
www.wireless-congress.com

Using Secure Microcontrollers in IoT Applications:

Insights from a Hands-on Evaluation

Tobias Schläpfer, Andreas Rüst
Zurich University of Applied Science (ZHAW)

Institute of Embedded Systems (InES)
Winterthur, Switzerland

tobias.schlaepfer@zhaw.ch
andreas.ruest@zhaw.ch

Abstract—Security in IoT devices is a major topic that IoT is

facing. Rising awareness from the customer side and up-coming
regulations will force manufacturers to increase the level of
security on their IoT devices. Particularly, it is a challenge to
leverage the elaborate, well-known computer security algorithms
to resource-constrained IoT devices. For the Cortex-A processors
Arm® has already introduced their security extension TrustZone®
for quite a while. With the new generation of secure
microcontrollers, Arm® TrustZone® is now available for battery-
powered IoT devices. Furthermore, these secure microcontrollers
provide additional security features, such as hardware
accelerators for cryptographic operations, secure key storage, and
sophisticated random number generators, therefore, increasing
security on resource-constrained IoT devices. The paper
introduces the concept of these new secure microcontrollers and
provides an overview of their features, by showing an application
example that covers the topics of secure boot and the usage of
TrustZone®. Furthermore, the paper presents energy
measurements of the implemented example comparing them to the
execution on conventional microcontrollers without TrustZone®.
Finally, the paper summarizes advantages and weaknesses of
secure microcontrollers compared to dedicated off-chip solutions
like secure elements.

Keywords—IoT security, secure microcontrollers,
TrustZone®, ARMv8-M, trusted execution environment, secure
firmware, hardware cryptography, resource-constrained devices

I. INTRODUCTION
As embedded devices provide increased connectivity and

are deployed in the field, they provided multiple attack vectors
for attackers. Even worse, most embedded devices lack security
measures to prevent attacks. Recently, various incidents such as
the IoT botnet [1] or the Las Vegas fish tank hack [2] have
shown that embedded IoT devices are a valuable target for
attackers. Although the security issue of IoT devices has been
recognized by the industry, still only a small percentage of the
devices provide adequate security measures. The market seems
to have little interest in raising the security level, which has also
been noticed by regulators. Hence, there will be new regulations

that require embedded IoT devices to provide a higher level of
security.

To provide security on their Cortex-A processors, Arm® has
designed the so-called TrustZone®. A single hardware
processor on which two virtual processors are running,
commonly known as the secure world and non-secure world.
These two worlds are connected through a security monitor,
which protects the stored data in the secure world from leaking
into the non-secure world and controls access to the secure
world. With the new ARMv8-M architecture released in 2016,
TrustZone® has become available for small, energy-constrained
devices. Silicon vendors have now introduced new
microcontroller units (MCU), which are using the Arm®
TrustZone® along with other security features to provide a new
generation of secure MCUs (SMCUs).

This paper introduces the concept of the Arm® TrustZone®
on the new Cortex-M23 and Cortex-M33 processors, providing
hands-on experience from an implemented application
example. The example makes use of an open-source bootloader
for secure boot. Furthermore, it shows how to partition the
memory and peripherals into the secure and non-secure world.
Additionally, the example shows how to build a secure
application, using the secure world to execute cryptographic
operations, store sensitive data and establish a secure
communication channel. The application example is
implemented using an open-source real-time operating system
(RTOS) called Zephyr [3]. Zephyr is specifically designed for
embedded devices, aiming to provide a small memory footprint,
effortless peripheral configuration, and simple hardware
portability. In terms of security, Zephyr provides support for
TrustZone® applications and integrates cryptographic software
like mbedTLS [4] and MCUBoot [5]. The paper presents
energy measurement results of the implemented application
executed on an SMCU with and without TrustZone® support.
Furthermore, the application has been implemented and
measured on conventional MCUs. The results of these

measurements are also compared to the results of the SMCU.
Finally, the paper compares SMCUs to dedicated off-chip
solutions called secure elements.

This paper is structured accordingly. Section 2 discusses
SMCUs and the ARMv8-M architecture in general.
Furthermore, providing a table of common SMCU features
from currently available SMCUs. Section 3 describes the Arm®
TrustZone® in detail, specifically showing how the protection
measures work. The following section describes the
implemented application example, which is using a secure
bootloader and TrustZone® to build a secure embedded device.
Section 5 discusses the results of the performed energy
measurements. Finally, the paper discusses the differences
between SMCUs and secure elements, followed by a summary
of the advantages and weaknesses of SMCUs. The paper closes
with appropriate conclusions.

II. SECURE MICROCONTROLLERS
So what are these new secure microcontrollers? They are

equipped with the new generation of Cortex-M processors,
namely the M23 and M33. Therefore, these processors provide
support for the newly designed TrustZone® for Cortex-M
processors. TrustZone® enables developers to implement
firmware in a so-called trusted execution environment (TEE).
Increasing security on embedded devices by executing security-
related tasks in a trusted (secure) environment, to which the
untrusted (non-secure) application has limited access. Fig. 1
shows the firmware evolution from conventional to secure
firmware on SMCUs.

Fig. 1 Change from conventional, to secure firmware [6]

In addition to TrustZone®, SMCUs also provide hardware
security features, such as hardware accelerators for fast and
energy-efficient execution of cryptographic operations.
Furthermore, SMCUs are equipped with a sophisticated random
number generator (RNG). These so-called true random number
generators (TRNG) are certified by approved institutions such
as the German federal office for information security (AIS-31
[7]) or the American National Institute of Standards and
Technology (NIST, 800-90 [8]).	

A. ARMv8-M architecture
The Cortex-M23 and M33 are the latest generation of Arm®

processors on the market. Both processors are based on the
ARMv8-M architecture. The M23 is comparable to the Cortex-
M0+ and the M33 to a Cortex-M4, as is displayed in Fig. 2.

Fig. 2 Overview of Arm® Cortex-M processors [9]

These processors provide standard MCU features such as a
memory protection unit (MPU), a nested vectored interrupt
controller (NVIC) and an advanced high-performance bus
(AHB). The difference with the new ARMv8-M architecture is
the support for TrustZone® in the central processing unit (CPU).
Fig. 3 shows the block diagrams of the M23 and M33.

Fig. 3 Block diagrams of Cortex-M23 and Cortex-M33 [10]

The ARMv8-M architecture is divided into two versions,
the Baseline version for the smaller, low power M23 and the
Mainline version for the M33, providing digital signal
processing (DSP) and floating point (FPU) units. While both
versions provide stack limit registers for the secure world, only
the Mainline version provides stack limit registers for the non-
secure world. Furthermore, the Mainline provides a specific
SecurityFault exception in case secure data is accessed without
permission. On the Baseline, this exception gets handled by a
general HardFault exception in the secure world.	

To enable TrustZone® support, yet preserving low interrupt
latency of previous Arm® architectures, the ARMv8-M
architecture has several additions, examples include:

• Four stack pointers: MSP_S (Secure Main Stack
Pointer) and PSP_S (Secure Process Stack Pointer) and
MSP_NS and PSP_NS 	

• Two Sys Tick timers, i.e. one for each world 	
• Two separate sets of configuration registers to configure

the memory protection unit (MPU) 	
• Configurable MPU regions with size granularities of 32

bytes 	

www.wireless-congress.com

• The Secure Attribution Unit (SAU) and Implementation
Defined Attribution Unit (IDAU), to define the security
state of memory regions and peripherals 	

• The Test Target instruction to allow software to
determine access permissions and security attributes of
objects in memory 	

These additions enable the processor to have a Handler and
Thread mode in both worlds, whereas the Thread mode may
additionally be either privileged or unprivileged, as displayed
in Fig. 4. On a conventional ARMv7-M processor there are only
the three modes in the red square.

Fig. 4 Processor modes on an ARMv8-M processor	

However, Cortex-M processors also need to have low power
consumption. Providing two full sets of processor and other
hardware registers would increase the size of the die and power
consumption. Therefore, several registers on the ARMv8-M
architecture are	 banked	 for	 shared	 use	 from	 both	 worlds,	
examples	include:	

• The processor registers R0 to R15
• The Vector Table Offset Register (VTOR)

B. SMCU features
SMCUs are available from major MCU vendors such as

Microchip [11], Nordic Semiconductor [12], NXP
Semiconductors [13] and STMicroelectronics [14]. To provide
an overview of currently available SMCUs and their security
features, one SMCU from each of the four major vendors has
been selected for evaluation. The selected SMCUs are:

• Microchip SAM L11 [15]
• Nordic nRF9160 [16]
• NXP LPC55S69 [17]
• STMicroelectronics STM32L562 [18]

There are currently only three development kits (DK) of the
selected SMCU available. Fig. 5 shows the available DKs from
Microchip, Nordic and NXP. According to ST, the DK for the
STM32L562 SMCU will be available by October 2019.

Fig. 5 Available DKs from Microchip, Nordic and NXP

Fig. 6 provides an overview of the features of the evaluated
SMCUs. The information has been gathered from the associated
datasheets. The listed average currents are measured on the
available DKs, during the execution of a small application
example, calculating two values within the secure world and
returning them to the non-secure world.

Fig. 6 Features of the four evaluated SMCUs

The nRF9160 provides a lot of Flash and SRAM memory which
is important for applications using TrustZone®, due to the
memory partitioning. The CC310 Arm® Cryptocell supports the
execution of cryptographic operations, by making them faster
and more energy efficient. Unfortunately, the nRF9160 needs a
minimum operating voltage of at least 3.0 V. Also, the nRF9160
is only available in a single package version.

The LPC55S69 is available with one or two CPUs. Having
two cores may allow building a secure application where one
processor is entirely dedicated to security-related tasks and the

other executes the application. A mailbox between the two
cores may handle the data exchange. The CASPER crypto co-
processor is comparable to the Arm® Cryptocell.

The SAM L11 is the only SMCU of the four evaluated,
which has a Cortex-M23 instead of an M33, which is reflected
in the slower clock rate and lower memory capacity. Especially
the limited memory capacity could be an issue when developing
a secure application. For example, the application implemented
for this paper, could not be implemented on the SAM L11, as
mbedTLS on its own already requires 16 KB of SRAM.
However, smaller applications may benefit from the SAM L11,
due to its hardware accelerator, the TRNG, and low energy
consumption.

The STM32L562 provides a Cortex-M33 with the highest
clock rate of all evaluated SMCUs. Furthermore, the
STM32L562 provides sufficient Flash and SRAM memory for
an application using TrustZone®. However, compared to the
other SMCUs, the STM32L562 provides a less sophisticated
hardware accelerator, since it only supports SHA operations.
The datasheet claims to provide a TRNG but there is no
information regarding its certification, therefore the table in
Fig. 6 lists it as an RNG only.

III. ARM® TRUSTZONE®

This section focuses on the differences between TrustZone®

on a Cortex-A and Cortex-M processor. Furthermore, this
section provides a detailed description of how to switch
between the non-secure and secure world.

The principle behind TrustZone® is the separation of a
single processor into a so-called non-secure (untrusted) and
secure (trusted) world, see Fig. 7. These two worlds are
separated by a security barrier, which controls interactions and
data flow between the two worlds. This separation allows for
the development of firmware in a TEE where each world has
specific responsibilities and privileges. Whereas the secure
world has access to secure and non-secure memory, the non-
secure world can only access non-secure memory. The idea is
to run the main application in the non-secure world, while the
secure world handles the applications security tasks and stores
sensitive data.

Fig. 7 Firmware on a processor with TrustZone® [9]

A. TrustZone® differences between Cortex-A and Cortex-M
For an application running in the non-secure world to use a

security function located in the secure world, there have to be
precisely defined methods for interaction between both worlds.
To switch between the execution in the non-secure world and
the secure world and vice versa, a so-called context switch has
to be executed. On a Cortex-A processor, a secure monitor is
responsible for this context switch, see Fig. 8. The secure
monitor serves as a single point of entry between the two
worlds. It protects the secure world from leaking data to the
non-secure world and manages access to the secure world.

Fig. 8 Secure monitor on a Cortex-A processor [6]

Embedded devices with a Cortex-A processor run on up to
1 GHz and provide a high-performance OS, e.g. a Raspberry Pi
or Beaglebone. On the other hand, these embedded devices
require mains power and may have long interrupt latencies. In
contrast, embedded devices that use a Cortex-M processor run
on up to 200 MHz and are mostly battery powered. They
feature, low interrupt latency and low power consumption. Due
to these requirements, having a single point of entry between
the secure and non-secure world as well as having an additional
component that consumes power is not reasonable for a Cortex-
M processor. Therefore, the main difference between
TrustZone® on a Cortex-A and Cortex-M is the lack of a secure
monitor on the Cortex-M, see Fig.9. The non-secure world can
directly interact with the secure world through newly added
specific instructions for fast, energy-efficient yet secure,	
context	switching. As a result, it is possible to serve non-secure
interrupts and exceptions, although the processor might be
running in the secure world at the time of the triggering event.
This allows for preserving the low interrupt latency from
previous Cortex-M processors. The presence of shared registers
allows a direct exchange of data between the two worlds, which
makes the secure monitor dispensable. Therefore, this helps to
reduce the overall power consumption. However, the shared
registers constitute an inherent security risk that needs to be
mitigated.

www.wireless-congress.com

Fig. 9 Direct interaction between the non-secure and secure world on a
Cortex-M processor [6]

B. Context switching on a Cortex-M processor
Fig. 10 provides an overview of the different interactions

between the different processor states. Whenever an arrow
crosses the dashed grey line the current processor context has
to be switched.

As pointed out, fast context switching is key to embedded
applications running on a Cortex-M processor. However,
context switching represents an inherent security risk. Due to
the presence of shared registers, secure data may be exposed to
the non-secure world if context switching is not done properly.

Fig. 10 Interactions between the different processor states

For example, the Arm® Procedure Call Standard for Arm®

Architecture [19] specifies that R0 to R3 are used by the
compiler to pass parameters and return values in case of a
function call. Therefore, data stored within these registers could
be leaked to the non-secure world when returning from a
function located in the secure world. To prevent the exposure
of secure data, Arm® has introduced three methods to securely
switch context on a Cortex-M processor. The first method is
through a so-called Secure Gateway (SG) instruction. This
instruction can be used from the non-secure world to switch to

the secure world using a direct secure API call. The second
method is through a BXNS (branch with exchange to the non-
secure world) instruction which is used from the secure world
to return to the non-secure world. Lastly, a context switch can
be executed through a BLXNS (branch with link and exchange
to the non-secure world) instruction, used by the secure world
to call functions provided by the non-secure world.

1) Secure Gateway and BXNS instructions: An SG
instruction serves as an entry point for the non-secure world to
access functions within the secure world. Fig. 11 shows the
control flow if the non-secure world calls a function (Func_A)
located in the secure world. For Func_A to be callable from the
non-secure world in the first place, the secure world has to
define Func_A as a so-called non-secure callable (NSC)
function. The result of this declaration is Func_A_entry which
is located in the non-secure callable region. If the non-secure
world calls Func_A_entry, the SG instruction branches the
processor to Func_A located in the secure world. Once Func_A
completes its execution, a BXNS instruction will branch the
processor back to the address in the non-secure world.
However, before branching to the non-secure world, the
processor automatically clears all processor registers that
contain data from the secure world.

If the non-secure world attempts to branch, or call an
address in the secure world, without using an SG instruction as
a valid point of entry, e.g. calling Func_A directly, a fault event
is generated.

Fig. 11 Control flow when the non-secure world calls a function located in the
secure world [20]

2)	BLXNS	instruction:	Fig.	12	shows	a	BLXNS	instruction	
used	by	the	secure	world	to	call	a	function	Func_B	in	the	
non-secure	world.	

Fig. 12 Control flow when the secure world calls a function in the non-secure
world [20]

To ensure that no data is leaked through the shared registers,
the processor automatically executes the following steps before
calling a function in the non-secure world. First, the return
address to the secure world along with selected processor state
information from the xPSR register is pushed on the stack of the
secure world. Second, the processor automatically zeros-out all
registers from R0 to R15 which are not used for parameter

passing as well as the processor status register (PSR) register.
Finally, the processor loads a pseudo return address into the
stack pointer (SP) register (R13). The value of the return
address is called FNC_RETURN and links to a micro-coded
operation to retrieve the actual return address stored on the stack
of the secure world, once the called non-secure function has
been executed. Fig. 13 shows the final register composition
before calling a non-secure function.

Fig. 13 Secure world stack and shared registers before calling a BLXNS
instruction

So far, only the deterministic ways to interact between the
worlds have been discussed. However, there is also the
possibility of a context switch triggered by an interrupt or
exception, e.g. if a non-secure interrupt occurs while the
processor is executing code in the secure world. As with
function calls, the processor has to ensure that no data is leaked
to the non-secure world. The procedure to protect secure data
in case of a non-secure interrupt or exception is as follows.
First, the processor pushes the content of all shared registers to
the secure stack. Additionally to the registers, a signature is
added on the secure stack, ensuring the integrity of the register
content stored on the secure stack. Afterwards, the registers R0
to R12 as well as the xPSR register are zeroed out. Fig. 14 shows
the register composition before the context switch to the non-
secure interrupt or exception is executed.

Fig. 14 Secure world stack and shared registers before execution of an ISR

C. Secure data exchange
As context switching, data exchange between the non-

secure and secure world may pose a security risk. A secure
application should never trust parameters given by the non-
secure world. For example, if the non-secure world provides a
pointer to an array and a size value, an attacker may try to
extend the size value until the array expands into a secure
memory region. This may lead to the corruption of secure data.
Fig. 15 displays the discussed problem.

Fig. 15 Security risk due to provided parameters from the non-secure world

To mitigate this risk, Arm® has introduced the so-called Test
Target (TT) instruction. This instruction allows software to
determine the security attribute of a memory location. The
security attribute includes access permissions, different security
states and privilege levels. Furthermore, if executed in the
secure world, the result of the TT instruction also includes the
SAU and IDAU configuration of the specified address.

Although the TT instruction cannot be accessed directly by
C/C++ code, Arm® provides several intrinsic C functions to
make use of the TT instruction. The following two functions are
the most important ones:

These functions assume that memory regions do not overlap

each other, which is granted by the ARMv8-M architecture.
IV. APPLICATION

To provide hands-on experience from working with
SMCUs, a real-world application example has been
implemented on the Nordic nRF9160 DK. The application has
been implemented with the Zephyr operating system and the
nRF Connect SDK [21]. The example covers four topics:

• Secure boot with MCUBoot
• Secure partitioning of memory and peripherals
• Execution of cryptographic operations in the secure

world
• Establishment of a (D)TLS session in the secure world

The application example closely represents the control flow
of a typical secure firmware project displayed in Fig. 16 with
the addition of a secure bootloader.	

www.wireless-congress.com

Fig. 16 Control flow on a processor with TrustZone® support [22]

A. Secure boot with MCUBoot
Having a secure bootloader is a key feature for a secure

embedded application. A secure bootloader prevents embedded
devices from running unauthorized or manipulated code.
Furthermore, allowing for secure firmware update enables long
term support and maintenance of embedded devices. Fig. 17
shows the boot process on an SMCU using MCUBoot. First
MCUBoot it-self is executed, verifying the application image
stored in Slot_0_S and Slot_0_NS, which is the firmware of the
secure and non-secure world respectively. After the initial tasks
of the secure world have been executed, the secure world
branches to the image stored in Slot_0_NS, starting the main
application in the non-secure world. To enable secure firmware
update, two additional slots, Slot_1_S, and Slot_1_NS, are
required by MCUBoot. With them, both images can be updated
and even reverted in case the update does not run properly.

Fig. 17 Boot process with MCUBoot as bootloader

B. Secure partitioning of memory and peripherals
Every application using TrustZone® has to do the separation

of memory and peripherals into non-secure and secure. This
configuration is done in the main function of the secure world
which is defined as the starting point of all applications using
TrustZone®. A secure partition manager (SPM) application may
be used to configure the memory and peripherals. The SPM
uses the SAU and IDAU units for the configuration.

C. Execution of cryptographic operations in the secure world
To show how the secure world may provide secure firmware

for the non-secure world, the application example implements

five cryptographic operations as NSC functions. The execution
of cryptographic operations in the secure world improves an
application on several points. First, only the secure world
provides access to the CC310 hardware accelerator, which
makes cryptographic operations execute faster and energy
efficient. Furthermore, the CC310 provides a sophisticated
TRNG, which increases the entropy of generated keys and
random numbers. Second, cryptographic sensitive material, e.g.
private keys can be made accessible only by the secure world,
reducing the risk of an application to get compromised. Lastly,
if properly coded, there is no need for mbedTLS within the
application in the non-secure world, often allowing to reduce
the memory footprint of the application. Fig. 18 illustrates these
points based on the generation of a key pair for elliptic curve
cryptographic (ECC), where only the public key, in the form of
a uint8_t array, is returned to the non-secure world.

Fig. 18 Generation of an ECC key pair in the secure world

D. Establishment of a (D)TLS session in the secure world
The last topic covered by the application example, is the

establishment of a secure channel between a client (referred to
as node) and a server. For this purpose, a network as displayed
in Fig. 19 has been set up. The server is implemented on a
Raspberry Pi connected to the local network. To communicate
with the server, the node requires connectivity. Since there is
no common communication protocol on all the available DKs,
a WiFi extension board is used.

Fig. 19 Network setup

A commonly used protocol to establish a secure channel is
the (Datagram) Transport Layer Security (D)TLS [23] protocol.
To establish such a secure channel, a so-called handshake has
to be executed in which symmetric session keys for
authentication and encryption are generated. For this example,
(D)TLS has been used, due to the server supporting CoAPs
which is based on UDP. As displayed in Fig. 16, the non-secure
world is responsible for the I/O driver, i.e. in this case the WiFi
module. In contrast, the secure world handles the
communication stack, i.e. in this case, the execution of the
(D)TLS handshake using mbedTLS. Fig. 20 shows the resulting
procedure to execute the (D)TLS handshake.

Fig. 20 (D)TLS handshake executed in the secure world

Executing a (D)TLS handshake within the secure world
provides the same benefits as with the execution of
cryptographic operations. However, their influence on the
application might be even bigger, due to two reasons. First, a
(D)TLS handshake is energy consuming, due to the execution
of	elaborate	cryptographic	operations	and	the	exchange	of	
multiple	messages.	The	 result	 is	 an	 intensive	period,	 that	
may	 last	 up	 to	multiple	 seconds,	which	may	 significantly	
reduce	 the	 battery	 lifetime	 of	 a	 resource-constrained	
device.	 Therefore,	 the	 support	 of	 a	 crypto	 accelerator	
significantly	 helps	 to	 maintain	 battery	 lifetime.	 Second,	
although	the	node	and	certificate	authority	(CA)	certificates	
may	 be	 known	 to	 everyone,	 they	 have	 to	 be	 protected	
against	 manipulation.	 Storing	 them	 in	 the	 secure	 world	
reduces	 the	 risk	 that	 certificates	 may	 get	 corrupted	 and	
allows	to	authenticate	the	node,	e.g.	preventing	intellectual	
property	 (IP)	 theft.	 Furthermore,	 having	 the	 established	
symmetric	 secrets	 stored	 in	a	 secure	place	may	also	save	
battery.	Due	to	the	secure	storage	of	these	secrets,	a	once	
established	session	may	be	kept	open	for	a	long	period	or	
be	 resumed	 with	 an	 abbreviated	 handshake	 without	
reducing	 the	 overall	 security.	 As	 a	 result,	 the	 number	 of	
performed	 handshakes	 is	 reduced,	 which	 also	 helps	 to	
maintain	battery	lifetime.	

V. MEASUREMENTS
This section presents measurement results to quantify the

effects of TrustZone® on the execution time and the energy
consumption of an application. For this purpose, the example
application has been measured with and without using
TrustZone® on the NRF9160 DK. Furthermore, it is interesting
to see the differences between previous MCUs and the new
generation of SMCUs. Therefore, the example application has
also been implemented and measured on an nRF52840 DK.
This measurement serves as a reference for the measurements
performed with the nRF9160. To indicate the execution times
of the application parts of interest, a GPIO is set high before
their execution starts. The supply voltage for both DKs has been
set to 3.3V. The measurement setups of the two DKs are
displayed in the Appendix.

There are some differences between the measurements with
the nRF52840 and the nRF9160. First, due to the absence of
TrustZone® support, there is no SPM implementation required
on the nRF52840. Second, the nRF52840 DK has native Thread
[24] support. Therefore, Thread is used as a communication
protocol instead of WiFi. Zephyr initializes Thread as
communication protocol during boot and automatically
connects to the specified Thread network. As a result, the
application with the nRF52840 DK starts only after about 2.5
seconds.

A. Impact of TrustZone® on an application
Fig. 21 shows the measurement results of the execution of

the cryptographic operations and the (D)TLS handshake in the
secure world. The red arrow marks the branch from the secure
to the non-secure world. To indicate where the application
starts, a GPIO is set high for about 100 ms (amplitude without
a color dot). During the gap between the start of the application
and the execution of the cryptographic operations, the WiFi
module is initialized and connects to the network.

Fig. 21 Example application executed with TrustZone® support on the
nRF9160 DK

Fig. 22 shows the measurement results, executing the
application without TrustZone® support.

Fig. 22 Example application executed with TrustZone® support on the
nRF9160 DK

www.wireless-congress.com

The comparison of the nRF9160 measurement results
confirms the claim of Arm® that, the use of TrustZone®	has	
only	 a	 minimal	 impact	 on	 execution	 time	 and	 energy	
consumption.	 Comparing	 the	 execution	 times	 show	 a	
difference	of	20	ms	for	the	execution	of	the	cryptographic	
operation	 and	 50	 ms	 for	 the	 execution	 of	 the	 (D)TLS	
handshake.	 The	 average	 current	 remains	 constant.	 As	 a	
result,	the	slightly	increased	energy	consumption	is	due	to	
the	increased	execution	time.	Summarizing	the	results,	one	
can	 state	 that	 the	 support	 of	 TrustZone®	 only	 slightly	
increases	 the	 execution	 time	 and	 energy	 consumption.	
Therefore,	 it	 does	 not	 have	 a	 substantial	 impact	 on	 an	
application.	

B. Comparison between MCU and SMCU
Fig. 23 shows the application executed on a nRF52840 DK.

Fig. 23 Example application executed on the nRF52840 DK

The comparison between the nRF52840 and the nRF9160
shows that the boot with MCUBoot takes about the same time
on both MCUs, the additional time on the nRF9160 is due to
SPM application. However, when comparing the execution
times of the cryptographic operations, the nRF9160 is much
faster. This is due to the increased processing power of the new
M33 processor. Comparing the execution time of the (D)TLS
handshake is difficult since the applications use different
protocols and hardware to send data, which has a major impact
on the execution time and energy consumption. However, 4
seconds is a typical time to execute a (D)TLS handshake.
Interestingly, the nRF9160 requires about 2mA less than the
nRF52840. As a consequence of the reduced current
consumption and execution time, the energy consumption of the
nRF9160 is substantially reduced.

VI. COMPARISON TO SECURE ELEMENTS
There is more than one way to secure embedded devices, secure
elements are one of the alternatives to SMCUs. Secure elements
are dedicated off-chip solutions, which provide hardware
acceleration and tamper-proof memory and at the same time
require little energy. Furthermore, secure elements protect
against side channel attacks. In a side channel attack, an
adversary tries to recover sensitive data from the observation of
hardware properties such as energy consumption, execution

time or magnetic leakage. Since secure elements are off-chip
solutions, a serial interface between the MCU and the secure
element is used to communicate, e.g. I2C. Secure elements
provide a sophisticated API written by specialists, which
prevents the exposure of sensitive material due to
implementation errors. TrustZone® and secure elements, both
increase the security level of embedded devices by isolating
cryptographic material in memory which is not accessible to the
application. In addition, secure elements provide tamper-proof
memory, which protects stored data against hardware attacks.
This hardware protection increases the security level even
further.

Summarizing, secure elements increase the security level
due to their hardware protection, which makes them a valid
solution if a particularly high level of security is required.
However, the downsides of secure elements include the need
for extra space on the printed circuit board (PCB), additional
cost and the required protection of the serial communication
interface between the MCU and the secure elements.

VII. ADVANTAGES AND WEAKNESSES OF SMCUS
SMCUs increase the security level on embedded devices

with the use of TrustZone®, isolating sensitive material and
security-related tasks from the application. Furthermore, the
presence of a hardware accelerator makes the execution of
cryptographic operations faster and energy efficient.
Additionally, the ARMv8-M architecture increases processing
power at the same time reducing energy consumption. The
following list summarizes the advantages of SMCUs:

• TrustZone® support
o Isolation of cryptographic sensitive material and

tasks
o Secure handling of communication protocols
o Secure, reliable storage of authentication material

• Cryptographic hardware accelerator support
• Sophisticated random number generator support

As a result, SMCUs are a valuable solution to provide an
adequate level of security on embedded devices. However,
there are certain security measures SMCUs cannot provide. As
embedded devices are deployed in the field, they are exposed
to physical attacks, such as hardware and side channel attacks.
SMCUs do not provide measures against such physical attacks.
Particularly, there is the so-called screaming side channel attack
[25] which may effect SMCUs due to having a radio and the
processor on the same die. Furthermore, TrustZone® and the
other security measures provided by SMCUs are just tools, the
developer has to use them in the right way. Therefore, the effort
to develop secure firmware is increased and requires specific
know-how. The following list summarizes the weaknesses of
SMCUs: 	

• No tamper protection
• Missing measures against physical attacks
• Increased development effort

To also provide tamper protection, Arm® has already released
an additional processor, the Cortex-M35P [26] which provides
anti-tampering measures. However, there are currently no
SMCUs available which are equipped with a Cortex-M35P
processor.

VIII. KEY FINDINGS
SMCUs enable the development of secure firmware in the

field of embedded IoT, therefore providing great potential for
securing millions of IoT devices. Their support for TrustZone®

protects the firmware running in the secure world from
malicious firmware running in the non-secure world,
preventing the exposure of sensitive data. Yet, SMCUs preserve
the characteristics of conventional MCUs in terms of interrupt
latency and low energy consumption. Although, MCUs, such as
the nRF52840, also provide hardware accelerators for
cryptographic operations, with SMCUs their usage is restricted
to the secure world. As a result, sensitive material used and
generated by the hardware accelerator is protected in the secure
world, similar to secure elements. However, SMCUs lack
measures to prevent hardware and side-channel attacks. If an
application has to withstand physical attacks a secure element
is an appropriate choice. TrustZone® increases the security level
of embedded devices to an acceptable state, which should be
the minimal standard for future embedded devices. With
additional tools such as a secure bootloader and secure
elements, all necessary hardware components are available to
build secure embedded IoT devices.

IX. CONCLUSION
This paper provides a feature overview of multiple SMCUs

and introduces the concept of TrustZone® on Cortex-M
processors. Furthermore, the paper provides experience from
working with the nRF9160 SMCU in combination with Zephyr
and MCUBoot. The implemented application covers the topic
of secure boot, the partition of memory and peripherals into
secure and non-secure, the execution of cryptographic
operations in the secure world and the establishment of a secure
channel executed in the secure world. Furthermore, energy
measurements with a conventional MCU and a new SMCU
have been performed. Uncovering that the use of TrustZone®

only has minimal impact on an application in terms of execution
time and energy consumption. Although SMCUs do not provide
the same level of security as secure elements, SMCUs increase
the security level to an adequate level, having the potential to
secure millions of embedded IoT devices.

X. APPENDIX

Fig. 24 shows how the ESP WiFi module is connected with

the nRF9160 Dk.

Fig. 24 Connection between nRF9160 and the ESP WiFi module

Fig. 25 shows the measurement setup with the nRF9160 DK.

Fig. 25 Measurement setup with the nRF9160

www.wireless-congress.com

Fig. 26 shows the measurement setup with the nRF52840 DK.

Fig. 26 Measurement setup with the nRF52840

REFERENCES

[1] D. Smith, Radware Ltd., 10 2018. [Online]. Available:
https://blog.radware.com/security/2018/10/iot-botnets-
on-the-rise/.

[2] J. Miley, Interesting Engineering, 4 2018. [Online].
Available: https://interestingengineering.com/a-casinos-
database-was-hacked-through-a-smart-fish-tank-
thermometer.

[3] Linux Foundation, [Online]. Available:
https://www.zephyrproject.org.

[4] Arm mbedTLS, 7 2018. [Online]. Available:
https://tls.mbed.org.

[5] Juul Labs, [Online]. Available:
https://github.com/JuulLabs-OSS/mcuboot.

[6] T. E. Christopher Seidl, 11 2016. [Online]. Available:
https://www.arm.com/files/event/2016_ATS_India_C6_
Ashok_Bhat.pdf.

[7] German Federal Office for Information Security, 5 2013.
[Online]. Available:
https://www.bsi.bund.de/DE/Themen/Zertifizierungund
Anerkennung/Produktzertifizierung/ZertifizierungnachC
C/AnwendungshinweiseundInterpretationen/AIS-
Liste.html.

[8] E. Barker, J. Kelsey and J. B. Secretary, "NIST DRAFT
Special Publication 800-90B Recommendation for the
Entropy Sources Used for Random Bit Generation,"
2012. [Online]. Available:
https://csrc.nist.gov/csrc/media/publications/sp/800-
90c/draft/documents/draft-sp800-90c.pdf.

[9] N. Nayampally, 12 2016. [Online]. Available:
https://www.arm.com/files/event/2016_ATS_India_A4_
Nandan_Nayampally.pdf.

[10] C. Windeck, 10 2016. [Online]. Available:
https://www.heise.de/imgs/18/1/9/1/5/3/0/9/ARM-
Cortex-M23-M33-61f194416ab901cc.jpeg.

[11] Microchip, [Online]. Available:
https://www.microchip.com/about-us/company-
information/about.

[12] Nordic Semiconductor, [Online]. Available:
https://www.nordicsemi.com/About-us.

[13] NXP Semiconductors, [Online]. Available:
https://www.nxp.com/about/about-nxp/about-
nxp:ABOUT-NXP.

[14] STMicroelectronics, [Online]. Available:
https://www.st.com/content/st_com/en/about/st_compan
y_information/who-we-are.html.

[15] Microchip, [Online]. Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/S
AM-L10-L11-Family-Data-Sheet-DS60001513C.pdf.

[16] N. Semiconductor, "nRF9160, Objective Product
Specification," Nordic Semiconductor, [Online].
Available: https://www.nordicsemi.com/-
/media/DocLib/Other/Product_Spec/nRF9160OPSv071
pdf.pdf.

[17] NXP Semiconductors, [Online]. Available:
https://www.nxp.com/docs/en/data-
sheet/LPC55S6x.pdf.

[18] STMicroelectronics, [Online]. Available:
https://www.st.com/resource/en/data_brief/stm32l562ce.
pdf.

[19] Arm Procedure Call Standard, 11 2015. [Online].
Available:
http://infocenter.arm.com/help/topic/com.arm.doc.ihi00
42f/IHI0042F_aapcs.pdf.

[20] Arm TrustZone, 2017. [Online]. Available:
https://static.docs.arm.com/100690/0200/armv8m_trustz
one_technology_100690_0200.pdf.

[21] Nordic Semiconductor, [Online]. Available:
http://developer.nordicsemi.com/.NCS_PV/doc/nrf/inde
x.html.

[22] A. Bhat, 12 2016. [Online]. Available:
https://www.arm.com/files/event/2016_ATS_India_C6_
Ashok_Bhat.pdf.

[23] E. Rescorla and N. Modadugu, Datagram Transport
Layer Security Version 1.2, RFC Editor, 2012.

[24] T. Group, "What is Thread," [Online]. Available:
https://www.threadgroup.org/What-is-Thread.

[25] G. Camurati, S. Poeplau, M. Muench, T. Hayes and A.
Francillon, "Screaming Channels: When
Electromagnetic Side Channels Meet Radio
Transceivers," 2018. [Online]. Available:
http://s3.eurecom.fr/docs/ccs18camuratipreprint.pdf.

[26] Arm, "Cortex-M35P," [Online]. Available:
https://www.arm.com/products/silicon-ip-cpu/cortex-
m/cortex-m35p.

