
0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2930519, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. NO. 1

Exploiting Natural Language Structures in
Software Informal Documentation

Andrea Di Sorbo, Sebastiano Panichella,
Corrado A. Visaggio, Massimiliano Di Penta, Gerardo Canfora, Harald C. Gall

Abstract—Communication means, such as issue trackers, mailing lists, Q&A forums, and app reviews, are premier means of collabora-
tion among developers, and between developers and end-users. Analyzing such sources of information is crucial to build recommenders
for developers, for example suggesting experts, re-documenting source code, or transforming user feedback in maintenance and
evolution strategies for developers. To ease this analysis, in previous work we proposed DECA (Development Emails Content Analyzer),
a tool based on Natural Language Parsing that classifies with high precision development emails’ fragments according to their purpose.
However, DECA has to be trained through a manual tagging of relevant patterns, which is often effort-intensive, error-prone and requires
specific expertise in natural language parsing. In this paper, we first show, with a study involving Master’s and Ph.D. students, the extent
to which producing rules for identifying such patterns requires effort, depending on the nature and complexity of patterns. Then, we
propose an approach, named NEON (Nlp-based softwarE dOcumentation aNalyzer), that automatically mines such rules, minimizing the
manual effort. We assess the performances of NEON in the analysis and classification of mobile app reviews, developers discussions,
and issues. NEON simplifies the patterns’ identification and rules’ definition processes, allowing a savings of more than 70% of the
time otherwise spent on performing such activities manually. Results also show that NEON-generated rules are close to the manually
identified ones, achieving comparable recall.

Index Terms—Mining Unstructured Data, Natural Language Processing, Empirical Study

F

1 INTRODUCTION

Nowadays the use of written unstructured communication
channels is assuming increasing importance in software
development [5], [30]. On the one side developers, espe-
cially when they are globally distributed [6], communicate
through mailing lists, chats, and issue trackers [32]. Also,
they discuss recurring problems and seek solutions on
Questions & Answers Forums such as Stack Overflow [12],
[43]. On the other side, end-users provide feedback and
suggestions for improving software applications by means
of user review posted on stores, such as those of mobile apps
(e.g., Apple Store, Google Play, or Microsoft Store) [17].

These communication channels are a precious source of
information for developers, for example, to understand the
rationale of development choices [3], [6], [33], to identify
experts [2] or mentors [8] based on previous change or bug-
fixes, or to decide what features should be included in the
next version of an application [17].

Researchers have proposed several approaches to ex-
tract and classify pieces of information from unstructured
communication channels to support software engineering
(SE) tasks. For example, Antoniol et al. [1] used machine
learning techniques to classify issue reports. Bacchelli et al.
[3] proposed the use of island parsers to separate different

• A. Di Sorbo, C. A. Visaggio, M. Di Penta and G. Canfora are with the
Department of Engineering, University of Sannio, Benevento, Italy.
E-mail: {disorbo, visaggio, dipenta, canfora}@unisannio.it

• S. Panichella is with Zurich University of Applied Science (ZHAW),
Switzerland. E-mail: panc@zhaw.ch

• H.C. Gall is with the Department of Informatics, University of Zurich,
Switzerland. E-mail: gall@ifi.uzh.ch

elements of emails (e.g., natural language text, source code,
or logs), while Cerulo et al. [10] leveraged, for the same
purposes, Hidden Markov Models.

The main limitation of most proposed approaches is
that they classify textual content by mainly considering the
associated word frequencies, thus analyzing or measuring
the information relying on information retrieval models
such as Vector Space Models [4], Latent Semantic Indexing
[16], or Latent Dirichlet Allocation (LDA) [7]. With these
techniques, textual information tends to be treated as a bag
of words. While this is a simple and relatively effective
strategy, it suffers from weaknesses and may turn out to be
inadequate in several circumstances. For example, consider
the following two sentences:

1) We could use a leaky bucket algorithm to limit the bandwidth.
2) The leaky bucket algorithm fails in limiting the bandwidth.

A topic analysis will reveal that these two sentences are
likely to discuss the same topics: “leaky bucket algorithm” and
“bandwidth”. However, these two sentences have completely
different intentions: in the sentence (1) the writer proposes
a solution for a specific problem, while in the sentence
(2) the writer points out a problem. Thus, they could be
useful in different contexts. This example highlights that
understanding the intentions in developers’ communication
could add valuable information for guiding developers in
detecting text content useful to accomplish different and
specific maintenance and evolution tasks.

To overcome the limitations of approaches based on
information retrieval, we proposed an approach named
DECA (Development Email Content Analyzer) [19] that
leverages natural language syntactical patterns contained in

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2930519, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. NO. 2

development emails, and use such patterns to classify the
sentences’ intent. A similar approach, by Panichella et al.
[34], combined with other features (e.g., sentiment) has been
also used to classify mobile app reviews for the purpose
of better release planning. Chaparro et al. [11] combined
the extraction of natural language patterns with machine
learning to identify missing elements in bug reports i.e.,
observed behavior, expected behavior or steps to reproduce.

The aforementioned approaches turned out to be more
accurate than approaches based on bag-of-words repre-
sentations. Also, they had the advantage of identifying the
particular linguistic pattern used in a specific text fragment. This
not only makes it possible to clearly classify the intent of the
fragment but also paves the way towards other applications,
e.g., automated support for error/request reporting.

The main challenge of such approaches based on natural
language patterns is that they require the definition of a
set of manually-labeled patterns from known sentences [17],
[19], [34]. This task can be effort-intensive, error-prone, and
requires that taggers have specific skills, i.e., the ability to
recognize linguistic patterns in text sentences. Moreover, the
difficulty in recognizing such patterns may vary depending
on the length and complexity of the sentence.

To have a better understanding of the effort needed by
humans to annotate patterns, in this paper we conduct a
study aimed at empirically investigating the difficulties that
may arise during the patterns’ identification process (RQ1).
The study involves 8 Master’s students and 2 Ph.D. stu-
dents, who have been asked to define patterns and related
heuristics aimed at recognizing the intent of sentences we
provided them. Results of the study indicate that, while in
some cases the heuristics are relatively simple to identify,
the required effort increases proportionally to the number
and types of conditions that have to be considered in the
heuristics’ definition.

To reduce the effort associated with the tedious manual
extraction of linguistic patterns, we propose to investigate
approaches to automatically infer patterns in software in-
formal documentation, in order to support processes aimed
at (i) recognizing and classifying the intent in different kinds
of informal documents, and (ii) extracting useful fragments
for supporting specific tasks from these kinds of documents.
To achieve this goal we formulated the following research
question:

Can an automated approach assist researchers and practi-
tioners in identifying recurrent linguistic patterns appearing
in software informal documentation?

We present an approach, named NEON (Nlp-based soft-
warE dOcumentation aNalyzer), to automatically mine pat-
terns from software informal documents. NEON analyses
the syntactical information of natural languages sentences
received as input, with the purpose of identifying recurrent
grammatical structures appearing in the input texts. The
output of NEON is a list of heuristics aimed at automatically
detecting all the identified patterns.

To assess the effectiveness of NEON we carry out three
different studies. The first one, conducted on a data collec-
tion of mobile app reviews [34], is aimed at evaluating the
time-saving capability of NEON when used for extracting
patterns useful for classification purposes (RQ2). The second

Fig. 1. Study design

study, conducted on development emails [19], is aimed at
evaluating (i) the classification performances of the patterns
inferred through our automated approach (RQ3a), and (ii)
the extent to which the automatically extracted patterns
are similar to those extracted by developers (RQ3b). The
last study, conducted on a dataset containing descriptions
of bugs mined from GitHub, is aimed at demonstrating
the practical usefulness of the proposed approach for the
SE research (RQ4). Figure 1 illustrates the dimensions in-
vestigated in each conducted study. On the one hand,
results of the studies indicate that NEON allows saving
more than 70% of the time otherwise spent in manually
mining patterns useful for identifying relevant information
in software informal documents, achieving nearly the same
performance of DECA in terms of recall, while it is less
precise (20% less) in terms of precision. On the other hand,
the identified patterns are very similar to the ones manu-
ally identified, highlighting how an automated inference of
intent classification patterns is, indeed, possible.

Paper replication package. We make publicly available
a replication package1 with (i) the material and the working
datasets of all our studies, (ii) the complete results of the
study with students, and (iii) raw data (for replication
purposes and to support future studies).

Paper structure. Section 2 reports the study we per-
formed to investigate the difficulties human experts en-
counter when identifying patterns to employ for the classi-
fication of the development intent. Then, Section 3 describes
NEON, the approach we proposed to automatically identify
relevant linguistic patterns for intent classification. Section 4
reports the studies performed to evaluate NEON, highlight-
ing its practical usefulness in a specific SE tasks. Section 5
discusses the related literature, while Section 6 concludes
the paper.

2 PROBLEM: DISCOVERING RECURRENT LAN-
GUAGE PATTERNS

In our previous work [19], we showed that developers
use recurrent linguistic patterns to express their intents,
such as asking/providing helps, proposing a new feature
or reporting/discussing a bug. Such recurrent patterns can
be automatically identified through the definition of NLP
heuristics relying on the analysis of texts’ grammatical
structures. Specifically, each NLP heuristic is a collection of

1. https://github.com/adisorbo/NEONReplicationPackage

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2930519, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. NO. 3

rules able to detect a specific predicate-argument structure
in natural language sentences that evokes or suggests the
intent of the writer [19]. Once heuristics have been defined,
they can be used for classification purposes. Their accuracy
is reasonably high (about 79%) and better than machine
learning approaches [19].

The main limitation of such an approach is that the iden-
tification of recurring patterns and its implementation as a
heuristic for intent classification require the manual analysis
of a large number of sentences, as well as the availability
of suitable expertise in natural language analysis. This is
because the formalization of an NLP heuristic involves the
following activities: (i) the identification of the relevant de-
tails that make a grammatical structure recognizable, (ii) the
generalization of unnecessarily complex structures, and (iii)
the filtering of the grammatical structures not providing any
useful information for the linguistic pattern identification.

Our main aim is to study more in depth the processes of
language patterns identification and heuristic definition, to
find a possible solution to accelerate these processes.

With the goal of studying the factors affecting the lan-
guage patterns identification and heuristics definition pro-
cesses, and therefore understanding the difficulties humans
encounter in such a process, we conduct an empirical study
aimed at answering the following research question:

RQ1: Is it possible to estimate the effort required for identify-
ing/defining an NLP heuristic?

In Section 2.1 we describe the design of the study we
conducted to answer RQ1 while Section 2.2 reports the
results. Section 2.3 discusses the threats that could affect the
achieved results.

2.1 Study design

To answer RQ1, we conducted a study involving 10 par-
ticipants: (i) 8 Master’s students in Computer Engineering,
who have all attended courses in software engineering and
software evolution, and (ii) 2 Ph.D. students in Software
Engineering. All the participants are familiar — from spe-
cialized courses they attended — with the Stanford Typed
Dependencies (SD) representation [15]. The SD representa-
tion was designed to provide a simple description of the
grammatical relationships in a sentence. Each typed depen-
dency is a binary relation; it represents the grammatical rela-
tion existing between two words of the sentence: a governor
(also known as regent or head) and a dependent. These
dependencies map onto a directed graph representation, in
which words in the sentence are nodes in the graph, and
grammatical relations are edge labels [15]. Moreover, during
a training session, the study participants have been intro-
duced to the ways in which NLP heuristics can be defined
to automatically recognize linguistic patterns. In particular,
an NLP heuristic able to recognize a particular path in the
Stanford Typed Dependencies tree of a generic sentence
can be defined through the XML grammar illustrated in
Listing 1. The <conditions> represent the core part of the
heuristic (i.e., they describe the path to be searched in the
SD representation of the sentence under analysis).

In general, three types of conditions can be defined
through our XML grammar:

Listing 1. Example of a NLP heuristic’s definition
<NLP_heuristic>
<sentence type=‘‘declarative’’/>
<type>nsubj/aux/dobj</type>
<text>[someone] can run/launch [something]</text>
<conditions>
<condition>nsubj.governor=‘‘run launch’’</condition>
<condition>nsubj.governor=aux.governor</condition>
<condition>aux.dependent=‘‘can could’’</condition>
<condition>not:aux.governor=neg.governor</condition>
<condition>aux.governor=dobj.governor</condition>

</conditions>
<sentence_class>INFORMATION GIVING</sentence_class>

</NLP_heuristic>

1. Conditions of type 1, in which specific lemmas
have to appear in precise grammatical roles (e.g.,
nsubj.governor=‘‘need require’’.

2. Conditions of type 2, which localize typed dependencies
sharing particular regents (i.e., governors) or arguments
(dependents) or typed dependencies whose dependent
represents the governor of a second dependency (e.g.,
nsubj.governor=aux.governor).

3. Conditions of type 3, which establish that a particu-
lar typed dependency has (i) to not present a specific
lemma in the governor or dependent role, or (i) to
not expose a particular relation with a second typed
dependency (e.g., not:aux.dependent=‘‘could’’ or
not:aux.governor=neg.governor).
We performed a preliminary session where we talked

to the participants about the three types of conditions.
This was relevant to clarify any questions raised by the
participants. After such a session, each participant was
requested to practice, for a period of two weeks, his/her
ability in defining NLP heuristics using the XML grammar.
The exercises were related to different kinds of natural
language sentences from social media posts, including app
user reviews, issues, malware descriptions, and software
vulnerability descriptions.

Afterward, the participants have been divided into two
groups, Group 1 and Group 2, each one composed of 5
subjects. In order to balance the abilities of the two groups,
we assigned one Ph.D. student per group. Every participant
was asked to complete three tasks having similar difficulties.

In each task, 3 sentences along with their Stanford Typed
Dependencies representation were shown and participants
were required to define an NLP heuristic able to automati-
cally recognize the three sentences or a subset of them (for
further details please refer to our replication package). Once
defined the required heuristic, participants were asked to
provide feedback about the difficulty encountered in defin-
ing the heuristic (for this purpose, a Likert scale ranging
from “Very Low” to “Very High” has been used) and the time
spent for the heuristic’s definition has been recorded.

Tasks A, B, and C were assigned to participants belong-
ing to Group 1, while the remaining tasks (i.e., Tasks D, E,
and F) were allotted to subjects of Group 2.

For each participant and each task, we collected:
• The NLP heuristic defined in order to complete the task.

This heuristic has been considered suitable if it was
able to properly recognize all the sentences indicated
in the task’s instruction. Otherwise, we considered the
heuristic incorrect.

• The time required for completing the heuristic’s defi-
nition task. We measured the time elapsed from the

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2930519, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. NO. 4

TABLE 1
Aggregated answers about tasks’ difficulty

TABLE 2
Tasks’ completion times expressed in minutes and seconds (mm:ss)

Subject Task A Task B Task C Task D Task E Task F

Subject 1 07:53 18:26 02:03
Subject 2 03:04 25:20 07:45
Subject 3 18:58 02:46 01:45
Subject 4 06:40 03:29 05:25
Subject 5 07:04 05:22 05:19
Subject 6 17:50 03:21 03:51
Subject 7 07:52 03:55 03:24
Subject 8 23:44 11:11 48:34
Subject 9 05:35 07:49 02:14
Subject 10 03:19 02:10 02:35

Average 10:40 11:34 03:32 09:44 05:13 13:03

visualization of the task’s instructions (along with the
SD representation of the sentences) till the submission
of the required response (i.e., the heuristic).

• The difficulty rating (from “Very Low” to “Very High”)
provided by the participant to indicate the difficulty
encountered in completing the task.

2.2 Results
The results obtained in our study can be summarized as
follows:

• For the Task F, all the participants belonging to the
Group 2 defined suitable NLP heuristics, while (i) for the
Tasks C, D and E, we received one (out of 5) incorrect
heuristic, and (ii) for the Task B, two of the participants
provided an incorrect heuristic. Moreover, for The task
A, the majority of participants (3 out of 5) were not
able to identify a suitable NLP heuristic. The study
results indicated that the identification and definition of
NLP heuristics is not trivial and approaches able to better
support developers in accomplishing these activities are
required.

• The number of conditions in an NLP heuristic reflects the
time required for identifying/defining it. As a matter of
fact, the Task E, for which 4 out of the 5 participants
belonging to Group 2 defined an NLP heuristic contain-
ing only one condition (of type 1), is the task with the
shortest average completion time (i.e., 5 minutes and 13
seconds, as showed in Table 2) of the tasks assigned to
participants of Group 2. Moreover, this task (i.e., Task
E) resulted the simplest task among those assigned to
participants of Group 2, since 3 (out of 5) of them
judged the difficulty for completing the task as Very Low,
while the remaining 2 participants rated it as Low.

• Conditions of type 1 are the simplest to be identified. In
most cases, the study’s participants defined heuristics
containing only conditions of this type. For example,
(i) for the Task C, all the participants only defined
conditions of this type and it was the task for which
participants of Group 1 collectively assigned the lowest
level of difficulty (see Table 1), (ii) for the Tasks B and
E, 4 out of 5 subjects only identified conditions of this
type, and (iii) for the Tasks A and F, 3 out of 5 subjects
defined exclusively conditions of type 1.

• The identification/definition of conditions of type 2 increases
the heuristic’s average definition time. In the following, we
report some evidence supporting this observation:
– Subject 2: For completing the Task B, this subject

defined an NLP heuristic with a condition of type 2,
while for all other tasks Subject 2 provided heuristics
containing only conditions of type 1. Noteworthy,
Task B is the one for which this participant spent
the longest time for identifying/defining the required
heuristic (as reported in Table 2).

– Subjects 4, 5 and 10: For completing the Task D, these
subjects defined an NLP heuristic with a condition
of type 2, while for all other tasks they provided
heuristics not containing any condition of this type.
Task D is the one for which these participants spent
the longest time for identifying/defining the required
heuristic (see Table 2).

– Subject 8: For completing the Tasks D and E, Subject
8 defined NLP heuristics containing a condition of
type 2, while for accomplishing the Task F this subject
provided a heuristic containing two conditions of
type 2. Among the subjects of the Group 2, this is the
participant spending the longest time for completing
all three tasks (i.e., this subject spent more than 48
minutes to define the heuristic for completing the
task F and rated the difficulty to complete this task
as Very High).

• Conditions of type 3 are harder to be identified since this
kind of conditions requires that the SD representation
of the candidate sentences should not contain specific
typed dependencies with particular characteristics (e.g.,
two specific typed dependencies must not expose the
same governor). As a matter of fact, among all the an-
swers provided for completing the various tasks, only
one of the study participants (i.e., Subject 10) defined
an NLP heuristic containing a condition of this type.
Moreover, Task F, for which one of the participants
provided a heuristic containing a condition of type 3
and another subject defined a heuristic containing two
conditions of type 2, was the task for which participants
of Group 2 assigned the highest level of difficulty (see
Table 1).

To investigate the relationship existing between the time
spent by each participant to identify/define an NLP heuris-
tic and the number of the defined conditions in the corre-
spondent NLP heuristics, we use the Kendall rank corre-
lation coefficient. Similarly, we investigate the relationship
existing between the level of difficulty assigned to a task
and the number of the defined conditions, using the same
criteria.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2930519, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. NO. 5

Kendall’s tau coefficient is an index (τ) to assess the
ordinal association between two measured quantities [27].
Since the majority of heuristics submitted by the partici-
pants have 1 or 2 conditions and the ranking of the number
of conditions will have a lot of ties, we compute the τB
coefficient that makes adjustments for ties [37].

We interpret the strength of the correlation as small for
0.10 ≤ |τB | ≤ 0.29, medium for 0.30 ≤ |τB | ≤ 0.49, and large
for |τB | ≥ 0.50, as recommended by Cohen’s standard [14].

Specifically, for each task t and each participant i, we
considered: (i) the time spent by the participant i for com-
pleting the task t, T(i,t), (ii) the difficulty rating assigned by
the participant i to the task t, D(i,t), and (iii) the number of
conditions defined by the participant i to complete the task
t, CN(i,t). Twenty-nine data points for each variable have
been collected, since one of the participants (Subject 6) was
not able to provide any heuristic for completing the Task A
(we thus discarded the values T(6,1), D(6,1) and CN(6,1)).
For D(i,t) we assigned values ranging from 1 (when the
participant rated the difficulty of the completed task as
“Very Low”) to 5 (when the participant rated the difficulty
of the completed task as “Very High”).

We obtained (i) a small level of correlation (τB = 0.2547)
between T(i,t) and CN(i,t), but it is only marginally signif-
icant (p = 0.0877), while (ii) we found that the correlation
between D(i,t) and CN(i,t) is small (τB = 0.2203) and not
statistically significant (p = 0.1770). Also the correlation be-
tween T(i,t) andD(i,t) is small (τB = 0.2377) and marginally
significant (p = 0.0970). Indeed, as reported in Table 2, the
time spent for identifying/defining a NLP heuristic is fairly
subjective (e.g., Subjects 8 and 10 produce the same NLP
heuristic for Task D but their times are very different)

Interestingly, results change when considering not only
the number of conditions identified CN(i,t), but also their
types. To this aim, we assigned different weights to the
different types of conditions:

• To conditions of type 1, we assign a weight of 0.5
points for each lemma appearing in the related list (e.g.,
the condition nsubj.governor=‘‘add provide’’
weighs 1).

• To conditions of type 2, we assign a weight of 2 points
(e.g., the condition nsubj.governor=aux.governor
weighs 2).

• To conditions of type 3, we assign a basic weight of
0.5 points. Moreover, the weight of the encompassed
clause (which could be a condition of type 1, or a
condition of type 2) has to be added. For example, to
the condition not:aux.governor=neg.governor a
weight of 0.5 + 2 = 2.5 is assigned.

The complexity of defining a condition could be due
to a higher number of dependencies encountered during
the analysis of SD. The distinct weights assigned to the 3
types of conditions are based on the number of the different
typed dependencies that must be considered for actually
defining the condition. Specifically, we assign a weight of
0.5 to each distinct typed dependency inspected during
the condition definition. In particular, given two generic
sentences, S1 and S2, and the respective SD representations
G1 and G2, we consider similar two typed dependencies, Ti

from G1 and Tj from G2, if they present the same relation
name and the same lemma appears in the governor or the

dependent position. Otherwise Ti and and Tj are different.
For conditions of type 1 (e.g., nsubj.governor=‘‘add’’)
with just one lemma in the list, the same typed dependency
(or a similar one) will appear in both G1 and G2, and,
thus, just one typed dependency has to be considered to
define the condition. For this reason, we assign a weight
of 0.5. Then, 0.5 points will be added according to each
additional lemma in the list (since each lemma appears
in a different typed dependency, such typed dependency
has to be considered for defining the condition). For condi-
tions of type 2 (e.g., nsubj.governor=dobj.governor),
2 typed dependencies in G1 and 2 typed dependencies
(different from the first two) in G2 have to be considered,
in order to define the condition, and we thus assign a
weight of 2 (i.e., 2*0.5 + 2*0.5=2). For conditions of type
3 (e.g., not:nsubj.governor=‘‘add’’), a specific typed
dependency encompassed in the not clause could appear in
either G1 or G2, and such a dependency must be considered
during the definition of the condition. Therefore, we assign a
basic weight of 0.5 for this type of conditions. Moreover, the
weight of the encompassed clause (that could be a condition
of type 1, or a condition of type 2) has to be added.

For each task t and each participant i, we also considered
the sum of weights assigned to the conditions defined by the
participant i to complete the task t, WC(i,t). Since only one
condition of type 3 has been provided by participants, we
computed the Kendall’s τB coefficient between WC(i,t) and
D(i,t) and between WC(i,t) and T(i,t) without considering
the specific data point in which such condition has been
defined. We obtained a (i) medium correlation (τB = 0.3794)
between D(i,t) and WC(i,t), that is statistically significant
(p = 0.0155), and (ii) a small association (τB = 0.2916)
between T(i,t) and WC(i,t), that is statistically significant
(p = 0.0426).

RQ1 summary: Although the time required for identify-
ing/defining an NLP heuristic may be fairly subjective, the
difficulty in accomplishing such task is correlated with the
number and the types of conditions the heuristic comprises.

2.3 Threats to validity
Threats to construct validity concern the relation between the
theory behind the experiment and the observation. In our
study, we considered the correctness of responses and the
time taken to produce these responses, as indicators of the
tasks’ difficulty. This could represent a threat to construct
validity, as difficulty could depend on further factors that
we did not consider. For alleviating this threat we asked
participants to also rate the difficulty they encountered in
completing each task. However, it is difficult to ensure that
the tasks A, B, C, D, E, and F present the same level of
actual or perceived difficulty by the involved groups of
participants. The study performed in Section 4 allowed us
to understand the extent to which NEON impact the time
required by humans to identify natural language patterns,
by involving groups of (2) external evaluators working on
the same task. We argue that this additional study mitigates
in part the threat concerning the potential difference, in
terms of perceived/actual difficulty, of between Tasks A, B,
C, D, E, and F.

Threats to internal validity concern any confounding fac-
tor that may affect the results. In our experiment we also

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2930519, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. NO. 6

enrolled two Ph.D. students having previous experience
in text mining and natural language processing. This may
represent a threat to internal validity, as groups with het-
erogeneous abilities could have been created. To mitigate
this threat and ensure a good balancing of ability levels, we
assigned one Ph.D. student to each group.

Conclusion validity focuses on how sure we can be that
the treatment we used in an experiment really is related to
the actual outcome we observed. In order to quantitatively
corroborate the results emerged from a qualitative analysis,
we studied the correlations existing between (i) the time
spent for defining an NLP heuristic, (ii) the difficulty rate,
and (iii) the number and types of conditions enclosed in
the corresponding heuristic. The time spent for completing
the task could depend on other factors (e.g., distraction)
than the intrinsic effort required, and this could represent
a threat to conclusion validity. To alleviate this issue, we
asked participants to complete each task in the shortest
possible time and the study was conducted in a controlled
environment.

Threats to external validity concern the generalization
of our findings. Our study is exploratory and a large-
scale validation is needed to achieve statistically significant
conclusions. Also, the results obtained in our controlled ex-
periment may be specific to the syntactic features contained
in the sentences selected in each task. To mitigate this issue,
the selected sentences (i) belong to different categories (e.g.,
feature request, bug signaling) and (ii) vary in terms of size,
lexicon and contents.

Moreover, the subjects involved in our experiment are all
Master’s and Ph.D. students. This could be a potential threat
to validity because experienced NLP researchers could dif-
ferently perceive the effort required for completing the tasks.
However, to alleviate this threat, we enrolled subjects that
were already familiar with text analysis (this is also the
reason why we were unable to find a larger number of
participants) and asked them to exercise their ability in
NLP heuristics identification/definition for a period of 15
days. According to previous work [21], when a software
engineering research experiment is aimed at studying basic
programming and comprehension skills, students behavior
is sufficiently similar to the one exhibited by professional
developers. Nevertheless, further studies involving a larger
set of experimental materials and professional subjects are
needed, in order to generalize our results.

3 APPROACH: AUTOMATED EXTRACTION OF NAT-
URAL LANGUAGE PATTERNS

Results of the study reported in Section 2.2 highlighted how
the manual identification of recurrent linguistic patterns
and NLP heuristics for classifying intent in development
communication is a difficult and time-consuming task. We
argue that an approach able to automatically recognize re-
curring grammatical patterns from a set of natural language
sentences can support the difficult task of devising intent
classification heuristics.

We propose an approach, named NEON (i.e., Nlp-based
softwarE dOcumentation aNalyzer), which is aimed at au-
tomatically identifying similar grammatical frames present
in a set of natural language sentences. Our approach is

Fig. 2. The NEON approach.

configured as a computer-aided solution to the patterns’
identification problem presented in Section 2.1, since it is
also able to automatically recommend the NLP heuristics for
automatically recognizing the identified linguistic patterns
and therefore classify the intent of a sentence.

The semantic graph of a sentence is a graph in which
the nodes represent the words of the sentence and a typed
dependency between two words is represented through a
labeled arc (the label reports the typed dependency name)
directed from the governor node to the dependent node.
Given two generic sentences S1 and S2 and their semantic
graphs, G1 and G2, respectively, the process for automat-
ically gathering similar grammatical structures appearing
in S1 and S2, is illustrated in Figure 3, and comprises the
following steps.
1. Nodes selection: Through the analysis of G1, all the

non-leaf nodes, VG1, of the verb or noun types (i.e.,
having POS tags starting with “VB” or “NN” [39]) are
selected. The algorithm focuses on these kinds of nodes
since nouns and verbs are generally considered to be
more important than other types of terms appearing in a
sentence, such as articles, adjectives or adverbs [9], [40],
[42]. All the non-leaf nodes of the verb or noun types,
VG2, are also selected from G2.

2. Nodes comparison: All the nodes in VG1 are compared
with nodes in VG2, with the purpose of finding similar
nodes. Two nodes are similar, if, once stemmed, (i) the
words represented in the two nodes are equal, or (ii)
the Wu & Palmer semantic relatedness (WUP) [44] between
them is higher than a threshold of 0.9 (after experiment-
ing several threshold values for this metric, 0.9 proved to
be the most appropriate one in this specific application).

3. Children extraction: For each pair of similar nodes, Vi in

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2930519, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. NO. 7

Fig. 3. Semantic graphs of Example Sentences: (i) “This app could have a problem on the ui buttons” (on the left), and (ii) “Another user said that
he’s having many problems in visualizing png images” (on the right)

VG1 and Vj in VG2, the child pairs Pi of Vi are extracted.
Each pair Px in Pi contains a child node, P(x,N), of Vi
and the labeled arc, P(x,E), directed from Vi to P(x,N).
Similarly, the child pairs Pj are extracted from Vj .

4. Children comparison: Each pair Px in Pi is compared
with every pair Py in Pj , in order to fill a Pshared set
containing shared grammatical structures depending on
similar nodes. A pair Py is added to the Pshared set when
the arc P(y,E) from Vj to P(y,N) has the same label, L,
(i.e., the relation name) of the arc P(x,E) directed from Vi
to P(x,N).

5. Node conditions identification: When Py is added to
Pshared a clause indicating that Py has Vj as parent node
is appended to the conditions list C. In particular, a type
1 condition establishing that a typed dependency of the
type L has to present one of the stemmed words in Vi
and Vj , (if they are different), or the common word (if
the same stemmed word appears in both Vi and Vj) as
governor (e.g., aux.governor=‘‘need require’’ or
aux.governor=‘‘need’’) is added to C. Moreover,
if the nodes P(y,N) and P(x,N) are similar, a type 1
condition establishing that a typed dependency of the
type L has to present one of the stemmed words in
P(y,N) and P(x,N) (if they are different), or the shared
word (if the same stemmed word appears in both P(y,N)

and P(x,N)) as dependent (e.g., aux.dependent=‘‘can
may’’ or aux.dependent=‘‘can’’) is added to C.

6. Arc conditions identification: To the aim of identifying
this kind of conditions, all the pairs in Pshared are ana-
lyzed. In particular, given two consecutive pairs, Pk and
Pk+1, in Pshared, the following situations may occur:
• if the parent nodes of P(k,N) and P(k+1,N) match,

a clause indicating that the relation (i.e., typed de-
pendency) of the type P(k,E) needs to have a gov-
ernor that coincides with the governor of a rela-
tion of the type P(k+1,E) is appended to C (e.g.,
nsubj.governor=aux.governor);

• if the node P(k,N) coincides with the parent node of
P(k+1,N), the algorithm add to the conditions’ list, C,
a clause indicating that the dependency of the type
P(k,E) needs to have a dependent that coincides with

the governor of a relation of the type P(k+1,E) (e.g.,
dobj.dependent=prep_on.governor);

• if the parent node of P(k,N) matches the node P(k+1,N),
the algorithm adds to the conditions’ list, C, a clause
indicating that the dependency of the type P(k,E)

needs to expose a governor that matches with the
dependent of a relation of the type P(k+1,E) (e.g.,
prep_with.governor=dobj.dependent).

The steps 3, 4, and 5 are repeated for each pair of similar
nodes, Vi in VG1 and Vj in VG2, identified in the step 2 of
the algorithm. Once analyzed all the pairs, Vi and Vj , of
similar nodes, Step 6 is executed. At the end of the process,
the generated clauses contained in the conditions’ list C are
ordered to be compliant with the XML grammar illustrated
in Section 2.1.

For example, the following sentences match the linguis-
tic pattern “[something] [auxiliary] have problem”:

1. This app could have a problem on the UI buttons.
2. Another user said that he’s having many problems in visualiz-

ing png files.

The process illustrated above, when working with these
two sentences, is able to recognize the nodes and arcs high-
lighted in Figure 3, and generate the following conditions to
capture the pattern:

nsubj.governor=‘‘have’’
nsubj.governor=aux.governor
aux.governor=dobj.governor
dobj.dependent=‘‘problem’’

This example shows how NEON detects sentences shar-
ing similar linguistic patterns, even if they concern different
topics. It is important to note that the process determines
the sentences that have similar linguistic patterns without
considering the actually frequency of the extracted heuris-
tics, thus assigning to all heuristics the same importance.
Clearly, a limitation of our method is that the identification
of linguistic patterns and the definition of NLP heuristics of
NEON requires that at least two sentences share a common
linguistic pattern (i.e., they can be detected by the same NLP
heuristic).

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2930519, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. NO. 8

NEON is able to provide suitable NLP heuristics for
three of the tasks illustrated in Section 2.1 (i.e., tasks C,
D and F). Moreover, the outputs of the approach for
the sentences of tasks B and E, require simple changes
to become suitable (i.e., the addition of a lemma in
a type 1 condition, e.g., cop.governor=‘‘problem’’
−→ cop.governor=‘‘problem bug’’). Finally, to make
suitable the response of our approach for the sentences of
the task A, a type 3 condition needs to be added (i.e.,
not:xcomp.dependent=‘‘do’’). Since the algorithm is
unable to locate something that has to not appear in the
semantic graph of a sentence, our approach cannot identify
type 3 conditions. However, as the results of our studies
show (see Section 4.1 and Section 4.2), type 3 conditions are
rarely used also by human subjects. Indeed, the results of
the study in Section 4.2 suggest that for the Feature Request
category the conditions of type 3 (manually defined by
researchers) are 6 out of 205 overall conditions, i.e., about
2.3%, while for the Problem Discovery category the type 3
conditions (manually defined by researchers) are 2 out of
108 overall conditions (about 1.85%).

4 EVALUATION

The goal of our study is to evaluate NEON, for the purpose
of investigating the extent to which it could replace, or
at least reduce, the manual work for identifying recurring
linguistic patterns in informal documentation. Such patterns
can then be used for intent recognition and classification,
and, as previous work has shown, can be valuable to build
recommender systems to support software development,
evolution [19], [34], or testing [22], [35].

To evaluate NEON, we perform three studies. The first
study aims at comparing the time spent by humans to define
NLP heuristics useful for classification purposes when sup-
ported by our tool with the time required for performing
the NLP heuristics identification and definition processes
manually. The second study is aimed at investigating the
classification capabilities of heuristics extracted by NEON
on development mails, as well as the extent to which such
heuristics are similar to the ones manually identified by
researchers. The third study tests NEON in action, and aims
at showing how patterns automatically identified by NEON
can be used to analyze the extent to which developers
consistently report issues through issue tracking-systems.

4.1 Mining of Recurrent Patterns in Mobile App Re-
views

For evaluating the NEON’s effectiveness and estimating
its time-saving capability, we conducted a study aimed at
answering the following research question.

RQ2: To what extent does NEON impact the time required by
humans to identify natural language patterns useful for classifi-
cation purposes?

Context of the study. To carry out the investigation, we
employed the data available from our previous work [34]. In
particular, this dataset encompasses 1390 mobile app review
sentences extracted from popular apps. Each sentence is
labeled with one of the following categories:

TABLE 3
Review sentences distribution.

Category Sentences Proportion

Feature Request 192 13.81%
Problem Discovery 494 35.54%

Other 704 50.65%
Total 1390 100%

• Information Giving: sentences that inform or update
users or developers about an aspect related to the app.

• Information Seeking: sentences related to attempts to
obtain information or help from other users or devel-
opers.

• Feature Request: sentences expressing ideas, sugges-
tions or needs for improving or enhancing the app or
its features.

• Problem Discovery: sentences describing issues with
the app or unexpected behaviors.

In particular we exclusively took into account the sen-
tences belonging to the Feature Request and Problem Dis-
covery categories, and we assigned a generic Other label
to the sentences that do not belong to these categories.
Beyond being the main relevant categories from a soft-
ware maintenance perspective [17], software engineers can
easily recognize sentences requiring features or describing
issues. Consequently, they can more easily identify recurrent
language structures used for introducing these types of
sentences, and this makes the sentences belonging to the
Feature Request and Problem Discovery categories the best
candidates for our purposes.

Table 3 illustrates the number of sentences in the data
collection belonging to each of the two categories, as well as
the number of sentences falling in the Other category.

Analysis Method. To answer RQ2, we carried out a
study involving four external subjects: (i) one professional
software engineer, and (iii) three software engineering mas-
ter students. Three of them (i.e., Subject 2, Subject 3, and
Subject 4) were experienced in natural language process-
ing and dependency parsing, while the remaining subject
(i.e., Subject 1) has prior knowledge about natural language
processing but not about dependency parsing. We were
able to only involve four subjects, due to the specific skills
(i.e., natural language processing background) required to
participate. Moreover, the potentially-long time required to
perform the tasks discouraged further subjects to participate
in the study.

According to the need of ensuring reasonable times
for tasks’ completion, we extracted 100 sentences from the
dataset: 50 belonging to the Feature Request category, and
50 belonging to the Problem Discovery category. These 100
sentences represent the training set, Ttraining , while the
remaining 1290 sentences represent the test set, Ttest. Then,
we divided the subjects in two groups: Subjects 1 and 2 have
been assigned to the Group 1, while Subjects 3 and 4 have
been assigned to the Group 2.

The sentences in Ttraining have been used to automat-
ically generate (through NEON) a list of 241 candidate
recurrent linguistic patterns. We asked each subject of Group
1 to analyze the NEON’s output and manually select (and

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2930519, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. NO. 9

possibly modify) the patterns that, in their opinion, were
relevant for identifying sentences belonging to one of the
categories of interest (i.e., Feature Request and Problem
Discovery). In contrast, we asked each subject of Group 2 to
inspect the 100 sentences in Ttraining (along with their SD
representation) to manually define a set of NLP heuristics
for recognizing sentences belonging to the Feature Request
and Problem Discovery categories. Before starting the tasks,
all the subjects have been introduced to (i) the XML gram-
mar for defining the NLP heuristics, and (ii) the ways such
heuristics can be used to automatically recognize linguistic
patterns.

For each subject, we collected (i) the list of identified
NLP heuristics, and (ii) the time required to identify such
heuristics. We used the list of NLP heuristics produced
by each subject to automatically classify the sentences con-
tained in Ttest, and assessed the classification performance
of identified heuristics relying on widely adopted metrics of
Information Retrieval: Precision, Recall and F-measure.

4.1.1 Results of RQ2: NEON time-saving capability
Table 4 reports for each subject: (i) the overall time (ex-
pressed in minutes) required to complete the task (T), (ii) the
number of identified NLP heuristics (HALL), (iii) the num-
ber of identified NLP heuristics associated with the Feature
Request category (HFR), and (iv) the number of identified
NLP heuristics associated with the Problem Discovery cat-
egory (HPD). In Table 5 the classification results obtained
through the NLP heuristics identified by each subject are
reported. The use of NEON allowed to save more than the
70% of time for identifying the required NLP heuristics: the
two subjects who selected the NLP heuristics analyzing the
NEON’s output took about an hour and a half and two
and a half hours, respectively, to complete the identification
task, while the subjects who manually defined the NLP
heuristics spent about nine and ten hours to complete the
process, respectively. As reported in Table 5, Subject 4, who
is the one spending the longest time for completing the
task, obtained the best F-measure result for the Feature
Request category (i.e., 0.341), while Subject 3 achieved the
best F-measure value for the Problem Discovery category
(i.e., 0.618). However, the NLP heuristics identified by both
subjects using NEON achieved comparable F-measure val-
ues for both categories (i.e., higher than 0.27 for Feature
Request, and about 0.5 for Problem Discovery). In general,
NEON-generated heuristics obtained (i) reasonable recall
values (i.e., on average 0.426), outperforming of about 18%
the recall values obtained by both Subjects 3 and 4 for the
Feature Request category, but (ii) lower precision results (i.e.,
higher than 0.6 for Problem Discovery and around 0.2 for
Feature Request) than the ones obtained by Subjects 3 and 4.
The differences in the results obtained for the two different
categories could be due to the fact that Problem Discoveries
contain more recognizable and recurrent structures, while
common patterns for detecting Feature Requests are harder
to be identified [34].

This means that NEON allowed to drastically reduce the
times required for the manual inspection at the cost of a
classification accuracy loss ranging between 7% and 14%.

It is worth pointing out that Subject 1 did not modify
(by adding further conditions) any of the relevant patterns

TABLE 4
Rule identification Times with (Group 1) and without NEON (Group 2).

Group Subj. Time HALL HFR HPD

1 #1 93 mins 74 32 42
(with NEON) #2 152 mins 78 34 44

2 #3 540 mins 37 20 17
(w.o. NEON) #4 602 mins 56 29 27

TABLE 5
Classification performance obtained by each subject: True Positives

(TP), False Negatives (FN), False Positives (FP), True Negatives (TN),
Recall (R), Precision (P), and F-measure (F1).

Class TP FN FP TN R P F1

Subject 1
Feature Request 62 80 250 898 0.437 0.199 0.273

Problem Discovery 193 251 101 745 0.435 0.656 0.523

Subject 2
Feature Request 63 79 261 887 0.444 0.194 0.270

Problem Discovery 172 272 108 738 0.387 0.614 0.475

Subject 3
Feature Request 37 105 104 1044 0.261 0.262 0.261

Problem Discovery 238 206 88 758 0.536 0.730 0.618

Subject 4
Feature Request 36 106 33 1115 0.254 0.522 0.341

Problem Discovery 219 225 66 780 0.493 0.768 0.601

selected from the NEON’s output, while Subject 2 did mod-
ify just 4 out of the overall 78 patterns selected. Consid-
ering these results, we believe that the NEON-generated
heuristics could represent a good initial set of heuristics that
humans can further refine to achieve better classification
performance. For instance, Subject 1 marked the pattern
“way to [something]” as relevant for the Feature Request
class, but such pattern may produce many false positives
(e.g., “Easy to use, great way to kill time at a doctor’s office
and such..”). However, the refinement of this pattern through
the addition of further conditions so that the pattern could
more likely introduce an actual request (e.g.,, “wish there was
a way to [something]”) would result in a lower number of
false positives, and, consequently, a better precision. Clearly,
the poor classification performance (for all subjects) are also
related to the low numbers of samples in Ttraining (26.04%
of overall sentences belonging the Feature Request class
and 11.26% of overall sentences belonging to the Problem
Discovery category).

After completing the tasks, we interviewed all the sub-
jects and asked them for impressions about the performed
task and suggestions on how to possibly improve NEON.
Subject 1 (with no prior knowledge on dependency pars-
ing) encountered some difficulties in completing the task
(“...The background knowledge required for the task was a bit too
much”), but the human-readable patterns accompanying the
heuristic definitions provided a useful guide to manage the
task’s complexity (“The human readable pattern (Column Text)
was fairly clear to me and I mostly only looked at this column”).
Subject 2 did not encounter any problem during the task
(“I’ve not encountered particular problems during the task”).
Both Subject 1 and Subject 2 (who defined rules based on the

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2930519, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. NO. 10

NEON’s output), found the information provided by NEON
very useful to identify the NLP heuristics for automating the
recognition of relevant data contained in software informal
documents: “...this can certainly be a great help to human
activities in terms of time effort...”, “...the tool can surely help
in the future to automate for example issue tracking etc”. Both
Subject 3 and 4 (who manually defined the NLP heuristics)
found the XML grammar for defining the heuristics easy
or very simple to use. In particular, for both subjects, the
difficulty in the definition of a condition depends on its type
(e.g., both Subject 3 and Subject 4 reported a higher difficulty
rate in identifying conditions of types 2 and 3). The main
obstacle encountered by subjects working without NEON
was to identify “the most significant grammatical relations to be
included” in heuristics, especially for sentences belonging to
both Feature Request and Problem Discovery categories or
“for sentences that contain syntax errors”.

RQ2 summary: NEON allowed to save more than 70% of
the time when compared to the manual identification and
definition of a set of NLP heuristics useful for classification
purposes. However, the NLP heuristics automatically extracted
by NEON achieved a classification accuracy between 7% and
14% lower than the manually defined ones.

4.1.2 Threats to validity
Construct validity. In this study, the identification of rele-
vant patterns useful for classifying reviews belonging to
the Feature Request and Problem Discovery categories is
performed by human subjects. Thus, such an identification
process could be biased, and this may represent a threat
to construct validity. Moreover, the time required for iden-
tifying such patterns could be subjective and might not
depend on the actual effort required for identifying them. To
alleviate these issues, for each of the two tasks we involved
at least two different subjects and analyzed their results
separately.

Internal validity. Four different subjects are involved in
our study. Their different levels of background knowledge
risk to weaken the obtained results, and this may represent
a threat to internal validity. To alleviate this threat, we
only selected subjects with previous experience in natural
language processing and instructed all of them on how
to correctly identify and define NLP heuristics useful for
classification purposes.

Conclusion validity. As previously mentioned, given the
relatively difficult (i.e., requiring specific skills not all devel-
opers possess) and effort-prone task, it was not possible to
conduct a study involving a large number of participants
(nor to conduct a crossover experiment where each subject
worked with both treatments), and statistically assess the
differences between the two groups (i.e., using NEON or
not). Therefore, we could only qualitatively assess the ob-
served differences, as well as the feedback reported by the
study participants. We could not exclude that the observed
differences are due to chance or to the participants’ specific
skills. Nevertheless, as observed efforts are 3.5-6.5 times
larger when NEON was not used, it is unlikely this could
have happened by chance.

External validity. The patterns’ identification tasks have
been performed on a training set (Ttraining) that is small
in scale (i.e., 100 app review sentences) due to the need

TABLE 6
Development mailing lists samples

Project Messages Posting Period

Qt Project 102 June 2014
Qt Project 100 May 2014
Qt Project 20 March 2014
Qt Project 20 April 2014
Qt Project 20 July 2014
Qt Project 20 August 2014
Qt Project 20 September 2014
Ubuntu 20 September 2004
Ubuntu 20 October 2004
Ubuntu 20 November 2004
Ubuntu 20 December 2004
Ubuntu 20 January 2005

of ensuring reasonable tasks’ completion times. This could
represent a threat to external validity since some of the
identified patterns could be due to the specific sentences se-
lected. Consequently, this may result in a lower classification
effectiveness. To counteract this issue, the sentences in our
training set belong to seven different apps [34] and different
categories (i.e., Feature Request and Problem Discovery).

4.2 Mining of Recurrent Patterns in Developers’ Dis-
cussions

This study aims at addressing the following research ques-
tions:

RQ3a: To what extent are NLP heuristics extracted by NEON
effective in classifying intent in development emails?

RQ3b: To what extent are automatically-extracted NLP
heuristics similar to the ones manually extracted by human
annotators?

Context of the study. To answer these questions we used
the dataset available from previous work [19]. Specifically,
this dataset consists of messages contained in the mailing
lists of two popular open source projects, Qt and Ubuntu.
A detailed list of the sampled messages in our dataset is
shown in Table 6.

Moreover, as reported in our previous work [19], all the
messages of our dataset were manually analyzed by two
researchers, who assigned each relevant email sentence to
one of the categories of the taxonomy in Table 7. Such
a taxonomy is aimed at modeling categories of sentences
describing the relevant textual fragments from software
maintenance and evolution perspective which developers
report in development emails.

Analysis Method. To answer RQ3a, we considered the
sentences belonging to the Problem Discovery and Feature
Requests categories, available from the training sets of ex-
periments I, II, III (i.e., a total of 302 emails of the Qt Project
mailing list exchanged during 2014) of our previous work
[19]. In particular, such sentences have been provided as in-
put to NEON, to automatically mine the NLP heuristics able
to recognize sentences in these two categories. Finally, we
evaluated the classification performances obtained through
these heuristics on the test set available from experiment III
(i.e., 100 emails of the Ubuntu mailing list) of our previous
work [19].

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2930519, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. NO. 11

TABLE 7
Development mailing lists categories

Category Description

Feature Request Sentences related to ideas/suggestion-
s/needs for improving or enhancing the
product/service or its features (e.g., “We
should add a new button”)

Opinion Asking Sentences for requiring someone to ex-
plicitly express his/her point of view
about something (e.g., “What do you think
about the aspect of the main panel?”)

Problem Discovery Sentences related to issue definitions and
unexpected behaviors (e.g., “the problem
occurs when I try to access to database”)

Solution Proposal Sentences used to describe possible solu-
tions for known problems (e.g.,, “let’s try
to use a new method to compute costs”)

Information Seeking Sentences related to attempts to ob-
tain information or help from other
users (e.g., “can you explain how the code
works?”)

Information Giving Sentences used to inform/update other
users about something (e.g., “the plan is
to release new updates in this week”)

To avoid using too generic heuristics for the classifica-
tion task, we performed manual filtering of the heuristics
proposed by NEON. Specifically, two authors of the paper
separately marked the relevance of each of the heuristics
proposed by NEON with respect to the Problem Discovery
and Feature Requests categories with yes, no, or maybe.
For completing this task, the two subjects spent 39 and
43 minutes, respectively. The inter-rater agreement (Cohen’s
Kappa) was k = 0.498 (170 items out of a total of 248). All
the items for which the two annotators initially disagreed
(or to which both annotators assigned the label maybe)
were discussed among them and, consequently, promoted
to either yes or no.

Because of the initial divergence between the annotators
(Cohen’s Kappa < 0.5) we decided to involve a third anno-
tator for a further check. The third annotator (another author
of the paper) expressed his judgment on the relevance of
each heuristic in all the cases (i.e., 78) in which a discussion
between the two initial annotators was necessary. In the end,
73 heuristics out of a total of 129 (56.6%) were classified as
meaningful for the Feature Request category, while for the
Problem Discovery category, 57 heuristics out of 119 (47.9%)
were selected. All the remaining heuristics were discarded.

To answer RQ3b, we compare the heuristics inferred by
NEON with those encoded in DECA [19], [20]. A manual
inspection of the automatically extracted heuristics was con-
ducted, to establish whether each of them was semantically
linked to one or more of the heuristics originally identified
in our previous research [20]. More specifically, given the set
of sentences S in our test set, we consider two heuristics, H1

(from the set of heuristics extracted by NEON) andH2 (from
the set of heuristics encoded in DECA) as semantically linked
if the intersection between the sentences in S which H1 and
H2 are able to recognize is a non-empty subset of sentences
and all the sentences identified by both heuristics exhibit

TABLE 8
Results obtained by automatically extracted (through NEON) and

manually selected heuristics: True Positives (TP), False Positives (FP),
False Negatives (FN), Recall (R), Precision (P), and F-Measure (F1).

Class TP FP FN R P F1

Feature Request 28 28 26 0.519 0.500 0.509
Problem Discovery 25 8 24 0.510 0.758 0.610

Other 125 45 33 0.791 0.735 0.762
Total 178 81 83 0.682 0.687 0.685

TABLE 9
Results obtained by DECA’ s heuristics: True Positives (TP), False
Positives (FP), False Negatives (FN), Recall (R), Precision (P), and

F-Measure (F1).

Class TP FP FN R P F1

Feature Request 46 9 8 0.852 0.836 0.844
Problem Discovery 39 2 10 0.796 0.951 0.867

Other 98 9 60 0.620 0.916 0.740
Total 183 20 78 0.701 0.901 0.789

a shared typed dependency subtree. This manual analysis
to address RQ3b required for the two annotators about five
hours of work.

4.2.1 Results of RQ3a: NEON classification effectiveness
Table 8 shows the classification results obtained when re-
lying on the heuristics automatically extracted by NEON,
while Table 9 reports the results previously obtained using
heuristics defined by researchers. Note that in both Tables 8
and 9 the Other category includes all the items not belonging
to Feature Request or Problem Discovery categories. We
decided to merge all these categories in the Other class
because the main relevant categories for maintenance and
evolution perspectives are Feature Request and Problem
Discovery.

The first result shown in Tables 8 and 9 is that the best
classification accuracy is obtained when relying on NLP
heuristics manually defined by researchers. In particular,
for the Problem Discovery and Feature Request categories
the ranges of values achieved by NEON in terms of recall,
precision and F-measure are 0.51 − 0.52, 0.50 − 0.76 and
0.51 − 0.61 respectively. In the case of human-generated
NLP templates, the achieved results in terms of recall,
precision and F-measure are 0.80 − 0.85, 0.84 − 0.95 and
0.84 − 0.87 respectively. On average, considering all the
sentence categories, we can notice how human-generated
heuristics (DECA) outperform automatically generated ones
(NEON) by about 2% (0.70 vs. 0.68) in terms of recall, 21%
(0.90 vs. 0.69) in terms of precision, and 10% (0.79 vs. 0.69)
in terms of F-measure.

This result is not completely surprising, considering that,
while the automatic approach we have defined is based on
syntactic information (i.e., NEON compares the syntactic
trees of the sentences to extract NLP heuristics), a human
subject has, in general, a broader knowledge base and full
understanding of semantics and context in which these
heuristics are defined. However, as reported in previous
work [19], a major limitation of DECA is that the definition
of the human-generated heuristics is a very error-prone and

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2930519, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. NO. 12

TABLE 10
Results obtained by the experimented ML classifiers.

Class Recall Precision F-measure

functions.Logistic
Feature Request 0.261 0.158 0.197

Problem Discovery 0.326 0.200 0.246
Other 0.448 0.670 0.537

Weighted Avg. 0.395 0.502 0.429

functions.SimpleLogistic
Feature Request 0.022 0.500 0.042

Problem Discovery 0.000 0.000 0.000
Other 0.994 0.660 0.794

Weighted Avg. 0.659 0.523 0.530

trees.J48
Feature Request 0.000 0.000 0.000

Problem Discovery 0.000 0.000 0.000
Other 1.000 0.659 0.794

Weighted Avg. 0.659 0.434 0.524

trees.RandomForest
Feature Request 0.043 0.080 0.056

Problem Discovery 0.047 0.154 0.071
Other 0.849 0.655 0.739

Weighted Avg. 0.575 0.471 0.509

trees.FT
Feature Request 0.174 0.182 0.178

Problem Discovery 0.209 0.290 0.243
Other 0.715 0.661 0.687

Weighted Avg. 0.536 0.516 0.524

rules.NNge
Feature Request 0.087 0.070 0.078

Problem Discovery 0.047 0.095 0.063
Other 0.686 0.645 0.665

Weighted Avg. 0.475 0.453 0.462

effort-intensive activity, which can lead in most cases to
heuristics that could be very specific to a project and thus,
not generalizable. In Section 4.1 we discussed in more detail
how developers could benefit from NEON by automatically
obtaining an initial set of heuristics that they could further
refine.

Concerning the comparison with machine learning clas-
sifiers based on n-grams, Table 10 reports the results of
the classification achieved by six different machine learning
algorithms, considering as training and test sets the ones
used in previous work upon evaluating DECA [19]. The
automatic classification of sentences is performed using
the Weka tool2 experimenting with six different machine
learning techniques, namely the Logistic Regression, Simple
Logistic, J48, Random Forest, FT, and Nnge. The choice of
these techniques was not random, they were successfully
used for bug reports classification and for defect prediction
in many previous works [19].

By analyzing the results in Table 10, we can confirm
that, as a positive effect, the intent classification performed
through NLP heuristics identified by NEON is substantially
more effective than classical text categorization based on
lexicon analysis and machine learning algorithms experi-
mented in recent work [19]. Indeed, automatically extracted
heuristics obtain classification performance (see Table 8)
higher than all the considered machine learning algorithms.

2. https://www.cs.waikato.ac.nz/ml/weka/

Fig. 4. Comparison of a NEON-generated and a manually identified
heuristic of the Feature Request category.

Specifically, NEON outperforms overall results obtained
through functions.Logistic algorithm (which resulted the
best performing machine learning model for the Feature
Request and Problem Discovery categories) of about 28% (0.68
vs. 0.40) in terms of recall, about 19% (0.69 vs. 0.50) in terms
of precision and about 25% (0.68 vs. 0.43) in terms of F-
measure.

RQ3a summary: Manually-defined heuristics of DECA out-
perform the ones automatically generated by NEON by about
2% in terms of recall, 21% in terms of precision and 10% in
terms of F-measure. The heuristic-based intent classification
provided by NEON is substantially more effective than classi-
cal text categorization based on lexicon analysis and machine
learning algorithms experimented in the literature.

4.2.2 Results of RQ3b: Similarity of NEON NLP heuristics
with the ones extracted by researchers

Among the 130 heuristics automatically extracted and
marked as relevant by the three annotators, 77 (59.23%) of
these resulted semantically linked to heuristics previously
defined by researchers [19]. Specifically, for the Feature
Request category, 41 out of 73 (56.16%) of the automatically
extracted and selected heuristics resulted semantically linked
to one of the previously implemented heuristics. Concern-
ing the Problem Discovery category 36 out of 57 (63.16%)
of the automatically extracted and selected heuristics are
semantically linked to one of the heuristics originally imple-
mented for this category. In Figures 4 and 5 are reported
some examples of heuristics extracted with NEON and con-
sidered semantically linked to heuristics previously iden-
tified by researchers. In particular, given two semantically
linked heuristics, H1 (NEON-generated) and H2 (manually
defined), in Figures 4 and 5, to emphasize similarities and
differences existing between H1 and H2 we annotate with a
+ symbol the conditions present in H1 but missing in H2,
while with a − symbol we annotate conditions present in
H2 but missing in H1.

The obtained results are encouraging if we consider
that around 52% of the heuristics extracted by NEON are
considered relevant (i.e., they are related to the Feature
Request and Problem Discovery categories), and about 60%
of such heuristics (the ones that are relevant) are semantically
linked to heuristics extracted by humans. However, future
research should be devoted in studying the patterns that
were not recognized as semantically-related to the manual
defined heuristics.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2930519, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. NO. 13

Fig. 5. Comparison of a NEON-generated and a manually identified
heuristic of the Problem Discovery category.

RQ3b summary: Around 60% of the heuristics extracted
by NEON and marked as relevant are semantically linked to
heuristics manually identified by humans. This means that
around 30% of the identified patterns were semantically linked
to manually-written patterns.

4.2.3 Threats to validity
Construct validity. Semantic labels have been assigned to sen-
tences in our dataset according to the judgment of human
annotators. A threat to construct validity could be due to a
possible level of subjectivity caused by the manual classifi-
cation of entities. As also reported in our previous work [19],
to reduce this threat, two human judges (two authors of this
paper) separately assigned each sentence in our dataset to
one of the categories in the taxonomy, and only predictions,
which both judges agreed upon, formed our truth set for the
experiment. This threat is in part mitigated by the study in
Section 4, where we discuss the effort required by external
subjects in defining the NLP heuristics with and without
NEON.

Internal validity. We used a set of machine learning (ML)
algorithms as a baseline to estimate our results. This rep-
resents a threat to internal validity, as the obtained results
could be due to the particular ML technique experimented.
For mitigating this issue, we trained different ML algorithms
and compared the results achieved by our approach with the
results obtained by each ML classifier.

External validity. This study makes use of messages sam-
pled from a single project (Qt) for the composition of the
training set and focuses on two categories. It is possible
that the specific, recurring issues in this project could bias
(and limit the generalizability of) the derived heuristics. This
concern is mitigated by showing that the approach produces
acceptable results on unseen data from a different project,
using as test set emails belonging to another project, Ubuntu
for precision’s sake.

4.3 Mining of Recurrent Patterns in Similar Issues
The main research question that guided this second study
is:

RQ4: To what extent do developers’ belonging to different
projects use similar patterns to describe the same type of issues
in an issue tracker?

This investigation aims at studying whether NEON can
be applied to identify the possible use, in similar circum-
stances, of common linguistic patterns by different develop-
ers. In particular, we investigate whether developers work-
ing in different projects employ common linguistic patterns

to title issues of the same type. For example, bugs, feature
requests, or enhancements may exhibit recurring linguistic
regularities in their titles.

Issue titles have been proven to be important features for
the detection of duplicated bugs [26] and previous research
[28], [38] demonstrated that issue titles have characteristics
or features that can be exploited to assign the correct sever-
ity level to a bug.

Context of the study. To answer RQ4, we collected
issues from 20 open source projects hosted on GitHub. Table
11 reports the issues we collected from these 20 projects. In
particular, the selection process we applied was not random
and consisted of the following steps:

1. In order to consider projects with a reliable number of
issues, the 100 most popular ones (i.e., top starred) have
been selected from GitHub.

2. From the list of projects obtained in the previous step, we
selected those written in C#, Java, Javascript, and Ruby.

3. For each of the aforementioned programming languages,
we selected the top 5 projects, for a total of 20 projects.

4. We analyzed the issue labels associated with all these
projects and grouped the semantically-similar labels in
five issue types, as shown in Table 11.

5. Issues having at least one of the selected labels assigned
have been extracted from these 20 projects.

Analysis Method. As shown in Table 11, we collected
all issue labels related to five common issue types: “bug,
enhancement, question, area build and documentation”. We se-
lected such 5 issue types since they are widespread in all
the analyzed projects, and also because we want to under-
stand whether developers of different projects use similar
linguistic patterns while describing similar issues. It is im-
portant to mention that each project assigned similar but
not the same names to the “bug” (e.g., “bug”, “issue-bug”,
“defect”, “type: defect”, etc.), “enhancement” (e.g., “enhance-
ment”,“improvement”, “issue-enhancement”, etc.), “ques-
tion” (e.g., “question”, “contains potential question key-
words”, etc.), “area build” (“area-build”, “Area-Build”)
and “documentation” (e.g., “documentation”, “docs”, “type:
docs”, etc.) issue types.

To identify recurring patterns for each issue type, we
selected, for each issue type, projects having at least 100
issues. In this way, for the “bug” issue type we have selected
the projects AngularJS, CoreCLR and PowerShell; while for
the “enhancement” issue type, we selected the projects Core-
CLR, Guava, PowerShell and Spring Boot. For the remaining
issue types, we did not find enough issues. As a further
step, for each selected project, we used NEON to extract
linguistic patterns from the titles of the issues associated to
the “bug” and “enhancement” issue types. Hence, to answer
our RQ4, for both issue types, we observe the number of
patterns with shared conditions extracted from the issue titles
of the selected projects. To perform this task we leverage the
following definitions:

• Definition 1. Given two NLP heuristics, H1 and H2, a
condition Ci, defined in H1, and a condition Cj , defined
in H2, are equivalent if i = j, as well as Ci and Cj

involve (i) the same typed dependencies, (ii) the same
arguments (i.e., governors and/or dependents), and (iii)
the same lemmas. More formally, (i) let TDi and TDj

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2930519, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. NO. 14

TABLE 11
RQ4: Dataset of collected issues.

Project Language bug enhancement question area build documentation

AngularJS Javascript 194 0 0 26 48
CoreClr C# 147 494 54 58 36
Dapper C# 12 24 0 5 6
Dubbo Java 9 8 0 6 6
fastlane Ruby 14 0 0 3 3

fpm Ruby 13 0 0 2 5
freeCodeCamp Javascript 9 8 0 33 0

grape Ruby 0 0 0 8 0
Guava Java 52 102 0 0 62
Nancy C# 8 9 0 0 1

OkHttp Java 32 61 0 12 3
PowerShell C# 120 266 90 74 0

React Javascript 57 39 0 6 6
React Native Javascript 0 0 0 18 2
redux-form Javascript 30 30 0 16 11
RestSharp C# 14 0 0 15 1
Robolectric Java 57 51 0 1 0
RuboCop Ruby 38 27 0 10 4

Sass Ruby 20 0 0 43 8
Spring Boot Java 36 338 0 0 36

Total 862 1457 144 336 238

be the sets of typed dependencies (with the related
arguments) involved in the conditions Ci and Cj , respec-
tively, and (ii) let Wi and Wj be the sets of lemmas in-
volved in Ci and Cj , respectively: Ci and Cj are equiv-
alent if (i) i = j, (ii) (TDi ∪ TDj)− (TDi ∩ TDj) = ∅,
(iii) (Wi ∪Wj)− (Wi ∩Wj) = ∅.

• Definition 2. Given two NLP heuristics, H1, which
incorporates m conditions, and H2, containing n con-
ditions:
– H1 and H2 are equivalent, if m = n and each Ci (i ∈
{1, 2, ...,m}) condition defined in H1 is equivalent
to one and only one Cj (j ∈ {1, 2, ..., n}) condition
defined in H2.

– H1 is contained in H2, if m < n and each Ci (i ∈
{1, 2, ...,m}) condition of H1 is equivalent to one of
the first m conditions, Cj (j ∈ {1, 2, ...,m}), of H2.

– H2 is contained in H1, if m > n and each Cj (j ∈
{1, 2, ..., n}) condition of H2 is equivalent to one of
the first n conditions, Ci (i ∈ {1, 2, ..., n}), of H1.

Hence, given two lists of heuristics Li and Lj separately
extracted for the Pi and Pj projects (i 6= j), we evaluated:

• the number of heuristics in Li that are contained in
heuristics belonging to Lj (Hi ⊂ Hj)

• the number of heuristics in Lj that are contained in
heuristics belonging to Li (Hj ⊂ Hi)

• the number of heuristics in Li and Lj that are equivalent
(Hi ≡ Hj).

4.3.1 Results of RQ4: shared linguistic patterns among
different developers’ communities

Results related to patterns extracted from the issue titles
belonging to the selected projects are reported in Tables 12
and 13. Specifically, in Tables 12 and 13 we report: (i) the
names of the considered projects (P1 − P2), (ii) the number
of heuristics extracted from P1 (PH1), (iii) the number of
heuristics extracted from P2 (PH2), (iv) the number of
heuristics extracted from P1 contained in heuristics mined
from P2 (Hi ⊂ Hj), (v) the number of heuristics extracted
from P2 contained in heuristics mined from P1 (Hj ⊂ Hi),
(vi) the number of heuristics from P1 that are equivalent to
heuristics mined from P2 (Hi ≡ Hj), and (vii) the total

TABLE 12
Patterns with shared conditions extracted from different projects for

issues of type “bug”.

P1 - P2 PH1 PH2 Hi ⊂ Hj Hj ⊂ Hi Hi ≡ Hj SCH

AngularJS - CoreCLR 102 45 6 2 7 15 (33.33%)
AngularJS - PowerShell 102 39 2 3 7 12 (30.77%)
CoreCLR - PowerShell 45 39 3 2 1 6 (15.38%)

number of patterns with shared conditions (SCH = Hi ⊂ Hj

+ Hj ⊂ Hi + Hi ≡ Hj).
By observing Table 12, it is possible to notice that 15

out of 45 (33.33%) patterns extracted from the issues of
the CoreCLR project have shared conditions with patterns
mined from the project AngularJS, while 12 out of 39
(30.77%) of the patterns extracted for the PowerShell project
have shared conditions with patterns extracted from the
project AngularJS. Moreover, only 6 (out of 39, 15.38%) of
the patterns identified for the PowerShell project present
shared conditions with patterns extracted from the title of
issues related to the CoreCLR and having the “bug” label
assigned.

These percentages of similar patterns are slightly lower
than the ones obtained for the “enhancement” issue type
(as shown in Table 13). As a matter of fact, we observe
that Guava generally share a high percentage of patterns
with other projects. In particular, at least 10 out of 19
(52.63%) total patterns extracted from issue titles marked as
“enhancement” and related to the Guava project, have shared
conditions with patterns extracted from issue titles of the
same type related to all other projects.

Although some of the identified recurrent patterns (e.g.,
“[something] returns [something]”, “[something] calls [some-
thing]”) might not depend on the particular issue type, many
of the extracted patterns are strictly connected with it. For
instance, the patterns “[something] fails”, “[something] do not
work”, and “[something] throws [something]” clearly indicate
error descriptions and recurrently appear in the titles of the
issues of the “bug” type related to all the inspected projects.
Similarly, patterns such as “[auxiliary] allow [something]”,
“consider to use [something]” and “provide [something]” often
appear in the titles of issues related to different projects and
having the “enhancement” label assigned.

On average, for the issue types we considered, about
35% of the patterns present in issue titles of a given project
appear in titles of similar issues related to different projects.
This means that around 65% of the recurrent linguistic
patterns tend to be project-specific. However, these results
vary depending on the topic and the project considered.
An obvious consequence of our results is that automated
solutions trained on project-specific data may achieve more
accurate and reliable results for issue label prediction tasks.
To this aim, approaches like NEON could be integrated
into issue tracking systems, to silently collect project-specific
recurrent patterns, with the aim of recommending the right
label(s) to assign to a generic issue. On the one hand, a
similar recommender system may stimulate developers to
use issue labels more frequently. On the other hand, NEON
can also be useful to easily mark unlabeled issues, in order
to support bug prioritization processes [28], [38].

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2930519, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. NO. 15

TABLE 13
Patterns with shared conditions extracted from different projects for

issues of type “enhancement”.

P1 - P2 PH1 PH2 Hi ⊂ Hj Hj ⊂ Hi Hi ≡ Hj SCH

CoreCLR - Guava 185 19 1 5 4 10 (52.63%)
CoreCLR - PowerShell 185 105 3 8 18 29 (27.62%)
CoreCLR - Spring Boot 185 117 20 3 12 35 (29.91%)

Guava - PowerShell 19 105 4 2 5 11 (57.89%)
Guava - Spring Boot 19 117 10 0 0 10 (52.63%)

PowerShell - Spring Boot 105 117 20 5 4 29 (27.62%)

RQ4 summary: About 35% of the linguistic patterns found
in issue titles of a given project appear in titles of the same
type related to different projects. Such a percentage can be
considered quite relevant and indicate that, indeed, recurring
patterns occur when describing — even across different projects
— issues of the same type. This is especially true given that the
considered issue types (“bug” and “enhancement”) are quite
broad in terms of problems developers can report.

4.3.2 Threats to validity

Construct validity. In this study, the pairs of patterns with
shared conditions (i.e., the patterns that involve the same
specific syntactic structures) are considered semantically
similar. However, there could be pairs of linguistic pat-
terns involving different grammatical structures that may
be semantically related. This represents a threat to construct
validity since semantically-related linguistic patterns with
different sets of conditions could appear in issue titles
of different projects with a non-negligible frequency. For
alleviating this issue, not only pairs of equivalent patterns,
but also pairs of patterns with inclusion relationships (i.e.,
contained in) have been considered in our computation.

Internal validity. In a specific project, a reduced set of
items belonging to a particular issue type could result in the
low variability of the related issue titles and, consequently,
this could lead to erroneous estimations. To mitigate this
threat, for each considered issue type (e.g.,“bug”, “enhance-
ment”, etc.), only projects having at least 100 issues of that
type have been selected for extracting language patterns and
computing our results.

External validity. Two threats could weaken the external
validity of this study. The first one concerns the selection of
the projects that could not be representative of all the com-
munities of developers. To ensure a good representativeness
and limit the impact of this threat on the generalization
of the results, for each programming language we selected
the top starred projects, i.e., the most popular ones. This
allowed us to collect a large volume of data that foster an
acceptable inner variability, increasing the external validity
of the findings. At the same time, the relatively limited
number of projects considered implies that we analyzed a
limited set of application domains. Therefore, we did not
evaluate the impact of a specific domain on the NEON’s
effectiveness. Mitigating this threat would have meant to
substantially enlarge the number of projects, which would
have lead to more dependable findings. Considered that, to
the best of authors’ knowledge, this is the first study that
investigates such a topic, the findings could be considered
as a first result, which could be better analyzed with a larger
study, to evaluate further factors that may influence the
patterns developers use for defining the issues.

5 RELATED WORK

Previous research has defined various approaches based
on natural language grammatical/linguistic patterns, with
the aim of supporting software engineering activities. More
specifically, in a previous work [19], we identified a set of
231 linguistic patterns for automatically classifying informa-
tive paragraphs in development mailing lists. Pandita et al.
[29] make use of natural language templates to infer formal
method specifications from natural language API descrip-
tions. Chaparro et al. [11] defined 154 recurrent patterns to
describe observed behavior (OB), expected behavior (EB)
and step to reproduce (S2R) in bug descriptions with the
aim of detecting the presence (or absence) of these pieces of
information in such kind of artifacts (i.e., bug descriptions).
Zhou et al. [45], [46] employed specific linguistic patterns for
automatically detecting inconsistencies between API docu-
ments and source code. Frequent grammatical patterns (i.e.,
dependencies in which either the governor or the dependent
is a code-like term) along with structural features were also
used by Petrosyan et al. [36] to discover tutorial sections that
explain a given API type.

In the context of requirements engineering, linguistic
rules have been defined by researchers to mine informative
data (e.g., feature requests and bugs reported by users)
from app reviews [13], [24], [25], [34]. Similar rules have
also proven to be useful to summarize feedback from users
with the purpose of recommending developers the software
changes that need to be applied [17], [18], [31].

In all these studies, linguistic patterns were identified
through manual processes. In most cases, the manual anal-
ysis of a large corpus of documents has been required to
define a reliable set of rules able to achieve reasonably good
performances in classifying/extracting target data.

To the best of authors’ knowledge, this is the first work
proposing an algorithm for automatically mining recurrent
grammatical frames from a corpus of similar documents.
The most similar work to our research has been proposed by
Vu et al. [41], who developed PUMA, an automated phrase-
based approach to extract user opinions in app reviews.
Their approach automatically mines phrases templates (i.e.,
sequences of POS tags) from a corpus of user reviews. App
reviews matching frequent templates are then extracted,
to be clustered. Differently from PUMA, NEON is able to
discover common grammatical structures (i.e., typed de-
pendencies paths) existing between phrase elements (i.e.,
words). Thus, while the PUMA phrase templates rely on
the order in which the grammatical information appears
(i.e., sequences of POS tags), our approach is more aimed at
analyzing the intrinsic dependencies existing between the
sentences’ elements. For this reason, our approach is less
sensitive to tags misalignments that may occur in similar
text fragments, since two natural language sentences may
share a common grammatical structure, without matching
the same sequence of POS tags (e.g., the two sentences
illustrated in Figure 3 present different sequences of POS
tags).

6 CONCLUSIONS AND FUTURE WORK

Informal documentation (e.g., mailing lists, chats, bug re-
ports, user feedback) is becoming increasingly important

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2930519, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. NO. 16

in software development, and automated approaches for
better managing information contained in such documen-
tation are required. To this aim, the literature reports sev-
eral approaches that treat textual information as a bag of
words. While this strategy is simple and effective in some
circumstances, it has been shown not to be adequate for
identifying the intention behind a natural language text
fragment [19]. Since the automated recognition of such
intentions could help developers in detecting text content
useful to accomplish different and specific maintenance
and evolution tasks, in a previous work we proposed
DECA [19], an approach leveraging language syntactical
patterns to classify sentences’ intent. Similar approaches
have been proposed for several other purposes (e.g., apps’
reviews classification [23], [34], bug reports quality assess-
ment [11], inconsistencies detection in API documents [45],
[46]). However, the main disadvantage of such approaches
is that they require the manual identification of recurrent
language patterns that would be exploited for automated
classification. To better comprehend the effort required to
identify such patterns from the taggers’ side, in a study
with Master’s and Ph.D. students we first found that the
identification effort increases proportionally to the number
and types of structures involved. To reduce such effort,
we proposed NEON, an approach to automatically mine
recurrent syntactical patterns from software informal docu-
ments. Two studies performed on different types of software
informal documents (i.e., app reviews, development emails)
allowed us to assess NEON’s time-saving capability, as well
as the classification effectiveness of heuristics automatically
identified by our tool.

Hence, we can conclude that NEON is a valid support
for researchers interested in identifying recurrent linguistic
patterns that are used by developers in software informal
documentation: NEON-generated heuristics could represent
a good initial set of heuristics that humans can further refine
to achieve better classification performance. In addition, a
further study on the issue descriptions reported in issue
tracking systems indicated that NEON may be useful in
collecting project-specific language patterns that can be
leveraged to predict the label to assign to an issue.

As future work, to improve the patterns’ identification
capabilities of NEON, we plan to provide our approach
with the ability to also detect semantically similar patterns,
and not only the syntactically similar ones. Finally, we
plan to test alternative and less rigid ways to represent
linguistic patterns, which are not based on XML-based rules
to facilitate the adoption of NEON in practical contexts.

ACKNOWLEDGMENT
We gratefully thank all the participants involved in our
studies. S. Panichella and H. Gall acknowledge the Swiss
National Science foundation’s support for the project
“SURF-MobileAppsData” (SNF Project No. 200021-166275).

REFERENCES

[1] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y. Guéhéneuc,
“Is it a bug or an enhancement?: a text-based approach to classify
change requests,” in Proceedings of the 2008 conference of the Centre
for Advanced Studies on Collaborative Research, October 27-30, 2008,
Richmond Hill, Ontario, Canada, 2008, p. 23.

[2] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?”
in 28th International Conference on Software Engineering (ICSE 2006),
Shanghai, China, May 20-28, 2006, 2006, pp. 361–370. [Online].
Available: http://doi.acm.org/10.1145/1134336

[3] A. Bacchelli, T. D. Sasso, M. D’Ambros, and M. Lanza,
“Content classification of development emails,” in 34th
International Conference on Software Engineering, ICSE 2012, June 2-9,
2012, Zurich, Switzerland, 2012, pp. 375–385. [Online]. Available:
https://doi.org/10.1109/ICSE.2012.6227177

[4] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison-Wesley, 1999.

[5] G. Bavota, “Mining unstructured data in software repositories:
Current and future trends,” in 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
vol. 5, 2016, pp. 1–12.

[6] A. Begel and N. Nagappan, “Global software development: Who
does it?” in 3rd IEEE International Conference on Global Software
Engineering, ICGSE 2008, Bangalore, India, 17-20 August, 2008, 2008,
pp. 195–199. [Online]. Available: https://doi.org/10.1109/ICGSE.
2008.17

[7] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Alloca-
tion,” The Journal of Machine Learning Research, vol. 3, pp. 993–1022,
2003.

[8] G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella,
“Who is going to mentor newcomers in open source
projects?” in 20th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE-20), SIGSOFT/FSE’12, Cary, NC, USA
- November 11 - 16, 2012, 2012, p. 44. [Online]. Available:
http://doi.acm.org/10.1145/2393596.2393647

[9] G. Capobianco, A. D. Lucia, R. Oliveto, A. Panichella, and
S. Panichella, “Improving IR-based traceability recovery via
noun-based indexing of software artifacts,” Journal of Software:
Evolution and Process, vol. 25, no. 7, pp. 743–762, 2013. [Online].
Available: https://doi.org/10.1002/smr.1564

[10] L. Cerulo, M. Ceccarelli, M. Di Penta, and G. Canfora,
“A hidden markov model to detect coded information
islands in free text,” in 13th IEEE International Working Conference
on Source Code Analysis and Manipulation, SCAM 2013, Eindhoven,
Netherlands, September 22-23, 2013, 2013, pp. 157–166. [Online].
Available: https://doi.org/10.1109/SCAM.2013.6648197

[11] O. Chaparro, J. Lu, F. Zampetti, L. Moreno, M. Di Penta,
A. Marcus, G. Bavota, and V. Ng, “Detecting missing
information in bug descriptions,” in Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, Paderborn, Germany, September 4-8, 2017, 2017, pp. 396–407.
[Online]. Available: http://doi.acm.org/10.1145/3106237.3106285

[12] P. Chatterjee, M. A. Nishi, K. Damevski, V. Augustine, L. Pol-
lock, and N. A. Kraft, “What information about code snippets is
available in different software-related documents? an exploratory
study,” in 2017 IEEE 24th International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER), 2017, pp. 382–386.

[13] A. Ciurumelea, S. Panichella, and H. C. Gall, “Automated user
reviews analyser,” in ICSE (Companion Volume). ACM, 2018, pp.
317–318.

[14] J. Cohen, “Statistical power analysis for the behavioral sciences
second edition,” Lawrence Erlbaum Associates, Publishers, 1988.

[15] M.-C. de Marneffe and C. D. Manning, “The stanford typed
dependencies representation,” in Coling 2008: Proceedings of the
Workshop on Cross-Framework and Cross-Domain Parser Evaluation,
ser. CrossParser ’08. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2008, pp. 1–8. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1608858.1608859

[16] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of
the American Society for Information Science, vol. 41, no. 6, pp. 391–
407, 1990.

[17] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki,
C. A. Visaggio, G. Canfora, and H. C. Gall, “What would users
change in my app? Summarizing app reviews for recommending
software changes,” in Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE
2016, Seattle, WA, USA, November 13-18, 2016, 2016, pp. 499–510.
[Online]. Available: http://doi.acm.org/10.1145/2950290.2950299

[18] A. Di Sorbo, S. Panichella, C. V. Alexandru, C. A. Visaggio, and
G. Canfora, “SURF: summarizer of user reviews feedback,” in
ICSE (Companion Volume). IEEE Computer Society, 2017, pp. 55–
58.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2930519, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. NO. 17

[19] A. Di Sorbo, S. Panichella, C. A. Visaggio, M. Di Penta, G. Canfora,
and H. C. Gall, “Development emails content analyzer: Intention
mining in developer discussions (T),” in 30th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2015, Lincoln, NE, USA, November 9-13, 2015, 2015, pp. 12–23.
[Online]. Available: http://dx.doi.org/10.1109/ASE.2015.12

[20] A. Di Sorbo, S. Panichella, C. A. Visaggio, M. Di Penta,
G. Canfora, and H. C. Gall, “DECA: development emails
content analyzer,” in Proceedings of the 38th International Conference
on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22,
2016 - Companion Volume, 2016, pp. 641–644. [Online]. Available:
http://doi.acm.org/10.1145/2889160.2889170

[21] D. G. Feitelson, “Using students as experimental subjects in
software engineering research - A review and discussion of the
evidence,” CoRR, vol. abs/1512.08409, 2015. [Online]. Available:
http://arxiv.org/abs/1512.08409

[22] G. Grano, A. Ciurumelea, S. Panichella, F. Palomba, and H. C. Gall,
“Exploring the integration of user feedback in automated testing
of android applications,” in 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER), March
2018, pp. 72–83.

[23] G. Grano, A. Di Sorbo, F. Mercaldo, C. A. Visaggio, G. Can-
fora, and S. Panichella, “Android apps and user feedback: a
dataset for software evolution and quality improvement,” in
WAMA@ESEC/SIGSOFT FSE. ACM, 2017, pp. 8–11.

[24] C. Iacob and R. Harrison, “Retrieving and analyzing mobile
apps feature requests from online reviews,” in Proceedings of the
10th Working Conference on Mining Software Repositories, MSR ’13,
San Francisco, CA, USA, May 18-19, 2013, 2013, pp. 41–44. [Online].
Available: https://doi.org/10.1109/MSR.2013.6624001

[25] C. Iacob, R. Harrison, and S. Faily, “Online reviews as
first class artifacts in mobile app development,” in Mobile
Computing, Applications, and Services - 5th International Conference,
MobiCASE 2013, Paris, France, November 7-8, 2013, Revised Selected
Papers, 2013, pp. 47–53. [Online]. Available: https://doi.org/10.
1007/978-3-319-05452-0 4

[26] N. Jalbert and W. Weimer, “Automated duplicate detection for
bug tracking systems,” in 2008 IEEE International Conference on
Dependable Systems and Networks With FTCS and DCC (DSN), June
2008, pp. 52–61.

[27] M. G. Kendall, “A new measure of rank correlation,” Biometrika,
vol. 30, no. 1/2, pp. 81–93, 1938.

[28] A. J. Ko, B. A. Myers, and D. H. Chau, “A linguistic analysis
of how people describe software problems,” in Proceedings of the
Visual Languages and Human-Centric Computing, ser. VLHCC ’06.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 127–134.
[Online]. Available: https://doi.org/10.1109/VLHCC.2006.3

[29] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A. M.
Paradkar, “Inferring method specifications from natural language
API descriptions,” in 34th International Conference on Software
Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, 2012,
pp. 815–825. [Online]. Available: https://doi.org/10.1109/ICSE.
2012.6227137

[30] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. D. Lucia, “How to effectively use topic models for software
engineering tasks? an approach based on genetic algorithms,” in
35th International Conference on Software Engineering, ICSE ’13, San
Francisco, CA, USA, May 18-26, 2013, 2013, pp. 522–531. [Online].
Available: https://doi.org/10.1109/ICSE.2013.6606598

[31] S. Panichella, “Summarization techniques for code, change, test-
ing, and user feedback (invited paper),” in VST@SANER. IEEE,
2018, pp. 1–5.

[32] S. Panichella, G. Bavota, M. Di Penta, G. Canfora, and G. Antoniol,
“How developers’ collaborations identified from different sources
tell us about code changes,” in 30th IEEE International Conference on
Software Maintenance and Evolution, Victoria, BC, Canada, September
29 - October 3, 2014, 2014, pp. 251–260. [Online]. Available:
https://doi.org/10.1109/ICSME.2014.47

[33] S. Panichella, G. Canfora, M. Di Penta, and R. Oliveto,
“How the evolution of emerging collaborations relates to
code changes: an empirical study,” in 22nd International
Conference on Program Comprehension, ICPC 2014, Hyderabad, India,
June 2-3, 2014, 2014, pp. 177–188. [Online]. Available: http:
//doi.acm.org/10.1145/2597008.2597145

[34] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall, “How can I improve my app? Classifying
user reviews for software maintenance and evolution,” in 2015

IEEE International Conference on Software Maintenance and Evolution,
ICSME 2015, Bremen, Germany, September 29 - October 1, 2015, 2015,
pp. 281–290. [Online]. Available: https://doi.org/10.1109/ICSM.
2015.7332474

[35] L. Pelloni, G. Grano, A. Ciurumelea, S. Panichella, F. Palomba, and
H. C. Gall, “Becloma: Augmenting stack traces with user review
information,” in SANER. IEEE Computer Society, 2018, pp. 522–
526.

[36] G. Petrosyan, M. P. Robillard, and R. De Mori,
“Discovering information explaining api types using text
classification,” in Proceedings of the 37th International Conference
on Software Engineering - Volume 1, ser. ICSE ’15. Piscataway,
NJ, USA: IEEE Press, 2015, pp. 869–879. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2818754.2818859

[37] M. A. Pett, Nonparametric statistics for health care research: Statistics
for small samples and unusual distributions. Sage Publications, 2015.

[38] A. Sureka and K. V. Indukuri, “Linguistic analysis of bug
report titles with respect to the dimension of bug importance,”
in Proceedings of the Third Annual ACM Bangalore Conference, ser.
COMPUTE ’10. New York, NY, USA: ACM, 2010, pp. 9:1–9:6.
[Online]. Available: http://doi.acm.org/10.1145/1754288.1754297

[39] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-
rich part-of-speech tagging with a cyclic dependency network,”
in Human Language Technology Conference of the North American
Chapter of the Association for Computational Linguistics, HLT-NAACL
2003, Edmonton, Canada, May 27 - June 1, 2003, 2003. [Online].
Available: http://aclweb.org/anthology/N/N03/N03-1033.pdf

[40] P. M. Vu, T. T. Nguyen, H. V. Pham, and T. T. Nguyen,
“Mining user opinions in mobile app reviews: A keyword-
based approach (t),” in Proceedings of the 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
ser. ASE ’15. Washington, DC, USA: IEEE Computer Society,
2015, pp. 749–759. [Online]. Available: https://doi.org/10.1109/
ASE.2015.85

[41] P. M. Vu, H. V. Pham, T. T. Nguyen, and T. T. Nguyen,
“Phrase-based extraction of user opinions in mobile app reviews,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE 2016. New York,
NY, USA: ACM, 2016, pp. 726–731. [Online]. Available:
http://doi.acm.org/10.1145/2970276.2970365

[42] K. Wang, Z. Ming, and T.-S. Chua, “A syntactic tree matching
approach to finding similar questions in community-based
qa services,” in Proceedings of the 32Nd International ACM SIGIR
Conference on Research and Development in Information Retrieval, ser.
SIGIR ’09. New York, NY, USA: ACM, 2009, pp. 187–194.
[Online]. Available: http://doi.acm.org/10.1145/1571941.1571975

[43] E. Wong, J. Yang, and L. Tan, “Autocomment: Mining question
and answer sites for automatic comment generation,” in 2013 28th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2013, pp. 562–567.

[44] Z. Wu and M. Palmer, “Verbs semantics and lexical
selection,” in Proceedings of the 32Nd Annual Meeting on Association
for Computational Linguistics, ser. ACL ’94. Stroudsburg, PA, USA:
Association for Computational Linguistics, 1994, pp. 133–138.
[Online]. Available: http://dx.doi.org/10.3115/981732.981751

[45] Y. Zhou, C. Wang, X. Yan, T. Chen, S. Panichella, and H. C. Gall,
“Automatic detection and repair recommendation of directive
defects in java api documentation,” IEEE Transactions on Software
Engineering, pp. 1–1, 2018.

[46] Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and
H. Gall, “Analyzing apis documentation and code to detect
directive defects,” in Proceedings of the 39th International Conference
on Software Engineering, ser. ICSE ’17. Piscataway, NJ, USA:
IEEE Press, 2017, pp. 27–37. [Online]. Available: https:
//doi.org/10.1109/ICSE.2017.11

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2930519, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. NO. 18

Andrea Di Sorbo Andrea Di Sorbo is a postdoc-
toral researcher at the University of Sannio, Italy.
His research interests include software mainte-
nance and evolution, mining software reposito-
ries, empirical software engineering, text analy-
sis and software security and privacy. He is an
author of several papers appeared in flagship
international conferences (ICSE, FSE, ASE) .
He is Editorial Board member of Frontiers in Big
Data. He serves and has served as program
committee member of various international con-

ferences (ARES, SEAA) and as reviewer for several journals in the
field of software engineering, as Journal of Software: Evolution and
Processes edited by Wiley, the Empirical Software Engineering journal
edited by Springer, and IEEE Transactions on Software Engineering.

Sebastiano Panichella Sebastiano Panichella
is a passionate Computer Science Researcher
at Zurich University of Applied Science (ZHAW).
His research interests are in the domain of
Software Engineering (SE) and cloud computing
(CC).He is author of over forty papers appeared
in International Conferences (ICSE, ASE, FSE,
ICSME, etc.) and Journals (EMSE. IST, etc.).
These research work involved studies with in-
dustrial companies and open source projects
and received best paper awards. He serves and

has served as program committee member of various international con-
ference (e.g., ICSE, ASE, ICPC, ICSME, SANER, MSR). Dr. Panichella
was selected as one of the top-20 (second in Switzerland) Most Active
Early Stage Researchers (Results reported by the JSS journal) in Soft-
ware Engineering (SE). He is a member of IEEE. He is Editorial Board
Member of Journal of Software: evolution and process (JSEP). He is
also Review Board member of the EMSE journal.

Corrado A. Visaggio Corrado Aaron Visaggio is
associate professor of CyberSecurity at the De-
partment of Engineering of University of Sannio.
He is chair of the node of University of Sannio for
the CINI National Cyber Security Lab. He is the
scientific coordinator of several projects funded
by firms operating in CyberSecurity, concerning
malware analysis, vulnerability assessment, and
data protection. He serves in the Editorial Board
of the International Journal of Computer Virology
and Hacking techniques (Springer), as associate

editor in Frontiers in Big Data, and in several Program Committees
(MALWARE, ARES, SECRYPT, SEKE, ITASEC, FoRSE, DATA, Hufo,
MobiSys, WETSOM, ISSRE); he was also the workshop chair of WET-
SOM and WMA. His main research interests are: malware analysis, data
privacy and protection, software security, empirical software engineer-
ing.

Massimiliano Di Penta Massimiliano Di Penta
is an associate professor at the University of
Sannio, Italy. His research interests include soft-
ware maintenance and evolution, mining soft-
ware repositories, empirical software engineer-
ing, search-based software engineering, and
service-centric software engineering. He is an
author of over 250 papers appeared in interna-
tional journals, conferences, and workshops. He
serves and has served in the organizing and
program committees of more than 100 confer-

ences, including ICSE, FSE, ASE, ICSME. He is in the editorial board of
the Empirical Software Engineering Journal edited by Springer, and of
the Journal of Software: Evolution and Processes edited by Wiley, and
has served the editorial board of the IEEE Transactions on Software
Engineering.

Gerardo Canfora Gerardo Canfora is a profes-
sor of computer science at the School of En-
gineering of the University of Sannio, Italy. He
serves on the program and organizing commit-
tees of a number of international conferences.
He was general chair of WCRE06 and CSMR03,
and program co-chair of ICSE15, WETSoM12
and 10, ICSM01 and 07, IWPSE05, CSMR04
and IWPC97. He is co-editor of the Journal of
Software: Evolution and Processes. Canfora au-
thored 200 research papers; his research inter-

ests include software maintenance and evolution, security and privacy,
empirical software engineering, and service-oriented computing.

Harald C. Gall Harald Gall is Dean of the Faculty
of Business, Economics, and Informatics at the
University of Zurich, Switzerland (UZH). He is
professor of Software Engineering in the De-
partment of Informatics at UZH. He studied at
the Technical University in Vienna, Austria, and
holds a PhD (Dr. techn.) and master’s degree
(Dipl.-Ing.) in Informatics. His research interests
are in evidence-based software engineering with
focus on quality in software products and pro-
cesses. This focuses on long-term software evo-

lution, software architectures, software quality analysis, data mining of
software repositories, cloud-based software development, and empiri-
cal software engineering. He is probably best known for his work on
software evolution analysis and mining software archives. Since 1997
he has worked on devising ways in which mining these repositories can
help to better understand software development, to devise predictions
about quality attributes, and to exploit this knowledge in software analy-
sis tools such as Evolizer or ChangeDistiller.

