

# 4.3. Jones matrix polarization-correlation mapping of biological crystals networks

O.G. Ushenko, Yu. O. Ushenko, L.Y. Pidkamin, M.I. Sidor, O. Vanchuliak, A.V. Motrich, M.P. Gorsky, I.Meglinskiy, Yu. F. Marchuk, L. Kushnerik

### 4.3.1. Introduction

The structure of biological layers can be considered as structurally inhomogeneous one [1-3]. Laser polarimetry was formed recently as a new separate approach within matrix optics [4-27].

This research is aimed on generalization of optical anisotropy of optically thin layers of bile films and the development of the method of Jones-matrix reconstruction of anisotropy parameters of polycrystalline networks in the task of cholelithiasis early diagnostics.

## 4.3.2. Brief theoretical background

In this research we have utilized the model description of phase anisotropy [7,8,18-21] (optical activity and linear birefringence) of polycrystalline structure of films of biological fluids developed in [22-28].

We determined the following analytical algorithms for reconstructing the phase anisotropy parameters of such polycrystalline films.

$$\delta = \frac{2\arccos(R_{11}\cos\Theta_{11} + R_{22}\cos\Theta_{22})}{1 + \frac{R_{12}\cos\Theta_{12} - R_{21}\cos\Theta_{21}}{R_{22}\cos\Theta_{22} - R_{11}\cos\Theta_{11}}};$$
(4.3.1)

$$\theta = \frac{2\arccos(R_{11}\cos\Theta_{11} + R_{22}\cos\Theta_{22})}{1 + \frac{R_{22}\cos\Theta_{22} - R_{11}\cos\Theta_{11}}{R_{12}\cos\Theta_{22} - R_{21}\cos\Theta_{11}}}.$$
(4.3.2)

## 4.3.3. Analysis and discussion of experimental data

Two groups of polycrystalline bile films were investigated:

- Healthy donors (group 1) 41 patients;
- Patients with cholecystitis (group 2) 41 patients.

The measurements of coordinate distributions of Jones-matrix elements were performed in the polarymeter setup [21].

On the basis of (4.3.1)-(4.3.2) for each pixel of CCD-camera the parameters of phase  $(\delta, \theta)$  anisotropy were found. For objective assessment of histograms N(q) of distributions  $q = \{\delta, \theta\}$  the set of statistical moments of the  $1^{\text{st}}$ - $4^{\text{th}}$  orders was determined [24].

The series of fig. 4.3.1-4.3.4 present the results of the technique of Jones-matrix reconstruction parameters  $q = \{\delta, \theta\}$  of polycrystalline bile films of 1<sup>st</sup> group patients (fig. 4.3.1, fig. 4.3.3) and second one (fig. 4.3.2, fig.4.3.4).



Fig. 4.3.1. Coordinate distributions and the corresponding histogram of the values of phase shifts  $\delta$ , formed by polycrystalline film of bile of donors



Fig. 4.3.2. Coordinate distributions and the corresponding histogram of the values of phase shifts  $\delta$ , formed by polycrystalline film of bile of patients with cholelithiasis



Fig. 4.3.3. Coordinate distributions and the corresponding histogram of the values of phase shifts  $\theta$ , formed by polycrystalline film of bile of donors.



Figure 4.3.4. Coordinate distributions and the corresponding histogram of the values of phase shifts  $\theta$ , formed by polycrystalline film of bile of patients with cholelithiasis.

## 4.3.4. Statistical intergroup analysis

For the possible clinical application of both methods the following was determined for each group of samples [29-30]:

- average (within group 1 and group 2) values of statistical moments  $M_{i=1:2:3:4}(q)$ , their standard deviations  $\pm \sigma$  and histograms  $M(R_i)$  Table 4.3.1.
- traditional for probative medicine operational characteristics sensitivity  $(Se = \frac{a}{a+b}100\%)$ , specificity  $(Sp = \frac{c}{c+d}100\%)$  and balanced accuracy  $(Ac = \frac{Se + Sp}{2})$ , where a and b are the number of correct and wrong diagnoses within group 2; c and d the same within group 1 Table 4.3.2.

Table 4.3.1. Average  $(\overline{M}_{i=1;2;3;4})$  and standard deviations  $(\pm \sigma)$  of statistical moments  $M_{i=1;2;3;4}$  of optical anisotropy distributions of bile films of groups 1 and 2

| q     | δ (n = 47)        |                  | $\theta (n=47)$    |                    |
|-------|-------------------|------------------|--------------------|--------------------|
|       | group 1           | group 2          | group 1            | group 2            |
| $M_1$ | $0.16 \pm 0.0079$ | $0.19 \pm 0.013$ | $0.079 \pm 0.0073$ | $0.11 \pm 0.0011$  |
| M 2   | $0.19 \pm 0.013$  | $0.24 \pm 0.015$ | $0.14 \pm 0.009$   | $0.189 \pm 0.0145$ |
| M 3   | $0.67 \pm 0.053$  | $0.43 \pm 0.041$ | $0.95 \pm 0.088$   | $0.54 \pm 0.036$   |
| M 4   | $0.95 \pm 0.085$  | $0.46 \pm 0.042$ | $1.33 \pm 0.15$    | $0.77 \pm 0.062$   |

Table 4.3.2 presents the parameters of information value of polarizationphase method of Jones-matrix reconstruction of phase anisotropy of polycrystalline films of bile.

Table 4.3.2. Operational characteristics of the method of Jonesmatrix reconstruction of polycrystalline structure of bile films

| q         | $M_{i}$        | δ   | θ   |
|-----------|----------------|-----|-----|
|           | $M_1$          | 74% | 79% |
| $Ac(Z_i)$ | M <sub>2</sub> | 83% | 85% |
|           | M <sub>3</sub> | 93% | 91% |
|           | $M_4$          | 92% | 93% |

The comparative analysis of operational characteristics of the method of Jones-matrix polarization reconstruction of polycrystalline structure of bile films revealed clinically optimal (highlighted in grey)

$$\begin{cases} \delta \rightarrow M(\delta) \equiv \left\{ Ac \left( R_{3;4} \right) = 92\% - 93\% \right\}; \\ \theta \rightarrow M(\theta) \equiv \left\{ Ac \left( R_{3;4} \right) = 90\% - 93\% \right\}. \end{cases}$$

The obtained results enable to state a rather high level of accuracy of Jones-matrix polarization-phase tomography. According to the criteria of probative medicine [31] the parameters  $M(\delta, \theta) \sim 90\% - 93\%$  correspond to high quality.

#### 4.3.5. Conclusion

The model of generalized optical anisotropy and the technique of Jones-matrix reconstruction of optical anisotropy parameters of polycrystalline bile films has been proposed. By means of statistic analysis the interconnection between the statistical moments of the 1<sup>st</sup>-4<sup>th</sup> order of anisotropy parameters of bile films and the changes in it structure of healthy people and cholelithiasis patients were determined. It has been proved the efficiency of Jones-matrix reconstruction of optical anisotropy parameters of bile films in diagnostics of early stages of cholelithiasis.

#### References

1. V. V. Tuchin, L. Wang, and D. A`. Zimnyakov [Optical Polarization in Biomedical

- Applications], Springer-Verlag (2006).
- 2. W. S. Bickel and W. M. Bailey, "Stokes vectors, Mueller matrices, and polarization of scattered light," *Am. J. Phys.* **53**, 468–478 (1985).
- 3. S. Yau Lu and R. A. Chipman, "Interpretation of Mueller matrices based on polar decomposition," *J. Opt. Soc. Am. A* **13**, 1106–1113 (1996).
- 4. Angelsky, O. V., Gorsky, M. P., Hanson, S. G., Lukin, V. P., Mokhun, I. I., Polyanskii, P. V., Ryabiy, P. A., "Optical correlation algorithm for reconstructing phase skeleton of complex optical fields for solving the phase problem," Opt. Exp. 22(5), 6186-6193 (2014).
- 5. Ushenko, A. G., Burkovets, D. N., Ushenko, Y. A., "Polarization-phase mapping and reconstruction of biological tissue architectonics during diagnosis of pathological lesions," Optics and Spectroscopy, 93(3), 449-456 (2002).
- 6. Ushenko, A. G., "Polarization correlometry of angular structure in the microrelief pattern of rough surfaces," Optics and spectroscopy, 92(2), 227-229 (2002).
- 7. Angelsky, O. V., Bekshaev, A. Ya., Maksimyak, P. P., Maksimyak, A. P., Hanson,
- S. G., Zenkova, C. Yu., "Self-diffraction of continuous laser radiation in a disperse medium with absorbing particles," Optics Express 21(7), 8922-8938, (2013).
- 8. Angelsky, O.V., Besaha, R.N., Mokhun, A.I., Mokhun, I.I., Sopin, M.O., Soskin, M.S., "Singularities in vectoral fields," Proc. SPIE, 40-54, (1999).
- 9. R. A. Chipman, "Polarimetry" in *Handbook of Optics: Vol. I— Geometrical and Physical Optics, Polarized Light, Components and Instruments*, M. Bass, Ed., pp. 22.1–22.37, McGraw-Hill Professional, New York (2010).
- 10. M. K. Swami, H. S. Patel, and P. K. Gupta, "Conversion of 3×3 Mueller matrix to 4×4 Mueller matrix for non-depolarizing samples," *Opt. Commun.* 286(1), 18–22 (2013).
- 11. N. Ghosh and I. A. Vitkin, "Tissue polarimetry: concepts, challenges, applications and outlook," *J. Biomed. Opt.* 16, 110801 (2011).
- 12. S. L. Jacques, "Polarized light imaging of biological tissues" in Handbook of

- *Biomedical Optics*, D. Boas, C. Pitris, and N. Ramanujam, Eds., pp. 649–669, CRC Press, Boca Raton, London, New York (2011).
- 13. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, "Polarized light assessment of complex turbid media such as biological tissues via Mueller matrix decomposition," in *Handbook of Photonics for Biomedical Science*, V.V. Tuchin, Ed., pp. 253–282, CRC Press, Taylor & Francis Group, London (2010).
- 14. O.V. Angelsky, S.G. Hanson, P.P. Maksimyak, A.P. Maksimyak, C.Yu. Zenkova, P.V. Polyanskii, and D.I. Ivanskyi, "Influence of evanescent wave on birefringent microplates," Opt. Express 25, 2299-2311 (2017).
- 15. Angelsky, O. V., Bekshaev, A. Ya., Maksimyak, P. P., Maksimyak, A. P., Hanson, S. G., Kontush, S. M., "Controllable generation and manipulation of microbubbles in water with absorptive colloid particles by CW laser radiation," Opt. Express 25, 5232-5243 (2017).
- 16. V. A. Ushenko, M. P. Gorsky, "Complex degree of mutual anisotropy of linear birefringence and optical activity of biological tissues in diagnostics of prostate cancer," *Optics and Spectroscopy*, **115**(2), 290-297 (2013).
- 17. V. A. Ushenko, M. S. Gavrylyak, "Azimuthally invariant Mueller-matrix mapping of biological tissue in differential diagnosis of mechanisms protein molecules networks anisotropy," *Proc. SPIE* **8812**, Biosensing and Nanomedicine VI, 88120Y (2013).
- 18. V. A. Ushenko, N. I. Zabolotna, S. V. Pavlov, D. M. Burcovets, O. Yu. Novakovska, "Mueller-matrices polarization selection of two-dimensional linear and circular birefringence images," *Proc.SPIE* **9066**, (2013).
- 19. V. A. Ushenko, A. V. Dubolazov, "Correlation and self similarity structure of polycrystalline network biological layers Mueller matrices images," *Proc. SPIE* **8856**, (2013).
- Yu. A. Ushenko, V. A. Ushenko, A. V. Dubolazov, V. O. Balanetskaya, N. I.
   Zabolotna, "Mueller-matrix diagnostics of optical properties of polycrystalline

- networks of human blood plasma," Optics and Spectroscopy 112(6), 884-892 (2012).
- 21. Angelsky, P. O., Ushenko, A. G., Dubolazov, A. V., Sidor, M. I., Bodnar, G. B., Koval, G., Trifonyuk, L., "The singular approach for processing polarization-inhomogeneous laser images of blood plasma layers," Journal of Optics, 15(4), 044030 (2013).
- 22. Dubolazov, A. V., Marchuk, V., Olar, O. I., Bachinskiy, V. T., Vanchuliak, O. Y., Pashkovska, N. V., Kostiuk, S. V., "Multiparameter correlation microscopy of biological fluids polycrystalline networks," In Eleventh International Conference on Correlation Optics, International Society for Optics and Photonics, pp. 90661Y-90661Y (2013).
- 23. Ushenko, O., Dubolazov, A., Balanets' ka, V., Karachevtsev, A., Sydor, M., "Wavelet analysis for polarization inhomogeneous laser images of blood plasma," Proc. SPIE. Vol. 8338 (2011).
- 24. Ushenko, V. A., O. V. Dubolazov, A. O. Karachevtsev, "Two wavelength Mueller matrix reconstruction of blood plasma films polycrystalline structure in diagnostics of breast cancer," Applied optics 53(10), B128-B139 (2014).
- 25. V. A. Ushenko, O. V. Dubolazov, A. O. Karachevtsev, "Two wavelength Mueller matrix reconstruction of blood plasma films polycrystalline structure in diagnostics of breast cancer," *Applied Optics*. **53**(10), B128-B139 (2014).
- 26. A. Gerrard and a J. Burch, "Introduction to matrix methods in optics," *Courier Corporation*, (2012).
- 27. Angelsky, O. V., Ushenko, A. G., Ushenko, Y. G., Tomka, Y. Y., "Polarization singularities of biological tissues images. Journal of biomedical optics," 11(5), 054030-054030 (2006).
- 28. Ushenko, A. G., "Laser diagnostics of biofractals," Quantum electronics, 29(12), 1078 (1999).
  - 29. A. Petrie, B. Sabin, [Medical Statistics at a Glance,] Blackwell Publishing, 157, (2005).