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Abstract. Semantic heterogeneity remains a problem when interoper-
ating with data from sources of different scopes and knowledge domains.
Causes for this challenge are context-specific requirements (i.e. no “one
model fits all”), different data modelling decisions, domain-specific pur-
poses, and technical constraints. Moreover, even if the problem of
semantic heterogeneity among different RDF publishers and knowledge
domains is solved, querying and accessing the data of distributed RDF
datasets on the Web is not straightforward. This is because of the com-
plex and fastidious process needed to understand how these datasets can
be related or linked, and consequently, queried. To address this issue,
we propose to extend the existing Vocabulary of Interlinked Datasets
(VoID) by introducing new terms such as the Virtual Link Set con-
cept and data model patterns. A virtual link is a connection between
resources such as literals and IRIs (Internationalized Resource Identifier)
with some commonality where each of these resources is from a differ-
ent RDF dataset. The links are required in order to understand how to
semantically relate datasets. In addition, we describe several benefits of
using virtual links to improve interoperability between heterogenous and
independent datasets. Finally, we exemplify and apply our approach to
multiple world-wide used RDF datasets.

Keywords: Data interoperability · Virtual link · Vocabulary of
Interlinked Datasets (VoID) · Federated query

1 Introduction

To achieve semantic and data interoperability, several data standards, ontolo-
gies, thesauri, controlled vocabularies, and taxonomies have been developed and
adopted both by academia and industry. For example, the Industry Foundation
Classes [7] is an ISO standard to exchange data among Building Information
Modelling software tools [16]. In life sciences, we can mention the Gene Ontol-
ogy (GO) among many other ontologies listed in repositories such as BioPortal
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[31]. Yet, semantic heterogeneity remains a problem when interoperating with
data from various sources which represent the same or related information in
different ways [15]. This is mainly due to the lack or difficulty of a common con-
sensus, different modelling decisions, domain scope and purpose, and constraints
(e.g. storage, query performance, legacy and new systems).

Semantic reconciliation—i.e. the process of identifying and resolving seman-
tic conflicts [29], for example, by matching concepts from heterogeneous data
sources [18]—is recognized as a key process to address the semantic heterogene-
ity problem. To support this process, ontology matching approaches [26] have
been proposed such as YAM++ [24]. Although semantic reconciliation enhances
semantic interoperability, it is often not fully applicable or practical when con-
sidering distributed and independent RDF (Resource Description Framework)
datasets of different domain scopes, knowledge domains, and autonomous pub-
lishers. In addition, even if the semantic reconciliation process among differ-
ent RDF publishers and knowledge domains is complete and possible, querying
and accessing the data of multiple distributed RDF datasets on the Web is not
straightforward. This is because of the complex, time-consuming and fastidious
process of having to understand how the data are structured and how these
datasets can be related or linked, and consequently, queried.

To enhance interoperability and to facilitate the understanding of how mul-
tiple datasets can be related and queried, we propose to extend and adapt the
existing Vocabulary of Interlinked Datasets (VoID) [2]. VoID is an RDF Schema
vocabulary used to describe metadata about RDF datasets such as structural
metadata, access metadata and links between datasets. However, VoID is limited
regarding terms and design patterns to model the relationships between datasets
in a less verbose, unambiguous and explicit way. To overcome this problem, we
introduce the concept of virtual link set (VLS). A virtual link is an intersection
data point between two RDF datasets. A data point is any node or resource in
an RDF graph such as literals and IRIs (Internationalized Resource Identifier).
An RDF dataset is a set of RDF triples that are published, maintained or aggre-
gated by a single provider [2]. The links are required in order to comprehend
how to semantically relate datasets. The major advantage of the VLS-concept
is to facilitate the writing of federated SPARQL queries [19], by acting as joint
points between the federated sources. We exemplify and apply VoIDext to various
world-wide used data sets and discuss both the theoretical and practical implica-
tions of these new concepts with the goal of more easily querying heterogeneous
and independent datasets.

This article is structured as follows: Sect. 2 presents the relevant related work.
Section 3 details our approach to extend the VoID vocabulary. In Sect. 4, we
describe the major benefits of using VoIDext, and we apply VoIDext to describe
VLSs among three world-wide used bioinformatics RDF data stores. Finally, we
conclude this article with future work and perspectives.

2 Related Work

Since the release of the SPARQL 1.1 Query Language [19] with federated
query support in 2013, numerous federated approaches for data and semantic
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interoperability have recently been proposed [11,20,33], and [32]. However, to the
best of our knowledge, none of them proposes a vocabulary and patterns to exten-
sively, explicitly and formally describe how the data sources can be interlinked for
the purpose of facilitating the writing of SPARQL 1.1 federated queries such as
discussed in Sect. 3. In effect, existing approaches put the burden on the SPARQL
users or systems to find out precisely how to write a conjunctive federated query.
An emerging research direction entails automatically discovering links between
datasets usingWordEmbeddings [17]. However, the current focus ismostly on rela-
tional data or unstructured data [6]. In addition, several link discovery frameworks
such as in [25,28], and [21] rely on link specifications to define the conditions neces-
sary for linking resources within datasets. With these specifications, these frame-
works describe similarity measures or distance metrics (e.g. Levenshtein, Jaccard
and Cosine) as part of conditions to determine, for example, whether two entities
should be linked. The approaches of [17,25,28], and [21] are complementary to ours
because they can aid in the process of defining virtual link sets—see Definition 2.

In the context of ontology alignment, the Expressive and Declarative Ontol-
ogy Alignment Language (EDOAL) enables us to represent correspondences
between heterogeneous ontological entities [9]. Although, transformations of
property values can be specified with EDOAL, the current version of EDOAL
solely supports a limited kind of transformations1. In [8] and [10], authors also
recognize the limited support for data transformation in mapping languages.
Moreover, since EDOAL does not focus on supporting the write of SPARQL
1.1 federated queries, the EDOAL data transformation specification requires
an extra step to be converted into an equivalent one by using the SPARQL
language. Applying data transformations during a federated query execution is
often required to be able to link real-world independent and distributed datasets
on the Web. As other related work in terms of RDF-based vocabularies, we can
also mention VoID and SPARQL 1.1 Service Description (SD)2. Although the
VoID RDF schema provides the void:Linkset term (Definition 1), this concept
alone is not sufficient to precisely and explicitly define virtual links between the
datasets (discussed in Sect. 3). By precisely, we mean to avoid multiple ways to
represent (i.e. triple patterns) and to interpret interlinks. Moreover, by consid-
ering Definition 1 extracted from the VoID specification, this definition impedes
the use of the void:Linkset concept to describe a link set between instances of
the same class because both are triple subjects stored in different datasets.

Definition 1 (link set – void:Linkset3). A collection of RDF links between
two datasets. An RDF link is an RDF triple whose subject and object are
described in different datasets [2].

3 Contribution

To mitigate the impediments of interoperating with distributed and indepen-
dent RDF datasets, we first propose design patterns of how to partially model
1 http://alignapi.gforge.inria.fr/edoal.html.
2 https://www.w3.org/TR/sparql11-service-description/.
3

http://vocab.deri.ie/void#Linkset.

http://alignapi.gforge.inria.fr/edoal.html
https://www.w3.org/TR/sparql11-service-description/
http://vocab.deri.ie/void#Linkset
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virtual links (see Definition 2) with the current VoID vocabulary and expose its
drawbacks. To address these drawbacks, we then propose a new vocabulary (i.e.
VoIDext) and demonstrate an unambiguous and unique way to extensively and
explicitly describe various types of virtual links such as depicted in Subsect. 3.2.
The VoIDext vocabulary is fully described in [14], that also includes examples
of virtual link types.

Definition 2 (virtual link set). A set of virtual links. A virtual link is a
connection between common resources such as literals and instances from two
different RDF datasets. Semantic relaxation (see Definition 3) is also considered
when identifying common resources between datasets.

Definition 3 (semantic relaxation). It is the capacity of ignoring semantic
and data heterogeneities for the sake of interoperability.

In this article, the words vocabulary and ontology are used interchangeably.
The methodology applied to develop VoIDext was inspired by the simplified agile
methodology for ontology development (SAMOD) [27]. Indeed, the proposed
VoID extension is a meta-ontology to explicitly describe interlinks between RDF
datasets—virtual links. Further information about how VoIDext was built is
given in the Supplementary Material in [13].

Figure 1 illustrates a complex virtual link about Swiss cantons between the
LINDAS dataset (Linked Data Service4) of the Swiss Government administra-
tion and DBpedia [23]. To define this link, some semantic relaxation is applied.
This is because heterogeneities are exacerbated when interoperating indepen-
dent datasets. For example, what is considered a long name of a Swiss canton
in LINDAS is actually a short name in DBpedia. In addition, the data types for
the name of the canton are not the same in both datasets what impedes exact
matching when performing a federated join query. Finally, LINDAS contains a
few literals with different concatenated translations of the same canton’s name
such as “Graubünden / Grigioni / Grischun” that can be matched with the literal
“Grisons” asserted as a canton’s short name in DBpedia. Indeed, Grison is the
French translation of Graubünden—German name. Nevertheless, both datasets
share literals with some commonality. By exploring this commonality we are able
to define a virtual link set between both datasets. Note that the Swiss cantons’
resource IRIs in both datasets are not the same – otherwise defining a virtual
link set would be simpler—i.e. a simple link set, see Definition 4. In the next sub-
sections, we incrementally demonstrate with a running example how to model a
complex link set (see Definition 6) with VoID and VoIDext terms. Table 1 shows
other datasets and SPARQL endpoints considered in our examples in this article.

Definition 4 (simple link set). A simple link set must be either a link set
that does not target another link set (i.e. it has exactly one link predicate—
Definition 5) or a set with exactly the same shared instances of the same type
(i.e. class expression) in both datasets.

4 https://lindas-data.ch.

https://lindas-data.ch
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Table 1. SPARQL endpoints considered in this article.

RDF dataset SPARQL endpoint

DBpedia [23] http://dbpedia.org/sparql

LINDAS (see Footnote 4) https://lindas-data.ch/sparql

OMA [3] https://sparql.omabrowser.org/sparql

UniProtKB [30] https://sparql.uniprot.org/sparql

Bgee [5] http://biosoda.expasy.org/rdf4j-server/repositories/bgeelight

EBI RDF [22] https://www.ebi.ac.uk/rdf/services/sparql

Fig. 1. An example of a virtual link between the LINDAS and DBpedia datasets where
the DS1 and DS2 datasets are subsets of them, respectively. Circles: different resource
IRIs; rectangles: literals; ��: virtual link; and edges: RDF predicates.

In practice, a simple link set allows us to model virtual links either between
the subjects of two RDF triples in different datasets where their predicate is
rdf:type with the same object or between link predicate assertions and rdf:type
triples. Due to the space constraints, the patterns to model simple link sets with
VoIDext are available in Supplementary Material Section 4 [13].

Definition 5 (link predicate). According to the VoID specification, a link
predicate is the RDF property of the triples in a void:Linkset [2].

Definition 6 (complex link set). It is a complex virtual link set. A complex
link set is composed of exactly two link sets xor two shared instance sets (see
Definition 7) where xor is the exclusive or.

Definition 7 (shared instance set). A shared instance set between exactly
two datasets. For example, two datasets that contain the same OWL/RDFS class
instances.

3.1 Patterns to partially model complex link sets with VoID terms

Since our main goal is to facilitate the writing of federated queries by providing
metadata of how the target datasets can be joined, let us suppose that we want
to know how to relate Swiss cantons in LINDAS and DBpedia datasets as shown
in Fig. 1. In other words, we want to find out the necessary and sufficient graph
pattern in the context of Swiss cantons in each dataset to be able to relate and
join them. Further triple patterns such as attributes (e.g. canton’s population,
cities, acronym) depend on the specificity of the requested information what goes
beyond the task of joining the two datasets. Let us further assume a SPARQL
user without any previous knowledge about these datasets. A possible workflow

http://dbpedia.org/sparql
https://lindas-data.ch/sparql
https://sparql.omabrowser.org/sparql
https://sparql.uniprot.org/sparql
http://biosoda.expasy.org/rdf4j-server/repositories/bgeelight
https://www.ebi.ac.uk/rdf/services/sparql
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for this user to find out how to relate LINDAS and DBpedia in terms of Swiss
cantons is described as follows:

(1) the user has to dig up the data schema and documentation, if any, looking
for the abstract entity “Swiss canton”. This task has to be done for both
datasets.

(2) if (s)he is lucky, a concept is explicitly defined in the data schema. This is the
case of the LINDAS dataset that contains the class lindas:Canton—prefixes
such as lindas: are defined in Table 2. Otherwise the user has to initiate a
fastidious quest for assertions and terms that can be used for modeling Swiss
canton data. This is the situation of DBpedia where instances are defined
as a Swiss canton by assigning the dbrc:Cantons of Switzerland instance of
the skos:Concept to the dct:subject property such as the following triple
(dbr:Vaud, dct:subject, dbrc:Cantons of Switzerland).

(3) The user has now to browse the RDF graph. For example, by perform-
ing additional queries, to be sure that the assertions to the lindas:Canton
instances can be used as join points with assertions related to Swiss canton
instances in DBpedia. Otherwise, the user has to repeat the previous steps.

(4) If data transformations are required because of data and semantic hetero-
geneities between the datasets, the user has to define data mappings to be
able to effectively perform a federated conjunctive query.

Table 2. In this article, we assume the namespace prefix bindings in this table.

Prefix Namespace Internationalized Resource Identifier (IRI)

rdfs: http://www.w3.org/2000/01/rdf-schema#

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

up: http://purl.uniprot.org/core/

cco: http://rdf.ebi.ac.uk/terms/chembl#

chembl: http://rdf.ebi.ac.uk/resource/chembl/molecule/

ex: http://example.org/voidext#

dbo: http://dbpedia.org/ontology/

skos: http://www.w3.org/2004/02/skos/core#

dbr: http://dbpedia.org/resource/

dbrc: http://dbpedia.org/resource/Category:

dbp: http://dbpedia.org/property/

lindas: https://gont.ch/

dcterms: http://purl.org/dc/terms/

biopax: http://www.biopax.org/release/biopax-level3.owl#

lscr: http://purl.org/lscr#

void: http://rdfs.org/ns/void#

voidext: http://purl.org/query/voidext#

bioquery: http://purl.org/query/bioquery#

http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://purl.uniprot.org/core/
http://rdf.ebi.ac.uk/terms/chembl
http://rdf.ebi.ac.uk/resource/chembl/molecule/
http://example.org/voidext
http://dbpedia.org/ontology/
http://www.w3.org/2004/02/skos/core
http://dbpedia.org/resource/
http://dbpedia.org/resource/Category
http://dbpedia.org/property/
https://gont.ch/
http://purl.org/dc/terms/
http://www.biopax.org/release/biopax-level3.owl
http://purl.org/lscr
http://rdfs.org/ns/void
http://purl.org/query/voidext
http://purl.org/query/bioquery
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SELECT ∗ WHERE {
SERVICE <ht tp : // dbped ia . org / spa r q l>{
? d b p i n s t dct : s u b j e c t dbrc : C a n t o n s o f Sw i t z e r l a n d .
? d b p i n s t dbp : shortName ?dbp name .
BIND( IF (STR(? dbp name )=” G r i s o n s ” , ”Graub ünden / G r i g i o n i / Gr i s chun ” ,

IF (STR(? dbp name )=”Geneva” , ”Gen è ve ” ,
IF (STR(? dbp name )=” Lucerne ” , ” Luzern ” ,
IF (STR(? dbp name )=” Va l a i s ” , ” V a l a i s / Wa l l i s ” ,
IF (STR(? dbp name )=”Bern” , ”Bern / Berne ” ,
IF (STR(? dbp name )=” F r i b ou r g ” , ” F r i b ou r g / F r e i b u r g ” ,

STR(? dbp name ) ) ) ) ) ) ) AS ? l i nda s name )}
SERVICE <h t t p s : // l i n d a s−data . ch/ spa r q l>{
? l i n d a s i n s t a l i n d a s : Canton ;

l i n d a s : longName ? l i nda s name .}}

Listing 1. The initial basic graph patterns represented as a SPARQL federated query
to perform join queries between Swiss cantons in the LINDAS and DBpedia datasets.
Table 2 contains the IRI prefixes.

Finally, based on that workflow, a SPARQL user can draft the minimum
set of triple patterns and data transformations to perform the virtual links con-
cerning Swiss cantons between both datasets. This draft is represented as the
SPARQL query in Listing 1. The link set built by intersecting the resources
(i.e. the values of lidas:longName and dbp:shortName properties) can then be
partially modelled with VoID terms. This enables other SPARQL users or
systems to reuse this link set knowledge to write specialized queries over the
two datasets starting from the Swiss canton context. In doing so, the second user
avoid the fastidious, complex and time-consuming task of finding this link set.
In addition, to the best of our knowledge there is no system capable of precisely
establishing this virtual link set automatically because of the complexity and
heterogeneities to be solved.

Listings 2 and 3 depict two different ways named V Lm1 and V Lm2 to model
the virtual link set with VoID. Note that the examples of RDF graph patterns
in this section are defined with the RDF 1.1 Turtle language5. On the one hand,
V Lm1 states that a given LS1 link set targets another LS2 link set that tar-
gets LS1 back. On the other, V Lm2 only states datasets as link set targets. By
using the V Lm1 model in Listing 2, the DS2 instance asserts the DS1 instance
to its void:objectsTarget property. As a reminder, the void:objectsTarget value
is the dataset describing the objects of the triples contained in the link set, in
our example, the objects of dbp:shortName. This dataset must contain only the
relevant triples to describe the virtual link set. In our example in Listing 2, we
define the DS1 dataset (i.e. a subset of LINDAS) as being also a void:Linkset
that contains triples with the lindas:longName predicate. By using the V Lm2

model in Listing 3, the objects’ target dataset of the dbp:shortName link pred-
icate is not a void:Linkset but a void:Dataset (i.e. superclass of void:Linkset).
DS2 in Listing 3 also contains triples with the lindas:longName predicate, how-
ever, this predicate is defined as part of a subset and partition of DS2 by
using the void:propertyPartition and void:property terms. Note that solely one

5 https://www.w3.org/TR/turtle/.

https://www.w3.org/TR/turtle/
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void:propertyPartition should be directly assigned to DS2 dataset, otherwise we
are not able to know which predicate should be considered when stating the
virtual links.

#DS 1 is a subset of LINDAS.
ex:LINDAS DBPEDIA SWISSCANTON

rdf:type void:Linkset ;
void:linkPredicate lindas:longName ;
void:objectsTarget

ex:DBPEDIA LINDAS SWISSCANTON ;
void:subset :DOMAIN SET0 .

:DOMAIN SET0 void:propertyPartition :b0 ;
void:classPartition :b1 .

:b0 void:property rdfs:domain .
:b1 void:class lindas:Canton .

. . .

#DS 2 is a subset of DBpedia.
ex:DBPEDIA LINDAS SWISSCANTON

rdf:type void:Linkset ;
void:linkPredicate dbp:shortName ;
void:objectsTarget

ex:LINDAS DBPEDIA SWISSCANTON ;
void:subset :DOMAIN SET1 .

:RANGE SET1 void:propertyPartition :b2 ;
void:classPartition :b3 .

:b2 void:property rdfs:range .
:b3 void:class rdf:langString .

. . .

Listing 2. Patterns to model a complex virtual link set between the LINDAS Linked
Data service and DBpedia relying on link sets as targets (e.g. void:objectsTarget). As
a reminder, void:Linkset is a subclass of void:Dataset.

#DS 2 is a subset of DBpedia.
ex:DBPEDIA LINDAS SWISSCANTON rdf:type void:Linkset ;

void:linkPredicate dbp:shortName ;
void:objectsTarget :b4 .

:b4 rdf:type void:Dataset ;
void:propertyPartition :LINDAS PROPERTY ;
void:subset :RANGE SET2 .

:LINDAS PROPERTY void:property lindas:longName .
:RANGE SET2 void:propertyPartition :b5.
:RANGE SET2 void:classPartition :b6 .

:b5 void:property rdfs:range . #it restricts lindas:longName
:b6 void:class rdfs:Literal . #range to rdfs:Literal.

. . .

Listing 3. Patterns to model a complex virtual link set between the LINDAS Linked
Data service and DBpedia relying on link sets and property partitions as targets (e.g.
void:objectsTarget). For the sake of simplicity, only the link set in DBpedia is depicted
because the link set in LINDAS containing the lindas:longName link predicate is sim-
ilarly modelled as the one in DBpedia.

Yet, we also need to describe further information about the virtual link
set such as the domain and range of the link predicates (e.g. lindas:longName
and dbp:shortName). This information is used to restrict which resource type
must be considered for a given triple that contains the link predicate (e.g.
lindas:longName rdfs:domain lindas:Canton). By having this information in
advance when writing and executing a federated query, we reduce the num-
ber of triples to match, if there are statements of the same predicate but
with resources of other types. For example, the lindas:longName property
is asserted to instances of lindas:MunicipalityVersion, lindas:Canton or lin-
das:DistrictEntityVersion. However, for the context of this virtual link set only
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lindas:Canton instances need to be considered. To restrict the resource types
of a given link predicate with VoID, we can state subsets and partitions to a
void:Linkset such as exemplified in Listing 2 by using V Lm1.

Note that for each link predicate’s domain/range, we have to create one
new subset to be sure that the class partitions of the subset correspond to the
domain or range of the link predicate. In addition, if there are multiple resource
types to be considered as the domain of a link predicate, we can state multiple
class partitions to express the union of types—i.e. classes. Or, we can explicitly
define it by using the OWL 2 Description Logic (DL) term owl:unionOf and
related patterns to express class union. To express class intersection or other class
expressions, we can rely on OWL 2 DL terms and state these class expressions as
class partitions of the subset. Similarly, we can model the domain and range of
predicates related to virtual links with V Lm2 as described in Listing 3. For the
sake of simplicity, we do not depict all predicate domains/ranges in Listings 2
and 3. However, there are several limitations when only considering VoID terms
to model complex link sets:

(1) Multiple representations. The VoID vocabulary and documentation due
to the lack of constraints and high generalization imply several ways to
model virtual link sets such as V Lm1 and V Lm2 graph patterns to repre-
sent a complex link set. In addition, there are various ways to define the link
predicate’s domain and range. For example, class expressions can be defined
by using either OWL 2 DL terms to express the union of classes or multiple
class partitions (i.e. void:classPartition assertions), or by combining both
of them. This multitude of graph patterns allowed by VoID makes interop-
erability more complex because we do not previously know how the virtual
link set is modelled. Consequently, it requires to build complex parsers and
queries to retrieve the virtual link set metadata.

(2) Ambiguity. With VoID, we cannot easily distinguish if a link set or dataset
is being instantiated to define a virtual link set. For example, we do not know
explicitly if two link sets compose a complex link set. Moreover, the use of
property/class partitions to define domains and ranges of link predicates can
be mixed with void:class assertions that are not part of a domain/range def-
inition. Subsets can also be arbitrarily stated to any link set or dataset what
increases the ambiguity to know if a given subset is actually part of a com-
plex link set definition or not. With V Lm1 and V Lm2 models strictly based
on VoID, we cannot explicitly state that the intersections between two link
sets occur by matching the subjects-objects, objects-objects or subjects-
subjects of link predicates in different link sets. Nevertheless, this infor-
mation can be derived from the void:objectsTarget and void:subjectsTarget
assertions, if any.

(3) Description Logic (DL) compliance [4]. By stating the domain and
range of link predicates with class expressions based on OWL 2 DL (e.g. a
range composed of multiple types/classes), we can take advantage of exist-
ing DL-parser and reasoner tools to infer instance types (e.g. http://owlcs.
github.io/owlapi/). However, since we can mix DL-based class expressions

http://owlcs.github.io/owlapi/
http://owlcs.github.io/owlapi/
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with void:class assertions, the resulting range/domain expressions are non-
compliant with DL.

(4) Verbosity. The use of class and property partition partners considerably
increases the number of triples to state for representing virtual links. This
also increases the complexity of writing of queries to retrieve the virtual link
set metadata.

(5) Resource mapping. VoID does not provide any explicit term and recom-
mendation to state resource mappings. By doing so, we mitigate or even
solve heterogeneities when matching resources with some commonality in
different datasets.

In the next subsection, we show how to solve these issues with VoIDext terms
and patterns.

3.2 Patterns to fully model complex link sets with VoIDext

To address the issues of modelling virtual link sets solely with VoID, we propose
new terms and patterns in VoIDext. Listing 4 illustrates the main VoIDext terms
(see terms with voidext: prefix) and design patterns to model complex link sets.
To assert the range and domain of predicates with VoIDext, we can directly
assign the voidext:linkPredicateRange and voidext:linkPredicateDomain proper-
ties to a link set, respectively (see Definitions 8 and 9). Complex link predicates’
domains and ranges (e.g. multiple types—union/intersection of classes) must be
stated as class expressions by using OWL 2 DL terms (e.g. owl:unionOf ). To
avoid ambiguities when interpreting link sets (i.e. a simple set versus a complex
one), we can explicitly state that two link sets are indeed part of a complex link
set. To do so, we must assign exactly two link sets to a complex link set with
the voidext:intersectAt property (see Definition 10). In a complex link set, a link
set must be connected to another link set by stating either void:objectsTarget
or void:subjectsTarget properties. This allow us to precisely know where the
intersection between RDF triples with predicates in different datasets occurs, in
other words, the matched RDF resource nodes: object-object, subject-subject,
and subject-object. For example, in Listing 4 with void:objectsTarget property,
we state that the lindas:longName predicate’s objects in LINDAS match the
objects of the dbp:shortName link predicate in DBpedia, and vice-versa. To
explicitly state the intersection type (e.g. object-object), we can assert the
voidext:intersectionType property (see Definition 11) to a complex link set as
shown in Listing 4.

Definition 8 (link predicate range). The link predicate’s object type (i.e.
class expression or literals), if any. Moreover, a link set (Definition 1) that is not
part of a complex link set (see Definition 6) and connects two datasets through
the link predicate’s object must specify the link predicate range. Indeed, this object
matches a second resource in another dataset. Therefore, the type of this second
resource is asserted as the link predicate range.
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Definition 9 (link predicate domain). The link predicate’s subject type (i.e.
class expression), if any.

Definition 10 (intersects at). It specifies the intersection of either exactly
two shared instance sets (see Definition 7) or two link sets, that compose a com-
plex link set.

Definition 11 (intersection type). It specifies the intersection type between
two RDF triples in different datasets. In other words, if the intersection occurs
at the subject xor the object node of a link predicate.

Based on Definition 6, the voidext:ComplexLinkSet OWL class is defined with
the following DL expression, IRI prefixes are ignored to improve readability:

ComplexLinkSet ≡ ¬SimpleLinkSet �
((∀intersectAt.Linkset � = 2 intersectAt) �

(∀intersectAt.SharedInstanceSet � = 2 intersectAt))

As a reminder, a void:Dataset is “a set of RDF triples that is published,
maintained or aggregated by a single provider”6. However, a complex link set
is composed of resources from two different datasets (e.g. two link predicates).
Therefore, we define voidext:ComplexLinkSet as being disjoint with void:Dataset
class. Consequently, a complex link set is not a void:Dataset and properties such
as void:propertyPartition cannot be assigned to it.

To address data heterogeneities, we can implement semantic relaxation by
stating the voidext:resourceMapping property (Definition 12) with a literal text
based on SPARQL language. In Listing 4, DS2 states a mapping in line 7 that
converts dbp:shortName language-tagged string values into simple literals and
maps the values to a corresponding one in LINDAS dataset. Thus, since this
mapping is defined using SPARQL language, it can be directly used to build
a SPARQL 1.1 federated query to perform the interlinks between datasets. In
Listing 4, voidext:recommendedMapping (Definition 13) assigns the LINDAS DS1

link set as the one containing the mapping to be considered when interlinking
with DBpedia in the context of Swiss cantons.

Definition 12 (resource mapping). It specifies the mapping function (fm)
to preprocess a resource (i.e. IRI or literal) in a source dataset in order to match
another resource in the target dataset. The resource preprocessing (i.e. mapping)
must be defined with the SPARQL language by mainly using SPARQL built-ins
for assignments (e.g. BIND), and expression and testing values (e.g. IF and
FILTER). The BIND built-in is used to assign the output of fm, if any.

Definition 13 (recommended resource mapping). It specifies one recom-
mended mapping function, if more than one mapping is defined in the different
sets that are part of a complex link set.

6 http://vocab.deri.ie/void#Dataset.

http://vocab.deri.ie/void#Dataset
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#DS 1 is a subset of LINDAS.
ex:LINDAS DBPEDIA SWISSCANTON

rdf:type void:Linkset ;
void:linkPredicate lindas:longName ;
voidext:linkPredicateRange

rdfs:Literal ;
voidext:linkPredicateDomain

lindas:Canton ;
voidext:isSubsetOf ex:LINDAS;
void:objectsTarget

ex:DBPEDIA LINDAS SWISSCANTON ;
voidext:resourceMapping

“‘?x a <https://gont.ch/Canton>.
. . . ’” ;

. . .

1#DS 2 is a subset of DBpedia.

2ex:DBPEDIA LINDAS SWISSCANTON

3rdf:type void:Linkset ;

4void:linkPredicate dbp:shortName ;

5voidext:isSubsetOf ex:DBPEDIA ;

6void:objectsTarget ex:LINDAS DBPEDIA SWISSCANTON ;

7voidext:resourceMapping

8“‘?dbpedia place dcterms:subject dbrc:Cantons of Switzerland.

9?dbpedia place dbp:shortName ?c.

10BIND(

11IF(STR(?c)=“Grisons”, “Graubünden / Grigioni / Grischun”,

12IF(STR(?c)=“Geneva”, “Genève”,

13IF(STR(?c)=“Lucerne”, “Luzern”,

14IF(STR(?c)=“Valais”, “Valais / Wallis”,

15IF(STR(?c)=“Bern”, “Bern / Berne”,

16IF(STR(?c)=“Fribourg”, “Fribourg / Freiburg”, STR(?c)

17)))))) as ?lindas objects)’”; . . .

ex:DBPEDIA LINDAS SWISSCANTON VL rdf:type voidext:ComplexLinkSet ;
voidext:intersectionType voidext:OBJECT OBJECT ;
dcterms:issued “2019-06-30”ˆˆxsd:date ;
rdfs:label “A virtual link set for cantons in both DBpedia and LINDAS Swiss government datasets.” ;
voidext:intersectAt ex:LINDAS DBPEDIA SWISSCANTON ;
voidext:intersectAt ex:DBPEDIA LINDAS SWISSCANTON ;
voidext:recommendedMapping ex:LINDAS DBPEDIA SWISSCANTON ; . . .

Listing 4. VoIDext-based patterns to model a complex virtual link set between the
LINDAS Linked Data service and DBpedia relying on link sets as targets. Dashed
underlined: one of the two can be chosen as the voidext:recommendedMapping ; and fully
underlined: predicates used to connect the datasets by void:objectsTarget predicates.

To exemplify a complex link set composed of shared instance sets
(Definition 7), let us consider the UniProt and European Bioinformatics Insti-
tute (EBI) RDF datasets (see Table 1). EBI and UniProt RDF data stores
use different instance IRIs and classes to represent the organism species, and
in a more general way, the taxonomic lineage for organisms. To exemplify
this, let us consider the <http://identifiers.org/taxonomy/9606> instance of
biopax:BioSource and the <http://purl.uniprot.org/taxonomy/9606> instance
of up:Taxon in EBI and UniProt datasets, respectively. Although these
instances are not exactly the same (i.e. distinct IRIs, property sets, and
contexts), they refer to the same organism species at some extent, namely
homo sapiens—human. By applying a semantic relaxation, we can state a
virtual link between these two instances. To establish this link, we need to
define a resource mapping function (i.e. fm(r)) either to the EBI or UniProt
species-related instances—either fm(<http://identifiers.org/taxonomy/9606>
) ≡<http://purl.uniprot.org/taxonomy/9606> or fm(<http://purl.uniprot.org/
taxonomy/9606>) ≡<http://identifiers.org/taxonomy/9606>. Listing 5
depicts how this complex link set is modelled with VoIDext-based patterns. Note
that it is not possible to define a shared instance set by only using VoID terms
because there is no link predicate (Definition 5) associated with the interlinks
that are different from rdf:type. To address this issue, we can assign a shared
instance type (Definition 14) with the voidext:sharedInstanceType property for
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each voidext:SharedInstanceSet instance (Definition 7). Other examples of com-
plex link sets are available in [13] and [14].

Definition 14 (shared instance type). The type (i.e. class) of the shared
instances in a given dataset. Shared instances imply equivalent or similar
instance IRIs that belong to different datasets.

4 VoIDext Benefits and Discussions

VoID instances (“assertion box”—ABox) are fully backward compatible with
the VoIDext schema since we mainly add new terms. The only change per-
formed in the VoID “terminological box” (TBox) concerns the void:target7

property domain. In VoIDext, this domain is the union of the void:Linkset
and voidext:SharedInstanceSet classes instead of solely void:Linkset, as stated
in VoID. We did this to avoid the replication of a similar property to state
target datasets to shared instance sets. Despite this modification, assertions of
void:target based on VoID remain compatible with VoIDext.

4.1 Retrieving Virtual Link Sets

Once the virtual links are modelled with VoIDext as discussed in Subsect. 3.2
and Supplementary Material Section 4 [13], there may exist at most four
kinds of virtual link sets as follows: (i) a voidext:ComplexLinkSet composed
of void:Linksets—e.g. see Listing 4; (ii) a voidext:ComplexLinkSet composed of
voidext:SharedInstanceSets—e.g. see Listing 5; (iii) a void:Linkset that is also

A) a subset of EBI

bioquery:EBI UNIPROT 10
rdf:type voidext:SharedInstanceSet ;

voidext:isSubsetOf bioquery:EBI ;

voidext:resourceMapping

“‘?IRI EBI a biopax:BioSource.

BIND(IRI(CONCAT(“http://purl.uniprot.org/taxonomy/”

, STRAFTER(STR(?IRI EBI),

“http://identifiers.org/taxonomy/”))) as ?IRI UNIPROT)

FILTER(STRSTARTS(STR(?IRI EBI),

“http://identifiers.org/taxonomy/”))’”;

voidext:sharedInstanceType biopax:BioSource ; . . .

B) a subset of UniProt

bioquery:EBI UNIPROT 11
rdf:type voidext:SharedInstanceSet ;

voidext:isSubsetOf bioquery:UNIPROT ;

voidext:resourceMapping

“‘?IRI UNIPROT a up:Taxon.

BIND(IRI(CONCAT(“http://identifiers.org/taxonomy/”

, STRAFTER( STR(?IRI UNIPROT),

“http://purl.uniprot.org/taxonomy/”) ) ) as ?IRI EBI)

FILTER(STRSTARTS(STR(?IRI UNIPROT),

“http://purl.uniprot.org/taxonomy/”))’” ;

voidext:sharedInstanceType up:Taxon ; . . .

bioquery:EBI UNIPROT 12 rdf:type voidext:ComplexLinkSet ;
voidext:intersectAt bioquery:EBI UNIPROT 11 ;
voidext:intersectAt bioquery:EBI UNIPROT 10 ;
voidext:recommendedMapping bioquery:EBI UNIPROT 10 ;

rdfs:label “Links between EBI and UniProt considering shared similar instances of organism taxonomy”@en; . . .

Listing 5. VoIDext-based patterns to model a complex virtual link set between
EBI and UniProt datasets modelled with shared instance sets (see fully under-
lined assertions). Dashed underlined: one of the two can be chosen as the
voidext:recommendedMapping.

7 https://www.w3.org/TR/void/#target.

https://www.w3.org/TR/void/#target
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a voidext:SimpleLinkSet ; and (iv) a voidext:SharedInstanceSet that is also a
voidext:SimpleLinkSet. Due to the page limit, the types (iii) and (iv) are exem-
plified in Fig. 7 and Listing 1.3 in Supplementary Material [13]. For each kind of
virtual link set, a SPARQL query template to retrieve the essential information
is asserted as an annotation of the voidext:ComplexLinkSet and voidext:Simple-
LinkSet sub-classes of voidext:VirtualLinkSet. These annotations are done by
asserting the voidext:queryLinkset and voidext:querySharedInstanceSet proper-
ties. Therefore, to retrieve virtual link sets of type (i) and (iii), we can execute
the SPARQL queries assigned with voidext:queryLinkset to the voidext:Complex-
LinkSet and voidext:SimpleLinkSet classes, respectively. Similarly, to retrieve
virtual link sets of type (ii) and (iv), we can execute the SPARQL queries
assigned with voidext:querySharedInstanceSet to the voidext:ComplexLinkSet and
voidext:SimpleLinkSet classes, respectively. These queries are described in [14].

4.2 Writing a Federated SPARQL Query with VoIDext Metadata

To illustrate how VoIDext can facilitate the writing of federated SPARQL
queries, let us consider that a SPARQL user wants to perform the Qf query
against the EBI dataset: “Show me all assays in rodents for the drug Gleevec (i.e.
CHEMBL941 identifier)”. One possible way to write this query is to consider
another dataset that contains organismal taxonomy information about rodents
such as the UniProt dataset. To be able to write this federated conjunctive
query over the EBI and UniProt datasets, the SPARQL user has to find out
how to relate these datasets. To do so, the SPARQL user can query the meta-
data about virtual link sets modelled with VoIDext—see the template queries for
this purpose in the VoIDext specification [14] and further details in Subsect. 4.1.
Table 3 exemplifies a possible outcome of these queries containing virtual link
set descriptions.

Based on the description of virtual link sets, users can select the link set
that best fit their needs to write Qf with SPARQL 1.1. In this example, a
user can choose the complex link set bioquery:EBI UNIPROT 12 about organ-
ism taxonomy depicted in Listing 5 and defined as the query result over the

SELECT ? a s s ay WHERE {
? a c t i v i t y a cco : A c t i v i t y ;

cco : ha sMo lecu l e chembl : CHEMBL941 ;
cco : hasAssay ? a s s ay .

? a s s a y cco : taxonomy ? IR I EB I .
?IRI EBI a <http://www.biopax.org/release/biopax-level3.owl#BioSource> .
BIND(IRI(CONCAT(“http://purl.uniprot.org/taxonomy/”,
STRAFTER(STR(?IRI EBI),“http://identifiers.org/taxonomy/”))) as ?IRI UNIPROT)
FILTER(STRSTARTS(STR(?IRI EBI),“http://identifiers.org/taxonomy/”))
SERVICE<https://sparql.uniprot.org/sparql>{
?IRI UNIPROT a up:Taxon.
? IRI UNIPROT r d f s : subC la s sOf ? taxon2 .
? taxon2 up : otherName “ r od en t s ” . } }

Listing 6. A federated query between EBI and UniProt datasets to retrieve assays in
rodents for the drug Gleevec (i.e. CHEMBL941). Table 2 contains the IRI prefixes.
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VoIDext metadata in Table 3—i.e. the T1 tuple. By considering T1 in Table 3,
the SPARQL user can draft Qf starting with the interlink between EBI and
UniProt as shown in bold in Listing 6. The user can now continue the writing
of Qf by solely focusing on each dataset separately—i.e. the non-bold part of
the Qf SPARQL query. Therefore, the fastidious process of finding out inter-
links and data transformations between EBI and UniProt to perform a federated
query is mitigated with the virtual link sets defined using the VoIDext vocab-
ulary. The query in Listing 6 can be executed in the EBI SPARQL endpoint
(see Table 1). Further examples of SPARQL federated queries that were written
based on VoIDext metadata are available as part of an application described in
Subsect. 4.4.

Table 3. The results of querying complex link sets composed of two shared instance
sets between EBI and UniProt.

4.3 Virtual Link Set Maintenance

Although, to manage the virtual link set evolution is out of the scope of this
article, we recommend to annotate the link sets with the issued and modified
dates such as depicted in Listing 4. This date information helps with the main-
tenance of virtual link sets. For example, let us suppose the release of a new
version of the DBpedia in August, 2019. By checking the difference between
the DBpedia new release date and the complex link set issued/modified date
(e.g. June 2019, see Listing 4), it might indicate a possible decrease in the vir-
tual link set performance, or even, invalidity of the interlinks due to the fact of
being outdated. In addition, for each virtual link set, we can state the perfor-
mance in terms of precision, recall, true positives, and so on by asserting the
voidext:hasPerformanceMeasure property. The range of this property is mex-
perf:PerformanceMeasure8. Thus, we can rely on the Mex-perf ontology (see

8 http://mex.aksw.org/mex-perf.

http://mex.aksw.org/mex-perf
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Footnote 8) to describe the virtual link set performances. The complex link set
example about Swiss cantons in Listing 4 has a precision and recall of 100%. In
this example, for every Swiss canton in LINDAS exists a corresponding one in
DBpedia. Therefore, if this performance is deteriorated after the new release of
one of the datasets involved, we should review this virtual link set. Further use
cases are exemplified in Supplementary Material Section 5 available in [13].

4.4 Benefits and a SIB Swiss Institute of Bioinformatics’
Application

Easing the Task of Writing SPARQL 1.1 Federated Queries. The formal
description of virtual link sets among multiple RDF datasets on the Web facili-
tates the manually or (semi-)automatically writing of federated queries. This is
because once the virtual link sets are defined between datasets with VoIDext, we
can interlink different RDF datasets without requiring to mine this information
again from the various ABoxes and TBoxes (including documentation, if any).
The mining task becomes more and more complex and fastidious if the TBox is
incomplete or missing when comparing with the ABox statements, for example,
a triple predicate that is not defined in the TBox.

Applying Semantic Relaxation Rather than Semantic Reconciliation.
The virtual link statements between datasets are more focused on the meaning
of interlinking RDF graph nodes rather than the semantics of each node in the
different datasets and knowledge domains. For example, let us consider the vir-
tual link illustrated in Fig. 1. When considering solely the LINDAS dataset, the
lindas:longName is a rdf:Property labelled as a “District name or official munic-
ipality name”. In DBpedia, dbp:shortName is a rdf:Property labelled as “short
name” and in principle can be applied to any instance. Hence, it is not restricted
to district names. In addition, one property is about long names while the other
one is about short names. However, they state similar literals in the context of
Swiss cantons as discussed in Sect. 3. Therefore, although these properties are
semantically different (hard to reconcile), we can still ignore heterogeneities for
the sake of interlinking DBpedia and LINDAS.

Facilitating Knowledge Discovery. As noticed in [1], yet there are many
challenges to address in the semantic web such as the previous knowledge of the
existing RDF datasets and how to combine them to process a query. VoIDext
mitigates these issues because RDF publishers (including third-party ones) are
able to provide virtual link sets which explicitly describe how heterogeneous
datasets of distinct domains are related. Without knowing these links, to poten-
tially extract new knowledge that combines these datasets is harder or not
even possible. The virtual link sets stated with VoIDext terms provide sufficient
machine-readable information to relate the datasets. Nonetheless, the automatic
generation of these link sets is out of the scope of this article.

A SIB Swiss Institute of Bioinformatics application. We applied the
VoIDext vocabulary in the context of a real case application mainly involving
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three in production life-sciences datasets available on the Web, namely UniPro-
tKB, OMA and Bgee RDF stores—see SPARQL endpoints in Table 1. The RDF
serialization of virtual link sets among these three databases is available in
[13] and it can be queried via the SPARQL endpoint in [12] with query tem-
plates defined in [14] as described in Subsect. 4.1. Based on these virtual links,
a set of more than twelve specialized federated query templates over these data
stores was defined and are available at https://github.com/biosoda/bioquery/
tree/master/Queries. These templates are also available through a template-
based search engine, see http://biosoda.expasy.org. Moreover, as an example of
facilitating knowledge discovery, we can mention the virtual link sets between
OMA and Bgee. These two distinct biological knowledge domains when com-
bined enable to predict gene expression conservation for orthologous genes (i.e.
corresponding genes in different species). Finally, new virtual link sets are being
created to support other biological databases in the context of SIB—https://sib.
swiss.

5 Conclusion

We successfully extended the VoID vocabulary (i.e. VoIDext) to be able to for-
mally describe virtual links and we provided a set of SPARQL query templates to
retrieve them. To do so, we applied an agile methodology based on the SAMOD
approach. We described the benefits of defining virtual links with VoIDext RDF
schema, notably to facilitate the writing of federated queries and knowledge
discovery. In addition, with virtual links we can enable interoperability among
different knowledge domains without imposing any changes in the original RDF
datasets. In the future, we intend to use VoIDext to enhance keyword-search
engines over multiple distributed and independent RDF datasets. We also envis-
age to propose tools to semi-automatically create VoIDext virtual link state-
ments between RDF datasets. We believe these tools can leverage the adoption
of VoIDext by other communities besides SIB, Quest for Orthologs consortium
(https://questfororthologs.org), and Linked Building Data Community (https://
www.w3.org/community/lbd) where the authors are involved. We also encour-
age other communities to collaborate on open issues in the public GitHub of
VoIDext in [13] to refine this vocabulary for other use cases that have not been
contemplated during this work. Finally, to support virtual link evolution, we aim
to develop a tool to automatically detect broken virtual links because of either
data schema changes or radical modifications of instances’ IRIs and property
assertions.
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33. Živanovic, M.: SpecINT: a framework for data integration over cheminformatics
and bioinformatics RDF repositories (2019). semantic-web-journal.net

https://www.w3.org/TR/sparql11-federated-query/
https://dblp.org/rec/bibtex2/conf/webdb/IseleJB11
https://dblp.org/rec/bibtex2/conf/webdb/IseleJB11
http://aaai.org
https://doi.org/10.1007/978-3-319-54627-8_5
https://doi.org/10.1007/978-3-319-54627-8_5
https://doi.org/10.1007/978-3-319-58068-5_7
http://semantic-web-journal.net

	VoIDext: Vocabulary and Patterns for Enhancing Interoperable Datasets with Virtual Links
	1 Introduction
	2 Related Work
	3 Contribution
	3.1 Patterns to partially model complex link sets with VoID terms
	3.2 Patterns to fully model complex link sets with VoIDext

	4 VoIDext Benefits and Discussions
	4.1 Retrieving Virtual Link Sets
	4.2 Writing a Federated SPARQL Query with VoIDext Metadata
	4.3 Virtual Link Set Maintenance
	4.4 Benefits and a SIB Swiss Institute of Bioinformatics' Application

	5 Conclusion
	References




