
Downright: A Framework and Toolchain
For Privilege Handling

Remo Schweizer
Institute of Applied Information Technology

Zurich University of Applied Sciences
Winterthur, Switzerland

stephan.neuhaus@zhaw.ch

Stephan Neuhaus
Institute of Applied Information Technology

Zurich University of Applied Sciences
Winterthur, Switzerland

stephan.neuhaus@zhaw.ch

Abstract—We propose Downright, a novel framework based
on Seccomp, Berkeley Packet Filter, and PTrace, that makes
it possible to equip new and existing C applications with a
request broker architecture. An extensive configuration language
allows AppArmor-like configuration that supports programmers
in building rules for system call parameter validation and result
sanitization. Access to these privileged function calls can be
restricted both within Linux kernel and user spaces.

Downright’s main strength compared to related approaches
is that it implements a complete mediation request broker
architecture, in which all system calls are vetted before execution,
either by the kernel or by a request broker, which runs as another
process. This isolates the main program from many failures due
to programming bugs and attacks, which would have to pass
not only the attacked program, but the request broker also. We
argue that this makes acquiring and releasing elevated privileges
easier and safer. Downright eliminates the need to write Seccomp
programs, instead allowing policies to be expressed declaratively
through a rich policy language.

We demonstrate the viability of this approach by instrument-
ing nginx, an industrial-strength web server and reverse proxy.
While this instrumentation takes only a single line of code, we
argue that even this effort can be avoided by suitable C runtime
code. We show that Downright’s overhead is substantial, halving
nginx’s perfomance, but propose measures for optimisation.

Index Terms—security, privileges, request broker, seccomp

I. INTRODUCTION

Let’s say that you are writing an application, and you are
worried what damage the application might do if taken over,
e.g., through a remote code execution bug. Your attacker model
is therefore either a local or remote attacker that can take over
the application, either through a bug in your own code or a bug
in thirs-party code, such as a library. Let us assume that you
have already designed the application and expensive redesign
is out of the question, e.g., because of external constraints such
as frameworks that must be used for reasons outside of your
control. We believe this to be a common scenario. How can
you defend your application?

The attacker model is thus a local or remote attacker that
can feed arbitrary input to your application, with the goal of
escalating their privileges (for a local attacker) or to otherwise
violate security assumptions, e.g., by overwriting system files,
exhausting resources, crashing the system, executing attacker-
controlled code, etc.

One way to defend yourself is by privilege separation,
where one carefully separates the application into different
independent parts that run in different processes, as different
users, and communicate using well-defined interfaces. If you
have already designed the application, however, and if the
design does not aready feature such privilege separation, this
will be hard if not impossible to retrofit.

Another way is to use mandatory access control to limit the
side effects an application can have by limiting the types of
system calls the application can successfully issue, and their
arguments. For example, if after a certain point an application
cannot open a socket, the application cannot exfiltrate data
over the Internet, because in order to do that, the application
would have to call socket(2)1.

Existing tools for mandatory access control on Linux in-
clude AppArmor and SELinux, discussed later in this paper.
In order to use them, policy files need to be installed and,
in the case of SELinux, the machine rebooted for the newly
installed policy to come into effect. This is doable, but needs
support from the system administrator, which may or may not
be available.

The latest tool to allow this type of mitigation is Secure
Computation Mode with Berkeley Packet Filter (Seccomp-
BPF), discussed in some detail later in this paper. Seccomp-
BPF intercepts system calls. Its policies are written as short
programs for an abstract machine, at the end of which there is
a decision on what should happen with the system call (allow,
fail with error, etc). Seccomp-BPF is a very promising solution
because it adds both flexibility and speed to the checking
process. But programs are hard to write manually and there
is almost no tooling for Seccomp, making it hard to adopt.
Still, some popular programs such as Chrome, Android, and
Docker, use it [1], [2], [3].

Another form of privilege separation is the request broker.
In a request broker architecture, two processes, the main appli-
cation and the broker, work together. The main application has
no rights to call, e.g., open(2), but the broker does. The main
application would then forward the parameters for open(2)

1We write system calls like this(2), because system calls are traditionally
described in Section 2 of the Unix manual and the manual page can be viewed
by, e.g., man 2 socket. This also works with other sections of the Unix
manual, e.g, strace(1) or signal(7).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZHAW digitalcollection

https://core.ac.uk/display/250601851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to the broker, which would carefully check them and, if the
checks were successful, call open(2) on behalf of the main
application. The broker would then pass the resulting file
descriptor back to the main application. The idea is that the
broker is much smaller than the main application and therefore
presumably easier to get right. The policy under which this
broker would operate would not need to be installed by root.

Our framework Downright uses both Seccomp-BPF and a
request broker architecture. It takes a program that has already
been written, and a policy file. This policy file is compiled
into a Seccomp-BPF program at compile time. When run,
the program will automatically split into a main application
and a request broker. The request broker will then install
the precompiled Seccomp-BPF program and will further vet
system call arguments and results. Figure 1 has a simplified
developer’s overview.2

Downright focuses on the individual application, which has
security advantages and disadvantages. One advantage is that
it also works when the application is run by people without
administrator privileges and hence without privileges to ad-
ministrate AppArmor or SELinux. A potential disadvantage is
that the policy under which the application runs is fixed at
compile time and is thus not available to administrators.

Downright therefore makes the following contributions:
• Downright complenets existing tools that aim at prevent-

ing security problems from occurring in the first place by
limiting the damage that programs can do once they are
taken over.

• Downright can equip C programs with a request broker,
even when the application has already been written. No
changes in the application’s architecture are necessary.

• Downright works whenever the operating system supports
Seccomp and PTrace, which includes practically all Unix-
like operating systems. Downright can therefore be used
when it is not clear whether the target machine has
AppArmor, SELinux, or other mitigation mechanisms.

• Downright simplifies Seccomp-BPF tooling enormously,
eliminating the need to write Seccomp programs and
instead allowing policies to be expressed declaratively.

The remainder of this paper is structured as follows. After
giving an overview of related work in Section II, we discuss in
some detail the two pillars of Downright, Seccomp and PTrace,
in Section III. We do this because we feel that an under-
standing of these two techniques is essential for understanding
Downright’s architecture, which we give in Section IV. We
describe the experiments we did with Downright, concerning
both usability and performance, in Section V and conclude
and give an overview of future work in Section VI.

II. RELATED WORK

Downright uses both system call monitoring (to contain an
application’s access to resources) and privilege separation (to

2This figure ignores many technical details that have nothing to do with
Downright, such as linking with libraries; and also some that do, such as the
possible use of PTrace for further manipulation of system call arguments and
results, which are explained later.

limit damage in case an application is taken over). It uses
Seccomp-BPF and ptrace for this, and these are described in
more detail in Section III.

A. Monitoring System Calls

There is much related work on managing applications
by monitoring and restricting their system calls, among the
earliest are Systrace [4] and SubDomain [5]. Both follow
a similar approach by confining the application’s access to
resources like system calls, files, or sockets. Both tools focus
on specifically on suspect programs.

AppArmor [6] is a successor to SubDomain and hence
also restricts program’s access to resources, also using a per-
program configuration file. Like SubDomain, AppArmor will
only ever narrow, but not expand, the set of objects to which
a program has access.

SELinux [7] is a project developed by the NSA originally
for Mach and two research operating systems before it became
integrated into Linux. It is a “Mandatory Access Control
mechanism based on type enforcement”. It is essentially a
combination of traditional mechanisms, namely object label-
ing, role-based access control (RBAC), and, optionally, multi-
level security. Security decisions are made based on assigning
types to resources and then deciding based on RBAC whether
access should be granted. SELinux has a reputation for being
hard to configure and maintain.

B. Privilege Separation

Privilege separation [8] is a mechanism to prevent privilege
escalation by splitting privileges across multiple independent
execution entities communicating through an I/O channel like
sockets. The goal, therefore, is to give each subprocess of an
application minimal privileges to fulfill its intended task. Even
if one of the processes gets hijacked due to bugs or insufficient
input validation, damage to the entire system is limited.

An example using privilege separation is OpenSSH. This
remote login tool has employed privilege separation since
2002 [9]. In early versions of OpenSSH, an attacker was able
to craft messages that would lead to an escalation of privilege.
This risk is significantly reduced in the new architecture: if the
slave process is taken over by malicious input from the client,
no harm is done, since the ultimate decision whether the client
is successfully authenticated is made by the monitor, not the
slave.

Another popular example of privilege separation is qmail.
Compared to OpenSSH, the separation in this mail transfer
agent is much more fine-grained: qmail consists of more
than 24 separate Unix programs [10].

The advantage of such fine granularity is without question
its security aspect. Small, independent, and mutually non-
trusting modules drastically reduce the attack surface and also
the difficulty for a developer to understand a single module.
For example, in its now 23-year history, qmail has had zero
acknowledged exploits [11]. We are phrasing this sentence
carefully, acknowledging that there are some who claim to
have found security flaws in parts of qmail, but there seems to

C Program
Files

Executable
File

C Compiler
Main

Application

(a) Normal compilation and execution (without Downright)

System
Call

C Program
Files

Executable
File

C Compiler Request
Broker

(b) Modified compilation and execution (with Downright)

Seccomp-BPF
Program

Downright
Policy File

Downright
C Files

Policy
Compiler

Seccomp-BPF
PTrace
C File

Main
Application

System
Call

user kernel

user kernel

Developer writes this file

System writes/provides this file

Legend

Fig. 1. Simplified developer’s view of Downright. (a) Normally, one writes the program only and then lets system tools compile it into an executable. When
that executable is run, the resulting process makes system calls. (b) With Downright, compilation includes a policy file. The resulting process is split into a
request broker and a main application, whose system calls are additionally vetted with a Seccomp-BPF program inside the kernel. The C program files are
the same as in (a); the only changes with respect to (a) are that a policy file needs to be written and that the build system needs to accommodate Downright,
which in practice means changes to makefiles.

be a lack of proof-of-concept exploits that would violate any of
qmail’s guarantees in typical installations. A major contributor
to this excellent track record is certainly qmail’s design.

The concept of privilege separation therefore has many
advantages. But controlling when and how system calls are
executed is a good second line of defence. Qmail is again a
case in point. In explaining what is and what is not covered by
the qmail security guarantee, Daniel J. Bernstein writes [11]:

In May 2005, Georgi Guninski claimed that
some potential 64-bit portability problems allowed
a “remote exploit in qmail-smtpd.” This claim is
denied. Nobody gives gigabytes of memory to each
qmail-smtpd process, so there is no problem with
qmail’s assumption that allocated array lengths fit
comfortably into 32 bits.

To not “give gigabytes of memory to [a] qmail-smtp pro-
cess” can only mean that it should be best practice to limit the
amount of memory that qmail-smtp can allocate with brk(2),
and that is indeed the case: in many packaged versions of
qmail, qmail-smtpd is started through a script that explicitly
limits its available heap memory.

Also, limiting the execution of system calls is beneficial if,
through some oversight, part of a privilege-separated process
is taken over, even though that is less likely to happen than in a
monolithic application. If the goal is to provide an easy-to-use
framework to reduce the risk of privilege escalation for any
Linux-based application, it is necessary to intercept system
calls in order to mitigate the amount of damage that can be

done if access to them is unrestricted.
Murray et al. present a concept where a process is dis-

aggregated at the level of dynamically loaded libraries [12]
by executing each library call in its own virtual machine.
This protects its data from the access by potential malicious
functions of other untrusted libraries. With this approach,
privilege escalation attacks are still a serious problem because
system calls are executed on the host system to which the
main application has full access.

A completely different approach has been developed by
Wang et al. with Arbiter [13]. The primary focus of Arbiter is
to achieve fine-grained privilege separation in multithreaded
applications. To accomplish this task, part of the memory
management system of the kernel is rewritten to support
permission bits. These bits can prevent mutual data access
among the threads running in the same address space. Arbiter
applies the concept of least privilege to shared data objects.
However, this contradicts the objective of minimizing the
privileges of the whole application. Portability also suffers due
to the use of a custom Linux kernel.

Privman achieves privilege separation by running a priv-
ileged child process as a request broker [14]. Alternative
versions for common used functions such as priv_fopen(3)
for fopen(3) can then be used to outsource the execution to
this specific request broker. Using this approach, an attacker
gaining the privileges to execute arbitrary codes can just invoke
open(2) directly in order to open a file. In this way, the security
measures are circumvented.

Unlike Privman, in which every function call must be
manually replaced by a Privman alternative, Privtrans extends
the automation process [15]. With Privtrans, a developer can
simply achieve privilege separation by adding annotations to
the source code. The framework then automatically executes
these privileged actions in a separate child process. Even
though it offers more possibilities and a simpler interface than
Privman does, it is prone to the same attack vector as Privman.

ProgramCutter takes a similar approach to Privtrans but
enhances the concept in such a way that no expert knowledge
about the software application is required [16]. The tool
automatically detects and rewrites privileged actions at the
system call level to use special wrapper functions provided
by ProgramCutter. This approach assumes that the privileged
sections that it generates are free from vulnerabilities and that
the execution traces used to cut the application are complete.
The last point is rarely the case, especially in large and
complex software solutions.

SPL|T handles this problem and circumvents it by adding a
configuration file and a statistical code analysis [17]. It pro-
vides a further solution to the problem when privileged parts
call functions mutually. This particular problem is resolved
by creating IPC-based communication gateways between the
privileged parts of the application. Also in this approach, data
validation and sanitization for the privileged functions must
be implemented manually in order to prevent an attacker from
misusing them through a loophole in the unprivileged process.

SOAAP is a recent attempt at automating at least some of
the work that has to be done when separating privileges. The
authors note that “application compartmentalisation remains
an art rather than a science: identifying, implementing, and
debugging partitioning strategies requires detailed expertise in
both the application and security”, which we can certainly
see in action in the design and implementation of qmail; see
above. They therefore leverage “semi-automated techniques,
grounded in static analysis, dynamic analysis, and automated
program transformation, to improve the developer experience”.

C. Privilege Dropping

Unix3 has another technique for running parts of a process
with fewer privileges than other parts: privilege dropping,
using real, effective, and saved user and group IDs; see,
e.g., [18, Chapter 9].

While this sounds fairly straightforward, getting it right so
that switching between the various user IDs does not lead to
additional security problems is tricky [19].

One program that has traditionally used this approach for
privilege control is sendmail [20]. Unlike qmail, sendmail
is a monolithic program, which therefore relies on careful
awareness of what privileges are required when, and therefore
on when to drop root privileges and when to reacquire them.
This is hard to get right and consequently, sendmail has been
a never-ending source of security problems (admittedly not

3Comprising actual Unix as defined by whoever is holding the trademark at
the moment, as well as the various BSDs, Linux, and lesser-known Unix-like
operating systems out there.

all related to privilege escalation due to improper privilege
handling). Additionally, sendmail being a monolithic program
means that if you compromise part of a sendmail process,
you have compromised all of it, leading to potentially easier
privilege escalation attacks.

Jenkins et al. present a different perspective on their ap-
proach to build a new concept for dropping privileges [21].
Adding security policies at the Application Binary Interface
(ABI) level helps define semantic relationships between code
and data. Like the approach of Murray et al., the concept solely
focuses on restricting access to data. The access to system calls
and its risk for privilege escalation attacks remain untouched.

D. Seccomp and BPF

Seccomp-BPF has no publicly available tooling support.
From the fact that Firefox and other systems use Seccomp-
BPF, it can be deduced that the creators of these systems must
have some internal tooling, which is, however, not publicly
available. There is tooling for BPF, in the form of BCC [22],
but BCC seems not to be available for the reduced virtual
machine that Seccomp-BPF uses.

III. SECCOMP AND PTRACE

A. Seccomp and Seccomp-BPF

One recent attempt to facilitate managing privileges is Sec-
comp, introduced into Linux with version 2.6.12 in 2005 [23].
Once Seccomp is in effect, the only things the process can do
is compute, exit(2), and read(2) from and write(2) to already
open file descriptors.4 This drastically limits a process’s ability
to do harm if taken over. For example, a traditional exploit with
shellcode will not be able to execute a shell because fork(2)
and exec(2) are not available. Memory similarly cannot be
exhausted because brk(2) cannot be called. Attempts to make
a system call that is not allowed lead to the process receiving
a signal.

Obviously, this approach is highly secure, but also very
restrictive. Some programs may want to avail themselves of
most of the protections that Seccomp offers, but may have
to run with third-party libraries that execute system calls not
under the control of the original program. A more flexible
architecture is given by Seccomp-BPF, in which Berkeley
Packet Filter programs are written to make a decision whether
a given system call should be allowed or not.

Seccomp-BPF programs are int arrays containing instruc-
tions for a virtual machine. This machine has an instruction
counter and an accumulator, both of which can be manip-
ulated through various instructions. Seccomp-BPF programs
are assembled on the fly through C macros like BPF_STMT
or BPF_JMP. There are opcodes like BPF_LD (for load),
BPF_JMP (for conditional jumps) and BPF_RET (for return-
ing a verdict on the system call). Jump targets are relative
instruction numbers. Here is an example of a Seccomp-BPF
program.
// Architecture check (see text)
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,

4And return from a signal handler, but this should be rare.

offsetof(struct seccomp_data, arch)),
BPF_JMP(BPF_JMP | BPF_JEQ | BPF_K,

AUDIT_ARCH_X86_64, 0, 7),

// exit_group(2) is allowed
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,

offsetof(struct seccomp_data, nr)),
BPF_JMP(BPF_JMP | BPF_JEQ | BPF_K,

__NR_exit_group, 6, 0),

// exit(2) is allowed
BPF_JMP(BPF_JMP | BPF_JEQ | BPF_K,

__NR_exit, 5, 0),

// setrlimit(2) fails with EPERM changing CPU limit
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,

offsetof(struct seccomp_data, nr)),
BPF_JMP(BPF_JMP | BPF_JEQ | BPF_K,

__NR_setrlimit, 0, 2),
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,

offsetof(struct seccomp_data, args[0])),
BPF_JMP(BPF_JMP | BPF_JEQ | BPF_K,

RLIMIT_CPU, 2, 1),

// Action executions according to the rule
BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL),
BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ALLOW),
BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ERRNO

| (EPERM & SECCOMP_RET_DATA)),

The virtual machine on which this program runs has
access to a C struct called seccomp_data. The vari-
ous fields in that struct can be accessed with offsetof.
For example, to access the member arch, we write
offsetof(struct seccomp_data, arch).

The first two instructions above check the kernel architec-
ture. The instruction BPF_LD loads a value into the BPF
machine’s accumulator, the machine architecture in this case.
The second line jumps (opcode BPF_JMP) if this value
is equal to (opcode flag BPF_JEQ) the constant (opcode
flag BPF_K) AUDIT_ARCH_X86_64. It jumps to the next
instruction if they were equal (jump target 0) and 7 + 1 = 8
instructions ahead if not (jump target 7).

Counting 8 instructions ahead gives a return statement
(opcode BPF_RET) that returns the constant (opcode flag
BPF_K) SECCOMP_RET_KILL. This causes the process to
be sent a signal.

This highlights most of the commonly used features of
Seccomp-BPF, but the block of statements commented “setr-
limit(2)” presents a more complicated case. Here, we want
to make setrlimit(2) fail with EPERM, but only if the process
attempts to change the CPU time limit. First, we check whether
setrlimit(2) is being called. If it is, we then also check the first
argument to that syscall. We assume that the arguments to the
syscall are passed in an int array args. If the argument
indicates that the RLIMIT_CPU limit is to be changed, we
jump to the last instruction in this program, otherwise, we
jump to the instruction that returns SECCOMP_RET_ALLOW.
The last instruction says to fail the system call without
executing it (return value SECCOMP_RET_ERRNO), but not
by killing the process, but with errno set to “permission
denied” (EPERM).

It is obvious that Seccomp-BPF can provide much finer-
grained control over system call execution than simply allow-

ing or denying certain system calls. However, Seccomp-BPF
programs have limitations compared to (non-Seccomp-)BPF
programs:

• There is only one register. Hence, we cannot load the
system call number and the arguments into separate
registers to check them there.

• Jump offsets must be nonnegative. Therefore, loops are
not supported and Seccomp-BPF programs will always
terminate.

• It is not possible to inspect data behind a pointer. Sec-
comp allows checking the pointer itself, but not the data
to which it points.

• Seccomp-BPF programs are hard to write.5 While there is
tooling for BPF generally, for example through BCC [22],
this tooling is not available for the BPF machine that is
employed by Seccomp.

B. PTrace

Seccomp can be made to interact with PTrace. PTrace is
a very old technique, having been introduced in 1975 with
Unix V6. It allows a process tracer to observe and control
the execution of another process, called the tracee. Typically,
PTrace is used to implement debuggers or application analysis
tools that inspect not only system calls but also the overall
internal state of the application and its registers. The most
popular example of a PTrace application is strace(1).

In addition to the Seccomp-BPF return values
SECCOMP_RET_ALLOW, SECCOMP_RET_KILL, and
SECCOMP_RET_ERRNO, Seccomp also supports the return
value SECCOMP_RET_TRACE, which allows a tracer to be
notified right before the execution of a system call. It gives
the tracer the possibility to perform the following actions:

• Inspect or modify the arguments of a system call.
• inspect or modify the return value of a system call.
• Resume the execution of a system call.
• Prevent the execution of a system call.
• Change the system call into another one.
• Terminate the tracee.
PTrace deals with multithreaded applications by pausing

all threads until the tracer has finished its job. This ensures
that no data inconsistencies can occur while the application is
inspected. This will obviously degrade performance.

C. Why Seccomp-BPF and PTrace?

While it is clear that judicious use of Seccomp-BPF and
PTrace can defend an applicaiton against the attackers modeled
in Section I, it is also clear that these measures are very low-
level. Why use something so restricted and low level? Why
not write these policies in C, or BCC?

One reason for not writing the policies directly in C is
that such policies must be installed at the operating system
level, and having user-defined code run with operating system

5In fact, Reviewer Three caught errors in the jump offsets in the above
example, which came about because the example was part of a larger
Seccomp-BPF program that was then shortened for this paper, and the jump
targets manually adjusted.

privileges is generally considered a bad idea. Remember that
Downright’s aim is not to stop, e.g., a buffer overflow from
occurring, but rather to mitigate damage if it occurs. Thus, if
such policies would run only in user-land, they simply could
not defend against application take-over: the bugs would still
be there and if the bug is in third-party code, such as a library,
user-level code could not mitigate it.

We can’t use BCC because BCC does not apply to Seccomp-
BPF, since the virtual machine is different.

The other reason is that processes need to make system
calls in order to have side effects: a process cannot exfiltrate
secrets, for example, if it cannot issue write(2), for example. A
process cannot allocate memory from the operating system if
it cannot call brk(2). And so on. Restricting a process’s access
to system calls is therefore a very effective way of stopping
the type of attack outlined in Section I.

IV. ARCHITECTURE

A. PTrace and Seccomp

Figure 2 gives a detailed overview of system call execution
with Downright. The process begins when the tracee attempts a
system call. This invokes the kernel, which happens differently
on different system architectures. On 32-bit based systems,
interrupt 0x80 is triggered, but on 64-bit systems, the machine
instruction syscall is used. In both cases, the Seccomp-
BPF filter program will be executed. There are five possible
outcomes:

• If SECCOMP_RET_KILL is returned, the application is
terminated immediately.

• If SECCOMP_RET_TRAP is returned, the system call
is not execued and a SIGSYS signal is sent to the
application, which is caught by a Downright signal han-
dler. In the current implementation, the handler is used
for debugging purposes only. It allows a system call
number to be printed, showing what system call caused
the application to fail.

• If SECCOMP_RET_ERRNO is returned, the system call is
not executed and the variable errno is set to ENOSYS,
indicating that the system call failed due to a missing
implementation. This error code is also used by PTrace
if a system call is skipped.6

• If SECCOMP_RET_TRACE is returned, the system call is
not executed and the tracer is invoked.

• If SECCOMP_RET_ALLOW is returned, the kernel will
execute the system call normally.

The tracer waits for an invocation due to
SECCOMP_RET_TRACE. The tracer’s multiplexer calls
a wrapper function based on the system call number. The
wrapper function first reads the argument data from the
registers and memory space of the tracee. Afterwards, the

6Choosing an appropriate value for errno is tricky, because we do not
want to repurpose an error code that is already in use to signal other failures.
We think that ENOSYS should be sufficiently rare to reliably signal to the
application that the system call was forbidden by Seccomp. ENOSYS should
be rare because normal programs go through the standard C library, which
should have stub routines only for those system calls that actually exist.

system call arguments can be examined and, if necessary,
modified. Three different outcomes can occur:

• Terminate instructs the tracer to immediately stop the
execution of the tracee.

• Skip sets the register orig_rax to -1, signaling that
the system call should be skipped, i.e., no system call
should be executed.

• Allow, on the other hand, keeps orig_rax unchanged.
In case of Allow and Skip, the tracer returns from its

invocation and the execution path continues within the kernel.
If orig_rax is modified to -1, the system call won’t be
executed, which is recognized as failed execution within the
main application. When the orig_rax register is unchanged,
the system call will be executed.

After the execution of the system call, the tracer is invoked
yet again, and the same procedure is executed. The difference
now is that the return data from the executed system call
can now be checked and modified. For instance, this allows
the data received by the system call recvmsg(2) to be read
and manipulated before it is returned to the tracee. It would
therefore be possible to change the data that an application
reads from a file.

Contrary to the first invocation, only two return values are
supported at this stage, Terminate (terminating the tracee)
and Allow (returning to the kernel and then back to the
tracee). After that, the tracee continues to run until the next
attempt to execute a system call is made.

Downright also supports a debug mode, which is sometimes
needed to understand which system call led to the termination
of an application. If the debug flag is set in the configuration
file, Seccomp actions will be emulated within the tracer. The
tracer will then print debug information and emulate the action
that Seccomp would have performed.

B. Configuration Language

The configuration of the framework consists of two files.
One is a C-based source file defining the system call prototypes
together with some annotations to specify the special behavior
of some arguments. This file will in general have to be written
only once, and will need modification only when new system
calls need to be supported. The other is an INI-type file
containing the rules for the system calls. This file is the main
configuration file for the application and will have to be written
from scratch for each application.

1) System Call Prototypes: The C-based configuration file
with the default name sec_syscalls_conf.c needs to be written
only once and needs to be amended only when new system
calls come along or when the semantics of existing system
calls change. It contains the following information:

• system call arguments with their type,
• dependencies among single arguments,
• group names for arguments,
• headers used by a system call,
• implementation of the system call check routine,
• custom types and function definitions.

Fig. 2. System call execution in Downright

For example, the prototype for getcwd(2) looks like this:
/*
* systemcall: SYS_getcwd
*
* set_group[buf]: path
* set_length[buf]: size
*/
void sec_getcwd(__OUT char *buf,

unsigned long size) {
char *cwd = getPidCwd(pid);
strncpy(buf, cwd, size);
free(cwd);

OVERWRITE(buf, buf)
OVERWRITE(return, strlen(buf))
SKIP_SYSTEMCALL()

CHECK_RULES()
}

Each configuration prototype begins with a comment block
giving the system call’s parameters various attributes. In this
example, the set_group attribute tells Downright that the
parameter buf in the system call definition is also referred
to as path in the rules configuration file. It also informs
Downright that size is the amount of space reserved for buf,
something that one cannot say in ordinary C.

The new system call’s header is located right below this
comment block. The function’s name must be different from
that of the system call and the return value should be void.
The arguments must be equal to the prototype of the system
call. In this example, we use __OUT to signal that the
parameter buf is a return parameter.

The wrapper function body then contains the actual im-
plementation of the system call. Normally, this will make
use of helper macros such as OVERWRITE (overwrites one
parameter with data from another) or CHECK_RULES (inserts
the generated rules at this point).

2) Security Rules: The framework provides an extensive
language for defining access rules for system calls. The same
syntax can also be used to define the rules that modify the
parameters of a system call. The example configuration shown
in Figure 3 demonstrates some of Downright’s capabilities.
The compilation process that takes these rules and compiles
them into Seccomp-BPF and PTrace programs cannot be
described within the confines of this paper; the reader is
encouraged to read the source code on https://github.com/
deforation/sec_seccomp_framework and to get in touch with
the authors.

The [General] section determines the basic sys-
tem call access rules for the tracer and its tracee. The
default_action defines what action will be performed
if a system call is made for which no rule exists:

• terminate causes the termination of the tracee invok-
ing the system call.

• skip causes the kernel not to execute the system call.
The error number in errno(2) will be set to ENOSYS.

• allow permits the execution of the system call.
• trap terminates the application and prints information

about the responsible system call. This option makes
more sense for debugging purposes on the tracer side.

A default action on the tracer side can be specified with
the option default_action_tracer:. Using the option
scheme syscall <action> as shown in lines 6 and 7,
the access rights to system calls as a whole can be specified.
Unlike the default actions, trap is invalid and modify can
be used instead. This option forces Seccomp to always contact
the tracer for checking and deciding on the final verdict. This
option should be used with caution as it causes performance
of system call execution to drop drastically (see Section V).

1 [General]
2 debug: False
3

4 # Client specific rules
5 default_action: terminate
6 syscall allow: exit, exit_group, close, fstat,
7 getrlimit
8 syscall modify: gettimeofday, getcwd
9

10 # Tracer specific rules
11 default_action_tracer: terminate
12 tracer allow: ptrace, wait4, getpid, socket, sendto,
13 read, chdir, getcwd, fstat, lseek, lstat, open,
14 close, kill, exit, exit_group, write, readlink,
15 connect, prlimit64
16

17 [Global]
18 path redirect: dir_contains("/invalid") => "/valid"
19

20 [open]
21 default: skip
22 path allow(r): dir_starts_with("./config")
23 allow(cw):
24 filename dir_starts_with("./create_write_only")
25 terminate(r): filename dir_starts_with("./logs"),
26 filename dir_starts_with("/bin")
27 redirect: path dir_ends_with(".dat") => ".txt"
28

29 [setrlimit]
30 default: allow
31 skip: resource == RLIMIT_CPU
32 && limit->rlim_max > getHardLimit(pid, resource)
33 redirect: limit->rlim_cur > limit->rlim_max:
34 limit->rlim_cur = limit->rlim_max
35

36 [chdir]
37 default: allow
38 path skip: not dir_starts_with("./")
39

40 [dup]
41 default: allow
42 fd skip: fd_path_starts_with("./secret")
43

44 [socket]
45 default: terminate
46 allow: domain == AF_UNIX && type == SOCK_STREAM,
47 domain == AF_LOCAL && type == SOCK_STREAM
48

49 [read:after]
50 default: allow
51 redirect: buf starts_with("not") => "its",
52 buf contains(" ") => " "
53

54 [write]
55 default: allow
56 buf redirect: contains("i")=>"!",
57 contains("e")=>"3", contains("a")=>"4",
58 contains("l")=>"1", contains("t")=>"7",
59 contains("s")=>"5"

Fig. 3. System call rule demonstration example.

On the client side, the one system call needed by an
application is exit(2) (or exit_group(2), depending on the
standard C library used). On the tracer side, the particular
system call actions can be defined, using the option scheme
tracer <action>. For the tracer to be operable, more
privileges such as ptrace(2), wait4(2) and others are required.
The last option debug: specifies whether the framework is
used in debug. If activated, all Seccomp actions are redirected
to the tracer, which then logs information about the system
call before the initial action is executed.

The [Global] section allows defining detailed rules that
affect all system calls. The rule in line 18 shows that when
accessing a path containing the string /invalid, the path is
modified and the occurence is replaced with /valid. An ap-
plication accessing the file /home/user/invalid/config.ini will
be redirected to /home/user/valid/config.ini.

Other than the global sections, the rules for the specific
system calls can be defined by creating a section named after
the system call. The [open] section defines the rules for
open(2). Each such section requires a default: attribute,
defining the standard action for the system call. The first rule
in line 22 determines that the files in the config directory of the
current working directory can only be accessed in read-only
mode. It is therefore not possible to create or write files in it.
The subdirectory create_write_only, on the other hand, allows
files to be created and written to. For the terminate: action,
based on read permissions, two rules are defined. The first rule
specifies that the application terminates when it tries to read
data from the subdirectory logs. The second rule dictates that
the application terminates if read attempts are made for the
files in the /bin directory. The last rule in line 26 shows a
scenario where all attempts to open files ending in .dat are
changed so that the corresponding .txt file is opened instead.

More complex rules can be established as shown in lines
31–34 for setrlimit(2). This example shows how to prevent
an application, even one running as root, from increasing its
CPU time limit: the application can only reduce the amount of
time it can consume. The second rule in line 33–34 makes the
system call fail for some resources, if the soft limit is greater
than the hard limit. If this is the case, the soft limit is reduced
to the same value as the hard limit.

The chdir(2) call changes the process’s working directory.
To prevent an application from changing its main directory
to the root directory or any other sensitive directory, a rule
as shown in line 38 can be deployed. This rule ensures that
the tracee cannot move its working directory up within the
directory hierarchy of its current working directory: it can
only go deeper. This can drastically increase the security when
combined with a similar rule for open(2), allowing the files to
be opened within the current working directory only.

The rule in line 42 shows the limited capability of the
possible checks concerning file descriptors. In this case, the
descriptor path is evaluated and if it points to a file in secret,
this rule will prevent the creation of a file descriptor copy.

The framework not only has the ability to work with system
calls before their execution, but it also specifies the rules after

they have been executed. Such a section must be marked
with the attribute [syscall:after] after the name of
the system call, as shown in line 51. The rule performs two
actions. If the data read starts with “not”, it is replaced with
“its”. The second rule replaces all the occurrences of double
spaces with single spaces.

In the last example, we manipulate a buffer. Regardless of
the location where the application attempts to write data, it gets
modified. The six rules in lines 56–59 transform all output into
leetspeak, also known as 1337. If an application runs the print
command for the text “This is leetspeak”, what will appear
instead is “Th!5 !5 13375p34k”. The example shows that all of
the redirection rules to modify data are executed consecutively.

C. Build Process

In order to incorporate Downright into your own programs,
follow these steps:

1) Download Downright from https://github.com/
deforation/sec_seccomp_framwork

2) Place the folders Generator and seccomp_framework
into the program’s main source directory.

3) Modify the file containing main():
• #include "seccomp_framework/seclib.h"

• Rename the main function to sec_main_after.
• Create a new main function and call

return run_seccomp_framework(argc, argv,
NULL, sec_main_after);

4) Add Downright files from seccomp_framework to the
makefile so they are compiled together with the main
application: seclib.c, sec_client.c, sec_ptrace_lib.c, sec_
seccomp_bpf_generator.c, sec_seccomp_rules.c, sec_
syscall_emulator.c, and sec_tracer.c.

5) Formulate security rules within the file sec_rules.ini.
Additional modifications to the file sec_syscalls_conf.c
may be required.

6) Run the configuration builder of Downright with the
command
python3 SecConfigBuilder.py \
-o ../seccomp_framework

7) Compile and link the program.

V. EVALUATION

A. Case Study: nginx

Nginx is a popular web server used by 63 % of the
world’s busiest sites [24]. Security for these kinds of tools
is an absolute necessity since they are exposed directly to the
Internet. On the basis of different attack scenarios, and based
on relevant CVEs [25], we build Downright configurations and
evaluate their effectiveness.

1) Mitigating CVE-2016-1247: In 2016, a vulnerability was
published that allowed local users with access to the web
server user www-data to gain root access. All an attacker had
to do was replace nginx’s error log with a symbolic link
pointing to /etc/ld.so.preload, which can be used to replace
library functions and system call stubs with custom functions
for the entire system.

[General]
syscall skip: symlink

[symlink]
default: allow
skip: path dir_starts_with("/etc")

Fig. 4. Downright fix for nginx vulnerability CVE-2016-1247.

A normal, unprivileged user can not create files in /etc.
But the process to rotate nginx’s logs runs as root and
periodically replaces log files. If this happens, the symlinked
error log gets created as /etc/ld.so.preload, with write access
for www-data. An attacker can then remove the symbolic link
and write custom wrapper function to /etc/ld.so.preload.

To mitigate this attack, it is necessary to know how an
attacker can gain access to the user www-data. Since hosted
pages and nginx run under this user, this means mitigating
a remote code execution (RCE) vulnerability.

The example configuration in Figure 4 shows how this
could be done. The first fix in line 2 revokes permission to
symlink(2). Without access to this system call, an attacker is
unable to create a symbolic link to /etc/ld.so.preload. If the
system call should be allowed, the fix from lines 4–6 can be
used. The validation check tests if the target of the symbolic
link starts with /etc. If this is the case, the system call will not
be executed.

Note that this vulnerability is extemely hard to mitigate
in nginx’s source code, because a source code fix would
have to mitigate all possible RCE vulnerabilities. However, if
mitigating RCE vulnerabilities were easy, they wouldn’t exist.
A framework like Downright is therefore a very good second
line of defense. Note also that preventing symlink(2) could
have been done not as a mitigation, but as the result of an
analysis before release, just as is normally done to create an
AppArmor profile. In this case, the mitigation would have been
elevated to a prevention.

2) Mitigating CVE-2009-2629: This was one of the most
serious vulnerabilities nginx has had in its history. Attackers
could execute arbitrary code through specially crafted HTTP-
requests. In certain cases, this led to a buffer underflow and
data of the uniform resource identifier (URI) was written to the
heap before the allocated buffer. Such bugs cannot be detected
on the system call level and their complete prevention using
this framework is not possible.

However, Figure 5 shows a mitigation strategy. The se-
curity rules are configured so that nginx can only call a
minimal set of system calls. Monitoring nginx reveals that
the following system calls, and only those, are needed to host
HTML pages: accept4, bind, brk, clone, close, connect, dup2,
epoll_create, epoll_ctl, epoll_wait, eventfd2, exit, exit_group,
fcntl, fstat, geteuid, getdents, getpid, getrlimit, ioctl, listen,
lseek, lstat, mkdir, mmap, prctl, pread64, pwrite64, read,
recvfrom, rt_sigaction, rt_sigprocmask, rt_sigsuspend, send-
file, set_robust_list, setrlimit, setsockopt, shutdown, socket,
socketpair, stat, uname, write, and writev.

[General]
default_action: terminate
syscall allow: accept4, bind, brk, clone, close,
connect, dup2, epoll_create, epoll_ctl, epoll_wait,
eventfd2, exit, exit_group, fcntl, fstat, geteuid,
getdents, getpid, getrlimit, ioctl, listen, lseek,
lstat, mkdir, mmap, prctl, pread64, pwrite64, read,
recvfrom, rt_sigaction, rt_sigprocmask,
rt_sigsuspend, sendfile, set_robust_list,
setrlimit, setsockopt, shutdown, socket,
socketpair, stat, uname, write, writev

[setrlimit]
default: terminate
allow: resource == RLIMIT_NOFILE

[mkdir]
default: terminate
allow: path dir_starts_with("/var/nginx/tmp")

Fig. 5. Downright fix for nginx vulnerability CVE-2016-1247.

To further reduce the attack surface, access to these system
calls should only be granted if the arguments fulfill certain
criteria. For example, setrlimit(2), should only be allowed
if the first argument equals RLIMIT_NOFILE because no
other resource limits are ever changed by nginx. Similarly,
mkdir(2) should also be restricted: nginx uses mkdir(2) to
create five folders for temporary files in one specific directory.

Thus mitigated, an attacker confronted with such a limited
set of system calls will have a harder time trying to seriously
damage the system or steal confidential information, especially
if validation checks to the most dangerous system calls brk(2),
mkdir(2), open(2), socket(2), ioctl(2), brk(2), dup2(2), setr-
limit(2), and clone(2) are applied [26].

However, mitigation for this vulnerability is better be done
through AppArmor or SELinux, since no request broker archi-
tecture is needed for this kind of blanket allow/deny policy.

3) Mitigating CVE-2009-3898: This vulnerability, discov-
ered in In 2009, allowed remote authenticated users to create
and overwrite arbitrary files. The attacker only needed to
change the header of a HTTP-request and change its desti-
nation to a path that contains ../. To mitigate the vulnerability,
multiple methods exist: access to unused files can be prevented
by performing sanity checks on open(2) or, alternatively, it can
be checked whether the request string contains ../. The latter
method became the publicly available fix.

The configuration file extract in Figure 6 contains both
variants of the fix for the vulnerability. The first fix in
lines 1–15 minimise the access permissions for files. The
open(2) system call will be skipped unless Nginx reads its
configuration files or files that belong to the web page. Write
permissions are only given to log files and the application
status file called nginx.pid. In addition, nginx is required to
have permissions to create and read the status file. Note that
the security rules use relative paths. Calling chdir(2) to change
the working directory, should, be disallowed or absolute paths
should be considered instead. The second fix, shown in lines
10–13, scans each request to the web server for the occurrence
of the string ../, which is then removed.

[General]
syscall skip: chdir, openat

[open]
default: skip
filename allow(r): dir_starts_with("./html"),

dir_starts_with("./conf")
filename allow(w): dir_starts_with("./logs"),

dir_starts_with("./access.log")
filename allow(rwc):

dir_starts_with("./logs/nginx.pid")

[recvfrom:after]
default: allow
buf redirect: contains("../") => ""
#redirect: buf contains("../"): return => -1

Fig. 6. Downright fix for nginx vulnerability CVE-2009-3898.

As much as one wuld like to terminate the process if ../ is
encountered in the request, one has to concede that the request
itself is valid, since there is nothing in any standard that would
forbid it. Another solution would be to replace the return value
of the system call with -1. Nginx then thinks that the system
call failed and the vulnerable source is invoked. This is the
commented-out solution in line 16.

4) Conclusion: When no request broker is needed, mitiga-
tions should not be done within Downright. While mitigating
nginx issues with Downright is not trivial, it is surprising
how small the configuration files are relative to their impact.
Note also that mitigating some security issues cannot be done
inside nginx’s source code. For example, to ensure that
mkdir(2) is not called outside a given directory, it is not enough
to check every mkdir(2) call in the nginx source code, since
the entire issue is mitigating these problems if, e.g., mkdir(2)
is called through an RCE exploit and not from nginx code.

B. Performance Evaluation

1) Performance Overhead Per System Call: We used a
Debian platform consisting of a virtual machine running on
an Intel Core i7-4700HQ at 2 GHz with two cores assigned.
Each system call was executed five million times in a row on
five different configurations:

• Without framework integration.
• Permit execution using a Seccomp rule.
• Disallow execution using a Seccomp rule.
• Invoke the tracer using a Seccomp rule and permit the

execution of the system call.
• Invoke the tracer using a Seccomp rule and disallow the

execution of the system call.
Figure 7 shows the result of the performance measurements.
The getrlimit(2) system call is often used to obtain informa-

tion about certain resource restrictions such as the number of
allowed processes, the available execution time, maximal stack
size and others. The overhead for the Seccomp-based checks
is between 46–63 %. Decisions using the tracer usually take
about 108 times longer than an immediate execution.

The open(2) and close(2) system calls were also tested in a
much more realistic scenario, in which a file was repeatedly

ge
trl

im
it(

2)

ge
tpi

d(
2)

ge
tui

d(
2)

ge
tcp

u(2
)

ge
teg

id(
2)

op
en

/cl
os

e(2
)

set
rli

mit(
2)

fcn
tl(

2)

ge
ttim

eo
fda

y(2
)

ge
tcw

d(
2)

writ
e(2

)

rea
d(

2)

102

103

104

105

E
xe

cu
tio

n
tim

e
[n

s]

Without framework Seccomp allow Seccomp skip PTrace allow PTrace skip

Fig. 7. Result of performance measurements.

opened and closed. For these system calls Seccomp causes an
overhead of only 7.2 %, which is a good result because they
are usually called multiple times within an application. If the
tracer is also used, the performance overhead rises to 16.2%.

This is in apparent conflict to Figure 7, which shows a
much higher performance penalty. The solution is that, even
though executing the system call with the tracer results in
a hundredfold increase in execution time, in reality, the real
time between the call to open(2) and its return is not spent
mostly executing kernel code. Rather, it is spent waiting for
I/O to complete. This is in contrast to, e.g., getrlimit(2), where
information from the process descriptor is copied into the
result.

All this is good news because it suggests that in ordinary
workloads, the massive increase in system call execution time
due to the tracer will largely go away. This is borne out in our
performance study on nginx; see the next section.

2) Performance Overhead For Nginx: In our scenario,
nginx is used to host a small site consisting of static
content and the functionality to traverse directories using the
integrated autoindex module. The number of requests that
nginx can process with and without Downright is measured
by httperf [27], which allows opening multiple connections
to a web server, logging request service times.

Sending 700,000 requests to seven resources in 100,000
sessions took nginx 50.66 s to service (13,816.6 requests
per second). The same scenario on nginx protected by the
Downright rules defined in Figure 8 took 109.32 s (6,403.2
requests per seconds). Performance is therefore about halved.

It should be noted, however, that every GET request needs
to go to the tracer, which is very expensive. In this case, we
did this to showcase Downright’s abilities for complex system
call parameter and result manipulation, but if the only reason
the tracer is invoked is to forbid ../ in requests, this can more
easily be handled inside nginx itself: if ../ is used to access

files outside the virtual server’s web root, then the protections
for open(2) will effectively prevent that also.

C. Performance Optimisation

As we have seen in the previous sections, Downright’s
performance overhead is not negligible. This is obviously one
of the major stumbling blocks for people to use Downright.

As we saw in Figure 7, whenever PTrace is involved,
performance suffers. This is first because invoking PTrace
means at least two additional context switches, which are
expensive. Luckily, PTrace is only needed for the fancier kinds
of system call manipulation, such as manipulating system call
arguments or return values. This should be rare, so this heavy
performance hit should not normally occur. (In the case of
nginx, one reason for the large performance hit was due to
manipulation of arguments to system calls like mkdir(2), which
could also be accomplished using chroot(2) jails.) The second
reason why PTrace is expensive is because the broker itself
may need to make system calls of its own. One possibility
to reduce this high number of user-to-kernel crossings is to
incorporate Downright’s tracer into the kernel. This should
eliminate the largest obstacle to higher speeds.

Another reason for Downright’s performance overhead is
the behaviour of PTrace on multithreaded applications. As
explained in Section III, PTrace will stop all threads in a
multithreaded application so that examination of the executing
application can finish without having to consider the possiblity
of data races. While this guarantees the correct execution of
the tracee, it obviously hinders performance.

The key insight here is that, for the purposes of Downright,
threads may continue while a system call is processed by
Downright. If an application has a data race while a system
call is in progress, that application is buggy. Allowing data
races to occur during system calls therefore does not make the

[General]
debug: False

default_action: terminate
syscall skip: chdir, chroot
syscall allow: exit, exit_group, close, fstat, lstat,
lseek, getpid, pread64, epoll_create, brk, geteuid,
mkdir, ioctl, getrlimit, setrlimit, stat, fcntl,
setsockopt, listen, mmap, rt_sigprocmask, accept4,
rt_sigaction, clone, pwrite64, dup2, socketpair,
rt_sigsuspend, set_robust_list, prctl, eventfd2,
epoll_ctl, epoll_wait, bind, sendfile, shutdown,
writev, write, read, uname, socket, connect

default_action_tracer: terminate
tracer allow: ptrace, wait4, getpid, sendto, chdir,
getcwd, lseek, lstat, readlink, kill, connect, fstat

[open]
default: skip
filename allow(r): dir_starts_with("./html"),
dir_starts_with("./proc/stat"),
dir_starts_with("/conf"),
dir_starts_with("/proc/cpuinfo"),
dir_starts_with("/etc/localtime"),
dir_starts_with("/sys/devices/system/cpu/online"),

filename allow(w): dir_starts_with("./logs"),
dir_starts_with("./access.log")

filename allow(rwc): \
dir_starts_with("./logs/nginx.pid")

filename redirect: dir_ends_with(".txt") => ".dat"

[getdents]
default: allow
fd skip: fd_path_contains("nolist")

[recvfrom:after]
default: allow
redirect: buf contains("../"): return => -1,
buf starts_with("GET /data/private/") \

=> "GET /data/fake_private/"

Fig. 8. Nginx case study: rule set for performance measurements.

application any buggier than it already was.7 At the moment,
Downright itself is not multithreaded. Enabling the process
to continue other threads while a single thread is stopped
by PTrace, and enabling Downright to process several system
calls at once would improve Downright’s performance again.

When Seccomp alone is being used, performance overheads
are roughly between 7–50 %. The reason for this large range
is that purely informative syscalls that simply copy a value
from the process descriptor, like getpid(2), are impacted most
severely. System calls like open(2), read(2), or write(2) may
get by with comparatively little impact of about 7 %, as we
saw above. This is actually good news, since the calls that
are actually responsible for most of the heavy lifting in server
processes are those I/O calls, and they have comparably little
overhead. The solution here would be to simplify the checking
that the rules do, and to optimise these cases specifically.

As we saw in the nginx case study, an I/O-heavy process
that uses PTrace may be only half as fast as an unprotected
one. But note that protecting nginx with these rues drastically

7It might, however, make it easier to trigger the bugs with malicious
requests, so this argument is advanced only cautiously.

reduces the attack surface available to an attacker, so one might
argue that this may well be a price worth paying.

To summarise, these are the most promising areas for
performance improvement:

• use Seccomp as much as possible;
• incorporate Downright’s tracer into the kernel to reduce

the large number of context switches; and
• continue executing threads while a single thread is

stopped by PTrace.
One good usability performance optimisation would be

to include the initialisation of Downright’s runtime in a
specialised crt0.o. This is the file that contains the linked
program’s main entry point. It is responsible for initialising
the C runtime and for calling main(). If such a crt0.o would
be written, then Downright-enabled programs could be built
without changing any source code whatsoever.

VI. CONCLUSION

We have introduced Downright, a framework and toolchain
for privilege handling in Linux and comparable Unix-like sys-
tems. Downright’s toolchain consists of a system call prototype
file, to be written once per system call, and an application-
specific rule set, to be written separately for each application.
Once written, inclusion of Downright into the application is
easy, requiring a one-line modification to main().

Once the process runs, all its system calls are automatically
routed through a combination of Seccomp and PTrace (if
configured). The rules defined in the rule set allow for very
fine-grained control over what system calls are allowed when,
and even allow manipulating parameters and return values.

Performance was tested for nginx, where an I/O heavy test
load that triggered the most expensive rule evaluation revealed
that performance drops to roughly half of the performance of
an unprotected nginx.

Downright is suited for programs that need special pro-
tection and that must run on Unix-like systems on which
protection from other mechanisms such as AppArmor or
SELinux may not be available, e.g., when the person running
the program does not have root access to install AppArmor or
SELinux profiles, or when reboots to activate SELinux profiles
cannot be countenanced.

Of course, there are security situations for which Down-
right is not especially suited. For example, if one wants to
allow the creation of child processes generally, but limit the
number of child processes, Downright is the wrong tool and
setrlimit(RLIMIT_NPROC, ...) should be used in-
stead. Downright should really only be used to limit a process’s
access to system calls and, in exceptional circumstances, to
modify a system call’s arguments and return values.

We do not wish to give the impression that Downright is a
cure-all. It is not. But we are excited by the possibilities of
new techniques like Seccomp-BPF and urge the community
to consider experimenting with them in order to provide
what is at the moment the largest obstacle for their adoption:
better tooling. We believe that Downright makes an important
contribution to that end.

VII. ACKNOWLEDGMENTS

The authors would like to thank Felix von Leitner, whose
talk at the 23c3 [28] and blog post on Seccomp in Firefox [29]
gave rise to this work.

We would also like to thank the reviewers, especially Re-
viewer Three, whose numerous constructive comments made
this a much better paper.

REFERENCES

[1] “Linux sandboxing,” Jan. 2019. [Online]. Available: https://chromium.
googlesource.com/chromium/src/+/master/docs/linux_sandboxing.md

[2] Android Developer’s Blog, “Seccomp filter in android o,” Jan.
2019. [Online]. Available: https://android-developers.googleblog.com/
2017/07/seccomp-filter-in-android-o.html

[3] Docker Documentation, “Seccomp security profiles for docker,”
Jan. 2019. [Online]. Available: https://docs.docker.com/engine/security/
seccomp/

[4] N. Provos, “Improving host security with system call policies,” in
Proceedings of the 12th Usenix Security Symposium. Berkeley, CA,
USA: USENIX Association, 2003, pp. 257–272. [Online]. Available:
https://www.usenix.org/legacy/events/sec03/tech/provos.html

[5] C. Cowan, S. Beattie, G. Kroah-Hartman, C. Pu, P. Wagle,
and V. Gligor, “SubDomain: Parsimonious server security,” in
Proceedings of the 14th Systems Administration Conference (LISA
2000). Berkeley, CA, USA: USENIX Association, Dec. 2000, pp.
355–367. [Online]. Available: https://www.usenix.org/conference/lisa-
2000/subdomain-parsimonious-server-security

[6] C. Brown, SUSE Linux. Sebastopol, CA, USA: O’Reilly Media, Jul.
2006, ISBN 059610183X.

[7] P. Loscocco and S. Smalley, “Integrating flexible support
for security policies into the Linux operating system,”
National Security Agency, Tech. Rep., Feb. 2001. [Online].
Available: https://www.nsa.gov/resources/everyone/digital-media-
center/publications/research-papers/assets/files/flexible-support-for-
security-policies-into-linux-feb2001-report.pdf

[8] N. Provos, M. Friedl, and P. Honeyman, “Preventing privilege
escalation,” in Proceedings of the 12th USENIX Security Symposium.
Berkeley, CA, USA: USENIX Association, 2003, pp. 231–242.
[Online]. Available: https://www.usenix.org/legacy/events/sec03/tech/
provos_et_al.html

[9] N. Provos. (2002, Mar.) Privilege separated openssh. [Online].
Available: http://citi.umich.edu/u/provos/ssh/privsep.html

[10] M. Hafiz, R. E. Johnson, and R. Afandi, “The security architecture of
qmail,” in Proceedings of the 11th Conference on Pattern Languages of
Programs, Sep. 2004.

[11] D. J. Bernstein. (1997, Mar.) The qmail security guarantee. [Online].
Available: https://cr.yp.to/qmail/guarantee.html

[12] D. G. Murray and S. Hand, “Privilege separation made easy:
Trusting small libraries not big processes,” in Proceedings of
the 1st European Workshop on System Security. New York,
NY, USA: ACM, 2008, pp. 40–46. [Online]. Available: http:
//doi.acm.org/10.1145/1355284.1355292

[13] J. Wang, X. Xiong, and P. Liu, “Between mutual trust and mutual
distrust: Practical fine-grained privilege separation in multithreaded
applications,” in Proceedings of the 2015 USENIX Annual Technical
Conference. Santa Clara, CA: USENIX Association, 2015, pp.
361–373. [Online]. Available: https://www.usenix.org/conference/atc15/
technical-session/presentation/wang_jun

[14] D. Kilpatrick, “Privman: A library for partitioning applications,”
in Proceedings of the 2003 USENIX Annual Technical Conference,
FREENIX Track, Jun. 2003, pp. 273–284. [Online]. Available: https:
//www.usenix.org/legacy/events/usenix03/tech/freenix03/kilpatrick.html

[15] D. Brumley and D. Song, “Privtrans: Automatically partitioning
programs for privilege separation,” in Proceedings of the 13th USENIX
Security Symposium. Berkeley, CA, USA: USENIX Association, 2004,
pp. 57–72. [Online]. Available: https://www.usenix.org/legacy/events/
sec04/tech/brumley.html

[16] Y. Wu, J. Sun, Y. Liu, and J. S. Dong, “Automatically partition software
into least privilege components using dynamic data dependency
analysis,” in Proceedings of the 28th IEEE/ACM International
Conference on Automated Software Engineering. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 323–333. [Online]. Available: https:
//doi.org/10.1109/ASE.2013.6693091

[17] M. Trapp, M. Rossberg, and G. Schaefer, “Automatic source code
decomposition for privilege separation,” in Proceedings of the 24th In-
ternational Conference on Software, Telecommunications and Computer
Networks (SoftCOM), Sep. 2016, pp. 1–6.

[18] M. Kerrisk, The Linux Programming Interface: A Linux and Unix
Programming Handbook. No Starch Press, 2010.

[19] H. Chen, D. Wagner, and D. Dean, “Setuid demystified,” in
Proceedings of the 11th USENIX Security Symposium. Berkeley, CA,
USA: USENIX Association, 2002, pp. 171–190. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647253.720278

[20] E. Allman and B. Costales, sendmail. Sebastopol, CA, USA: O’Reilly
Media, Nov. 1993.

[21] I. R. Jenkins, S. Bratus, S. Smith, and M. Koo, “Reinventing the
privilege drop: How principled preservation of programmer intent
would prevent security bugs,” in Proceedings of the 5th Annual
Symposium and Bootcamp on Hot Topics in the Science of Security.
New York, NY, USA: ACM, 2018, pp. 3:1–3:9. [Online]. Available:
http://doi.acm.org/10.1145/3190619.3190635

[22] IOVisor Project. (2019, Jul.) BPF compiler collection (BCC). [Online].
Available: https://github.com/iovisor/bcc

[23] J. Edge. (2015, Sep.) A seccomp overview. [Online]. Available:
https://lwn.net/Articles/656307/

[24] Nginx, Inc. (2018) nginx. [Online]. Available: https://www.nginx.com/
?_ga=2.228374173.103440784.1525847183-1521241523.1523906676

[25] MITRE Corporation. (2018) CVE details—the ultimate security
vulnerability datasource. [Online]. Available: https://www.cvedetails.
com/

[26] M. Bernaschi, E. Gabrielli, and L. V. Mancini, “Operating system
enhancements to prevent the misuse of system calls,” in Proceedings of
the 7th ACM Conference on Computer and Communications Security.
New York, NY, USA: ACM, 2000, pp. 174–183. [Online]. Available:
http://doi.acm.org/10.1145/352600.352624

[27] D. Mosberger, M. Arlitt, T. Bullock, T. Jin, S. Eranian, R. Carter,
A. Hately, and A. Chadd. (2018) httperf. [Online]. Available:
https://github.com/httperf/httperf

[28] F. von Leitner. (2015, Dec.) Check your privileges. Talk at 32c3.
[Online]. Available: https://www.youtube.com/watch?v=2e91cEzq3Us

[29] ——. (2017, Aug.) Ich baue mir unter Linux meinen Firefox ganz gerne
selbst. [Online]. Available: https://blog.fefe.de/index.html?ts=a77b2171

