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Abstract—Security in IoT devices is a major topic that IoT is 

facing. Rising awareness from the customer side and up-coming 
regulations will force manufacturers to increase the level of 
security on their IoT devices. Particularly, it is a challenge to 
leverage the elaborate, well-known computer security algorithms 
to resource-constrained IoT devices. For the Cortex-A processors 
Arm® has already introduced their security extension TrustZone® 
for quite a while. With the new generation of secure 
microcontrollers, Arm® TrustZone® is now available for battery-
powered IoT devices. Furthermore, these secure microcontrollers 
provide additional security features, such as hardware 
accelerators for cryptographic operations, secure key storage, and 
sophisticated random number generators, therefore, increasing 
security on resource-constrained IoT devices. The paper 
introduces the concept of these new secure microcontrollers and 
provides an overview of their features, by showing an application 
example that covers the topics of secure boot and the usage of 
TrustZone®. Furthermore, the paper presents energy 
measurements of the implemented example comparing them to the 
execution on conventional microcontrollers without TrustZone®. 
Finally, the paper summarizes advantages and weaknesses of 
secure microcontrollers compared to dedicated off-chip solutions 
like secure elements.  

Keywords—IoT security, secure microcontrollers, 
TrustZone®, ARMv8-M, trusted execution environment, secure 
firmware, hardware cryptography, resource-constrained devices  

I.  INTRODUCTION  
As embedded devices provide increased connectivity and 

are deployed in the field, they provided multiple attack vectors 
for attackers. Even worse, most embedded devices lack security 
measures to prevent attacks. Recently, various incidents such as 
the IoT botnet [1] or the Las Vegas fish tank hack [2] have 
shown that embedded IoT devices are a valuable target for 
attackers. Although the security issue of IoT devices has been 
recognized by the industry, still only a small percentage of the 
devices provide adequate security measures. The market seems 
to have little interest in raising the security level, which has also 
been noticed by regulators. Hence, there will be new regulations 

that require embedded IoT devices to provide a higher level of 
security.  

To provide security on their Cortex-A processors, Arm® has 
designed the so-called TrustZone®. A single hardware 
processor on which two virtual processors are running, 
commonly known as the secure world and non-secure world. 
These two worlds are connected through a security monitor, 
which protects the stored data in the secure world from leaking 
into the non-secure world and controls access to the secure 
world. With the new ARMv8-M architecture released in 2016, 
TrustZone® has become available for small, energy-constrained 
devices. Silicon vendors have now introduced new 
microcontroller units (MCU), which are using the Arm® 
TrustZone® along with other security features to provide a new 
generation of secure MCUs (SMCUs).  

This paper introduces the concept of the Arm® TrustZone® 
on the new Cortex-M23 and Cortex-M33 processors, providing 
hands-on experience from an implemented application 
example. The example makes use of an open-source bootloader 
for secure boot. Furthermore, it shows how to partition the 
memory and peripherals into the secure and non-secure world. 
Additionally, the example shows how to build a secure 
application, using the secure world to execute cryptographic 
operations, store sensitive data and establish a secure 
communication channel. The application example is 
implemented using an open-source real-time operating system 
(RTOS) called Zephyr [3]. Zephyr is specifically designed for 
embedded devices, aiming to provide a small memory footprint, 
effortless peripheral configuration, and simple hardware 
portability. In terms of security, Zephyr provides support for 
TrustZone® applications and integrates cryptographic software 
like mbedTLS [4] and MCUBoot [5]. The paper presents 
energy measurement results of the implemented application 
executed on an SMCU with and without TrustZone® support. 
Furthermore, the application has been implemented and 
measured on conventional MCUs. The results of these 



measurements are also compared to the results of the SMCU. 
Finally, the paper compares SMCUs to dedicated off-chip 
solutions called secure elements.  

This paper is structured accordingly. Section 2 discusses 
SMCUs and the ARMv8-M architecture in general. 
Furthermore, providing a table of common SMCU features 
from currently available SMCUs. Section 3 describes the Arm® 
TrustZone® in detail, specifically showing how the protection 
measures work. The following section describes the 
implemented application example, which is using a secure 
bootloader and TrustZone® to build a secure embedded device. 
Section 5 discusses the results of the performed energy 
measurements. Finally, the paper discusses the differences 
between SMCUs and secure elements, followed by a summary 
of the advantages and weaknesses of SMCUs. The paper closes 
with appropriate conclusions.  

II. SECURE MICROCONTROLLERS 
So what are these new secure microcontrollers? They are 

equipped with the new generation of Cortex-M processors, 
namely the M23 and M33. Therefore, these processors provide 
support for the newly designed TrustZone® for Cortex-M 
processors. TrustZone® enables developers to implement 
firmware in a so-called trusted execution environment (TEE). 
Increasing security on embedded devices by executing security-
related tasks in a trusted (secure) environment, to which the 
untrusted (non-secure) application has limited access. Fig. 1 
shows the firmware evolution from conventional to secure 
firmware on SMCUs.  

Fig. 1 Change from conventional, to secure firmware [6] 

In addition to TrustZone®, SMCUs also provide hardware 
security features, such as hardware accelerators for fast and 
energy-efficient execution of cryptographic operations. 
Furthermore, SMCUs are equipped with a sophisticated random 
number generator (RNG). These so-called true random number 
generators (TRNG) are certified by approved institutions such 
as the German federal office for information security (AIS-31 
[7]) or the American National Institute of Standards and 
Technology (NIST, 800-90 [8]).	 

A. ARMv8-M architecture 
The Cortex-M23 and M33 are the latest generation of Arm® 

processors on the market. Both processors are based on the 
ARMv8-M architecture. The M23 is comparable to the Cortex- 
M0+ and the M33 to a Cortex-M4, as is displayed in Fig. 2.  

Fig. 2 Overview of Arm® Cortex-M processors [9] 

These processors provide standard MCU features such as a 
memory protection unit (MPU), a nested vectored interrupt 
controller (NVIC) and an advanced high-performance bus 
(AHB). The difference with the new ARMv8-M architecture is 
the support for TrustZone® in the central processing unit (CPU). 
Fig. 3 shows the block diagrams of the M23 and M33.  

Fig. 3 Block diagrams of Cortex-M23 and Cortex-M33 [10] 

The ARMv8-M architecture is divided into two versions, 
the Baseline version for the smaller, low power M23 and the 
Mainline version for the M33, providing digital signal 
processing (DSP) and floating point (FPU) units. While both 
versions provide stack limit registers for the secure world, only 
the Mainline version provides stack limit registers for the non- 
secure world. Furthermore, the Mainline provides a specific 
SecurityFault exception in case secure data is accessed without 
permission. On the Baseline, this exception gets handled by a 
general HardFault exception in the secure world.	 

To enable TrustZone® support, yet preserving low interrupt 
latency of previous Arm® architectures, the ARMv8-M 
architecture has several additions, examples include:  

• Four stack pointers: MSP_S (Secure Main Stack 
Pointer) and PSP_S (Secure Process Stack Pointer) and 
MSP_NS and PSP_NS 	

• Two Sys Tick timers, i.e. one for each world 	
• Two separate sets of configuration registers to configure 

the memory protection unit (MPU) 	
• Configurable MPU regions with size granularities of 32 

bytes 	
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• The Secure Attribution Unit (SAU) and Implementation 
Defined Attribution Unit (IDAU), to define the security 
state of memory regions and peripherals 	

• The Test Target instruction to allow software to 
determine access permissions and security attributes of 
objects in memory 	

These additions enable the processor to have a Handler and 
Thread mode in both worlds, whereas the Thread mode may 
additionally be either privileged or unprivileged, as displayed 
in Fig. 4. On a conventional ARMv7-M processor there are only 
the three modes in the red square.  

Fig. 4 Processor modes on an ARMv8-M processor	

However, Cortex-M processors also need to have low power 
consumption. Providing two full sets of processor and other 
hardware registers would increase the size of the die and power 
consumption. Therefore, several registers on the ARMv8-M 
architecture are	 banked	 for	 shared	 use	 from	 both	 worlds,	
examples	include:	 

• The processor registers R0 to R15 
• The Vector Table Offset Register (VTOR) 

B. SMCU features  
SMCUs are available from major MCU vendors such as 

Microchip [11], Nordic Semiconductor [12], NXP 
Semiconductors [13] and STMicroelectronics [14]. To provide 
an overview of currently available SMCUs and their security 
features, one SMCU from each of the four major vendors has 
been selected for evaluation. The selected SMCUs are:  

• Microchip SAM L11 [15]  
• Nordic nRF9160 [16] 
• NXP LPC55S69 [17]  
• STMicroelectronics STM32L562 [18] 

There are currently only three development kits (DK) of the 
selected SMCU available. Fig. 5 shows the available DKs from 
Microchip, Nordic and NXP. According to ST, the DK for the 
STM32L562 SMCU will be available by October 2019.  

Fig. 5 Available DKs from Microchip, Nordic and NXP 

Fig. 6 provides an overview of the features of the evaluated 
SMCUs. The information has been gathered from the associated 
datasheets. The listed average currents are measured on the 
available DKs, during the execution of a small application 
example, calculating two values within the secure world and 
returning them to the non-secure world.  

Fig. 6 Features of the four evaluated SMCUs 

The nRF9160 provides a lot of Flash and SRAM memory which 
is important for applications using TrustZone®, due to the 
memory partitioning. The CC310 Arm® Cryptocell supports the 
execution of cryptographic operations, by making them faster 
and more energy efficient. Unfortunately, the nRF9160 needs a 
minimum operating voltage of at least 3.0 V. Also, the nRF9160 
is only available in a single package version.  

The LPC55S69 is available with one or two CPUs. Having 
two cores may allow building a secure application where one 
processor is entirely dedicated to security-related tasks and the 



other executes the application. A mailbox between the two 
cores may handle the data exchange. The CASPER crypto co-
processor is comparable to the Arm® Cryptocell.  

The SAM L11 is the only SMCU of the four evaluated, 
which has a Cortex-M23 instead of an M33, which is reflected 
in the slower clock rate and lower memory capacity. Especially 
the limited memory capacity could be an issue when developing 
a secure application. For example, the application implemented 
for this paper, could not be implemented on the SAM L11, as 
mbedTLS on its own already requires 16 KB of SRAM. 
However, smaller applications may benefit from the SAM L11, 
due to its hardware accelerator, the TRNG, and low energy 
consumption.  

The STM32L562 provides a Cortex-M33 with the highest 
clock rate of all evaluated SMCUs. Furthermore, the 
STM32L562 provides sufficient Flash and SRAM memory for 
an application using TrustZone®. However, compared to the 
other SMCUs, the STM32L562 provides a less sophisticated 
hardware accelerator, since it only supports SHA operations. 
The datasheet claims to provide a TRNG but there is no 
information regarding its certification, therefore the table in 
Fig. 6 lists it as an RNG only.  

III. ARM® TRUSTZONE®  

This section focuses on the differences between TrustZone® 

on a Cortex-A and Cortex-M processor. Furthermore, this 
section provides a detailed description of how to switch 
between the non-secure and secure world.  

The principle behind TrustZone® is the separation of a 
single processor into a so-called non-secure (untrusted) and 
secure (trusted) world, see Fig. 7. These two worlds are 
separated by a security barrier, which controls interactions and 
data flow between the two worlds. This separation allows for 
the development of firmware in a TEE where each world has 
specific responsibilities and privileges. Whereas the secure 
world has access to secure and non-secure memory, the non- 
secure world can only access non-secure memory. The idea is 
to run the main application in the non-secure world, while the 
secure world handles the applications security tasks and stores 
sensitive data.  

 
Fig. 7 Firmware on a processor with TrustZone® [9] 

A. TrustZone® differences between Cortex-A and Cortex-M 
For an application running in the non-secure world to use a 

security function located in the secure world, there have to be 
precisely defined methods for interaction between both worlds. 
To switch between the execution in the non-secure world and 
the secure world and vice versa, a so-called context switch has 
to be executed. On a Cortex-A processor, a secure monitor is 
responsible for this context switch, see Fig. 8. The secure 
monitor serves as a single point of entry between the two 
worlds. It protects the secure world from leaking data to the 
non-secure world and manages access to the secure world. 

Fig. 8 Secure monitor on a Cortex-A processor [6] 

Embedded devices with a Cortex-A processor run on up to 
1 GHz and provide a high-performance OS, e.g. a Raspberry Pi 
or Beaglebone. On the other hand, these embedded devices 
require mains power and may have long interrupt latencies. In 
contrast, embedded devices that use a Cortex-M processor run 
on up to 200 MHz and are mostly battery powered. They 
feature, low interrupt latency and low power consumption. Due 
to these requirements, having a single point of entry between 
the secure and non-secure world as well as having an additional 
component that consumes power is not reasonable for a Cortex-
M processor. Therefore, the main difference between 
TrustZone® on a Cortex-A and Cortex-M is the lack of a secure 
monitor on the Cortex-M, see Fig.9. The non-secure world can 
directly interact with the secure world through newly added 
specific instructions for fast, energy-efficient yet secure,	
context	switching. As a result, it is possible to serve non-secure 
interrupts and exceptions, although the processor might be 
running in the secure world at the time of the triggering event. 
This allows for preserving the low interrupt latency from 
previous Cortex-M processors. The presence of shared registers 
allows a direct exchange of data between the two worlds, which 
makes the secure monitor dispensable. Therefore, this helps to 
reduce the overall power consumption. However, the shared 
registers constitute an inherent security risk that needs to be 
mitigated.  
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Fig. 9 Direct interaction between the non-secure and secure world on a 
Cortex-M processor [6] 

B. Context switching on a Cortex-M processor  
Fig. 10 provides an overview of the different interactions 

between the different processor states. Whenever an arrow 
crosses the dashed grey line the current processor context has 
to be switched.  

As pointed out, fast context switching is key to embedded 
applications running on a Cortex-M processor. However, 
context switching represents an inherent security risk. Due to 
the presence of shared registers, secure data may be exposed to 
the non-secure world if context switching is not done properly. 

Fig. 10 Interactions between the different processor states 

For example, the Arm® Procedure Call Standard for Arm® 

Architecture [19] specifies that R0 to R3 are used by the 
compiler to pass parameters and return values in case of a 
function call. Therefore, data stored within these registers could 
be leaked to the non-secure world when returning from a 
function located in the secure world. To prevent the exposure 
of secure data, Arm® has introduced three methods to securely 
switch context on a Cortex-M processor. The first method is 
through a so-called Secure Gateway (SG) instruction. This 
instruction can be used from the non-secure world to switch to 

the secure world using a direct secure API call. The second 
method is through a BXNS (branch with exchange to the non-
secure world) instruction which is used from the secure world 
to return to the non-secure world. Lastly, a context switch can 
be executed through a BLXNS (branch with link and exchange 
to the non-secure world) instruction, used by the secure world 
to call functions provided by the non-secure world.  

1) Secure Gateway and BXNS instructions: An SG 
instruction serves as an entry point for the non-secure world to 
access functions within the secure world. Fig. 11 shows the 
control flow if the non-secure world calls a function (Func_A) 
located in the secure world. For Func_A to be callable from the 
non-secure world in the first place, the secure world has to 
define Func_A as a so-called non-secure callable (NSC) 
function. The result of this declaration is Func_A_entry which 
is located in the non-secure callable region. If the non-secure 
world calls Func_A_entry, the SG instruction branches the 
processor to Func_A located in the secure world. Once Func_A 
completes its execution, a BXNS instruction will branch the 
processor back to the address in the non-secure world. 
However, before branching to the non-secure world, the 
processor automatically clears all processor registers that 
contain data from the secure world.  

If the non-secure world attempts to branch, or call an 
address in the secure world, without using an SG instruction as 
a valid point of entry, e.g. calling Func_A directly, a fault event 
is generated.  

 
Fig. 11 Control flow when the non-secure world calls a function located in the 
secure world [20] 

2)	BLXNS	instruction:	Fig.	12	shows	a	BLXNS	instruction	
used	by	the	secure	world	to	call	a	function	Func_B	in	the	
non-secure	world.	 

Fig. 12 Control flow when the secure world calls a function in the non-secure 
world [20] 

To ensure that no data is leaked through the shared registers, 
the processor automatically executes the following steps before 
calling a function in the non-secure world. First, the return 
address to the secure world along with selected processor state 
information from the xPSR register is pushed on the stack of the 
secure world. Second, the processor automatically zeros-out all 
registers from R0 to R15 which are not used for parameter 



passing as well as the processor status register (PSR) register. 
Finally, the processor loads a pseudo return address into the 
stack pointer (SP) register (R13). The value of the return 
address is called FNC_RETURN and links to a micro-coded 
operation to retrieve the actual return address stored on the stack 
of the secure world, once the called non-secure function has 
been executed. Fig. 13 shows the final register composition 
before calling a non-secure function.  

Fig. 13 Secure world stack and shared registers before calling a BLXNS 
instruction 

So far, only the deterministic ways to interact between the 
worlds have been discussed. However, there is also the 
possibility of a context switch triggered by an interrupt or 
exception, e.g. if a non-secure interrupt occurs while the 
processor is executing code in the secure world. As with 
function calls, the processor has to ensure that no data is leaked 
to the non-secure world. The procedure to protect secure data 
in case of a non-secure interrupt or exception is as follows. 
First, the processor pushes the content of all shared registers to 
the secure stack. Additionally to the registers, a signature is 
added on the secure stack, ensuring the integrity of the register 
content stored on the secure stack. Afterwards, the registers R0 
to R12 as well as the xPSR register are zeroed out. Fig. 14 shows 
the register composition before the context switch to the non-
secure interrupt or exception is executed. 

 
Fig. 14 Secure world stack and shared registers before execution of an ISR 

C. Secure data exchange  
As context switching, data exchange between the non-

secure and secure world may pose a security risk. A secure 
application should never trust parameters given by the non-
secure world. For example, if the non-secure world provides a 
pointer to an array and a size value, an attacker may try to 
extend the size value until the array expands into a secure 
memory region. This may lead to the corruption of secure data. 
Fig. 15 displays the discussed problem.  

 
Fig. 15 Security risk due to provided parameters from the non-secure world 

To mitigate this risk, Arm® has introduced the so-called Test 
Target (TT) instruction. This instruction allows software to 
determine the security attribute of a memory location. The 
security attribute includes access permissions, different security 
states and privilege levels. Furthermore, if executed in the 
secure world, the result of the TT instruction also includes the 
SAU and IDAU configuration of the specified address.  

Although the TT instruction cannot be accessed directly by 
C/C++ code, Arm® provides several intrinsic C functions to 
make use of the TT instruction. The following two functions are 
the most important ones:  

 
These functions assume that memory regions do not overlap 

each other, which is granted by the ARMv8-M architecture. 
IV. APPLICATION 

To provide hands-on experience from working with 
SMCUs, a real-world application example has been 
implemented on the Nordic nRF9160 DK. The application has 
been implemented with the Zephyr operating system and the 
nRF Connect SDK [21]. The example covers four topics:  

• Secure boot with MCUBoot  
• Secure partitioning of memory and peripherals  
• Execution of cryptographic operations in the secure 

world  
• Establishment of a (D)TLS session in the secure world  

The application example closely represents the control flow 
of a typical secure firmware project displayed in Fig. 16 with 
the addition of a secure bootloader.	
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Fig. 16 Control flow on a processor with TrustZone® support [22] 

A. Secure boot with MCUBoot  
Having a secure bootloader is a key feature for a secure 

embedded application. A secure bootloader prevents embedded 
devices from running unauthorized or manipulated code. 
Furthermore, allowing for secure firmware update enables long 
term support and maintenance of embedded devices. Fig. 17 
shows the boot process on an SMCU using MCUBoot. First 
MCUBoot it-self is executed, verifying the application image 
stored in Slot_0_S and Slot_0_NS, which is the firmware of the 
secure and non-secure world  respectively. After the initial tasks 
of the secure world have been executed, the secure world 
branches to the image stored in Slot_0_NS, starting the main 
application in the non-secure world. To enable secure firmware 
update, two additional slots, Slot_1_S, and Slot_1_NS, are 
required by MCUBoot. With them, both images can be updated 
and even reverted in case the update does not run properly.  

 
Fig. 17 Boot process with MCUBoot as bootloader 

B. Secure partitioning of memory and peripherals  
Every application using TrustZone® has to do the separation 

of memory and peripherals into non-secure and secure. This 
configuration is done in the main function of the secure world 
which is defined as the starting point of all applications using 
TrustZone®. A secure partition manager (SPM) application may 
be used to configure the memory and peripherals. The SPM 
uses the SAU and IDAU units for the configuration. 

C. Execution of cryptographic operations in the secure world  
To show how the secure world may provide secure firmware 

for the non-secure world, the application example implements 

five cryptographic operations as NSC functions. The execution 
of cryptographic operations in the secure world improves an 
application on several points. First, only the secure world 
provides access to the CC310 hardware accelerator, which 
makes cryptographic operations execute faster and energy 
efficient. Furthermore, the CC310 provides a sophisticated 
TRNG, which increases the entropy of generated keys and 
random numbers. Second, cryptographic sensitive material, e.g. 
private keys can be made accessible only by the secure world, 
reducing the risk of an application to get compromised. Lastly, 
if properly coded, there is no need for mbedTLS within the 
application in the non-secure world, often allowing to reduce 
the memory footprint of the application. Fig. 18 illustrates these 
points based on the generation of a key pair for elliptic curve 
cryptographic (ECC), where only the public key, in the form of 
a uint8_t array, is returned to the non-secure world.  

Fig. 18 Generation of an ECC key pair in the secure world 

D. Establishment of a (D)TLS session in the secure world  
The last topic covered by the application example, is the 

establishment of a secure channel between a client (referred to 
as node) and a server. For this purpose, a network as displayed 
in Fig. 19 has been set up. The server is implemented on a 
Raspberry Pi connected to the local network. To communicate 
with the server, the node requires connectivity. Since there is 
no common communication protocol on all the available DKs, 
a WiFi extension board is used.  

Fig. 19 Network setup 

A commonly used protocol to establish a secure channel is 
the (Datagram) Transport Layer Security (D)TLS [23] protocol. 
To establish such a secure channel, a so-called handshake has 
to be executed in which symmetric session keys for 
authentication and encryption are generated. For this example, 
(D)TLS has been used, due to the server supporting CoAPs 
which is based on UDP. As displayed in Fig. 16, the non-secure 
world is responsible for the I/O driver, i.e. in this case the WiFi 
module. In contrast, the secure world handles the 
communication stack, i.e. in this case, the execution of the 
(D)TLS handshake using mbedTLS. Fig. 20 shows the resulting 
procedure to execute the (D)TLS handshake.  



Fig. 20 (D)TLS handshake executed in the secure world 

Executing a (D)TLS handshake within the secure world 
provides the same benefits as with the execution of 
cryptographic operations. However, their influence on the 
application might be even bigger, due to two reasons. First, a 
(D)TLS handshake is energy consuming, due to the execution 
of	elaborate	cryptographic	operations	and	the	exchange	of	
multiple	messages.	The	 result	 is	 an	 intensive	period,	 that	
may	 last	 up	 to	multiple	 seconds,	which	may	 significantly	
reduce	 the	 battery	 lifetime	 of	 a	 resource-constrained	
device.	 Therefore,	 the	 support	 of	 a	 crypto	 accelerator	
significantly	 helps	 to	 maintain	 battery	 lifetime.	 Second,	
although	the	node	and	certificate	authority	(CA)	certificates	
may	 be	 known	 to	 everyone,	 they	 have	 to	 be	 protected	
against	 manipulation.	 Storing	 them	 in	 the	 secure	 world	
reduces	 the	 risk	 that	 certificates	 may	 get	 corrupted	 and	
allows	to	authenticate	the	node,	e.g.	preventing	intellectual	
property	 (IP)	 theft.	 Furthermore,	 having	 the	 established	
symmetric	 secrets	 stored	 in	a	 secure	place	may	also	save	
battery.	Due	to	the	secure	storage	of	these	secrets,	a	once	
established	session	may	be	kept	open	for	a	long	period	or	
be	 resumed	 with	 an	 abbreviated	 handshake	 without	
reducing	 the	 overall	 security.	 As	 a	 result,	 the	 number	 of	
performed	 handshakes	 is	 reduced,	 which	 also	 helps	 to	
maintain	battery	lifetime.	 

V. MEASUREMENTS 
This section presents measurement results to quantify the 

effects of TrustZone® on the execution time and the energy 
consumption of an application. For this purpose, the example 
application has been measured with and without using 
TrustZone® on the NRF9160 DK. Furthermore, it is interesting 
to see the differences between previous MCUs and the new 
generation of SMCUs. Therefore, the example application has 
also been implemented and measured on an nRF52840 DK. 
This measurement serves as a reference for the measurements 
performed with the nRF9160. To indicate the execution times 
of the application parts of interest, a GPIO is set high before 
their execution starts. The supply voltage for both DKs has been 
set to 3.3V. The measurement setups of the two DKs are 
displayed in the Appendix.  

There are some differences between the measurements with 
the nRF52840 and the nRF9160. First, due to the absence of 
TrustZone® support, there is no SPM implementation required 
on the nRF52840. Second, the nRF52840 DK has native Thread 
[24] support. Therefore, Thread is used as a communication 
protocol instead of WiFi. Zephyr initializes Thread as 
communication protocol during boot and automatically 
connects to the specified Thread network. As a result, the 
application with the nRF52840 DK starts only after about 2.5 
seconds.  

A. Impact of TrustZone®  on an application  
Fig. 21 shows the measurement results of the execution of 

the cryptographic operations and the (D)TLS handshake in the 
secure world. The red arrow marks the branch from the secure 
to the non-secure world. To indicate where the application 
starts, a GPIO is set high for about 100 ms (amplitude without 
a color dot). During the gap between the start of the application 
and the execution of the cryptographic operations, the WiFi 
module is initialized and connects to the network.  

 
Fig. 21 Example application executed with TrustZone® support on the 
nRF9160 DK 

Fig. 22 shows the measurement results, executing the 
application without TrustZone® support.  

Fig. 22 Example application executed with TrustZone® support on the 
nRF9160 DK 
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The comparison of the nRF9160 measurement results 
confirms the claim of Arm® that, the use of TrustZone®	has	
only	 a	 minimal	 impact	 on	 execution	 time	 and	 energy	
consumption.	 Comparing	 the	 execution	 times	 show	 a	
difference	of	20	ms	for	the	execution	of	the	cryptographic	
operation	 and	 50	 ms	 for	 the	 execution	 of	 the	 (D)TLS	
handshake.	 The	 average	 current	 remains	 constant.	 As	 a	
result,	the	slightly	increased	energy	consumption	is	due	to	
the	increased	execution	time.	Summarizing	the	results,	one	
can	 state	 that	 the	 support	 of	 TrustZone®	 only	 slightly	
increases	 the	 execution	 time	 and	 energy	 consumption.	
Therefore,	 it	 does	 not	 have	 a	 substantial	 impact	 on	 an	
application.	 

B. Comparison between MCU and SMCU  
Fig. 23 shows the application executed on a nRF52840 DK. 

Fig. 23 Example application executed on the nRF52840 DK 

The comparison between the nRF52840 and the nRF9160 
shows that the boot with MCUBoot takes about the same time 
on both MCUs, the additional time on the nRF9160 is due to 
SPM application. However, when comparing the execution 
times of the cryptographic operations, the nRF9160 is much 
faster. This is due to the increased processing power of the new 
M33 processor. Comparing the execution time of the (D)TLS 
handshake is difficult since the applications use different 
protocols and hardware to send data, which has a major impact 
on the execution time and energy consumption. However, 4 
seconds is a typical time to execute a (D)TLS handshake. 
Interestingly, the nRF9160 requires about 2mA less than the 
nRF52840. As a consequence of the reduced current 
consumption and execution time, the energy consumption of the 
nRF9160 is substantially reduced.  

VI. COMPARISON TO SECURE ELEMENTS  
There is more than one way to secure embedded devices, secure 
elements are one of the alternatives to SMCUs. Secure elements 
are dedicated off-chip solutions, which provide hardware 
acceleration and tamper-proof memory and at the same time 
require little energy. Furthermore, secure elements protect 
against side channel attacks. In a side channel attack, an 
adversary tries to recover sensitive data from the observation of 
hardware properties such as energy consumption, execution 

time or magnetic leakage. Since secure elements are off-chip 
solutions, a serial interface between the MCU and the secure 
element is used to communicate, e.g. I2C. Secure elements 
provide a sophisticated API written by specialists, which 
prevents the exposure of sensitive material due to 
implementation errors. TrustZone® and secure elements, both 
increase the security level of embedded devices by isolating 
cryptographic material in memory which is not accessible to the 
application. In addition, secure elements provide tamper-proof 
memory, which protects stored data against hardware attacks. 
This hardware protection increases the security level even 
further.  

Summarizing, secure elements increase the security level 
due to their hardware protection, which makes them a valid 
solution if a particularly high level of security is required. 
However, the downsides of secure elements include the need 
for extra space on the printed circuit board (PCB), additional 
cost and the required protection of the serial communication 
interface between the MCU and the secure elements.  

VII. ADVANTAGES AND WEAKNESSES OF SMCUS  
SMCUs increase the security level on embedded devices 

with the use of TrustZone®, isolating sensitive material and 
security-related tasks from the application. Furthermore, the 
presence of a hardware accelerator makes the execution of 
cryptographic operations faster and energy efficient. 
Additionally, the ARMv8-M architecture increases processing 
power at the same time reducing energy consumption. The 
following list summarizes the advantages of SMCUs:  

• TrustZone® support  
o Isolation of cryptographic sensitive material and 

tasks  
o Secure handling of communication protocols 
o Secure, reliable storage of authentication material 

• Cryptographic hardware accelerator support  
• Sophisticated random number generator support  

As a result, SMCUs are a valuable solution to provide an 
adequate level of security on embedded devices. However, 
there are certain security measures SMCUs cannot provide. As 
embedded devices are deployed in the field, they are exposed 
to physical attacks, such as hardware and side channel attacks. 
SMCUs do not provide measures against such physical attacks. 
Particularly, there is the so-called screaming side channel attack 
[25] which may effect SMCUs due to having a radio and the 
processor on the same die. Furthermore, TrustZone® and the 
other security measures provided by SMCUs are just tools, the 
developer has to use them in the right way. Therefore, the effort 
to develop secure firmware is increased and requires specific 
know-how. The following list summarizes the weaknesses of 
SMCUs: 	

• No tamper protection  
• Missing measures against physical attacks  
• Increased development effort  



To also provide tamper protection, Arm® has already released 
an additional processor, the Cortex-M35P [26] which provides 
anti-tampering measures. However, there are currently no 
SMCUs available which are equipped with a Cortex-M35P 
processor.  

VIII. KEY FINDINGS  
SMCUs enable the development of secure firmware in the 

field of embedded IoT, therefore providing great potential for 
securing millions of IoT devices. Their support for TrustZone® 

protects the firmware running in the secure world from 
malicious firmware running in the non-secure world, 
preventing the exposure of sensitive data. Yet, SMCUs preserve 
the characteristics of conventional MCUs in terms of interrupt 
latency and low energy consumption. Although, MCUs, such as 
the nRF52840, also provide hardware accelerators for 
cryptographic operations, with SMCUs their usage is restricted 
to the secure world. As a result, sensitive material used and 
generated by the hardware accelerator is protected in the secure 
world, similar to secure elements. However, SMCUs lack 
measures to prevent hardware and side-channel attacks. If an 
application has to withstand physical attacks a secure element 
is an appropriate choice. TrustZone® increases the security level 
of embedded devices to an acceptable state, which should be 
the minimal standard for future embedded devices. With 
additional tools such as a secure bootloader and secure 
elements, all necessary hardware components are available to 
build secure embedded IoT devices.  

IX. CONCLUSION  
This paper provides a feature overview of multiple SMCUs 

and introduces the concept of TrustZone® on Cortex-M 
processors. Furthermore, the paper provides experience from 
working with the nRF9160 SMCU in combination with Zephyr 
and MCUBoot. The implemented application covers the topic 
of secure boot, the partition of memory and peripherals into 
secure and non-secure, the execution of cryptographic 
operations in the secure world and the establishment of a secure 
channel executed in the secure world. Furthermore, energy 
measurements with a conventional MCU and a new SMCU 
have been performed. Uncovering that the use of TrustZone® 

only has minimal impact on an application in terms of execution 
time and energy consumption. Although SMCUs do not provide 
the same level of security as secure elements, SMCUs increase 
the security level to an adequate level, having the potential to 
secure millions of embedded IoT devices.  

X. APPENDIX 

 
Fig. 24 shows how the ESP WiFi module is connected with 

the nRF9160 Dk.  

Fig. 24 Connection between nRF9160 and the ESP WiFi module 

Fig. 25 shows the measurement setup with the nRF9160 DK.  

Fig. 25 Measurement setup with the nRF9160 
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Fig. 26 shows the measurement setup with the nRF52840 DK.  

Fig. 26 Measurement setup with the nRF52840 
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