significantly abundant bacterial taxa at genus level which are identified by LEfSe 

between two housing at 53, 58, 67, and 72 weeks are shown in Figures 7-10, respectively. At 53 

and 72 weeks of age, the significantly abundant bacterial taxa were found only with EC housing, 
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while at 58 and 67 weeks, both housing had differentially abundant bacterial taxa. The bacterial 

genus Treponema and the unknown genera of order Spirochaetales, Spirochaetes, and Spirochaetes 

were significantly enriched in EC as compared to CC at both 53 and 58 weeks. On the contrary, 

Campylobacter and other unknown genera of family Campylobacteraceae were significantly 

higher in EC at both 67 and 72 weeks. In addition, bacterial genera such as Ruminococcus, 

Corynebacterium, Sutterella, and unknown genera that were assigned at order Burkholderiales and 

Actinomycetales, and family Corynebacteriaceae and Alcaligenaceae were significantly abundant 

in EC at 53 weeks. Similarly, the genus Flexispira, Anaerobiospirillum, and unknown genera that 

were assigned at family Helicobacteraceae were significantly enriched in EC at 72 weeks.  

However, the differentially enriched bacterial taxa in CC were observed only at 58 and 67 

weeks with more number at 67 weeks. At both 58 and 67 weeks, the unknown genera that were 

assigned at class 4c0d_2 and order YS2 of phylum Cyanobacteria were significantly higher in CC 

as compared to the EC. In addition, Megamonas was significantly higher in CC at 58 weeks, while 

genera such as Mucispirillum, Succinatimonas, and Sutterella were significantly higher at 67 

weeks.  

5.4.2.6 Alpha Diversity 

The bacterial diversity within a group (alpha diversity) was calculated by Shannon index. 

The word significant refers to the statistically significant differences between the two groups at 

adjusted P value (q) <0.05. The alpha diversities for two different breed and housing types across 

four different ages of birds are shown in Figure 11 and Figure 12, respectively. The alpha diversity 

was highly affected by breed in comparison to housing. The alpha diversities in HB breed was 

significantly higher as compared to WL throughout all four ages as shown in Figure 11. The alpha 

diversities increased with increase in age of both breeds with more noticeable in HB, where the 
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alpha diversity of HB breed at 72 weeks was significantly higher in comparison to HB at 53 weeks 

of age as shown in Figure 11.  

Like in breed, as age of birds increased, the alpha diversity also increased in both housing 

types with more pronounced increase in EC housing, where the alpha diversity of birds at 67 weeks 

was significantly higher as compared to those at 53 weeks as shown in Figure 12. Although, the 

alpha diversities in birds housed in EC were numerically higher in comparison to those housed in 

CC across all four ages, however, the significant difference between EC and CC was found only 

at 67 weeks of age.  

5.4.2.7 Beta Diversity 

The beta diversity of two different breeds and housing types across four-time points is 

shown in the PCoA plot (Figure 13). The PERMANOVA results showed that the microbial 

community structure in laying hens was significantly affected by all three variable analyzed; age 

(P=0.028), housing (P=0.001), and breed (P=0.001). Pairwise PERMANOVA results showed that 

although there was a tendency of microbial community structure difference between EC and CC 

throughout four ages, the housing effect was more pronounced at 67 weeks of age where there was 

significant difference observed between EC and CC. This is in accordance with egg production 

and alpha diversity results. Furthermore, in concord with taxonomic composition and alpha 

diversity, the breed effect was more prominent on beta diversity too, where there was significant 

difference in beta diversity between HB and WL throughout all four ages (adjusted P<0.05). In 

contrary to housing, increased in age resulted in significant difference in beta diversity even with-

in the same breed, which was more noticeable in HB (53 vs 67, 58 vs 67 and 72, and 67 vs 72) 

than WL (53 vs 67). Moreover, the cecal microbiota community structure was affected by housing 

types in both Brown (Figure 14) and White laying hens (Figure 15) at P<0.00. 
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5.4.2.8 Functional Predictions of Cecal Microbiota 

The PCoA plot illustrating the microbial functional diversity between two different housing 

and breed types across four different time intervals is shown in Figure 16. The factors age, housing 

and breed not only affected community diversity but also affected functional diversity of cecal 

microbiota (P<0.001).  However, functional diversity of cecal microbiota was less affected by the 

breed than their community structure as visualized in Figure 16, where the breed effect was 

significant at all ages except at 72 weeks (PERMANOVA pairwise, P<0.05). On contrary, housing 

affected functional diversity more than the community structure, where there was significant 

difference in functional diversity between CC and EC at both 67 and 72 weeks (PERMANOVA 

pairwise, P<0.05).  

Differentially abundant predicted metabolic pathways of cecal microbiota between HB and 

WL hen strains are shown in Figure 17. Among 17 differentially abundant pathways between HB 

and WL, 13 pathways were significantly enriched in WL while 4 pathways were significantly 

enriched in HB. In WL, metabolic pathways related to TCA cycle, sucrose degradation, hexitol 

fermentation (lactate, formate, and ethanol), amino acids biosynthesis (arginine, L-phenylalanine, 

and L-tyrosine), the Bifidobacterium shunt, and peptidoglycan biosynthesis were significantly 

enriched in WL. However, pathways related to pyruvate fermentation to acetone, and biotin 

synthesis, palmitate biosynthesis were highly abundant in HB (Figure 17).  

Moreover, differentially abundant microbial metabolic pathways between CC and EC 

housing systems in HB and WL laying hens are shown in Figure 18 and Figure 19, respectively. 

In HB group, altogether 22 metabolic pathways (8 in CC and 14 in EC) were differentially 

presented between CC and EC housing systems after filtering pathways with P>0.05 (Welch’s t-

test) and effect size (% difference in mean proportions) <0.03 using STAMP (Figure 18). 
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Specifically, pathways of TCA cycle, amino acid biosynthesis (L-serine and L-glycine), starch 

degradation, adenosylcobalamin (also known as vitamin B12 or coenzyme B12) biosynthesis, and 

6-hydroxymethyl-dihydropterin diphosphate biosynthesis (precursor of vitamin B9 synthesis) 

were significantly enriched in CC group, whereas pathways of glycerol degradation, 

methanogenesis, amino acid biosynthesis (L-lysine, L-threonine, L-methionine, and L-aspartate), 

and purine and pyrimidine biosynthesis were significantly enriched in EC group.  

In WL group, altogether 37 metabolic pathways (22 in CC and 15 in EC) were differentially 

presented between CC and EC housing systems as shown in Figure 19. Like in HB group, pathways 

of TCA cycle and 6-hydroxymethyl-dihydropterin diphosphate biosynthesis (precursor of vitamin 

B9 synthesis) were significantly higher in CC group, while pathways of purine nucleotide and 

amino acids (L-lysine and L-aspartate) biosynthesis in EC group. In contrary, biosynthesis 

pathways of amino acids such as L-ornithine, L-tryptophan, L-arginine, L-tyrosine, L-histidine, 

and L-phenylalanine were significantly enriched in CC group. The other important observations 

were significantly enrichment of glycolysis, acid fermentation and Bifidobacterium shunt pathway 

in EC group, while significant enrichment of pathways associated with various vitamins 

biosynthesis such as K2 (menaquinol-8 biosynthesis) and B12 (tetrapyrrole biosynthesis I) was 

observed in CC group (Figure 19).  

5.5 Discussion 

 The intestinal microbiotas of chickens are affected by various factors such as age, breed, 

gut region, sex, feed, housing, hygiene, medication, temperature, litter, location, and maternal 

factors as reviewed earlier (Kers et al., 2018). Among these factors, the effect of feed on intestinal 

microbiota composition of chickens is widely studied. In laying hens, different dietary 

supplementations such as threonine (Dong et al., 2017), rapeseed meal (Long et al., 2017), 
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probiotics (Guo et al., 2016; Guo et al., 2018; Yan et al., 2019), calcium (Dastar et al., 2016), and 

flaxseed oil (Lee et al., 2016) have been found to modulate the intestinal microbiota. However, 

there is very limited information regarding the changes in intestinal microbiota composition of 

laying hens due to the housing systems.  

To our knowledge, this is the first study that reported the effects of CC and EC on 

alterations of cecal microbiota in two important commercial strains of laying hens, WL and HB. 

In the present study, we found changes in cecal microbiota composition, their diversities and 

predicted functional pathways in both laying hen strains housed in CC and EC housing systems 

during the late production stage. Previous study reported higher number of Clostridium perfringens 

in ileum and cecum of broiler chickens raised in organic farms as compared to the conventional 

farms (Bjerrum et al., 2006). However, they suggested that the lower count of C. perfringens in 

conventional farms might be achieved due to the application of Salinomycin in the conventional 

feed that has antibiotic properties. In addition, they found an increase in Lactobacilli, while a 

decrease in Enterobacteriaceae counts in the ileal contents of the chickens from organic farms 

(Bjerrum et al., 2006). Another study reported enrichment of Bifidobacterium in both ileum and 

ceca of broiler chickens which were provided free daytime access as compared to those chickens 

which were kept at indoors range (Gong et al., 2008). Furthermore, both the composition and 

functions of cecal microbiota were different in Dagu chickens raised in free-range as compared to 

those raised in cages (Xu et al., 2016). Firmicutes/Bacteroidetes ratio was higher in cecum of cage-

raised chickens, while the abundance of Bacteroidetes was higher in free range chickens (Xu et 

al., 2016). Although no direct comparisons can be made between the studies, we also reported the 

higher abundance of Bacteroidetes in EC where hens have more access to movement, while the 

higher abundance of Firmicutes in CC where they have restricted movement, especially at 67 
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weeks of age. In addition, we also reported significantly higher abundance of Proteobacteria in EC 

at 72 weeks of age which might be correlated with the tendency of decrease in egg production 

between CC and EC (P=0.06). Many gram-negative pathogenic bacteria such as Escherichia, 

Salmonella, Campylobacter, Helicobacter, and Vibrio are included under the phylum 

Proteobacteria whose increase can be considered as a potential indicator of gut dysbiosis (Shin et 

al., 2015). This was also reflected at genus level where Campylobacter and unknown genera of 

family Campylobacteraceae and Helicobacteraceae were significantly higher in EC at 72 weeks. 

Xu et al. also reported a higher abundance of cecal microbiota functions associated with amino 

acids and glycan metabolic pathways in Dagu chickens from free-range (Xu et al., 2016).  

Recently, a study compared the cecal microbiota of You chickens (a Chinese native breed) 

reared in cages and free-range system at 45 weeks of age and reported the difference in their 

composition, diversity, and metabolic functions between the two systems (Chen et al., 2019). More 

specifically, the alpha diversity was decreased in chickens housed in cages as compared to those 

from free range. In addition, most of the KEGG pathways of cecal microbiota associated with 

various functions such as metabolism, alkaloid biosynthesis, and amino acids degradation were 

down-regulated in cages-reared chickens. In this study, the alpha diversity was significantly higher 

in EC compared to CC at 67 weeks of age and was numerically higher throughout all ages. 

Likewise, several metabolic pathways were differentially enriched between CC and EC in the 

current study which further depended on laying hen strains. For instance, 22 metabolic pathways 

(8 in CC and 14 in EC) were differentially abundant in HB strain, while 37 metabolic pathways 

(22 in CC and 15 in EC) in WL strain suggesting more pronounced effects of housing in WL. 

Specifically, pathways related to energy and nucleotide metabolism, and amino acids and vitamin 
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B biosynthesis were differentially presented between two housing systems in strains dependent 

manner.  

The phylum Actinobacteria and its genus Bifidobacterium were significantly enriched in 

WL as compared to the HB throughout all four-time points. Bifidobacteria are common probiotic 

bacteria whose effects on hosts’ health and diseases are studied elsewhere (Jung et al., 2008; 

O’Callaghan and van Sinderen, 2016), and are widely considered to confer beneficial effects on 

hosts through their metabolic activities. Specifically, bifidobacteria are well known for their ability 

to ferment complex carbohydrates in the lower part of the intestine that bypasses the degradation 

in the upper parts through various carbohydrate-degrading enzymes (Pokusaeva and Fitzgerald, 

2011). They can ferment diverse complex carbon sources including gastric mucin, (trans)-

galactooligosaccharides, xylo-oligosaccharides, malto-oligosaccharides, fructo-oligosaccharides, 

pectin, soybean oligosaccharides, and other plant derived-oligosaccharides. However, their ability 

to degrade particular carbon source is species/strain dependent (De Vrese and Schrezenmeir, 

2008). Through fermentation, bifidobacteria can degrade complex carbohydrates to 

monosaccharides which are further degraded to intermediates of the hexose fermentation pathway 

(also known as Bifidobacterium shunt or fructose-6-phosphate shunt) (De Vries and Stouthamer, 

1967), and finally converted to short-chain fatty acids, especially acetate and lactate (O’Callaghan 

and van Sinderen, 2016). In the current study, carbohydrate degradation was significantly enriched 

in WL as compared to the HB. In addition, the Bifidobacterium shunt pathway was significantly 

enriched in WL as compared to the HB.  

Similarly, butyrate producing genera such as Butyricicoccus and Subdoligranulum were 

significantly higher in WL as compared to HB at 58 and 72 weeks. Butyrate, a metabolite of 

intestinal microbiota is considered as an important feed additive in animal production due to its 
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several beneficial effects such as improvement of performance parameters and maintenance of gut 

health by controlling the proliferation of bacterial pathogens and enhancement of intestinal 

development (Guilloteau et al., 2010; Bedford and Gong, 2018). Other important observations 

were time-dependent enrichment of phyla Synergistetes and Spirochaetes and genera such as 

Clostridium and Paraprevotella in HB compared to WL. In details, there were 36, 21, 54, and 7 

differentially abundant genera in HB at 53, 58, 67, and 72 weeks, respectively as compared to WL. 

Interestingly, the differences in cecal microbiota between WL and HB not only observed in their 

composition but also in both community and functional diversities, which might explain the 

variations in egg production between the two strains. Moreover, both egg production and cecal 

microbiota variations in hen strains depended on housing types. Significant interaction effect of 

housing and laying hen strains on egg production were also reported earlier (Singh et al., 2009).  

In sum, egg production, cecal microbiota composition, diversities, and their functional 

pathways were affected by housing type which further varied between two commercial laying hen 

strains, HB and WL. This suggests that both housing and strains should be considered while 

selecting alternative housing systems.  
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5.7 Tables and Figures 

Table 1. Diet formulation and calculated composition of diet fed to Hy-Line hens. 

Ingredient Amount (%) 

Corn 57.00 

Soybean Meal 21.79 

Limestone 11.06 

Corn DDGS 5.00 

Poultry Fat 2.84 

Dicalcium Phosphate 1.44 

Common Salt 0.30 

DL-Methionine 0.23 

Vitamin Premix 0.13 

Mineral Premix 0.13 

L-Lysine HCL 0.09 

Total 100.00 

Calculated composition 

ME (Kcal/kg) 2.760 

CP (%) 16 

Ca (%)  4.6 

Available P (%) 0.40 
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Table 2. Summary of samples and reads distribution across different groups. The first and second 

number in brackets represent number of samples used for microbiota and egg production analysis, 

respectively. The values in each cell represent an average number of reads/sample (Mean±SE) for 

that particular group.  

Variables 53 weeks  58 weeks  67 weeks  72 weeks  

House 

CC 
63,697.3±4,212.0 

(12, 10) 

61,876.4±5,055.5 

(9, 10) 

56,769.6±3,649.8 

(12, 10) 

59,954.4±3,174.7 

(12, 10) 

EC 
66,289.4±3707.3 

(12, 8) 

61,392.5±2,759.5 

(11, 9) 

58,962.2±2,287.3 

(12, 10) 

66,829.9±3,865.4 

(10, 10) 

Strain 

HB  
67,706.5±3,773.8 

(12, 10) 

56,247.0±3,870.6 

(11, 10) 

56,402.4±2,576.2 

(12, 10) 

59,455.7±3,996.4 b 

(11, 10) 

WL  
62,280.2±4,024.3 

(12, 8) 

68,165.3±2,134.0 

(9, 9) 

59,329.3±3427.1 

(12, 10) 

66,703.5± 2,840.0 a 

(11, 10) 

House-Strain 

CC-HB  
62,531.5±6,031.7 

(6, 5) 

54,635.2±7409.1  

(5, 5) 

54,942.5±3,271.5 

(6, 5) 

58,006.8±5,730.9 

(6, 5) 

CC-WL  
64,863.0±6,413.6 

(6, 5) 

70,928.0±3,563.5 

(4, 5)  

58,596.7±6,824.6 

(6, 5) 

61,902.0±3,160.0 

(6, 5) 

EC-HB  
72,881.5±3,954.2 

(6, 5) 

57,590.2±4,188.2 

(6, 5)  

57,862.3±4,200.8 

(6, 5) 

61,194.4±6,098.6 

(5, 5) 

EC-WL  
59,697.3±5,239.9 

(6, 3) 

65,955.2±2,455.0 

(5, 4)  

60,062.0±2,211.1 

(6, 5) 

72,465.4±3,763.7 

(5, 5) 
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Table 3. Hen-day egg production (HDEP %) of two laying hen strains kept in conventional (CC) 

and enriched colony cages (EC) from 53 to 72 weeks of age. Data was analyzed in a 2*2 factorial 

design using JMP Genomics 9, where the pairwise comparison of means was performed by Tukey 

HSD test. The values are presented as LS means ± standard error. Different letters with in a column 

represent a significant difference between two groups at P<0.05.  

Group 53 weeks  58 weeks  67 weeks  72 weeks  

House 

CC 80.57±2.49 87.69±2.26 70.56±3.09 63.46±2.07 

EC 77.09±2.87 85.07±2.40 66.09±3.09 57.73±2.07 

Strain 

HB  74.89±2.49 83.69±2.26 66.68±3.09 56.34±2.07 b 

WL  82.76±2.87 89.07±2.40 69.97±3.09 64.85± 2.07 a 

House*Strain 

CC x HB  72.14±3.52 b 88.11±3.20  66.13±4.38 61.77±2.93 

CC x WL  89.00±3.52 a 87.26±3.20  75.00±4.38 65.15±2.93 

EC x HB  77.65±3.52 ab 79.28±3.20  67.23±4.38 50.91±2.93 

EC x WL  76.52±4.54 ab 90.87±3.58  64.95±4.38 64.55±2.93 

P - value  

House  0.3758 0.4423 0.3231 0.0690 

Strain  0.0578 0.1252 0.4634 0.0106 

House × Strain  0.0331 0.0795 0.2216 0.1000 

 

Table 4. Summary of differentially abundant phyla identified by LEfSe (P<0.05, LDA score >2.0).  

Group 53 weeks  58 weeks  67 weeks  72 weeks  

House 

CC - - Firmicutes - 

EC Spirochaetes Spirochaetes Bacteroidetes Proteobacteria 

Strain 

HB  Synergistetes Spirochaetes 
Synergistetes, 

Spirochaetes 
- 

WL  Actionobacteria Actionobacteria Actionobacteria Actionobacteria 
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Figure 1. The relative abundance of cecal microbiota at phylum level. HB and WL represent Hyline 

Brown and White Leghorn, while CC and EC represent Conventional Cage and Enriched Colony 

Cage, respectively. Not_Assigned represent the reads that weren’t assigned at any phyla, where 

“Others” represent the phyla which were present less than <0.4% on average of all samples.  



 

157 
 

 
Figure 2. The relative abundance of cecal microbiota at genus level. HB and WL represent Hyline 

Brown and White Leghorn, while CC and EC represent Conventional Cage and Enriched Colony 

Cage, respectively. Not_Assigned represent the reads that weren’t assigned at genus but assigned 

at higher taxonomic level. Others represent the genera which were present less than <1.0% on 

average of all samples.  
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Figure 3. Differentially abundant taxa that were assigned at the genus level and identified by LEfSe 

(P<0.05, LDA score>2.0) between Hyline Brown (HB) and White Leghorn (WL) at 53 weeks.  
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Figure 4. Differentially abundant taxa that were assigned at the genus level and identified by LEfSe 

(P<0.05, LDA score>2.0) between Hyline Brown (HB) and White Leghorn (WL) at 58 weeks.  
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Figure 5. Differentially abundant taxa that were assigned at the genus level and identified by LEfSe 

(P<0.05, LDA score>2.0) between Hyline Brown (HB) and White Leghorn (WL) at 67 weeks.  
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Figure 6. Differentially abundant taxa that were assigned at the genus level and identified by LEfSe 

(P<0.05, LDA score>2.0) between Hyline Brown (HB) and White Leghorn (WL) at 72 weeks.  

 

 

 
Figure 7. Differentially abundant taxa that were assigned at the genus level and identified by LEfSe 

(P<0.05, LDA score>2.0) between Conventional Cage (CC) and Enriched Colony Cage (EC) 

housing systems at 53 weeks.  
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Figure 8. Differentially abundant taxa that were assigned at the genus level and identified by LEfSe 

(P<0.05, LDA score>2.0) between Conventional Cage (CC) and Enriched Colony Cage (EC) 

housing systems at 58 weeks.  

 

 
Figure 9. Differentially abundant taxa that were assigned at the genus level and identified by LEfSe 

(P<0.05, LDA score>2.0) between Conventional Cage (CC) and Enriched Colony Cage (EC) 

housing systems at 67 weeks.  
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Figure 10. Differentially abundant taxa that were assigned at the genus level and identified by 

LEfSe (P<0.05, LDA score>2.0) between Conventional Cage (CC) and Enriched Colony Cage 

(EC) housing systems at 72 weeks.  

 

 
Figure 11. The difference in alpha diversity as measured by Shannon’s diversity between Hyline 

Brown (HB) and White Leghorn (WL) at 53, 58, 67, and 72 weeks of hens’ ages.  
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Figure 12. The difference in alpha diversity as measured by Shannon’s diversity between hens 

housed in Conventional Cage (CC) and Enriched Colony Cage (EC) systems at 53, 58, 67, and 72 

weeks of hens’ ages.  
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Figure 13. PCoA plot showing cecal microbiota community structure between two different 

housing (CC; Conventional Cage and EC; Enriched Colony Cage) and breed types (HB; Hyline 

Brown and WL; White Leghorn) at 53, 58, 67, and 72 weeks of hens’ ages. The plot was generated 

using unweighted distance metric.  
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Figure 14. PCoA plot showing cecal microbiota community structure in Hyline Brown (HB) 

housed in Conventional Cage (CC) and Enriched Colony Cage (EC) systems.  
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Figure 15. PCoA plot showing cecal microbiota community structure in White Leghorn (WL) 

housed in Conventional Cage (CC) and Enriched Colony Cage (EC) systems.  

 

 



 

168 
 

 
Figure 16. PCoA plot showing cecal microbiota functional diversity between two different housing 

(CC; Conventional Cage and EC; Enriched Colony Cage) and breed types (HB; Hyline Brown and 

WL; White Leghorn) at 53, 58, 67, and 72 weeks of hens’ ages. The plot was created using Bray 

Curtis distance metric generated from metabolic pathways predicted by PICRUSt2.  
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Figure 17. Differentially abundant metabolic pathways of cecal microbiota between Hyline Brown 

(HB) and White Leghorn (WL). STAMP software was used to identify differentially abundant 

features using Welch’s t-test, where features were filtered using P>0.05 and difference in mean 

proportions (%) <0.05 criteria.  
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Figure 18. Differentially abundant metabolic pathways of cecal microbiota in Hyline Brown (HB) 

housed in Conventional Cage (CC) and Enriched Colony Cage (EC) systems. STAMP software 

was used to identify differentially abundant features using Welch’s t-test, where features were 

filtered using P>0.05 and difference in mean proportions (%) <0.03 criteria.  
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Figure 19. Differentially abundant metabolic pathways of cecal microbiota in White Leghorn (WL) 

housed in Conventional Cage (CC) and Enriched Colony Cage (EC) systems. STAMP software 

was used to identify differentially abundant features using Welch’s t-test, where features were 

filtered using P>0.05 and difference in mean proportions (%) <0.03 criteria.  
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6.1 Abstract 

 

The importance of microbiota in the health and diseases of farm animals has been well 

documented for diverse animal species. However, studies on microbiotas in turkey and turkey 

farms are limited. In this study, we performed a comprehensive survey of the microbiotas in the 5 

commercial turkey farms of the Northwest Arkansas (H, M, V, K, and R) including one farm with 

positive incidence of cellulitis (R farm). Altogether 246 boot swabs were used for 16S rRNA gene 

profiling of the microbial communities in the litter of the turkey farms. Altogether 3,057 unique 

features (amplicon sequence variants; ASVs) were identified from 10,863,650 sequences. At 

phylum level, 11 major bacterial phyla (≥0.01%) were recovered along with one phylum 

(Euryarchaeota; 0.08%) of division archaea. At genus level, 13 major bacterial genera were found 

whose relative abundance were > 2%. The microbial composition at both phylum and genus level 

as well as their diversities varied across different farms and among different flocks within the same 

farms, which were further affected by the ages of turkeys. Generally, the Firmicutes were found 

higher in the flocks of younger birds, while the Actinobacteria and Bacteroidetes were found 

higher in the flocks of the older birds. The Proteobacteria were highly enriched (47.97%) especially 

in K farm housing 56 days old turkeys (K-56), but Bacteroidetes, were found the highest in the 

flock C of M farm housing 63 days old turkeys (M-C-63; 22.38%), followed by K-84 group 

(17.26%). Such variations were also reflected at the genus level where the genus Escherichia-

Shigella that belong to the phylum Proteobacteria was highly abundant in K-84 (42.83%). 

Similarly, the genus Bacteroides was reported the highest in M-C-63 group (13.70%). On the 

contrary, Corynebacterium (0.97%) and Staphylococcus (1.07%) were found the lowest in M-C-

63 group. 20 core bacterial genera were identified based on the 95% samples prevalence, while 

only 4 core genera (Staphylococcus, Brevibacterium, Brachybacterium, and Lactobacillus) were 
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identified based on 100% samples prevalence. In contrast, 24 core bacterial genera were found 

based on 100% samples prevalence in cellulitis associated samples including Corynebacterium, 

an unknown genus of family Bacillaceae, Clostridium sensu stricto 1 (>97% similarity with C. 

septicum), and Ignatzschineria beside others, suggesting their possible roles in etiopathogenesis of 

cellulitis in turkeys. To our knowledge, this is the first study that investigated the turkey litter 

microbial communities using boot swabs and the overall results of this study may provide valuable 

insights for future studies targeting the health and diseases of turkeys.  
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6.2 Introduction  

 During the last decade, the decrease in sequencing costs coupled with innovations in 

computational technologies and approaches (Muir et al., 2016) has advanced our analysis and 

understanding of the composition and function of microbial communities residing in diverse 

environments (Jovel et al., 2016). Although the roles of microbiota in health and diseases have 

been well documented in wide range of animals, very limited microbiome studies have been 

conducted so far in turkeys.  

A study that was published in 2007 that investigated the succession of intestinal microbiota 

in the ceca of male turkeys, where they reported decrease in clostridia species and increase in 

Bacteroides uniformis over time (Scupham, 2007).  A period of microbial community transition 

was detected at 12 weeks of age with significant increase in the abundance of Campylobacter coli. 

In addition, increased in age of birds resulted increase in the species richness in trial 1, but it was 

not noticed in trial 2. Likewise, the cecal bacterial succession in relation to the Campylobacter 

jejuni and Campylobacter coli loads has also previously been studied (Scupham, 2009). Similar 

with the previous findings, the cecal bacterial communities were changed in a time-dependent 

manner and Campylobacter loads were correlated with the acute microbial community transition. 

In another study, considerably divergence of the cecal bacterial genera was found in the domestic 

turkeys as compared to the wild ones, though higher level bacterial compositions were similar 

(Scupham and Patton, 2008). Although, these studies provide valuable insights regarding intestinal 

microbiota in turkeys, they are based on low-resolution molecular fingerprinting methods, such as 

terminal restriction fragment length polymorphism (T-RFLP) or automated ribosomal intergenic 

spacer analysis (ARISA) (Scupham, 2007: Scupham and Patton, 2008; Scupham, 2009). These 
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methods possess some limitations in terms of accurately depicting microbial diversity in samples, 

especially for those samples with higher taxon richness (Jami et al., 2014). 

 Along with the advancement in sequencing technologies, the intestinal microbiota of 

turkey has been investigated using high throughput next generation sequencing of 16S rRNA genes 

(Danzeisen et al., 2013; Danzeisen et al., 2015; Andreano et al., 2017; Wilkinson et al., 2017). 

These studies were conducted in turkeys to characterize the microbiota along the gastrointestinal 

tract (Wilkinson et al., 2017), litter microbiotas (Danzeisen et al., 2015), and their relation in terms 

of body weight gain (Danzeisen et al., 2013), antibiotics treatment (Danzeisen et al., 2015), and 

hemorrhagic enteritis virus (Andreano et al., 2017). Mostly, these studies were conducted in 

experimental animal settings which might not properly reflects the turkey microbiotas in 

commercial farms, demanding the need of more comprehensive survey of turkey microbiota in 

commercial farms. Furthermore, the microbiotas of turkey’s litter were more closely related to the 

ileal microbiotas (Danzeisen et al., 2015) which suggests that the litter microbiotas can reflects the 

changes in intestinal microbial communities of turkeys.  

In this study, we characterized the litter microbiota from different flocks of five different 

commercial farms at different time points of turkey production. Moreover, we used the boot swab 

samples for better representation of microbiota from individual birds.  

6.3 Materials and Methods 

6.3.1 Collection of Samples 

 The samples were collected from each side of the barn’s quadrant by walking with a boot 

with sponge attached at the bottom. For instance, each barn has four quadrants and thus from each 

barn 8 (4x2=8) samples were collected. Samples were collected from five commercial turkey farms 
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(H, M, V, K, and R) of Northwest Arkansas at different time points including one farm (R) that 

has incidence of cellulitis. From R farm, four sponge samples directly from the birds (RB) and 

four boot sponge samples from the surrounding area (RL) were collected. The summary of the 

samples including farms, flocks, age of birds, and number of samples is shown in Table 1.  

6.3.2 DNA Extraction 

We developed the protocol for the extraction of metagenomics DNA in boot swab samples. 

For this purpose, each sponge swab sample was transferred to the sterile stomacher bag with filter 

(Seward), poured 20 ml sterile PBS buffer, and stomached for 2 min in a stomacher (Lab Blender 

400 series). In order to obtain uniformity in sponge samples, litter debris attached to each samples 

were removed aseptically before transferring to stomacher bags. The filtered contents from each 

samples after stomaching were transferred to 15 ml sterile tube and centrifuged @8000 rpm for 10 

min to make pellets. The supernatant from each samples after centrifugation was removed, whereas 

pellets containing bacterial cells were used for DNA extraction using QIAamp. Fast DNA Stool 

Minikit (Qiagen, Catlog # 51604). All the procedures for DNA extraction were followed according 

to the manufacturer’s instructions except incorporation of additional bead beating step. Bead 

beating step was incorporated in the protocol because bead beating was reported to affect DNA 

yield and taxon abundances (Knudsen et al., 2016). For bead beating, pellets from each samples 

were resuspended in 1 ml inhibit Ex buffer provided with kit and transferred to 2 ml 

microcentrifuge tubes with screw cap (Thermofisher Scientific, Catlog # 3468) containing 0.25 ml 

of sterile 0.1mm glass leads (BioSpec, Mfr # 11079101). Bead beating was performed using Bead 

mill 24 (Fisher Scientific) for 6 cycles where each cycle contained run time 0.30 sec. and stopping 

time 0.11 sec between each cycle. After bead beating, samples were incubated at 70 °C for 10 min 
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and followed manufacturer’s protocol for downstream steps and DNA was eluted in 30 μl of 

elution buffer.  

6.3.3 PCR and Library Preparation for Sequencing 

V4 region of 16S rRNA gene from genomic DNA of each sample was amplified using the 

primers 515F (Parada et al., 2016) and 806R (Apprill et al., 2015). The library of amplicons for 

sequencing was prepared according to the 16S Illumina PCR protocol described in the Earth 

Microbiome project (http://www.earthmicrobiome.org; Thompson et al., 2017) with slight 

modifications. In brief, Platinum™ II Hot-Start Green PCR Master Mix (2X) user guide protocol 

(Thermofisher Scientific, Catalog No. 14000013) was used to conduct PCR in a 25 μl final reaction 

volume and 35 amplification cycles. The thermocycling condition of PCR included an initial 

denaturation step at 94 °C for 2 min, followed by 35 cycles of 0.5 min at 94 °C, 0.5 min at 60 °C, 

and 0.5 min at 68 °C, and a final extension of 5 min at 68 °C. The length of amplified product was 

confirmed with 1% agarose gel electrophoresis and equal concentration (~300 ng) of amplicons 

from each sample as measured by Qubit dsDNA BR Assay Kit (ThermoFisher Scientific, Catalog 

No. Q32850) were pooled together. The pooled amplicons were finally ran on 1% agarose gel 

electrophoresis, purified using Zymoclean Gel DNA Recovery Kit (Zymo Research, Catalog No. 

D4007), and sequenced with Illumina MiSeq paired end 300 cycle options at University of 

California (Davis, CA). 

6.3.4 Amplicons Sequence Analysis 

Nebula cloud computing platform of the University of Arkansas was used to process raw 

sequencing reads in QIIME 2 version 2018.8 (Bolyen et al., 2018) utilizing the pipelines developed 

for paired-end data types. In sum, “demux emp-paired” method of q2-demux plugin was used to 
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demultiplex sequencing reads followed by quality filtering and denoising with “dada2 denoise-

paired” method of q2-dada2 (Callahan et al., 2016) plugin available at QIIME 2. The truncation 

length of forward and reverse reads was set at 240 and 200 bp, respectively, which is based on the 

quality score criteria (≥30). Taxonomic assignments was performed using a Naive Bayes classifier 

(Pedregosa et al., 2011) pre trained with SILVA (Version 132) 99% OTUs (Quast et al., 2013; 

Yilmaz et al., 2014) and q2-feature-classifier plugin, where the sequences have been trimmed to 

include only the V4 region of the 16S rRNA gene bound by the 515F/806R primer pair. The core-

metrics-phylogenetic method at a sampling depth of 17,000 was used to analyze Alpha and Beta 

diversity. Alpha diversity calculated by Shannon’s diversity index (Shannon, 1984) and Observed 

OTUs metric, while beta diversity calculated by unweighted UniFrac distance metric (Lozupone 

et al., 2011) and Bray Curtis (Bay and Curtis, 1957) were presented. All figures  were created 

using ggplot2 packages of R (Wickham, 2016). The significant differences in alpha diversity were 

calculated using alpha-group-significance command of QIIME2 which uses Kruskal-Wallis test. 

In contrary, statistical differences in beta diversity among groups were calculated by 

PERMANOVA (Anderson, 2001) test using beta-group-significance command of QIIME2 with 

pairwise option. For both diversities analysis, the corrected P  values for multiple comparisons (q) 

were used to report significant difference between two groups, where the level of significance was 

set at corrected P< 0.05. 

6.4 Results 

6.4.1 Overview of the Samples  

We collected litter samples from commercial turkey farms in Northwest Arkansas using 

boots swab method. We used the subset of 246 farm samples for analysis of bacterial communities 
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using 16S rRNA gene profiling targeting V4 region. The summary of the samples included in the 

microbiota analysis is shown in Table 1.  

6.4.2 Summary of DNA Sequencing Analysis 

Summarization of the feature table resulted in total 10,863,650 sequence reads from the 

246 farm samples that ranges from 17,134 to 82,383 reads per sample. The median and mean ± SE 

reads per sample were 42,949.5 and 44,161.2 ± 787.9, respectively. In addition, there were 

altogether 3,057 unique features (amplicon sequence variants) from all samples.  

6.4.3 Phylum Level Composition of Litter Microbial Communities  

 At phylum level, eleven major bacterial phyla and one phylum (Euryarchaeota; 0.08%) that 

belongs to the domain archaea were detected from four farm samples (excluding positive farm 

samples) which constituted around 99.96% of the total sequences. Among the major bacterial 

phyla, Firmicutes was the predominant phylum (51.10%) followed by Actinobacteria (31.69%), 

Proteobacteria (8.30%), and Bacteroidetes (8.18%). Other minor phyla included Cyanobacteria, 

Synergistetes, Epsilonobacteraeota, Kiritimatiellaeota, Tenericutes, Fusobacteria, 

Verrucomicrobia whose relative abundance ranges from 0.01 to 0.24% and constituted <1% in 

total. The relative abundance of the major phyla across four different farms is shown in Figure 1. 

Irrespective of farms, the Firmicutes was the predominant phylum which was found the highest in 

the H farm (55.47%), while it was found the lowest in the K farm (34.49%) as shown in Figure 1. 

On the contrary, Proteobacteria was found the highest in K farm (26.92%), whereas the 

Actinobacteria was found the most in V farm (41.51%). The phylum Bacteroidetes was found the 

highest in M farm (12.04%) as shown in Figure 1.  
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In addition, the composition of microbial phyla were also differentially present between 

flocks with in the same farm as illustrated in Figure 2. The variations in the relative abundance of 

major phyla between flocks of same farm was further achieved due to differences in the ages of 

birds as illustrated in Figure 3. Generally, Firmicutes was found higher in each flock of the farms 

rearing younger birds, while the Actinobacteria and Bacteroidetes were found higher in the flocks 

rearing the older birds (Figure 3). However, their relative abundance varied depending upon the 

farms and flocks within the same farm and are not linear at all the time points. Similarly, the 

Proteobacteria was highly enriched (47.97%) especially in K farm housing 56 days old turkeys as 

shown in Figure 3. In case of Bacteroidetes, this phylum was found the highest in the flock C of 

M farm housing 63 days old turkeys (22.38%) followed by K farm having turkeys at 84 days old 

(17.26%).  

 From the positive farm samples (R farm), Firmicutes was detected as the predominant 

phylum (66.06%) followed by Proteobacteria (17.77%), Actinobacteria (14.44%), and 

Bacteroidetes (1.47%) which constituted around 99.97% of the total sequences. Although no direct 

comparisons can be made, the relative abundance of phyla Firmicutes and Proteobacteria were 

increased, while the relative abundance of phyla Actinobacteria and Bacteroidetes were decreased 

in positive farm samples in comparison to the rest of the farm samples. The distribution of the 

relative abundance of major four phyla across different samples from R farm is shown in Figure 

4. The phylum Bacteroidetes was significantly reduced in birds swab samples (RB; 0.19%) as 

compared to the litter swab samples (RL; 2.75%) at P<0.05 (Kruskal-Wallis test). In addition, 

Proteobacteria was numerically enriched in RB (26.22% vs. 9.31%), whereas Firmicutes (72.15% 

vs. 59.98%) and Actinobacteria (15.60% vs. 13.28%) were numerically abundant in RL.  
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6.4.4 Genus Level Composition of Litter Microbial Communities  

 At genus level, thirteen major bacterial genera were identified whose average relative 

abundance were greater than 2% when summed across all four farm samples excluding R farm. 

Among these genera, the relative abundance of the genus Corynebacterium (16.66%) was found 

the highest followed by Staphylococcus (11.03%), Brevibacterium (6.01%), Megamonas (5.13%), 

Brachybacterium (4.83%), Jeotgalicoccus (4.76%), Lactobacillus (3.72%), Bacteroides (3.66%), 

Escherichia-Shigella (3.33%), Aerococcus (2.62%), Prevotellaceae UCG-001 (2.27%), 

Pseudogracibacilibacillus (2.24%), and Oceanisphaera (2.04%). The relative abundance of the 

major genera across four different farms is shown in Figure 5. The genus Corynebacterium was 

the predominant genus in H (21.78%) and V (17.30%) farm, however, the genera Megamonas 

(12.39%) and Escherichia-Shigella (17.79%) were significantly higher in the M and K farm, 

respectively. Moreover, the composition of bacterial genera vary not only between the flocks of 

the same farm (Figure 6), but also affected by ages of birds with in the same flock and same (Figure 

7). For instance, the genus Megamonas was highly enriched in flock C of the M Farm rearing 

turkeys of 28 (19.02%) and 63 days old (27.60%), but very lower amount of Megamonas was 

detected at the same flock rearing 98 days old (1.95%) turkeys. Similarly, the genus Escherichia-

Shigella was highly abundant in K farm having the turkeys of 56 days old (42.83%) (Figure 7). 

Similarly, the genus Bacteroides was reported the highest from the flock C of M Farm having 

turkeys of 63 days old (13.70%). Regarding Corynebacterium and Staphylococcus, they were 

present at significant amount throughout all ages and flocks of the farms (Figure 7) except at the 

flock C of M Farm having turkeys of 63 days old where they were found 0.97% and 1.07%, 

respectively.  
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 The top 14 major genera whose relative abundances were on average >2% when summed 

across all samples recovered from samples of R farm are shown in Figure 8. On the contrary to the 

other farm samples, the positive farm samples constituted unknown genera of the family 

Bacillaceae (15.05%) followed by the Ignatzschineria (14.58%) which were presented only 1.67% 

and 0.035% in rest of the farm samples, respectively. Other important genera included 

Staphylococcus (10.60%), Corynebacterium (9.65%), Clostridium sensu stricto 1 (6.34%), 

Pseudogracilibacillus (5.95%), Nosocomiicoccus (4.28%), Jeotgalicoccus (3.88%), Atopostipes 

(3.69%), Lactobacillus (2.55%), Enteractinococcus (2.54%), Virgibacillus (2.20%), Sporosarcina 

(2.09%), and Aerococcus (2.06%). Although direct comparisons cannot be made, it seems that 

different genera were differentially abundant between positive farm samples with the rest of the 

farm samples (Figure 5 and Figure 8). Moreover, as seen in Figure 8, there exists differences in 

the relative abundance of major bacterial genera between RL and RB groups. For instance, the 

genera Enteractinococcus, Pseudogracilibacillus, Virgibacillus, Nosocomiicoccus, and 

Lactobacillus were significantly higher in RL group, while the Clostridium sensu stricto 1 was 

significantly higher in RB group (Kruskal-Wallis test, P<0.05).  

When all ASVs that belong to the Clostridium sensu stricto 1 were compared with 

Clostridium septicum 16S rRNA gene sequence, they showed >97% similarity. Thus, we believed 

that the sequences of Clostridium sensu stricto 1 belong to C. septicum as C. septicum is considered 

as the primary etiological agent of cellulitis in turkeys (Tellez et al., 2009). It is further confirmed 

by the qPCR results in Chapter 7.  
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6.4.5 Core Bacterial Genera in Litter of Farm Samples Excluding Positive Farm samples (R Farm)  

 The number of core bacterial genera that were presented in the 50-100% of the farm 

samples is shown in Figure 9. There were 90 core bacterial genera found in 50% of the samples, 

while only 4 genera (Staphylococcus, Brevibacterium, Brachybacterium, and Lactobacillus) were 

found in all samples (Figure 9). In addition, 20 core bacterial genera were identified in 95% of the 

samples which include Corynebacterium, Staphylococcus, Jeotgalicoccus, Brevibacterium, 

Brachybacterium, Lactobacillus, Bacteroides, Pseudogracilibacillus, Aerococcus, Atopostipes, 

Virgibacillus, an unknown genus of Lachnospiraceae, Facklamia, Weissella, Escherichia-

Shigella, Bifidobacterium, Enterococcus, Phascolarctobacterium, Sellimonas, and 

Subdoligranulum.  

6.4.6 Core Bacterial Genera in Litter of Positive Farm Samples (R Farm)  

 The number of core bacterial genera that were presented in the 50-100% of the farm 

samples with positive incidence of cellulitis is shown in Figure 10. As shown in Figure 10, 73 core 

bacterial genera were detected in 50% of samples, whereas 24 genera were present in all 100% 

samples. These genera include unknown genus of Bacillaceae, Staphylococcus, Corynebacterium, 

Pseudogracilibacillus, Nosocomiicoccus, Ignatzschineria, Jeotgalicoccus, Atopostipes, 

Enteractinococcus, Lactobacillus, Virgibacillus, Sporosarcina, Aerococcus, Weissella, 

Brevibacterium, an uncultured genus of Bacillaceae, Bifidobacterium, Brachybacterium, an 

unknown genus of Lachnospiraceae, Salinicoccus, Subdoligranulum, Blautia, Sellimonas, and 

Romboutsia.  
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6.4.7 Alpha Diversity 

Alpha diversity of the microbial communities was measured using Shannon and observed 

OTUs indices. When the Shannon index was compared among the 4 different farms, no significant 

difference was observed in alpha diversity (Figure 11A). However, when the Shannon index was 

compared across different flocks within the same farms, all pairwise comparisons among the 3 

flocks (A, B, and C) in M Farm showed significant differences. Similarly, the two flocks (A and 

B) in V Farm showed significant difference in the Shannon index (Figure 11B).   

Similar, yet slightly different results were observed with observed OTU index. There was 

significant difference in alpha diversity between H and M Farms (Figure 12A). When the flocks 

within the same farms were compared, significant difference was observed between the flock A 

and B in H Farm, between the flock B and C in M Farm, and between the flock A and B in V Farm 

(Figure 12B).   

6.4.8 Beta Diversity 

 Beta diversity of the microbial communities was measured by Bray-Curtis and unweighted 

distance metrics. All pairwise combinations of various flocks from four turkey farms showed 

significant difference in microbial communities among the groups as indicated by both unweighted 

distance metric (Figure 13A; adjusted P<0.001) and Bray-Curtis distance metric (Figure 13B; 

adjusted P<0.01).  

In addition, within H farm, all possible pairwise comparisons of flocks and ages 

combinations showed significantly different microbial community structure in terms of both 

unweighted distance metrics (Figure 14A) and Bray-Curtis (Figure 14B) at adjusted P (q)<0.001.  
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6.5 Discussion 

 In the current study, we characterized the microbiota associated with the litter from five 

different commercial farms of the Northwest Arkansas including a farm with positive incidence of 

cellulitis. To our knowledge, this is the first study that used boot swab samples for comprehensive 

survey of litter microbiota in commercial turkey farms. Previously, boot swab was used for the 

detection of Mycobacterium avium subsp. paratuberculosis (MAP) in cattle herds (Eisenberg et al., 

2013). By the culture of boot swab samples, they were able to isolate MAP from 90.6% of MAP 

confirmed cattle herds. We also noticed significant enrichment of Clostridium sensu stricto 1 in 

farm samples with positive incidence of cellulitis. When sequences of all ASVs identified as 

Clostridium sensu stricto 1 were compared with C. septicum 16S rRNA gene sequence, they shared 

>97% sequence identity. Furthermore, the nested qPCR results from the assay that target the alpha 

toxin gene (csa) of C. septicum gave strong amplification signals from the same farm samples with 

incidence of cellulitis (Chapter 7). Thus, we believe that the sequences that were classified as 

Clostridium sensu stricto 1 belong to C. septicum, since cellulitis in turkey is considered to be 

primarily caused by C. septicum (Tellez et al., 2009). This further suggests that the boot swab 

samples can serve as an easy and cost effective technique for the collection of environmental 

samples for the detection of various pathogens as well as the study of litter microbiota. Moreover, 

studies on litter microbiota can reflect the changes in the microbial communities of the poultry as 

the litter microbial communities correlate with the communities residing in the hosts (Danzeisen 

et al., 2015), which are further affected by the litter types (Cressman et al., 2010).  

 It was found that the different flocks with in the same farm attributed differences in the 

composition and structures of litter microbial communities, which are further affected by the ages 

of turkeys. In addition, those variations are further depended upon the environmental conditions 
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(Farms). Age as a major driving factor of turkey microbiota was also reported previously 

(Danzeisen et al., 2013; Danzeisen et al., 2015). Differences in environmental conditions can play 

a vital role in the initial maturation of turkey microbiome, in addition with the flocks types 

(Danzeisen et al., 2013). Although the trend is not linear, we noticed the higher abundance of 

Firmicutes from the flocks rearing younger age of birds, while Actinobacteria and Bacteroidetes 

were reported higher from the flocks rearing older birds.  

Interestingly, the phyla Proteobacteria and Bacteroidetes were highly enriched in the flock 

C of the M farm with 63 days old turkeys (MN-C-63) and K farm housing 56 days old turkeys (K-

56), respectively. This was reflected at the genus level by increasing the abundance of Escherichia-

Shigella and Bacteroides in the respective farms. The Proteobacteria is the phylum that contains 

several pathogenic Gram negative genera such as Escherichia and Shigella whose increase is 

generally considered as the signature of gut dysbiosis (Shin et al., 2015). So, increase in the relative 

abundance of the phylum Proteobacteria and the subsequent increase of genera Escherichia-

Shigella in the K farm (K-56) might be correlated with the health and diseases of turkeys, though 

we are lacking those data for confirming our hypothesis. Another important observation was that 

the genera Bacteroides and Megamonas were present the most in the M-C-63 group. The increase 

in the relative abundance of Bacteroides in the particular farm was explained by the highest 

abundance of the phylum Bacteroidetes in that farm. In addition, the genus Staphylococcus was 

highly reduced in M-C-63 as compared to the other groups. The Bacteroides is a genus of Gram 

negative bacteria that are well known for its ability to degrade complex plant carbohydrates and 

host derived glycan. This group of bacteria can play beneficial effects on the hosts’ health and 

maintain gut homeostasis, however, the effects were found to vary between the studies and strains 

of Bacteroides (Wexler et al., 2017; Janssens et al., 2018). The increase in the abundance of the 
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genera Bacteroides and Megamonas might be associated with the reduction of Staphylococcus in 

M-C-63 group. Although C. septicum is considered as primary etiological agent, Staphylococcus 

aureus was also reported to be associated with cellulitis in turkeys (Gornatti-Churria et al., 2018). 

This was further supported by our results from the farm with positive incidence of cellulitis, where 

the Staphylococcus was detected in all samples suggesting the possible association of 

Staphylococcus in cellulitis of turkeys.  

Moreover, only 4 core genera (Staphylococcus, Brevibacterium, Brachybacterium, and 

Lactobacillus) were found in all samples of 4 farms excluding R farm, whereas 24 core genera 

were present in all samples from R farm that had cellulitis. The important core genera in positive 

samples were Corynebacterium, an unknown genus of family Bacillaceae, Clostridium sensu 

stricto 1 (>97% similarity with C. septicum), and Ignatzschineria beside others. These genera 

should be considered while describing the etiopathogenesis of cellulitis in turkeys. The genus 

Ignatzschineria was noticeably enriched in some of the positive samples especially in RB3 

(51.97%), RB4 (29.91%), and RL3 (21.70%) as shown in Figure 8. Ignatzschineria is a genus of 

Gram-negative bacteria that has been associated with necrotizing wounds colonized by maggots 

(Barker et al., 2014; Le Brun et al., 2015; Muse et al., 2017). This group of bacteria are common 

isolates from the larvae of the parasitic flesh fly (Wohlfahrtia magnifica) and two species, I. indica 

(Barker et al., 2014; Muse et al., 2017) and I. ureiclastica (Le Brun et al., 2015) were isolated from 

the bacteremia following maggots infestation of the wounds in humans. This suggests that if the 

cellulitis is not properly treated in a timely manner, it can create further complications including 

septicemia.  

In sum, boot swab samples were successfully used to investigate the litter microbial 

communities of the commercial turkey farms of the Northwest Arkansas. Majority of the microbial 
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taxa identified using boot swabs belong to the microbiota residing in the gut of the poultry which 

suggests that the litter microbiota can be used to reflect the microbial changes in the hosts. The 

composition and diversities of litter microbial communities varied even between the flocks of the 

same farm which are further affected by the age of birds. The core bacterial genera from samples 

with cellulitis differed as compared to the rest of the farm samples. In addition, several bacterial 

genera such as Corynebacterium, Staphylococcus, Ignatzschineria, unknown genus of family 

Bacillaceae and other that were identified as core members in the positive samples might be 

correlated with incidence of cellulitis beside C. septicum.  
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6.8 Tables and Figures  

Table 1. Summary of the farm samples used for microbiota analysis 

Farm Flock Age (days) No. of Samples 

H 

A 
33 8 

84 16 

105 16 

B 
49 8 

70 16 

103 16 

M 

A 84 16 

B 98 16 

C 
28 8 

63 16 

98 16 

V 

A 58 8 

112 14 

B 
59 8 

80 16 

115 16 

K - 
28 8 

56 8 

84 8 

R* - 60 8 

* represents farm with positive incidence of cellulitis, where 4 sponge samples from birds and 4 

booty sponge samples from the surrounding areas were collected. 
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Figures 

 
Figure 1. Composition of the litter microbiotas at phylum level in four different commercial turkey 

farms of Northwest Arkansas. “Others” represent the minor phyla whose relative abundance were 

less than 0.1%.  
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Figure 2. Composition of the litter microbiotas at phylum level in different flocks of four different 

commercial turkey farms of Northwest Arkansas. A, B, and C represent different flocks. “Others” 

represent the minor phyla whose relative abundance were less than 0.1%.  

 

 

 

 



 

195 
 

 
Figure 3. Composition of the litter microbiotas at phylum level in different ages of turkeys rearing 

in various flocks of four different commercial farms of Northwest Arkansas. A, B, and C represent 

different flocks. The numbers represent ages of turkeys when samples were collected. “Others” 

represent the minor phyla whose relative abundance were less than 0.1%.  

  

 

 



 

196 
 

 
Figure 4. Composition of the litter microbiotas at phylum level in different samples of R farm with 

incidence of cellulitis. RB and RL represent sponge swab samples collected directly from the birds 

and boot sponge swab samples collected from the surrounding areas. “Others” represent the minor 

phyla whose relative abundance were less than 0.1%.  
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Figure 5. Composition of the litter microbiotas at genus level in commercial turkey farms of 

Northwest Arkansas. “Others” represent the minor genera whose relative abundance were less than 

2.0 %.  
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Figure 6. Composition of the litter microbiotas at genus level in different flocks of four different 

commercial turkey farms of Northwest Arkansas. A, B, and C represent different flocks. “Others” 

represent the minor genera whose relative abundance were less than 2.0 %.  
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Figure 7. Composition of the litter microbiotas at genus level in different ages of turkeys rearing 

in various flocks of four different commercial farms of Northwest Arkansas. A, B, and C represent 

different flocks. The numbers represent ages of turkeys when samples were collected. “Others” 

represent the minor genera whose relative abundance were less than 2.0 %.  
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Figure 8. Composition of the litter microbiotas at genus level in different samples of R farm with 

incidence of cellulitis. RB and RL represent sponge swab samples collected directly from the birds 

and boot sponge swab samples collected from the surrounding areas. “Others” represent the minor 

genera whose relative abundance were less than 2.0 %.  
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Figure 9. The number of core bacterial genera identified from four different farms of turkeys (H, 

M, V, and K) and the fraction of samples from which they are recovered.  

 
Figure 10. The number of core bacterial genera identified from R farm that had an incidence of 

cellulitis and the fraction of samples from which they are recovered. 
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Figure 11. Alpha diversity in different farms (A) and flocks (B) as measured by Shannon Index. 

Significant difference is indicated at adjusted P (q) < 0.05 (*) or < 0.01(**). 

 

 

 
 

Figure 12. Alpha diversity in different farms (A) and flocks (B) as measured by Observed OTUs 

index. Significant difference is indicated at adjusted P (q) < 0.05 (*). 
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Figure 13. Emperor plot showing beta diversity distances among the different samples from 

different flocks of four farms and as measure by (A) unweighted UniFrac distance and (B) Bray-

Curtis distance indices.  
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Figure 14. Emperor plot showing beta diversity distances among the different samples in H farm 

as measured by (A) unweighted UniFrac distance and (B) Bray-Curtis distance indices. A and B 

represent two different flocks of H farm, whereas the number represents the ages of turkeys when 

samples were collected.  
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7.1 Abstract 

Cellulitis is an important disease in commercial turkey farms associated with significant 

economic loss. Although etiology of cellulitis is not fully elucidated, Clostridium septicum (C. 

septicum) is one of the main causes of this infectious disease. In this study, we report the 

development of a quantitative PCR assay targeting the alpha toxin gene (csa), which involves a 

prior 15-cyle PCR using nested primers to increase the detection sensitivity. Additionally, TaqMan 

probe was used to increase the specificity of the assay. The performance of our nested qPCR assay 

was evaluated by using Clostridium isolates from turkey farms, representing both septicum and 

non-septicum species as well as sponge swab samples from turkey farms. Our step-by-step 

development of the assay showed that the csa gene is a suitable target for specific-detection of C. 

septicum strains and that the inclusion of nested PCR step significantly increased the detection 

sensitivity of the final qPCR assay. The performance of the assay was also validated by high 

correlation between the quantification cycles of the qPCR assay with the relative abundance of C. 

septicum read counts in 16S rRNA gene microbiota profiling of the samples from turkey farms.  
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7.2 Introduction  

The frequency and severity of clostridial dermatitis has increased during the last two 

decades and has become a serious problem of the commercial turkey industry (Lighty et al., 2016). 

The clostridial dermatitis, which is often called as cellulitis in turkeys, is considered to be caused 

primarily by Clostridium septicum (Tellez et al., 2009). However, C. perfringens, C. sordellii, and 

Staphylococcus aureus have also been described as potential etiological agents (Tellez et al., 2009; 

Clark et al., 2010; Thachil et al., 2010; Lighty et al., 2016). In contrast to the other diseases, 

cellulitis in turkey does not fulfill Koch’s postulates because not all isolates of C. septicum 

recovered from cellulitis lesions caused cellulitis after intravenous injection of those isolates in 

healthy turkeys. Moreover, the authors were not able to isolate C. septicum in all field cases of 

turkey cellulitis (Tellez et al., 2009). Additionally, various factors such as flock type, breed, 

weight, litter condition, stress, and stocking density can affect the incidence of cellulitis in turkey 

(Clark et al., 2010; Huff et al., 2013; Lighty et al., 2016).  

The pathogenesis of cellulitis in turkey is still poorly understood because of the limited 

availability of experimental data. Thus, there is still debate among scientists regarding the validity 

of the pathogenesis model between “inside-out” and “outside-in” theory associated with turkey 

cellulitis. Pathogenic clostridia, toxin, or both can enter into blood stream through damaged 

intestinal wall, localize under skin, and produce enterotoxins causing cellulitis. Furthermore, 

clostridia from contaminated environment can cause infection through oral route. This is called as 

“inside-out” theory. On the other hand, clostridia can enter directly through skin abrasions causing 

cellulitis, which is known as “outside-in” theory (Clark et al., 2010). 

  Any factors described above can serve as stressors and affect the intestinal permeability 

(Caso et al., 2008; Gareau et al., 2008). This results in the localization of pathogenic Clostridium 
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under skin via hematogenous route. C. septicum isolates were isolated from blood of asymptomatic 

turkey, which may suggest the possibility of hematogenous route of infection during turkey 

cellulitis (Neumann and Rehberger, 2009). However, “outside-in” theory also cannot be ignored 

and more studies should be conducted in future to understand the detail mechanisms of 

pathogenesis in turkey cellulitis.  

For the prevention and control of cellulitis, rapid and sensitive detection of C. septicum is 

important. Several studies have been conducted to develop PCR primers and quantitative PCR 

assays for detection of C. septicum (Halm et al., 2010; Lange et al., 2010; Neumann et al., 2010). 

In these studies, various target genes were used for development of the assay, including csa (alpha 

toxin) gene (Neumann et al., 2010), 16S rRNA gene (Halm et al., 2010) and spo0A gene (Lange 

et al., 2010).  

In this study, we developed the real time PCR assay for specific detection of C. septicum 

species based on the csa gene with an additional step of prior nested PCR step as an effective 

means to increase the sensitivity of the detection. In addition, we used TaqMan probe for improved 

specificity of the assay.  

7.3 Materials and Methods 

7.3.1 Isolation and Identification of Bacterial Strains 

We have obtained Clostridium strains that belong to either the species septicum or non-

septicum species isolated from commercial turkey farms in Northwest Arkansas. Samples 

consisting of litter samples or tissues from clinically ill birds were submitted to Northwest 

Arkansas Veterinary Services for anaerobic culture.  
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Litter samples were weighed and suspended in Buffered Peptone Water to give a 1:10 

dilution. A 50 ml aliquot of the suspension was pasteurized at 70°C for 10 minutes to kill non-

spore formers. 20 ul of the heat-treated sample was plated onto Tryptic Soy Agar (TSA) w 5% 

sheep red blood cells (Hardy Diagnostics) and Columbia Agar with Colistin and Naladixic (CNA) 

Acid w 5% sheep red blood cells (Hardy Diagnostics). Plates were incubated in anaerobic jars with 

Mitsubishi Anaero-pack sachets for 48 hrs at 37°C. Colonies suspected to be anaerobic were sub-

cultured on TSA and incubated under both anaerobic and aerobic conditions at 37°C to confirm 

isolates were anaerobic. Obligate anaerobic isolates were identified to species using RAPid 

anaerobic panels (Remel).  

Tissue samples were surface seared with a propane torch. A sterile cotton tipped swab was 

used to collect a sample from the subcutis and a second swab was used to collect a sample from 

deep muscle tissues. Swabs were plated on TSA w5% sheep blood and Columbia CAN Agar with 

5% sheep red blood cells. After plating the swabs were placed into Chopped Meat Glucose Broth 

(CMG Difco). Plates and CMG tubes were incubated anaerobically at 37 °C as described for litter 

samples. Isolates were selected and confirmed as obligate anaerobes as described for litter samples. 

RAPid panels were used to identify each isolate. Isolates were maintained under anaerobic 

conditions on TSA blood agar plates.  

7.3.2 Collection of Farm Samples 

The farm samples used in this study were described in detail in the previous chapter 

(Chapter 6).   
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7.3.3 DNA Extraction of Litter Swab Samples and Clostridium strains 

We developed the protocol for the extraction of metagenomics DNA in boot swab samples. 

For this purpose, each sponge swab sample was transferred to the sterile stomacher bag with filter 

(Seward), followed by adding 20 ml sterile PBS buffer, and stomaching for 2 min in a stomacher 

(Lab Blender 400 series). In order to obtain uniformity in sponge samples, litter debris attached to 

each samples were removed aseptically before transferring to stomacher bags. The filtered contents 

from each samples after stomaching were transferred to 15 ml sterile tube and centrifuged @8000 

rpm for 10 min at 4°C to make pellets. The supernatant from each samples after centrifugation was 

removed, whereas pellets containing bacterial cells were used for DNA extraction using QIAamp 

Fast DNA Stool Minikit (Qiagen, Catlog # 51604). All the procedures for DNA extraction were 

followed according to the manufacturer’s instructions except incorporation of additional bead 

beating step. Bead beating step was incorporated in the protocol because bead beating was reported 

to improve DNA yield and taxon abundances (Knudsen et al., 2016). For bead beating, pellets 

from each samples were resuspended in 1 ml inhibit Ex buffer provided with the kit and transferred 

to 2 ml microcentrifuge tubes with screw cap (Thermofisher Scientific, Catlog # 3468) containing 

0.25 ml of sterile 0.1mm glass leads (BioSpec, Mfr # 11079101). Bead beating was performed 

using Bead mill 24 (Fisher Scientific) for 6 cycles where each cycle contained run time 0.30 sec. 

and stopping time 0.11 sec between each cycle. After bead beating, samples were incubated at 

70°C for 10 min and processed following the manufacturer’s protocol for downstream steps and 

finally DNA was eluted in 30 μl of elution buffer.  

For DNA extraction of clostridial isolates, the colonies grown on agar plates were 

resuspended in 1.5 ml sterile PBS buffer, and the cell suspension was transferred to 2 ml sterile 

Eppendorf tubes. The suspensions were centrifuged at 13,000 rpm for 1 min at 4°C and the 



 

211 
 

supernatant was removed. The pellets were resuspended in a 1.5 ml sterile PBS buffer, centrifuged, 

and removed the supernatant. This washing process was repeated for additional two times. After 

washing the colonies for three times, the pellets were used for the DNA extraction following the 

same procedures as described above. 

7.3.4 Design of the Primers and Probes for Quantitative Real-Time PCR (qPCR) Assay 

We wanted to develop a quantitative real time PCR assay (qPCR) to detect and quantify 

Clostridium septicum strains using TaqMan probe targeting the alpha toxin gene (csa). For the 

design of the primers and probe, we obtained DNA sequences of the csa gene from 5 different 

strains of C. septicum that are publicly available in the NCBI database (AB083434.1, 

EU482188.1:315-1646, HM051335.1, FJ212777.1, KU726861.1:1078-1677). Multiple sequence 

alignment was performed using CLUSTAL Omega (1.2.4), where primers (csa-F1 and csa-R1) 

and probe (csa-Probe) were selected from the conserved region among the 5 csa gene sequences 

(Figure 1) using PrimerQuest tool of integrated DNA technologies (IDT). ZEN Double-Quenched 

Probe from IDT that contain a 5′ fluorophore (FAM), 3′ Iowa Black FQ (IBFQ) quencher, and 

proprietary, internal ZEN quencher from ID was synthesized through IDT and used in this study. 

For nested qPCR, the primers that anneal outside of the csa-F1 and csa-R1 as shown in Figure 1 

were designed. Primers and probe sequences are listed in Table 1. 

7.3.5 Normal PCR, qPCR, and Nested qPCR 

 For normal PCR, each 2.5 μl DNA sample from clostridial isolates or farm samples was 

amplified using Taq DNA Polymerase (0.25 μl) with standard Taq buffer (NEB) in a 50 μl final 

reaction volume. The primers (csa-F1 and csa-R1) and dNTPs were used at the final concentration 

of 0.2 µM and 200 µM, respectively. The thermocycling condition of PCR included an initial 
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denaturation step at 94 °C for 2 min, followed by 35 cycles of 0.5 min at 94 °C, 0.5 min at 55 °C, 

and 1 min at 68 °C, and a final extension of 5 min at 68 °C. The qPCR assay included 2X 

PrimeTime Gene Expression Master Mix from IDT (12.5 μl), 1.5 μl each of 10 μM csa-F1 and 

csa-R1 primers, 5 μM csa-Probe (1.25), and 2.5 μl DNA sample in a 25 μl reaction volume. The 

qPCR was performed using the 7500 real-time PCR system (Applied Biosystems). The thermos 

cycling conditions were: one cycle at 95 °C for 10 min, 40 cycles of amplification at 95 °C for 15 

s, 60 °C for 1 min. For nested qPCR, PCR amplification of the samples using nested primers (csa-

F1-Nested and csa-R1-Nested) was performed for 15 cycles, and 2 μl PCR reaction from nested 

PCR was used for subsequent qPCR using TaqMan probe as described above.    

7.4 Results 

7.4.1 Evaluation of the Primers and Probes for Quantitative PCR Assay 

To check the specificity of the designed primers (csa-F1 and csa-R1), PCR was performed 

using DNA templates from pure culture of both C. septicum (n=13) and non-C. septicum 

Clostridium (n=12) isolates from various turkey farms. The length of amplicons (148 bp) was 

confirmed using 1% agarose gel electrophoresis (Figure 2). As summarized in the Table 2, the 

primer pair resulted in 100% amplification from all C. septicum strains and 0% amplification from 

non-septicum Clostridium strains, supporting high specificity of the PCR primers in detecting C. 

septicum species.  

In addition, the swab samples from turkeys with severe cellulitis (n=4) and the surrounding 

litters (n=4) were tested as positive controls using the PCR assay. All 8 samples showed strong 

positive results, suggesting the high efficiency of the PCR for the farm samples as well.   
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7.4.2 Result of the First qPCR Assay 

We performed an initial evaluation of the qPCR assay using the primers and probe 

described above with some of the representative litter swab samples from farms as well as both C. 

septicum (positive control) and non-C. septicum (negative control) isolates (Table 3). All samples 

were ran in duplicates. V4 and V2221 were litter swab samples from V farm with the ages of birds 

58 days and 16 weeks, respectively. Similarly, H8 and H2212 were litter swab samples from H 

farm with the ages 33 days and 12 weeks, respectively. RL1 was the sample from R farm where 

there was reported positive incidence of cellulitis, which was chosen to serve as the positive control 

sample. CS2B and CS3B were pure culture samples of C. septicum serving as the positive controls, 

whereas pure culture samples of C. novyi and C. butyricum served as the negative controls. In this 

run, our aim was to investigate the general performance (specificity and sensitivity) of the qPCR 

assay rather than quantifying the signals. Positive controls from both farm and pure culture showed 

lower Cq value than negative controls as expected, where it was much lower for the two culture 

positive samples as compared to the litter positive sample from the farm (TABLE 3). On the 

contrary, negative controls (no template, C. novyi, and C. butyricum) showed either very higher 

Cq values or could not be determined at all.  

7.4.3 Evaluation of the Primers for Nested PCR 

Since Cq value especially from the positive farm sample was quite high (27.80±0.04 for 

RL1), there was need to improve the sensitivity of the qPCR assay. Thus, we designed the other 

set of primer that anneal just outside of the csa-F1 and csa-R1 as shown below (Figure 1) to be 

used for nested PCR reaction.  
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The specificity of the nested primers was also tested using PCR followed by 1% agarose 

gel electrophoresis with proper positive (farm and pure C. septicum isolates) and negative (no 

template and non C. septicum isolates) controls. As expected, all the positive farm controls and C. 

septicum isolates showed amplifications with desired band length (~235 bp) and negative controls 

showed no amplification in 1% agarose gel.  

7.4.4 Evaluation of the Improved qPCR Assay using Nested Primers 

For initial evaluation of the nested qPCR assay, the nested qPCR was performed using 

relevant samples, including C. septicum and non C. septicum isolates. For nested qPCR, PCR 

amplification of the samples using nested primers (csa-F1-Nested and csa-R1-Nested) was 

performed for 15 cycles, and 2 μl PCR reaction from nested PCR was used for subsequent qPCR 

using TaqMan probe. To evaluate the improvement of including nested PCR step, the same assay 

was conducted with and without nested PCR step prior to qPCR assay. The summary of Cq values 

from same samples with or without nested PCR is summarized in Table 4. As we can see in Table 

4, the sensitivity of qPCR assay increased to a greater extent by using nested qPCR as indicated 

by consistently lower Cq values in comparison to normal qPCR.  

7.4.5 Evaluation of the Nested qPCR Assay Using Turkey Farm Samples   

The sequences of Clostridium sensu stricto 1 as identified by microbiota analysis (Chapter 

six) were ≥97.6% identical to C. septicum sequence, and thus we considered these as C. septicum 

sequences. The results of nested qPCR from farm samples that contained Clostridium sensu stricto 

1 are summarized in the Table 5. Spearman correlation test was performed using JMP Genomics9 

to test the relationship between sequences of C. septicum and resulting Cq values. For this purpose, 

rarefied sequence counts were used and Cq value 40 was given to those samples which 
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quantification cycles were not determined. The quantification cycles of the qPCR assay were 

negatively correlated (Spearman’s ρ/rs=-0.54, P<0.0001) with the abundance of C. septicum read 

counts in 16S rRNA gene microbiota profiling of the samples from turkey farms (Table 5, Figure 

3). Increased in C. septicum sequence counts resulted decrease in Cq values and vice versa.   

7.5 Discussion 

 In the present study, we developed nested qPCR assay that was able to detect the C. 

septicum isolates in pure culture as well as from farm samples. Cellulitis in turkeys is considered 

as one of the emerging diseases of commercial turkey industry with the top most concerns of 

poultry Veterinarian (Clark et al., 2010; Lighty et al., 2016). Cellulitis in turkeys is primarily 

considered to be caused by C. septicum (Tellez et al., 2009), which normally starts at 13-16 weeks 

of age and continued until the market age (Carr et al., 1996). The typical mortality due to cellulitis 

varies from few birds to 3% daily (Gornatti-Churria et al., 2018) and 1-2% per week (Carr et al., 

1996). But in some flocks, mortality up to 60% was also reported (Gornatti-Churria et al., 2018). 

Likewise, increase in down-grading and condemnation rates of turkey carcasses at slaughter have 

been associated with cellulitis (Gornatti-Churria et al., 2018). Moreover, cellulitis resulted increase 

in cost of production by 0.031 to 5.5 cents per kilogram of meat produced (Lighty et al., 2016). 

Thus, early detection of C. septicum from farm samples may help to reduce economic losses 

associated with cellulitis. 

  Although, previous studies developed qPCR assay for the detection of C. septicum based 

on csa (alpha toxin) gene (Neumann et al., 2010), 16S rRNA gene (Halm et al., 2010) and spo0A 

gene (Lange et al., 2010), there is still room to improve the sensitivity and selectivity of the assay. 

Specifically, the qPCR assay based on spo0A gene was developed for the simultaneous detection 

of both C. septicum and C. chauvoei species (Lange et al., 2010). Another qPCR assay based on 
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16S rRNA gene was developed for the purpose of differentiating C. septicum and C. chauvoei by 

the use C. septicum and C. chauvoei specific probes (Halm et al., 2010).  However, this assay was 

not able to 100% differentiate the C. septicum from other clostridial species. Clostridial species 

such as C. quinii, C. celatum, C. difficile (DSM 5566), C. haemolyticum (DSM 5565), and C. 

histolyticum gave amplification signals when C. septicum specific probe assay was used (Halm et 

al., 2010).  

On the contrary, the qPCR assay that targeted the alpha toxin gene (csa) which is believed 

to be presented in all strains of C. septicum, was able to differentially detect C. septicum from all 

tested non C. septicum and other closely related isolates (Neumann et al., 2010). This qPCR assay 

utilized the SYBR Green I, a nonspecific fluorescent dye that can bind to any double stranded 

DNA and can generate false positive signals. In addition, the length of amplicons also affect the 

intensity of the amplification in SYBR Green based qPCR assay (Cao and Shockey, 2012). 

However, TaqMan probe can only bind to the DNA sequence between the two PCR primers which 

enables to generate a fluorescent signal only from the specific PCR product, and thus increases the 

specificity (Cao and Shockey, 2012).  

In the present study, we used the double quenched probe from IDT which was claimed to 

increase the sensitivity, specificity, and precision of qPCR experiment (IDT). Using normal PCR, 

we got 100% amplifications from all of the C. septicum (n=13) strains, while 0% amplifications 

from non-septicum Clostridium strains (n=12) which supports the high specificity of PCR primers 

in detecting C. septicum. Furthermore, all 8 swab samples (4 litters and 4 birds) collected from the 

farm having the higher incidence of cellulitis got amplified. This supports that the primers are not 

limited for the detection of pure cultures of C. septicum but can also be extended to the detection 

of C. septicum from farm samples. However, the nature of our farm samples is unique in the sense 
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that they were collected using swabs attached to the boots which contain lots of litter debris and 

the biomass of microbes may be very less as compared to other types of samples such as intestinal 

digesta or fecal samples. This is reflected in the first qPCR study where the Cq values from positive 

farm sample and pure culture of C. septicum strains were higher as expected (Table 3) demanding 

the need of improving the sensitivity of the assay. Thus, we designed the nested qPCR since nested 

qPCR was found to significantly increase the sensitivity of qPCR assay as reported earlier 

(Neuberger et al., 2016; Tran et al., 2014). In agreement with these studies, we also reported 

significant increase in the sensitivity of the nested qPCR assay (Table 4). Moreover, the nested 

qPCR assay was successfully applied to the farm samples where the Cq values correlated with the 

sequence counts of C. septicum as identified by the microbiota analysis (Table 5). Hence, the 

nested qPCR assay presented here can be successfully applied to detect and quantify the C. 

septicum strains in wide range of samples, which can help to prevent and treat the diseases 

associated with them by enabling their early detection. 
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7.9 Tables and Figures  

Table 1. Sequences of nested primers.  

Primers Sequences 

csa-F1  GGGCAAATGTAGCTCATTCATTA 

csa-R1 GGATCATTTGGATTGTATCTAGCAG 

csa-Probe CTGTTCCACCGCACCATCCAAATC 

csa-F1-Nested AAAATATTTGGATATGAAGACAATGA 

csa-R1-Nested CATAGAAAGTCTATCTTTTGCACGA 
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Table 2. Summary of PCR results. 

Clostridium isolates PCR results  

C. septicum-2 Positive 

C. septicum-3 Positive 

C. septicum-4 Positive 

C. septicum-1B Positive 

C. septicum-2B Positive 

C. septicum-3B Positive 

C. septicum-4B Positive 

C. septicum-5B Positive 

C. septicum-6B Positive 

C. septicum-10B Positive 

C. septicum-B.D Positive 

C. septicum-C1 Positive 

C. septicum-C2 Positive 

C. bifermenticus Negative 

C. subterminale Negative 

C. perfringens Negative 

C. butyricum Negative 

C. novyi-1 Negative 

C. novyi-2 Negative 

C. limosum-1 Negative 

C. limosum-2 Negative 

C. limosum-3 Negative 

C. limosum-4 Negative 

C. cochlearium-1 Negative 

C. cochlearium-2 Negative 

Farm Samples 

RL (1-4) Positive 

RB (1-4) Positive 

*The strains that belong to C. novyi, C. limosum, C. cochlearium, and C. butyricum were identified 

through Sanger sequencing of 16S rRNA genes. RB and RL represent swab samples from turkey 

with severe cellulitis and the surrounding litters, respectively.   
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Table 3. Summary of qPCR results from first run using primers (csa-F1 and csa-R1) and probe 

(csa-Probe). 

Sample Cq (Mean±SD) 

V4 Undetermined 

V2221 Undetermined 

H8 Undetermined 

H2212 Undetermined 

RL1 27.80±0.04 

C. septicum CS2B 14.37±0.07 

C. septicum CS3B 14.29±0.01 

C. novyi Undetermined 

C. butyricum 34.22±1.10 

NC  Undetermined 

Note: SD; represent standard deviation, NC; represent negative control (no template).  

Table 4. Summary of qPCR results obtained with and without nested PCR. 

Sample Cq (Mean±SD) Normal Cq (Mean±SD) Nested 

C. septicum CS2B 13.69±0.01 4.71±0.03 

C. septicum CS3B 13.43±0.01 4.86±0.04 

RL2 29.78±0.01 20.94±0.05 

RB1 28.03±0.15 20.50±0.06 

H8 Undetermined Undetermined 

H2212 Undetermined Undetermined 

V4 Undetermined Undetermined 

V2221 Undetermined Undetermined 

C. novyi 35.90±1.69 27.57±0.01 

C. bifermenticus 34.16±0.04 28.26±0.11 

NC Undetermined Undetermined 

NC represents negative control (no template DNA), other samples are same as described above. 
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Table 5. Summary of qPCR results from farm samples with Clostridium sensu stricto 1 sequences 

count as determined by microbiota analysis. 

Sample Cq (Mean±SD)  Sequence Count 

CS2B 8.38±0.22 NA 

RL1 19.94±0.05 5 

RL3 23.55±0.18 4 

RB1 19.47±0.06 1035 

RB2 24.32±0.16 3987 

RB3 17.39±0.14 737 

RB4 17.55±0.07 2857 

M3321 25.66±0.20 53 

M3322 26.53±0.08 31 

M3341 26.93±0.05 17 

M3312 27.54±0.17 22 

M3331 28.14±0.13 18 

M3241 28.35±0.20 26 

M2321 28.36±0.10 12 

M3311 29.20±0.11 19 

M3212 29.67±0.22 21 

M3211 30.72±0.18 33 

K335 31.63±0.16 8 

H3341 Undetermined 9 

M3231 Undetermined 30 

M3342 Undetermined 14 

M3221 Undetermined 19 

M2231 Undetermined 9 

M3222 Undetermined 15 

M2311 Undetermined 9 

M2322 Undetermined 10 

M3232 Undetermined 15 

M3242 Undetermined 12 

M2341 Undetermined 11 

M2212 Undetermined 8 

M2211 Undetermined 4 

M2242 Undetermined 14 

M2331 Undetermined 6 

M2241 Undetermined 5 

M2342 Undetermined 16 

M2312 Undetermined 9 

M2222 Undetermined 5 

M6231 Undetermined 2 
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Table 5 Cont. Summary of qPCR results from farm samples with Clostridium sensu stricto 1 

sequences count as determined by microbiota analysis. 

Sample Cq (Mean±SD)  Sequence Count 

H2342 Undetermined 2 

H2332 Undetermined 2 

H3331 Undetermined 5 

H3322 Undetermined 5 

H3342 Undetermined 6 

H3311 Undetermined 8 

K336 Undetermined 29 

K332 Undetermined 16 

K318 Undetermined 16 

H2312 Undetermined 3 

H3332 Undetermined 2 

H2341 Undetermined 28 

K311 Undetermined 5 

K334 Undetermined 13 

K338 Undetermined 8 

K337 Undetermined 3 

K333 Undetermined 2 

K314 Undetermined 3 

K331 Undetermined 2 

V635 Undetermined 1 

NC1 Undetermined NA 

NC2 Undetermined NA 

NC represents negative control. Other samples are same as described above and Chapter six. NA 

represent not applicable. The counts are from rarefied table.   
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Figures  

 

Figure 1. DNA sequence of the csa gene region showing the design and locations of the primers 

and probe used for the nested qPCR assay described in this study. The regions corresponding to 

the primers and probe are shown in different colors: nested-F1, csa-F1, Taqman probe, csa-R1, 

and nested-R1.  C was common to both csa-R1 and Nested-R1. The oligonucleotides were 

designed based on the csa gene sequences of the following C. septicum strains: AB083434.1, 

EU482188.1:315-1646, HM051335.1, FJ212777.1, KU726861.1:1078-1677.   

 

 

Figure 2. PCR products of the csa gene separated on 1.0% agarose gel. M: 2-log ladder, 1: C. 

septicum-2B, 2: C. septicum-3B, 3: C. septicum-4B, 4: C. septicum-5B, 5: C. septicum-6B, 6: C. 

septicum-10B, 7: C. novyi, and N: no template (Negative Control).   

 

 

 



 

225 
 

Figure 3. The scatter plot showing the correlation between the sequence counts (rarefied) of C. 

septicum and the quantification cycles (Cq). Spearman correlation test showed increase in 

sequence counts of C. septicum resulted decrease in Cq values and vice versa (rs=-0.54, P<0.0001).  
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CONCLUSION 

In this dissertation, the microbiotas in diverse samples collected from chickens (broilers, 

breeders, and layers) and turkeys were investigated by 16S rRNA genes sequences analysis. The 

culturable Lactobacillus subpopulations recovered on MRS agar from the chicken gastrointestinal 

tract (GIT) showed variations with in the different regions (cecum vs. ileum) and locations (lumen 

vs. mucosa) of the GIT, indicating their distinct functional roles in different GIT niches. Some 

species of Lactobacillus were not culturable, while other non-lactic acid bacteria grew on MRS 

agar media which suggest that the MRS agar are not strictly selective to lactic acid bacteria only. 

While investigating the effect of cell densities as determined by varying levels of sample dilution 

on the culture-enriched microbiota profiles, the dilution levels of original samples were found to 

alter the resulting microbiota via unknown density-dependent mechanisms. Thus, cell densities of 

samples should be considered for designing experiments using culture-enriched microbiota 

profiling. Direct-Med Microbials (DFM) based on Bacillus isolates (B. subtilis and B. 

amyloliquefaciens) were found to reduce S. Enteritidis concentrations in the intestinal 

compartments as compared to the control using in vitro digestive model. In addition, DFM improve 

intestinal health by reducing the permeability as measured by serum FITC-d levels and other 

markers of intestinal health such as IgA and superoxide dismutase (SOD) using in vivo trials. When 

egg production performance and cecal microbiota were compared between two strains of Hy-Line 

(Brown and W-36) housed in conventional or enriched colony cages, there was significant 

interaction effect of strains and housing types on egg production in addition with significant 

changes in composition, diversities, and functional potentialities of cecal microbiota between 

strains and housing types during the late production stage. The overall results of this study suggest 

that the differences in egg production between hens’ strains and housing types might be achieved 
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at least partially through alterations of cecal microbiota. Moreover, comprehensive microbiota 

analysis of 246 boot swabs collected from five commercial turkey farms of Northwest Arkansas 

revealed variations in the litter microbiota compositions and their diversities among farms and 

flocks which were further affected by the ages of turkeys. Interestingly, 24 core bacterial genera 

were found to present in all farm samples with positive incidence of cellulitis including 

Corynebacterium, an unknown genus of family Bacillaceae, Clostridium sensu stricto 1 (>97% 

similarity with C. septicum), and Ignatzschineria beside others, while only 4 core bacterial genera 

were reported from all rest of the farm samples (Staphylococcus, Brevibacterium, 

Brachybacterium, and Lactobacillus). The differences in bacterial genera recovered in positive 

samples and rest of the farm samples suggest the possible roles of other bacteria beside C. septicum 

in etiopathogenesis of cellulitis in turkeys. We also developed and evaluated nested qPCR assay 

for the quantitative detection of C. septicum that targets the alpha toxin gene (csa). The assay was 

sensitive to detect C. septicum from the pure culture as well as from the farm samples.   
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APPENDIX 

Table S1. The relative abundance of all OTUs found in MRS groups were also determined from the directly isolated DNA samples (T-ZERO) and included in the statistical analysis 

as a reference for comparison.  

 

 

  

#OTU ID CL.1a CL.1b CL.1c CL.2a CL.2b CL.2c CL.3a CL.3b CL.3c CL.4a CL.4b CL.4c CL.6b CL.6c CL.7a CL.7b CL.7c CL.8a CL.8b CL.8c CL.9a CL.9b CL.9c CL.10a CL.10b CL.10c Top-hit Species

Lactic Acid Bacteria:  Lactobacillus

265678423 19.87 16.48 16.34 20.84 20.03 22.07 19.50 19.27 18.72 19.47 21.59 21.95 19.08 17.99 19.00 19.58 19.80 12.44 19.76 17.69 22.44 21.50 19.60 22.84 20.58 21.51 L. salivarius

343206111 12.48 11.79 0.00 16.03 14.51 12.00 11.37 9.97 10.27 10.27 11.33 6.81 8.54 13.11 12.27 10.74 14.30 9.09 17.19 14.13 17.37 19.05 13.75 13.55 12.38 14.36 L. agilis

444439671 9.05 2.25 0.00 12.66 10.82 11.63 14.83 10.90 9.55 11.19 11.42 9.12 15.86 17.31 14.13 16.24 14.00 8.83 8.16 0.00 12.15 10.14 10.97 10.14 9.81 11.28 L. crispatus

343198491 8.54 4.96 1.94 14.77 9.86 9.35 18.21 13.51 12.94 9.85 10.47 0.00 9.19 9.92 13.93 10.55 8.73 8.51 8.97 7.04 11.99 10.43 10.83 10.67 10.23 12.54 L. gasseri

265678507 6.45 0.00 0.00 10.20 0.00 0.00 14.07 9.30 5.09 9.80 11.21 12.41 10.27 7.30 8.43 8.33 10.13 0.00 9.97 0.00 9.97 6.98 5.51 8.97 11.87 11.34 L. ingluviei

444439749 0.00 0.00 0.00 9.47 4.67 5.48 14.23 8.15 7.64 4.99 6.73 0.00 6.15 0.00 10.60 8.16 0.00 0.00 0.00 0.00 7.27 0.00 4.54 0.00 6.00 7.56 L. johnsonii

265678780 0.00 0.00 0.00 5.90 5.64 0.00 8.34 5.48 0.00 0.00 6.73 0.00 6.87 7.30 8.70 5.20 13.58 0.00 0.00 0.00 7.86 0.00 0.00 6.98 0.00 8.19 L. saerimneri

343201713 0.00 0.00 0.00 5.90 0.00 5.48 7.83 0.00 0.00 4.99 0.00 0.00 8.35 10.67 8.11 10.16 7.74 6.52 0.00 0.00 0.00 0.00 5.51 0.00 0.00 0.00 L. helveticus

343198690 0.00 0.00 0.00 5.90 0.00 0.00 7.60 0.00 0.00 4.99 5.75 0.00 8.45 10.46 6.13 9.25 4.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 L. amylovorus

343202487 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.51 0.00 0.00 0.00 0.00 6.15 8.29 7.12 8.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 L. ultunensis

343201103 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.03 0.00 0.00 4.60 7.30 5.15 0.00 0.00 8.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 L. crispatus

444439721 0.00 0.00 0.00 5.90 0.00 0.00 5.06 0.00 0.00 0.00 0.00 6.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.28 0.00 0.00 0.00 0.00 0.00 L. reuteri

Lactic Acid Bacteria: non-Lactobacillus

310975058 3.74 0.00 0.00 0.00 0.00 0.00 6.61 0.00 0.00 0.00 0.00 0.00 9.54 5.01 7.12 6.76 5.95 0.00 12.41 12.59 11.12 8.78 15.60 6.98 5.03 0.00 Enterococcus durans

343201328 0.00 0.00 0.00 0.00 0.00 0.00 5.06 0.00 0.00 0.00 0.00 0.00 6.55 6.57 0.00 0.00 4.97 0.00 7.75 9.53 8.59 7.97 11.81 0.00 0.00 5.99 Enterococcus faecium

310975218 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.73 7.80 8.71 8.55 0.00 6.76 0.00 0.00 9.16 0.00 0.00 0.00 6.49 0.00 0.00 7.56 Enterococcus hirae

343201331 0.00 0.00 0.00 0.00 0.00 8.03 0.00 0.00 0.00 0.00 0.00 0.00 4.60 8.43 0.00 5.20 10.01 0.00 6.18 0.00 0.00 0.00 0.00 0.00 0.00 10.11 Pediococcus acidilactici

507147983 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.51 0.00 0.00 0.00 0.00 5.57 5.99 0.00 0.00 0.00 0.00 0.00 0.00 6.28 0.00 8.18 0.00 0.00 4.45 Enterococcus faecium

343200102 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.31 10.60 0.00 0.00 0.00 0.00 0.00 0.00 6.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Enterococcus fecalis

343201094 0.00 0.00 0.00 5.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.97 3.53 7.56 Streptococcus alactolyticus

444439707 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.17 7.04 0.00 0.00 9.00 0.00 0.00 0.00 Enterococcus hirae

Non-Lactic Acid Bacteria

265678513 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.87 0.00 7.70 6.76 7.25 11.55 0.00 0.00 6.28 6.98 0.00 0.00 0.00 5.99 Turicibacter sanguinis

265678383 11.89 9.92 9.96 0.00 0.00 0.00 6.61 0.00 4.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Citrobacter rodentium

444439588 12.35 10.33 11.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Citrobacter rodentium

444304126 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.01 5.15 0.00 0.00 6.52 7.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 C. jejuni subsp doylei

219846899 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.52 6.18 0.00 0.00 5.99 0.00 0.00 0.00 0.00 Cl. disporicum

253680771 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.71 5.20 6.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Helicobacter pametensis
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Figure S1. Alpha diversity of the different groups as measured by observed OTUs. Bars with 

different letters represent statistically significant at p<0.05. T-ZERO represent total bacterial 

populations recovered directly from cecal contents whereas M-LOW, M-MEDIUM, and M-HIGH 

represent bacterial population recovered on MRS from 102, 104, and 106 fold dilutions respectively. 
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Figure S2. PCoA plot showing the distances among total bacteria (T-ZERO) and MRS-selected 

dilution groups (M-LOW, M-MEDIUM, and M-HIGH) based on Unweighted UniFrac distance 

metric (ANOSIM: R = 0.48, p = 0.001). 
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Figure S3. PCoA plot showing the distances among the MRS-enriched dilution groups based on 

Unweighted UniFrac distance metric. M-LOW, M-MEDIUM, and M-HIGH (ANOSIM: R = -

0.05, p = 0.85). The circles indicate the different dilution samples originated from the same cecal 

samples. 
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Figure S4. PCoA plot showing the distances among total bacteria (T-ZERO) and MRS-selected 

dilution groups (M-LOW, M-MEDIUM, and M-HIGH) based on Unweighted UniFrac distance 

metric. For T-ZERO in this analysis, only the OTUs in T-Zero that were also found in MRS-

dilution groups were used.   
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mutagenesis, library preparation for Illumina sequencing, anaerobic bacterial culture, and other general 

microbiological tools and techniques etc. 

 Familiar with various animal diseases challenge models: in vivo model of Necrotic Enteritis and Salmonella 

Enteritidis as well as in ovo model of E. coli transmission 
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Bioinformatics skills 

 Proficient in Linux commands, and cloud computing  

 Familiar with version control (Git)  

 Programming languages: Intermediate level experiences on Perl, Python, R, and Bash scripting 

 Bioinformatics tools: QIIME, MOTHUR, BOWTIE, BWA, Samtools, Prokka, Sourmash, Trimmomatic, FastQC, 

Plink, VCF tools, DADA2, Deblur, VSEARCH etc.  

 Next generation sequence analysis: Proficient on analysis of 16S rRNA microbiome data and have hands on 

trainings on analysis of shotgun metagenomics, transcriptomics, genome and transcriptome assembly, GWAS, 

Variant calling, and transposon sequencing (TnSeq) 

Veterinarian skills 

 Necropsy, general examination and handling of animals, vein puncture and infusion, familiar with animal 

management and diseases etc.  

Nutrition-related skills 

 Proximate analysis of feed, general feed formulation, in vitro testing of feed additives etc.   

Statistical software  

 SAS, JMP, R (intermediate), and Sigma Plot 

LEADERSHIP SKILLS  

President 

Nepali Association of Northwest Arkansas (NANA)                                                                                    2016-2017 

 Served as a president of a registered student association at University of Arkansas for the term 2016/2017 

 Played a lead role to get NANA actively involved in different University events such as International Bazaar to 

show our cultural diversity 

 Conducted different social and cultural events such as “Nepali New Year”  

 Provided guidance, support, and suggestions for Nepalese students living in Northwest Arkansas  

President and Exchange Officer                                                                                                               2009-2010 

Nepal Veterinary Student Association (NVSA)                             

 Played a lead role of organization and coordinated with University to identify any sorts of problems faced by 

students and their solutions 

 Played a vital role in exchange of information between NVSA and International Veterinary Students Association 

(IVSA).   

 Coordinated with Research and Extension Committee (RECOM) to conduct various outreach activities such as 

rabies vaccination program, deworming program and Blue Cross Editorial committee to publish 11th edition of 

“The Blue Cross” which is an annual publication of NVSA  

 Conducted various technical seminars (eg. Avian Influenza) with in the University  

 Continuously coordinated with Nepal Veterinary Association (NVA) and actively participated in their programs 

such as celebration of World Veterinary Day 2009 with a theme “One World, One Health” which got “World 

Veterinary Day Award” by World Veterinary Association (WVA) in partnered with World Organization for 

Animal Heath (OIE)  

 Conducted various social activities such as “Welcome” and “Farewell” programs for newcomers and graduates, 

respectively 

ACHIEVEMENTS AND AWARDS 

Department of Poultry Science’s Outstanding Ph.D. Graduate Student 

 Recipient of “Outstanding Ph.D. Graduate Student Award” by Department of Poultry Science, Dale Bumpers 

College of Agricultural, Food & Life Sciences, University of Arkansas for the year 2019 
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Travel Awards  

 Poultry Science Association (PSA) annual meeting: July 15-18, 2019, Montreal, Quebec, Canada 

 Metagenomics Workshop: September 29-30, 2016, Noble Foundation, Ardmore, OK 

 Midwest Big Data Summer School: June 20-24, 2016, Ames, IOWA 

First place in poster competition 

 The poster entitled “Analysis of Lactobacillus species in the ceca of breeder hens” was recognized with People’s 

choice award in Bumpers College Honors Student Board Research Poster Competition, held on April 10-12, 2017, 

University of Arkansas, Fayetteville  

Erasmus Mundus Scholarship Award  

 Selected for highly competitive and prestigious Erasmus Mundus Scholarship Award (48000 Euros) of 

European Union to pursue double MSc degree. Only 16 students from all over the developing countries were 

selected for this scholarship; only Nepalese representative  

Rotary Shrijana Veterinary Award  

 Awarded by Nepal Veterinary Association (NVA) of Nepal for being first in the third year of B.V.Sc. & 

A.H/DVM program 

Kiran Memorial Award 

 Awarded by “Kiran Memorial Trust” for securing highest percentage in whole Chitwan district at higher 

secondary school level final exam of 2003 taken by Higher Secondary Education Board, Nepal 

Full Scholarship in BSc 

 Selected for full scholarship to study B.V.Sc. & A.H/DVM program for the term 2005-2010 through a competitive 

exam and received meritorious student award throughout the period 

District Topper Award 

 Awarded by District Development Committee, District Education Committee, and Amarapuri Village 

Development Committee for securing highest percentage in whole Nawalparasi district in School leaving 

Certificate exam of 2002, Nepal 

Mr Genius Award  

 For securing first position in Intra College Chess tournament conducted by NVSA, Nepal in 2005 

CONFERENCES/WORKSHOPS ATTENDED 

Bioinformatics workshops 

Arkansas Bioinformatics Consortium (AR-BIC): February 25-26, 2019, Little Rock, Arkansas 

 Attended scientific program related to “Bioinformatics in Food and Agriculture”  

A Gentle Introduction to Bayesian Statistics: December 1-2, 2018, Chicago, Illinois 

 A workshop at CRWAD, 2018 which provided hands experiences in the basics of the Bayesian approach, 

including Bayes theorem and its practical applications, linear and logistic regression, and mixed models, taught 

using practical examples and real data in R 

Cloud Computing Workshop: September 4, 2018, University of Arkansas, Fayetteville, Arkansas 

 Hands-on training on “Nebula”, a cloud computing facility in University of Arkansas 

Arkansas Bioinformatics Consortium (AR-BIC): April 23-24, 2018, Little Rock, Arkansas 

 Workshop by TriNetX, attended talks on different aspects of bioinformatics that ranges from shotgun 

metagenomics (MG-RAST) and RNA-seq to text mining and natural language processing 

Jetstream/Transcriptomics/Metagenomics Workshop: Sept. 11 - 12, 2017, University of Arkansas, Fayetteville, 

Arkansas 
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 Hands-on training on how to apply bioinformatics tools in the analysis of genomic data (transcriptomics and 

shotgun metagenomics) within the Jetstream environment 

Data Intensive Biology Summer Institute (DIBSI), Next-Generation Sequence Analysis Workshop: June 26 - July 8, 

2017, University of California, Davis, USA  

 Intensive two weeks hands on trainings on next generation sequence analysis (NGS) 

 Training included but not limited to use of cloud computer, download and transfer files, running command-line 

BLAST, running RStudio using command line and its use to analyse data, RANseq expression analysis, Genome 

assembly, Bacterial genome annotation, automation, K-mers analysis, RMarkdown, Variant calling, Genome 

wide association analysis (GWAS), Jupyter Notebook and Python, Public databases, assessing and assembling 

Nanopore data, denovo transcriptome assembly and annotation etc.  

Python Workshop: May 18 - 19, 2017, University of Arkansas, Fayetteville, Arkansas 

 Hands-on training on Shell scripts, python programming, and version control with Git 

Metagenomics Workshop: September 29 - 30, 2016, Noble Foundation, Ardmore, OK 

 Amplicon sequence analysis with QIIME and shotgun metagenomics with MG-RAST 

Midwest Big Data Summer School: June 20 - 24, 2016, Ames, IOWA 

 Hands-on training on Python and R programming, talks on text mining, management and access of big data, 

machine learning etc.  

Scientific Conference Presentations 

 Poultry Science Association (PSA) Annual Meeting: July 15-18, Montreal, Quebec, Canada 

 Conference of Research Workers in Animal Diseases (CRWAD): December 2-4, 2018, Chicago, Illinois. 

 Arkansas Nutrition Conference: September 11-13, 2018, Rogers, Arkansas 

 International Poultry Scientific Forum (IPSF) at International Production and Processing Expo (IPPE): January 

29 - 30, 2018, Atlanta, Georgia 

 Symposium on Gut Health in Production of Food Animals: November 14 - 16, 2016, St. Louis, Missouri 

 Poultry Science Association (PSA) annual meeting: July 11 - 14, 2016, New Orleans, Louisiana 

 Asian conference of Veterinary students: August 22-27, 2011, Tokyo, Japan. This event was organized by 

International Veterinary Students Association, Japan chapter; gave a talk on “Current Status of Veterinary 

Education in Nepal” 

OTHER TRAININGS 

 Broiler Farmers’ Training- Training of Trainers (TOT): September 25-27, 2011, conducted by Practical Action 

Consulting, Nepal  

 TOT on Commercial Broiler Production and Management: May 24-27, 2011, conducted by International Finance 

Corporation (IFC), Nepal 

 Commercial Poultry Production: July 25-29, 2010, conducted by Nepal Veterinary Association Chitwan Chapter, 

Nepal 

 Statistical Analysis: August 11-13, 2009, conducted by Agriculture Students' Liaison Forum, Nepal  

 Participatory Research Methods (RRA/PRA): July 24-31, 2009, conducted by Farmers' Institute for Participatory 

Research and Development, Nepal  

 Project Concept Notes and Proposal Writing: July 10-11, 2009, conducted by Research and Extension Committee, 

NVSA, Nepal  

PUBLICATIONS 

Published Papers (10) 
 Adhikari, B., Kim, S.W., & Kwon, Y.M. (2019). Characterization of microbiota associated with digesta and 

mucosa in different regions of gastrointestinal tract of nursery Pigs. International Journal of Molecular Sciences 

20:1630. doi:10.3390/ijms20071630  

 Hernandez-Patlan, D., Solis-Cruz, B., Pontin, K. P., Hernandez, X., Merino-Guzman, R., Adhikari, B., et al. 

(2019). Impact of a Bacillus direct-fed microbial on growth performance, intestinal barrier integrity, necrotic 
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enteritis lesions and ileal microbiota in broiler chickens using a laboratory challenge model. Frontiers in 

Veterinary Science 6:108. doi: 10.3389/fvets.2019.00108  

 Hernandez-Patlán, D., Solis-Cruz, B., Adhikari, B., Pontin, K.P., Latorre, J.D., Baxter, M.F.A., et al. (2018). 

Evaluation of the antimicrobial and intestinal integrity properties of boric acid in broiler chickens infected with 

Salmonella Enteritidis: Proof of concept. Research in Veterinary Science. 
https://doi.org/10.1016/j.rvsc.2018.12.004 

 Adhikari, B., Kwon, Y.M., Hargis, B.M., & Tellez G. (2018). Prokaryotes rule the world. In A.  Evrensel, Gut 

Microbiota - Brain Axis. London, United Kingdom: IntechOpen. doi: 10.5772/intechopen.77953 

 Latorre, J.D., Adhikari, B., Park, S.H., Teague, K.D., Graham, L.E., Mahaffey, B.D., et al. (2018). Evaluation of 

the epithelial barrier function and ileal microbiome in an established necrotic enteritis challenge model in broiler 

chickens. Frontiers in Veterinary Science 5:199. doi: 10.3389/fvets.2018.00199 

 Adhikari, B., Kwon, Y.M., Hargis, B.M., & Tellez G. (2018). How trillions of microbes residing on 

gastrointestinal tract maintain homeostasis with host cells? Food & Nutrition Journal FDNJ-170. doi: 

10.29011/2575-7091. 100070 

 Kim, J.Y., Kwon, Y.M., Kim, I.S., Kim, J.A., Yu, D.Y., Adhikari, B., et al. (2018). Effects of the Brown Seaweed 

Laminaria japonica Supplementation on Serum Concentrations of IgG, Triglycerides, and Cholesterol, and 

Intestinal Microbiota Composition in Rats. Frontiers in Nutrition 5:23. doi: 10.3389/fnut.2018.00023 

 Adhikari, B., Khanal, P., & Nielsen, M.O. (2018). Impacts of pre- and postnatal nutrition on glucagon regulation 

and hepatic signalling in sheep. Journal of Endocrinology 238(1), 1-12. doi: 10.1530/JOE-17-0705 

 Adhikari, B., & Kwon, Y.M. (2017). Characterization of the culturable subpopulations of Lactobacillus in the 

chicken intestinal tract as a resource for probiotic development. Frontiers in Microbiology 8:1389. doi: 

10.3389/fmicb.2017.01389 

 Adhikari, B., (2012). Prevalence of Salmonella Isolated from Retail goat meatshop. LAMBERT Academic 

Publishing, Germany. ISBN: 365921731X 

Under Review (6) 
 Adhikari, B., & Kwon, Y.M. Cell density alters microbial community structure in culture-enriched microbiome 

profiling. Scientific Reports. 

 Adhikari, B., Hernandez-Patlán, D., Solis-Cruz, B., Kwon, Y.M., Arreguin, M.A., Latorre, J.D., et al. Evaluation 

of the antimicrobial and anti-inflammatory properties of Bacillus-DFM (NorumTM) in broiler chickens infected 

with Salmonella Enteritidis. Frontiers in Veterinary Science. 

 Kim, I.S., Lee, S.H., Kwon, Y.M., Adhikari, B., Kim, J.A., Yu, D.Y., et al. Oral administration of β-glucans and 

Lactobacillus plantarum LM1004 alleviates the atopic dermatitis-like symptoms. Journal of Medicinal Food.  

 An, S.J., Kim, J.Y., Adhikari, B., Yu, D.Y., Kim, I.S., Hong, Y.H., Kwon, Y.M., et al. Modulation of Intestinal 

Microbiota by Supplementation of Fermented Kimchi in Rats. Journal of Functional Foods. 

 Arreguin, M.A., Graham, B.D., Adhikari, B., Agnello, M., Selby, C.M., Hernandez-Velasco, X., et al. (2019). 

In ovo administration of a lactic acid base probiotic drives a change to a protective microbiota composition 

against a virulent E. coli horizontal infection in the hatching cabinet in broiler chickens. Scientific Reports.  

 Arreguin, M.A., Graham, B.D., Adhikari, B., Agnello, M., Selby, C.M., Hernandez-Velasco, X., et al. (2019). 

Evaluation of in ovo Bacillus spp. based probiotic administration on horizontal transmission of virulent E. coli 

in neonatal broiler chickens. Poultry Science. 

In Preparation (8) 

 Adhikari, B., Jun, S.R., Kwon, Y.M., Kiess, A.S., & Adhikari, P. Effects of housing types on egg production and 

cecal microbiota of two different strains of laying hens during the late production stage. In Preparation to submit 

to Microbiome. 

 Adhikari, B., Samarth, D., Chai, J., & Kwon, Y.M. Exploring spore-former subpopulation in chicken gut 

microbiota. In Preparation to submit to Applied and Environmental Microbiology. 

 Adhikari, B., Liu, S.Y., Rochell, S.J., Kidd, M.T., & Kwon, Y.M. Changes in the ileal microbiota of broiler 

chickens in response to different levels of dietary lysine. In Preparation to submit to Poultry Science. 
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 Adhikari, B., Jourdan, A., Rochell, S., & Kwon, Y.M. Effects of alternatives to in-feed antibiotics on intestinal 

microbiome in broiler chickens. In Preparation to submit Poultry Science. 

 Adhikari, B., Jourdan, A., Rochell, S., & Kwon, Y.M. Evaluation of Leifsonia xyli as a live spike-in control and 

its use for quantitative profiling of jejunal microbiotas in broiler chickens. In Preparation to submit Poultry 

Science.  

 Adhikari, B., & Kwon, Y.M. Characterization of microbiome and quantification of Clostridium septicum from 

litter of different commercial turkey farms with/without supplementation of antibiotics alternatives and varying 

degree of cellulitis. In Preparation. 

 Adhikari, B., Tellez-Isaias, G., Teague, K.D., & Kwon, Y.M. Are chicken embryos sterile? An investigation 

through both culture dependent and independent methods. In Preparation.  

 Adhikari, B., & Kwon, Y.M. Growing needs, challenges and opportunities for strain-level microbiome analysis 

in understanding gut microbiomes of food production animals – a review. In Preparation. 
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presentation at Poultry Science Association (PSA) Annual Meeting, Montreal, Quebec, Canada.  

 Adhikari, B., Samarth, D., Chai, J., & Kwon, Y.M. (2019, July).  Exploring spore-former subpopulation in 

chicken gut microbiota. Poster session presented at Poultry Science Association (PSA) Annual Meeting, 

Montreal, Quebec, Canada. 

 Adhikari, B., Hernandez-Patlán, D., Solis-Cruz, B., Kwon, Y.M., Arreguin-Nava, M.A., Latorre, J.D., et al. 

(2019, July). Evaluation of the antimicrobial and anti-inflammatory properties of Bacillus-DFM (NorumTM) in 

broiler chickens infected with Salmonella Enteritidis. Poster session presented at Poultry Science Association 

(PSA) Annual Meeting, Montreal, Quebec, Canada. 

 Hernandez-Patlán, D., Arreguin-Nava, M.A*., Solis-Cruz, B., Adhikari, B., Latorre, J., Hernández-Velasco, X., 

et al. (2019, July). Therapeutic effect of boric acid against Salmonella Enteritidis infection, intestinal 

permeability, total IgA concentration, and cecal microbiome composition in broilers chickens. Poster session 

presented at Poultry Science Association (PSA) Annual Meeting, Montreal, Quebec, Canada. 

 Adhikari, B., Hernandez-Patlán, D., Solis-Cruz, B., Latorre, J.D., Arreguin-Nava, M.A., Hargis, B.M., et al. 

(2018, December). Evaluation of Bacillus Direct-fed microbial for control of necrotic enteritis in chickens. Oral 

Presentation at Conference of Research Workers in Animal Diseases (CRWAD), Chicago, Illinois.  

 Adhikari, B., Hernandez-Patlán, D., Solis-Cruz, B., Latorre, J.D., Arreguin-Nava, M.A., Hargis, B.M., et al. 

(2018, September). Evaluation of in-feed inclusion of a Bacillus Direct-fed microbial on growth performance, 

lesion score, gut permeability, and ileal microbiome in chicken model of necrotic enteritis. Poster session 

presented at Arkansas Nutrition Conference, Rogers, Arkansas. 

 Kwon, Y.M*., & Adhikari, B. (2018, July). Future directions for exploring poultry gut microbiomes: challenges 

and opportunities. Oral Presentation at Poultry Science Association (PSA) Annual Meeting, San Antonio, Texas.  

 Adhikari, B., Tellez-Isaias, G., Teague, K.D., & Kwon, Y.M. (2018, January). Are Chicken embryos sterile? An 

investigation through both culture dependent and independent methods. Poster session presented at International 

Poultry Scientific Forum (IPSF) at International Production and Processing Expo (IPPE), Atlanta, Georgia.  

 Adhikari, B., & Kwon, Y.M. (2016, November). Analysis of Lactobacillus species in the ceca of breeder hens. 

Poster session presented at Symposium on Gut Health in Production of Food Animals, St. Louis, Missouri.  

 Adhikari, B., Mandal, R.K., & Kwon, Y.M. (2016, July). Characterization of lactic acid bacteria population 

associated with different regions in gastrointestinal tract of chicken. Poster session presented at Poultry Science 

Association (PSA) Annual Meeting, New Orleans, Louisiana.  

 

 

 


	Investigation of Microbiota in Health and Disease of Poultry
	Recommended Citation

	tmp.1572986162.pdf.PiDRg

