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ABSTRACT

One of the major Android security mechanisms for enforcing restrictions on the core facilities of a
device that an app can access is permission control. However, there is an enormous amount of risk
with regards to granting permissions since 97% of malicious mobile malware targets Android. As
malware is becoming more complicated, recent research proposed a promising approach that checks
implemented app behaviour against advertised app behaviour for inconsistencies. In this paper, we
investigate such inconsistencies by matching the permission an app requests with the natural language
descriptions of the app which gives an intuitive idea of user expected behaviour of the app. Then, we
propose exploiting an enhanced app description to improve malware detection based on app descrip-
tions and permissions. To evaluate the performance, we carried out various experiments with 56K
apks. Our proposed enhancement reduces the false positives of the state-of-the-art approaches, Why-
per, AutoCog, CHABADA by at least 87%, and TAPVerifier by at least 57%. We proposed a novel
approach for evaluating the robustness of textual descriptions for permission-based malware detec-
tion. Our experimental results demonstrate a high detection recall rate of 98.72% on 71 up-to-date
malware families and a precision of 90% on obfuscated samples of benign and malware apks. Our
results also show that analysing sensitive permissions requested and Ul textual descriptions provides

a promising avenue for sustainable Android malware detection.

1. Introduction

Permission control is one of the major Android security
mechanisms(Barrera et al., 2010; Felt et al., 2011c). Permis-
sions are requested by applications to access specific opera-
tions or core functionalities of a device(Enck et al., 2011)).
Some of the sensitive information they provide access to in-
cludes phone numbers, address book, precise locations, and
SMS messages, thereby making privacy an important chal-
lenge in the Android permission model. The popularity of
the Android platform has also been studied in parallel with
a continual increase in the number of malicious applications
(Felt et al., 2011b; Zhou et al., 2012). For example, Syman-
tec’s! latest threat intelligence proposes that one of the ways
to stay protected from mobile malware is by paying close at-
tention to the permissions requested by apps. Whenever a
new Android app is installed, users run the risk of the app
being malware, since 97% of malicious mobile malware tar-
gets Android (Kelly (2014)). However, users do not fully
understand the risk of granting permissions and consequent
implications (Felt et al. (2012); Kelley et al. (2012); King
etal. (2011)).

Many detection techniques based on static analysis(Arp
etal.,2014; Chenetal., 2013; Zhou et al., 2012; Grace et al.,
2012; Feng et al., 2014; Aafer et al., 2013; Mariconti et al.,
2017) and/or dynamic analysis (Yan and Yin, 2012; Tam
et al., 2015; Rastogi et al., 2013a; Enck et al., 2014; Xue
et al., 2017) have been proposed to detect mobile malware.
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To detect malware, a signature-based technique extracts ma-
licious behaviours as signatures from analyzing the seman-
tics of known malware. However, the signature-based tech-
nique is challenging, as malicious behaviour often appears to
be indistinguishable from that of benign apps. For example,
an app that tracks the user’s current location may be suspi-
cious, but that is the normal behaviour of benign navigation
apps or map applications. The question is then - whether the
program behaves as advertised and not necessarily, whether
it matches a specific pattern or not. Alternative approaches
use machine-learning based classifiers for detecting mali-
cious Android apps(Arp et al., 2014; Mariconti et al., 2017;
Zhang et al., 2014, 2015a). Recent studies (Laskov et al.,
2014; Xu et al., 2016; Rastogi et al., 2013b) show that the
performance of the classifiers can be degraded and evaded
by malware variants.

To increase the robustness of malware detection, re-
cent research has suggested a promising approach that mod-
els stealthy behavior by checking the implemented pro-
gram behavior against the advertised program behaviour.
These approaches (e.g. AsDroid(Huang et al., 2014),
Whyper(Pandita et al., 2013), AutoCog(Qu et al., 2014),
CHABADA(Gorla et al., 2014)) profile an app’s expected
behaviour by extracting the semantic patterns from its de-
scription and characterizing the app’s real behavior by exam-
ining the permission required by the app. TAPVerifier(Yu
et al., 2016) extracted the app’s semantic meaning from
its privacy policies. DroidSIFT(Zhang et al., 2014) builds
Ul-dependent behavioural graphs to understand whether a
sensitive action is likely benign or malicious. Describe-
ME(Zhang et al., 2015a) generate security-centric app de-
scriptions, based on program analysis. To enhance user
perception of security awareness, Android markets directly
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present two classes of literal app behaviour elements: i) per-
mission requests and ii) textual descriptions. The textual de-
scription represents the advertised behaviour and permission
request is a proxy for the implemented behaviour. Our work
is a substantial improvement over the state-of-the-art for the
following reasons:

1. Textual Semantics from App Description: We pro-
pose that an app’s description cannot detail all its
privacy-related behaviour, as developers could decide
to describe the app in ways that do not specify sen-
sitive behaviour. Also, since an app’s descriptions
on app distribution platforms, like Google Play, has a
character limit?, it cannot detail all behaviours, which
can lead to false negatives. To this end, we aim to an-
swer the question of gathering enough semantics for
behavioural element mismatch. As opposed to the
current state-of-the-art semantic gathering from de-
scription(Pandita et al., 2013; Qu et al., 2014; Gorla
et al., 2014) or the combination with the privacy pol-
icy(Yu et al., 2016), we extract information from ten
different sources to determine the semantic meaning
of app descriptions. We also argue that different
privacy-sensitive behaviour can be described in dif-
ferent aspects of an app’s metadata. One behaviour
could be described in the screenshots and featured
graphics while another behaviour in the What’s new
in this version listing. Focusing on the description
and privacy policy alone ignores other behaviours,
potentially leading to an increased incidence of false
positives. In the Android malware community, the
behavioural element is synonymous to dynamic analy-
sis where the elements are behavioural characteristics
which have been extracted while the sample has been
executed. In this work, we use the term for a different
purpose, where we define behavioural elements are
static features that describe the advertised behaviour
of an app in terms of the permission it requests and
the description of the functionality it provides.

2. Permission State Space: These approaches (Pandita
et al., 2013; Qu et al., 2014; Yu et al., 2016; Gorla
et al., 2014) have considered a maximum of 11 per-
missions, which is less than 20% of the permission
space in Google Play, making a generalization of be-
havioural element mismatch challenging. For exam-
ple, Google Play identifies 26 dangerous permissions
that directly impact on a user’s privacy, while the cur-
rent state-of-the-art only considers six. Therefore, in-
stead of developing permission semantics for 11 per-
missions, we integrate permission semantics for the
66 permissions as of API level 26 (Android 8.0).

3. Semantic Meaning: WHYPER(Pandita et al., 2013)
and AutoCog(Qu et al., 2014) both leveraged a com-
positional vector grammar parser by Stanford to ob-
tain typed dependencies. It was stated in Pandita et al.
(2013) and Qu et al. (2014) that the major cause of
the false positives and false negatives are the incorrect
parsing of sentences by underlying NLP infrastruc-

ture. We have leveraged a state-of-the-art neural net-
work dependency parser(Chen and Manning, 2014)
that outperforms other parsers in speed and accuracy.
The more accurate the parsing of a sentence by un-
derlying NLP infrastructure, the more it reduces the
common erroneous detection of the system, thereby
reducing false negatives and false positives.

. Semantic Correlation: The key component for seman-

tic extraction in our design is the use of state-of-the-
art distributed word embedding models that provide
a dense vector representation of words that surround
the target word. We use the Stanford word-embedding
algorithm GloVe-(Global Vectors for Word Represen-
tation)(Pennington et al., 2014) trained on Wikipedia
data comprising 6 billion tokens and a 40,000-word
vocabulary, to find the semantic correlation between
semantic patterns observed from the app description
and a semantic model of requested permissions. Such
a superior analysis further mitigates the problem of
limited semantic information.

The main contributions of this work are summarized be-

e Enhancing State-of-the-art approaches: The pro-

posed techniques of gathering app descriptions from
different sources, enhancing the permission-state
space, construction of semantic models and extrac-
tion of semantic meaning and semantic correlation
provides a significant improvement upon the state-
of-the-art approaches in investigating description-to-
permission fidelity in Android apps. The proposed
enhancement outperforms the current approaches in
the extraction of semantic meaning from app descrip-
tions.

Characterizing App Behaviour: An approach that
demonstrates that app descriptions and behavioural el-
ements (e.g., a fine-grained stratification of Android
permissions) are a promising way of enhancing a user
perception of the actual behaviour of Android apps
and the detection of malicious apps. This approach
provides a technique to determine the semantic mean-
ing of app descriptions, construct semantic models to
match natural language text to permissions, and char-
acterizes the app behaviour as malicious or benign
based on the discrepancies in the semantic correlation
between semantic patterns observed from the app de-
scription and the semantic model of requested permis-
sions. The behaviour element mismatch characteriza-
tion proposed in this study can be a feature for enhanc-
ing permission-based malware detection, where infor-
mative features are required to describe the behaviour
of an app.

Robustness of Technique for Malware Detection:
We also evaluated the robustness of the proposed app
behaviour characterization technique for permission-
based malware detection. Our experimental re-
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sults demonstrate a high detection sensitivity rate of
98.72% on 71 up-to-date malware families and preci-
sion of 90% on 6066 obfuscated samples of benign and
malware apks. This shows that the proposed approach
can enhance permission-based malware detection ap-
proach. We also demonstrate that analysing sensi-
tive permissions requested with Ul textual descrip-
tions provides a promising avenue for long-span mal-
ware detection. This was achieved by investigating the
performance deterioration of our approach with six
state-of-the-art malware detectors for Android. For
the reproducibility of research, the enhanced malware
descriptions gathered and data results for the malware
families investigated are publicly available. We also
demonstrate that analysing sensitive permissions re-
quested and Ul textual descriptions provides a promis-
ing avenue for sustainable Android malware detection.
The public repository also contains the package iden-
tifiers and results of all the samples investigated in the
experimental evaluation. https://www.dropbox.com/sh
/dl4g2fqivc7xijo/AAAWTGm\GENNXXYBoHdQQXIpta?d1l=0

2. Related Works

2.1. Permission Analysis

The effectiveness of the Android permission system in
helping users make informed security decisions against mal-
ware was investigated by Felt et al. (2012). The complex-
ity of Android permission requests is studied by Frank et al.
(2012). Barrera et al. (2010) investigated 1100 most pop-
ular Android apps using the Self-Organizing Map (SOM)
algorithm to perform visualization of permission-based sys-
tems. Felt et al. (2011a) developed a tool, Stowaway, to de-
tect over-privilege in Android apps, a situation in which an
Android app requests more permission than necessary. In
Wei et al. (2012), a study on the permission evolution in the
Android ecosystem and its usage was presented. Au et al.
(2012) developed PScout to extract permission specifica-
tion APIs from Android OS source code with static analysis.
Backes et al. (2016) revisited the use-case of mapping An-
droid permission to framework/SDK/API methods and pre-
sented novel mappings that could not be discovered due to
insufficient knowledge about Android framework internals
in PScout and Stowaway. In further addressing the complex-
ity of demystifying the Android permission API specifica-
tion, Aafer et al. (2018) proposed ARCADE, to derive a pre-
cise protection specification for Android APIs, using path-
sensitive analysis and a novel graph abstraction technique.
Zhang et al. (2013) proposed a dynamic analysis framework,
VetDroid, to capture anomalies in permission use behaviour
by examining the internal sensitive behaviours of the app.
In contrast to all these approaches, our work is mainly based
on investigating stealthy behaviours of Android applications
using a permission sensitivity index and the behavioural el-
ements mismatch.

2.2. Behavioural Elements Mismatch in Android
Apps

Studies have been proposed to determine the mismatch
between an app’s description and its real behaviour to iden-
tify anomalies in Android apps(Panditaetal., 2013; Quetaal.,
2014; Gorla et al., 2014; Yu et al., 2016; Huang et al., 2014).
The common denominator among these methods is that they
use app descriptions to infer expected behaviours and em-
ploy the permissions/APIs used by the app to represent its
behaviours. Whyper(Pandita et al., 2013) is the pioneer de-
tection system based on the behavioural element mismatch.
It maps an app’s description to three different permissions.
AutoCog(Qu et al., 2014) handles more permissions (11)
with better performance than Whyper(Pandita et al., 2013).
CHABADA(Gorla et al., 2014) combines descriptions and
invoked APIs to find suspicious apps with abnormal API us-
ages. Asdroid(Huang et al., 2014) identifies stealthy behav-
ior as a semantic mismatch between the program behaviour
with the user interface. TAPVerifier(Yu et al., 2016) pro-
posed combining an app’s privacy policy, bytecode, descrip-
tion and permission to obtain more information about its
expected behaviour. These approaches focus on measuring
description-to-permission fidelity in Android apps.
In contrast to these approaches, our work proposes a tech-
nique for characterizing app behaviour as benign or mal-
ware using a fine-grained stratification of Android permis-
sions and app descriptions. The app behaviour is a func-
tion of the threshold between the semantics patterns ob-
served from the description and a semantic model of re-
quested sensitive permissions. Firstly, our technique out-
performs current approaches of extracting semantic mean-
ing from app descriptions. Secondly, the proposed app be-
haviour characterization approach is promising and reliable
for permission-based malware detection approach. Thirdly,
the proposed approach is robust and provides a promising
avenue for sustainable Android malware detection. Droid-
SIFT(Zhang et al., 2014) builds Ul-dependent behavioural
graphs to understand whether a sensitive action is likely be-
nign or malicious. Describe-ME(Zhang et al., 2015a) gen-
erate security-centric app descriptions, based on program
analysis. Our approach does not focus on generating app de-
scription from bytecode analysis, we focus on descriptions
(app descriptions on the distribution platforms and textual
descriptions in the app itself) and behavioural elements (per-
mission requests) that users interact during adoption and uti-
lization of applications.

3. Sensitive Android Permission

Android provides an attribute called "Protection Level"
that characterizes potential risks implied in the requested
permissions. However, the available levels are very coarse
and do not provide a whole picture of the behaviour of the
Android Ecosystem(Zhauniarovich and Gadyatskaya, 2016).
The current protection level in the Android permissions sys-
tem is presented in Figure 1. In this section, we present a
proposed ranking of the Android permissions as shown in
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Figure 1: The Current Protection Level of Permissions as of
Android 8.0 API Level 26

Figure 3, based on the following risk indicators that capture
the sensitivity of the permission(Olukoya et al., 2019).

1. Android Protection Level: Android intuitively at-
tributes protection levels to permissions by consid-
ering whether it can access directly the resources of
the system. The permission attributes that are user-
granted are categorized as normal, dangerous, and
special permissions, in order of increasing risk. The
protection level is a proxy for the sensitivity level i.e.
Special>Dangerous>Normal.

2. Permission Group: Permissions are organized into
groups related to a device’s capabilities or features.
In order not to overwhelm the user with complex
and technical permission requests, if the app has al-
ready been granted another dangerous permission in
the same permission group, the system immediately
grants the permission without any interaction with the
user. By examining this behaviour, the question is
- how many permissions does an app get access to,
based on a single granted permission? For example,
a permission group of 11 permissions, for example, is
ranked higher than a permission group of one.

3. Demoted Permissions: These are permissions whose
protection level changed from dangerous to normal,
and from a security perspective, the implications are
well documented in Zhauniarovich and Gadyatskaya
(2016).

The proposed impact level of Android permissions

of Android Applications
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Figure 3: A Proposed Impact Level of Android Permissions as
of Android 8.0 API Level 26

closely mirrors the Android rankings in Figure 1, but with
the additional consideration of the permission category and
permissions with a demoted security level. The sensitiv-
ity levels are a function of the impact of its default protec-
tion level, permission group and demoted permissions as de-
scribed in Figure 2. Figure 3 shows the proposed impact
level Android permission used for defining sensitive An-
droid permissions used in this study.

4. Permission Sensitivity Index (PSI)

The revised permission model results in four levels of
sensitive permissions based on the risk indicators. The en-
hanced ranking of sensitive permissions is used to extract an
app’s permission sensitivity index (PSI) which is a function
of the permissions requested and their sensitivity level. We
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Table 1
Characterization of PSI
PSI Characterization Interpretation
VERY LOW | P,=P,=P,=P,=0 NONE
LOwW P,=P,=P;=0;P,>0 Level 4
P,=P,=P,=0; P;>0 Level 3
MODERATE OR AND/OR
P,=P,=0; P,,P, >0 Level 4
P1<=w Level 1
HIGH P, <=l AND/OR
(P, orR P, #0) Level 2
P, > Zeall LARGE Level 1
EXTREME P, > w AND/OR
(P, 0r P, #0) Level 2

infer 66 Android platform permissions from the risks with
highest user concerns as of API level 263 available to third-
party applications, which serves as the ground truth.

The characterization of the sensitivity index is a spec-
trum from where an app does not require any permission in
each level of sensitivity to when it requires all permissions
in the sensitivity levels. The sensitivity index should be able
to: (i) distinguish between an app that requests sensitive per-
missions and an app that does not; (ii) distinguish between
apps that request sensitive permissions in varying quantity,
while capturing the sensitivity levels of the permission re-
quest.

Finally, the proposed characterization of the PSI is along
five levels of sensitivity - Moderate, Low and Very Low (dis-
tinguishing apps that do not require sensitive permissions );
High and Extreme (distinguishing between apps that require
sensitive information). Table 1 shows the characterization of
the PSI based on the sensitivity of the permissions requested.
P; is the number of permissions requested in each sensitiv-
ity level of the taxonomy of permissions (P, for Level 1, P,
for Level 2, P; for Level 3 and P, for Level 4). P, [1] and
P,,..[2] are the maximum number of permissions in Level 1
and Level 2 of the taxonomy of sensitive permissions. The
interpretation matches the PSI categorisation with the per-
mission request pattern of the app. For example, an app with
a LOW PSI means the app does not request any permission
to be function, while an app with an EXTREME PSI requests
a large number of sensitive permissions in Level 1 AND/OR
Level 2 in the taxonomy of sensitive permissions. As shown
in Table 1, an app is said to request a large number of per-
missions in Level 1 and Level 2 if P, or P, is greater than
half of the maximum number of permissions in each level.

5. System Overview

To enhance user perception of security awareness, An-
droid markets directly present two classes of literal app be-
haviour elements: 1) permission requests and 2) textual de-
scriptions. The textual description represents the adver-
tised behaviour and the permission requests implemented
behaviour. Figure 4 provides an overview of the proposed

Application

Permission Semantic Model

—

i
'
'
'
'
Package 1 "
Identifier 1 Behavioural
! Element
'
'
'
'
'

Mismatch

App
Behaviour
[Characterization|

Extracting
Textual

Android
Market

Semantic

D Representation

Figure 4: A Proposed framework for Exploring Behavioral EI-
ements Mismatch

system, where an app’s description is checked against its be-
haviour elements (permission request). For each Android
app, the apk file is downloaded. Android Package (APK) is
the package file format used by the Android operating sys-
tem for distribution and installation of mobile apps and mid-
dleware. Each apk also has a package identifier thatis a
unique name to identify the app, which can be used to query
the Android market’s API for product information of an app.
The type of information queried and extracted are the natural
language descriptions of the app. The app’s sensitivity is a
function of the permission request pattern of the app, based
on the risks presented by the permission set, determined by
the sensitivity level. The semantic model aims to elicit the
textual patterns that describe these permissions. The seman-
tic representation is for generating textual dependencies in
the app description provided by developers of the app dis-
tribution platforms. Finally, the Behavioural Element Mis-
match (BE,,) investigates if the permissions requested by an
app meets the user’s expectation. This relies on finding rela-
tionships and correlations between textual patterns in the app
descriptions and requested permissions. The proxy for mea-
suring a user’s expectation of an app’s behaviour is through
the natural language description of the app which gives an
intuitive idea of its functionality. The app behaviour charac-
terization involves classifying an app as benign or malicious.
For our purposes, a malicious app is identified as one whose
permission mismatch set P, primarily occurs in Level 1 or
Level 2 permissions i.e if PSI(P,,) = High or Extreme . Such
an app requests critical permissions that are not motivated by
the app’s description, while a benign app convincingly mo-
tivates the need for the critical permissions it requests, but
not necessarily the less-critical ones (Level 3 or Level 4 i.e.
if PSI(P,,) = Very Low, Low or Moderate.

6. Behavioral Elements Mismatch

The study by Lin et al. (2014) showed that users are
uncomfortable with permission requests from a mobile app
not strongly influenced by the purpose associated with such
permission. Finding a mismatch between the implemented
and advertised behaviour involves checking the gap between
user expectations (what the user expects an application to
do) and application functionality (what the application actu-
ally does). The question is - does the application description
provide any motivation for its request for permission? The
inputs to the system here are the natural language descrip-
tions provided on app distribution platforms. This involves
observing features of the app’s metadata such as app descrip-
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tion, privacy policy, screenshots etc. that may align with its
permissions. The key challenge is to gather enough seman-
tics from descriptions in natural language to reason about the
permissions declared. This is an advancement towards prac-
tical solutions that can aid end-user privacy awareness, such
that the rationale for permissions requested by Android apps
can be automatically discovered by extracting them from the
available sources of app’s textual descriptions. Providing
users with rationales of requested permissions can play a sig-
nificant role in bridging the user expectation gap between the
permission an app requests and the app’s functionality.

6.1. Sources of App Textual Descriptions

In this section, we describe the sources of the textual de-
scriptions analyzed. The rationale for using the sources is
that they give developers the opportunity to explain the fea-
tures of their app: they are the key Google-Play listing el-
ements for app store optimization (ASO) that improve key-
word rankings in search, increase conversion rates to install
and drive more downloads. Some of these semantic features
allow for elements such as app title, short description, full
description, 'what’s new in this version’, interactive elements
etc.; that potentially contain keywords where permission re-
quirements could be inferred. For example, "Shares Lo-
cation" and "Unrestricted Internet” are interactive elements
that suggest the use of Location and Internet permissions
respectively. Others are image data (graphics, screenshots,
logo/icon) containing textual data for permission inference.
Some of the scenarios as to how these features can poten-
tially motivate permission requests are described below:

1. Privacy Statement: The privacy statement indicates
the privacy policy of an app such as kinds of data col-
lected, sources of data collected etc., any of which
could be a pointer to the permissions required. A
sentence from Tinder’s(com.tinder) privacy statement
reads "We may collect your geolocation information
with your consent". This statement suggests that
the app uses Location permissions. This is captured
by the "geolocation information" governor dependent
pair. Furthermore, the study in Baalous and Poet
(2018) showed how dangerous permissions are de-
scribed in Android App’s privacy policies. For ex-
ample, their study showed that privacy policies often
use the terms: "address book" and "device’s phone-
book" to describe that they are using the "Contacts"
permissions.

2. Featured Graphics and Screenshots: We also argue
that permissions could be inferred from the featured
graphics on app distribution platforms which could be
in form of screenshots. For screenshots or graphics to
be useful, the image has to be binarized first. The rea-
sons for this are: -i) to handle documents with mul-
ticoloured texts and different background shades; and
ii) because documents can have texts of widely vary-
ing sizes. Consequently, there has to be a way of ex-
tracting the output for the image data. We extract text
with Optical Character Recognition (OCR) for all im-

age types in python using pytesseract, an OCR tool
for python. pytesseract is widely used as it can read
all image types - png, jpeg, gif, tiff, bmp etc. The
image data on Google Play are first converted from
their webP format (an image format for the Web) to
the image types (PNG or JPEG) readable by pytesser-
act. One of the screenshots of the app, DuoLingo
(com.duolingo) is used to demonstrate this. The text,
"Speak, listen, read and write Speak this sentence. 1
can’t use a microphone right now" suggests the use of
the Microphone permission.

The rationale for using screenshots is that they are not
often bare, as they provide explanations to each slide
which may give inference to permissions needed.

. App Title: The app, Facebook Messenger has " Mes-

senger — Text and Video Chat for Free" as its title. This
suggests the use of the camera permission, as a result
of the presence of "video chat". Another example is
Skype, a video- calling app with the title "Skype - free
IM & video calls"

. Short and Long Description - The productivity

app, com.joshy21.vera.free.calendarplus (Calendar+
Schedule Planner App) has its short description as the
"Event calendar + schedule app. Planner for business,
personal, office & event". This suggests the use of the
CALENDAR permission, READ_CALENDAR and
WRITE_CALENDAR.

The app GO SMS Pro - Messenger, Free Themes,
Emoji (com.jb.gosms), has a sentence in its long de-
scription: "GO SMS Pro comes with beautiful themes,
lovely stickers, private box, pop up windows, GO chat
(send free SMS & MMS), dual sim support, and much
more". This suggests the use of SMS and MMS permis-
sion.

. Ads: An app that contains ads has this statement as

part of its metadata "Contains Ads", which suggests
the use of the Internet permission to load the ads.

. What’s New - This is the area where developers spec-

ify any updates or improvements made to their soft-
ware. These updates could also give a clue as to per-
missions required by the app to function. Google app

(com.google.android.googlequicksearchbox&hl=en_GB)

has one of the bullet points under its "What’s New"
section to be: "Use voice commands while navigating
— even when your device has no connection. Try
saying "cancel my navigation" "what’s my ETA?"
or "what’s my next turn?". This suggests the use of
Microphone and Audio Settings permission.

. Interactive Elements - Interactive elements focus on

what information the app has access to, what it can
do with it, and whether there’s user-generated content
inside it that may be outside of the control of the pub-
lisher. The interactive elements from which permis-
sion request can be inferred include:

e Shares Location - if the app can show your lo-
cation to other users. This suggests the use of
LOCATION permission.
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Sentence Boundary
Detection

o Unrestricted Internet - if the app has complete
access to the Internet. This clearly suggests the
use of the Internet, Network and Wifi state per-
mission.

8. App Logo/Icon: An app logo may also give a hint to
permissions requested. For example, caller.id.
phone.mobile.number.location.tracker and
com.fivestar.
mobilelocationtracker have "Live Mobile Location
Dialer, Location & Call Blocker" and "Mobile Loca-
tion Tracker" respectively as part of their icon. Both
sentences suggest the use of the location permission.

The framework for extracting textual patterns is de-
scribed in Figure 5. We propose exploiting the textual
description sources for checking an app’s real behaviour
against its advertised behaviour.

Using one of the textual description sources alone will
lead to many false positives because each of them individ-
ually often fails to declare all the permissions. For exam-
ple, on app distribution platforms, like Google Play, app de-
scriptions have a character limit, which means that they can-
not detail all privacy-related behaviours. Also, developers
may provide descriptions with no relationship to permissions
needed. This is because an app’s description is like an ad-
vertisement for promoting the app and attracting more users,
hence, developers tend to present them in ways that are ap-
pealing to users, which may not necessarily be permission-
related. For example, Duolingo (com.duolingo), one of the
all-time most downloaded apps in the Education category
and also an Editor’s Choice with 100,000,000+ downloads,
has its description mostly occupied with comments from
the public domain (Google, The Wall Street Journal, TIME
Magazine, PC Magazine and Slate) and social media chan-
nels about the app. We propose exploiting all the textual
description to find semantic correlations between an app’s
behaviour and its advertisement. Based on the 10 sources
of the app description considered, we believe that we have
gathered enough semantics from app descriptions in natural
language to reason about the permissions declared.

After gathering the semantics, the textual patterns are
extracted from the natural language descriptions as shown
in Figure 5. Given the statement, We may collect your ge-
olocation information with your consent, suitable logically
dependent word pairs extracted for our semantic patterns
are - "your information", "geolocation information", "col-
lect information", "your consent", and "your geolocation in-
formation". The typed dependencies are generated using
neural networks, via the Stanford CoreNLP(Chen and Man-
ning, 2014). We leveraged the python wrapper(Guo, 2018)
for Stanford CoreNLP that provides a simple API for text
processing, such as named entity recognition, constituency
parsing, dependency parsing, and more.

6.2. Semantic Model of Permissions
The framework for the semantic graph generator for An-
droid permission is described in Figure 6. The key ideas

Stop Words & Named
Entities Removal

Lowercasing &
Lemmatization

Textual N

hr:
Descriptions phrase

> pairs

NLP Parser

Removal of Non-
English Words

Figure 5: App Description Processing Module

[ DEVELOPER DOCUMENTATION ]

y
Permission API Mappings for
descriptions Permissions

-I Class Name
Caller Methods
Extract Suitable Extract Suitable
Noun Phrases Noun Phrases

Application
Framework Mapping

Android SDK
Mapping
Content Provider
Mapping

Caller Description
Member Variable
-I Member Resource(s)

Semantic Patterns
Related to Permissions

Figure 6: Framework for Permission Patterns

are - finding semantic patterns related to permissions; infer-
ring semantic patterns from Android permission mappings;
and extracting permission descriptions from the Google Play
store, also finding their synonyms. The methodology is to
leverage API documents and the description of each permis-
sion as provided by Google to extract suitable noun phrases.

We employ three different mappings: Application
Framework, Android SDK and Content Provider.

1. Application Framework Mapping - The frame-
work permission mapping includes any permission-
protected, public method/API of the application
framework that is accessible via inter-process commu-
nication (IPC).

2. Android SDK Mapping - The SDK mapping includes
the documented API that requires at least one permis-
sion. The documented API comprises everything the
app developer is supposed to use when implementing
against the SDK.

3. Content Provider Mapping - The ContentProvider
(CP) mappings include any system ContentProviders
that protect read/write operations on the entire CP or
paths thereof with permissions (e.g. contact content
provider).

Specifically, for each permission, we get the relevant
API/URI mappings using PScout(Au et al., 2012) and use
mappings by Backes et al. (2016) for handling the latest ver-
sion of the Android framework, to extract the corresponding
resources(Figure 6). This step is similar to building a se-
mantic graph in Whyper(Pandita et al., 2013), except that
we also include building a semantic graph from the official
descriptions of permissions by Google* and combining the
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more recent API-to-Permission mappings by Backes et al.
(2016). The output of the semantic model of permissions is
security-centric phrases describing sensitive operations per-
tinent to permissions. Based on this methodology, we gen-
erated 3000 textual patterns for the permissions. For exam-
ple, Google’s official long description for BODY_SENSOR
permission states that "Allows an application to access data
from sensors that the user uses to measure what is happening
inside his/her body, such as heart rate.", while the short de-
scription states that "Wearable sensors/Activity data - body
sensors (like heart rate monitors)". Based on these sources,
some of the textual patterns generated for BODY_SENSOR
permission include "body sensor", "heart rate", "wearable
data", "blood pressure" etc.

6.3. Semantic Correlation

The goal of this section is to find the semantic corre-
lation between the textual semantics from app textual de-
scriptions and permission semantics, to determine if a mis-
match occurs. The semantic correlation is an indication of
the Behaviour Elements Mismatch (BE,,) of apps. The key
idea is to compute the semantic similarity between two noun
phrases using a lexical database and corpus statistics. The
proposed methodology for finding phrase similarity consid-
ers the phrase as a sequence of words and deals with all the
words in the phrase separately according to their semantic
and syntactic structure based on a word embedding model.

The most commonly used word embedding models are
word2vec(by Google), fastText (by Facebook) and Glove(by
Stanford)(Pennington et al., 2014) which are unsupervised
approaches based on the distributional hypothesis (words
that occur in the same contexts tend to have similar mean-
ings). Based on the context and our domain, we investigated
the word embedding models preferable for the context and
domain of the work. Selecting three well-known pre-trained
models and leveraging gensim to load those model. We use
gensim, a well-known python NLP library(Rehurek and So-
jka, 2010) that already implements an interface to deal with
these three models.

We download pre-trained word vectors learned on differ-
ent sources trained using these three models. The GloVe pre-
trained vectors are trained on Wikipedia data, with various
models from 25, 50, 100, 200 to 300 dimensions base on 2, 6,
42, 840 billion tokens. For word2vec we download Google’s
pre-trained model whose word vectors is trained on google
news and provided by Google. Based on 100 billion words
from Google News data, they trained the model with 300 di-
mensions. fastText is released by Facebook which provides
five models with 300 dimensions. To justify the choice of the
pre-trained word vectors suitable for our work, we compare
these models (word2Vec(100B.300D), GloVe (6B.50D), and
fastText 1M.300D.subword) on sample word pairs and eval-
uate the similarity for the given phrases. We also evalu-
ated the suitability of each model using a standard dataset
which has noun pairs originally measured by (Rubenstein
and Goodenough, 1965). The result is shown in Table 2,
where the 50-dimensional vector of the Stanford Glove is

Table 2

Similarity Results using GloVe, word2vec(W2V) and fast-

Text(fT).
First Word Pair Second Word Pair | GloVe | W2V | T
scan barcode barcode scanner 0.88 0.78 | 0.85
device location device location 1.00 1.00 1.0
photo gallery picture gallery 0.87 0.80 0.9
save document save file 0.85 0.71 | 0.81
contain ads display ads 0.76 0.57 | 0.77
find place search location 0.72 0.37 | 0.62
plan vacation plan holiday 0.87 0.78 | 0.88
your voice your speaking 0.82 0.62 | 0.76
flight mode airplane mode 0.89 0.81 | 0.86
schedule appointment | plan meeting 0.65 0.32 | 0.55
geographical location | device battery 0.37 0.17 | 0.42
logic gate passport number 0.30 0.57 | 0.38
automobile car 0.70 0.58 | 0.78
midday noon 0.83 0.55 | 0.78
coast shore 0.80 0.51 | 0.74
journey voyage 0.83 0.68 | 0.77
grin smile 0.86 0.86 | 0.79
magician wizard 0.73 0.49 | 0.67
forest woodland 0.76 0.64 | 0.74
IP address home address 0.71 0.13 | 0.74

preferable. Working with the 50-dimensional vectors (glove
6B.50d) trained on Wikipedia data, we can find the similarity
of the phrases.

Given two phrases P and Q originating from the textual
semantics of the app description and permission request re-
spectively, where P = [P, P,]Jand Q = [Q; 0O,]. P,
P,, Oy, and Q, are the sequence of words (tokens) from P
and Q respectively. The final similarity which involves find-
ing the aggregated similarity, Sim(P, Q), of the phrases, is
calculated as shown in Equation 1. Sample similarity re-
sults between phrase pairs that suggest permission usage us-
ing Equation 1 are presented in Table 2.

Sim(P,[Q4, 051 + Sim(P,, [0, 0]
2
Sim(P,, [0y, 0,]) = max[Sim(P,, 0,), Sim(P,,0,)] !
Sim(Py, [0y, 0,]) = max[Sim(Py, ), Sim(Py, 0,)]

According to Rubenstein and Goodenough (1965), the
benchmark synonymy value of two words is 0.8025, while
AutoCog(Qu et al., 2014) proposed 0.67 as the threshold,
which was also implemented in TAPVerifier(Yu etal., 2016).
The standard originally measured by Rubenstein and Good-
enough (1965) has been used in several investigations over
the years and has been established as a benchmark source of
the semantic similarity measure. It has been a stable source
of comparative analysis for word and sentence similarity in
the state-of-the-art approaches (Pawar and Mago, 2018; Li
et al., 2006; Islam and Inkpen, 2008; Lee et al., 2014) for
calculating similarities between words and sentences. We
have set the threshold to 0.80 by following the benchmark
proposed in Rubenstein and Goodenough (1965), such that
if the semantic similarity equals or exceeds this threshold,
the collected information can be mapped to the associated
permission. For example, using our similarity metric, the

Sim(P, Q) =
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similarity value for the noun phrase pairs, "save document;
save file", "your voice; your speaking" was found to be 0.85
and 0.82 respectively. Hence, these are mapped to storage
and microphone permissions respectively. The proposed sim-
ilarity approach is built on the idea of measuring the distance
to an existing taxonomy.

The behavioural element mismatch is a function of the
inferred permissions (P;) from the app description against
the actually requested permissions(P,), as shown in Equa-
tion 2. The mismatch is measured by the permission sensi-
tivity index (PSI) (see Table 1), inferred from the semantic
analysis, against the actual permissions requested.

BE, = PSI(P.— P) 2

An app whose BE,, is High or Extreme shows that the app’s
sensitive behaviour is not properly advertised in its textual
semantics, while an app whose BE,, is Very Low, Low or
Moderate means that all sensitive behaviour is properly de-
scribed in the app’s textual description. An app passes if the
difference between the requested and inferred permission is
dominated in the Level 3 and Level 4 permissions.

6.4. App Behaviour Characterization

An app is classified based on the characterization of its
behavioural element mismatch(BE,,). We describe an app’s
behaviour as benign or malicious based on the BE,,. We
characterize apps with Very Low, Low or Moderate BE,, as po-
tentially benign apps because this is characterized by apps
that follow best practices of transparency. These apps are
clear about the core functionalities of the device they are ac-
cessing in their descriptions. Apps with High or Extreme BE,,
do not follow the transparent policies because of the need to
access sensitive capabilities of the phone are not motivated
in the app descriptions. Furthermore, this approach of char-
acterizing an app behaviour was also recently corroborated
in MAPS(Sebastian et al., 2019) - a privacy compliance anal-
ysis technique for spotting a potential compliance issue in an
app. An issue is spotted when an app is performing a pri-
vacy practice (e.g. a first party is accessing GPS location
data) while its associated privacy policies do not disclose it
either generally (e.g. "our app accesses your location data.")
or specifically (e.g., "our app access your GPS data.")

Generally, if the permission requested is in Level 1 or
Level 2 of the taxonomy of sensitive permissions and it’s
not motivated in the app’s textual descriptions, the app is
likely malicious while an app that provides security-centric
descriptions for sensitive permissions is likely benign. We
chose to characterize the behaviour of an app based on per-
missions in Level 1 and Level 2 only in the taxonomy of sen-
sitive permissions for the following reasons:(i) our study is
motivated by user’s privacy risks, hence we only considered
the most sensitive permissions (Special and Dangerous) that
may adversely affect the user. (ii) these are the permissions
that the user has control of in the Android device setting, by
allowing or revoking them at any time. (iii) Permissions in
Level 3 and Level 4, are granted automatically by the system,
hence, pose a little privacy risk to the user.

Most malware detection systems are usually divided into
two major parts - misuse and anomaly. The technique in this
study is anomalous. The proposed technique for categoriz-
ing an anomaly in this study is motivated by the semantics-
aware approach in DroidSIFT(Zhang et al., 2014), where
applications are characterized based on Ul-dependent be-
havioural graphs. The anomaly detector involves under-
standing whether a sensitive action (e.g., send text) de-
pends on user interactions (likely benign) or is automatically
performed in the background (likely malicious). Similar
to semantics-aware Android malware classification in their
study, an app behaviour is predicted as benign if the adver-
tised behaviour of the app and its implemented behaviour are
in sync. An anomalous behaviour which characterizes and
app as likely malicious occurs when there is a mismatch be-
tween the app’s advertised behaviour and its sensitive func-
tional behaviour. The anomaly detector provides a security-
oriented overview of the expected (predicted) app behaviour,
while the evaluation involves validating the predicted be-
haviour with its actual behaviour by investigating the cor-
rectness of the anomaly detector it in Android malware de-
tection settings.

7. Evaluation

To evaluate the effectiveness of our technique, we inves-
tigate the following main research questions:

e R1: Does an app’s textual description provide use-
ful information for measuring its behaviour as adver-
tised?

e R2: How does our approach compare to state-of-the-
art techniques.?

e R3: Does an enhanced app textual description provide
useful insights into malware analysis and detection?

e R4: What is the robustness of the textual description
in determining the expected behaviour of an applica-
tion?

7.1. Behavioural Elements Mismatch

7.1.1. RQI1: Does an app’s textual description provide
useful information for measuring its behaviour
as advertised?

For this purpose, we evaluate our proposed enhancement
with 30 random benign apps from Google Play Store against
sources of the state-of-the-art textual semantics as shown in
Table 4. We selected top downloaded apps of all time in
which 80% are Editors’ Choice apps on Google Play because
we believe the description of these apps have been carefully
constructed by the developers and provides a benchmark for
comparisons. The description of the 30 apps investigated
with assigned reference labels are shown in Table 3 with
their package identifiers as displayed on the Google Play
Store. The goal is to investigate whether security-centric de-
scriptions that describe an app’s behaviour element is moti-
vated in its description on Android Market. 90% of the apps
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Table 3
Description of the 30 apps investigated

Label | Package Identifier

BO1 com.airbnb.android

B02 com.amazon.avod.thirdpartyclient
B03 com.autoscout24

B04 com.CultureAlley.japanese.english
B05 com.dropbox.android

B06 com.duolingo

B0O7 com.google.android.apps.maps

B08 com.google.android.apps.walletnfcrel
B09 com.google.android.apps.youtube.kids
B10 com.google.android.play.games

B11 com.handmark.tweetcaster

B12 com.imdb.mobile

B13 com.jumia.android

B14 com.lumoslabs.lumosity

B15 com.microblink.photomath

B16 com.netflix.mediaclient

B17 com.northpark.beautycamera

B18 com.pinterest

B19 com.popularapp.periodcalendar

B20 com.sec.android.app.shealth

B21 com.sonymobile.sketch

B22 com.spotify.music
B23 com.szyk.myheart
B24 com.ted.android
B25 com.tinder

B26 com.trivago

B27 com.ubercab.eats
B28 com.whatsapp
B29 net.skyscanner.android.main

B30 net.zedge.android

provided textual descriptions that were useful in matching

the permissions requested and were correctly tagged as *Be-

nign’(cf Table 4), while 10% of the apps requested sensitive

permissions that were not motivated in the app description.
The Accuracy of Permission Semantics

The reasons for the (few) false positives are explained below

following individual investigation:

1. Occasionally, permission patterns are discovered in
the app textual description but the associated permis-
sions are not requested by the app. An example is
an app whose textual description includes "device id",
"mobile id" etc, which are textual patterns associated
with device identity, but the app does not go on to re-
quest the permission.

2. Some permission patterns belong to more than one
permission. For example, "change wallpaper" and
"HD wallpaper" are semantics associated with
RECEIVE_BOOT_COMPLETED, besides the fact
that Android has two wallpaper permissions which
also share similar semantics.

The Accuracy of Behavioural Element Mismatch
98% of the false positives were a result of inadequate token
phrases for Level 4 permissions, while 2% were due to (Level

Table 4
Comparison with State-of-the-art Approaches: T, - Privacy
Policy, T}, - Description, Ty, - Proposed Enhancement

BE,, BE,,
App | Tp | Tp | Ty [ App | Tp | Tp | Ty
BO1 | Y N Y | B16 | N N N
B02 | Y N Y | B17 | N Y Y
BO3 | Y N Y | B18 | Y N Y
B04 | N N N | B19 | N Y Y
BO5 | Y N Y | B20 | N N Y
BO6 | Y N Y | B21 | Y N Y
BO7 | Y N Y | B22 | Y N Y
BOg | Y N Y | B23 | N Y Y
B09 | N N N [B24 | Y | Y Y
B10 | Y N Y | B25 | Y N Y
Bil | Y N Y | B26 | Y N Y
B2 | Y | Y Y | B27 | Y N Y
B13 | Y N Y | B28 | Y N Y
B4 | Y | Y Y | B29 | Y | Y Y
B15 | Y N Y | B30 | Y N Y

1, Level 2, Level 3) permissions not motivated by the textual
descriptions

o Token Phrases for Permissions: There were fewer to-
ken phrases generated for Level 4 permissions com-
pared to more critical permissions. This is due to
fewer API mappings, an indication of the limited de-
vice resources they control.

e Some permission patterns are not motivated
in the app textual description, but requested
(B04,B09,B16 in Table 4). An example is the
SYSTEM_ALERT_WINDOW permission, which is
a permission that allows a developer to use the screen
overlay.

7.1.2. RQ2: How does our approach compare to the
state-of-the-art techniques?

In comparing our approach, we evaluate the semantic
sources of the state-of-the-art with our enhancement, to eval-
uate the behavioural element mismatch. The goal is to inves-
tigate whether the enhanced sources of textual description
improve the evaluation results. We evaluated the proposed
app behaviour characterization for the sources of semantic
information gathered in this study against the sources of se-
mantic information in other state-of-the-art approaches. We
aim to investigate whether the 10 sources of semantic infor-
mation proposed in this study provides any significant en-
hancement compared to the semantic sources used in other
techniques in measuring description-to-permission fidelity.
Our proposed enhancement performs better than the mod-
ern approaches as shown in Table 4. These benign apps are
labelled BO1 - B30 for comparison, and we manually verify
the results to validate the outcomes. The column T'p repre-
sents the behavioural element mismatch obtained by using
the privacy policy of the app. T, shows the classification
result obtained by using the app description alone, while T’y
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represents the proposed approach that considers 10 differ-
ent sources of app textual information for semantic mean-
ing. Y represents a benign app correctly identified as benign
and N for benign apps wrongly classified as malicious based
on the technique. As shown in Table 4, there are scenarios
where using the app description proves more useful than us-
ing the privacy policy (B17, B19, B37) and vice versa (BO1,
B02,..., B30). Using the app’s description and privacy pol-
icy alone could also prove inadequate and limited (B20). The
proposed enhancement, T, can reduce the false negatives
in the state-of-the-art-approaches that uses description alone
(Tp) e.g. Whyper(Pandita et al., 2013), AutoCog(Qu et al.,
2014), CHABADA(Gorla et al., 2014)) by 87%, while using
privacy policy (T'p), as in TAPVerifier(Yu et al., 2016) by at
least 57%.
Comparison with Existing Approaches

e Privacy policies often motivate the permission needed
under the heading "Information you provide or Infor-
mation We Obtain" which oftentimes, are an indica-
tion of the information that users provide directly or
generate through the use of an app. However, some
permissions (e.g. SMS permissions) do not fall under
this category. Such permissions are an indication of
the functionality of the phone being used and not the
information being provided. The limitation of the pri-
vacy policy also involves broken links in the play store
or redirection to non-policy documents. Also, the app
may lack privacy links on their play store pages alto-
gether(Story et al., 2018).

e Descriptions are also limited because they are an av-
enue for developers to market their products in a way
that attracts users. The descriptions may be devised in
a way that does not motivate the permissions required.
Because descriptions are limited by app distribution
platforms, they are often designed for app search op-
timization, as opposed to being privacy-related or
security-centric.

e When apps introduce an update that requires new per-
missions, it is often motivated in the "What’s New"
sections or by adding screenshots. More often than
not, a description does not get revised to accommo-
date the latest updates. Furthermore, privacy policy
does not get revised often unless there is a new reg-
ulatory policy, such as EU’s General Data Protection
Regulation (GDPR), that mandates all institutions to
revise and review the way user information is handled.

e The more permissions an app requires, the more
sources for semantic information are needed. This was
observed in Table 4, where the result of our proposed
enhancement is the same as just using the privacy pol-
icy alone. Upon investigation, it was discovered that
for every app, where our proposed enhancement out-
performs using privacy policy alone, the number of
permissions is at least two times the permissions re-
quired when our results are the same. It might be pos-

sible for all permissions requested to be motivated in
the privacy policy or even in the descriptions, but with
more permissions, an enhanced source of semantics is
required.

e There are some permissions that are difficult for de-
velopers to motivate in the app’s textual descriptions
regardless of the proposed enhancement unless they
are expressly stated in the app descriptions. Such per-
missions include NFC, BROADCAST STICKY, EX-
PAND STATUS BAR. These do not affect our ap-
proach because they are Level 3 and Level 4 (least-
sensitive permissions). Our app behaviour character-
ization is benchmarked by anomalies in Level 1 and
Level 2 permissions (most-sensitive ones).

Some of the textual descriptions may be repetitive as a
result of considering several sources of app textual infor-
mation in the Android market. This happens when some
textual description in one source is also present in another
source on the app distribution platforms. For example, a de-
scription present in the app’s featured graphics may also be
present in the app’s long description. This does not in any
way affect the results because unique semantic patterns are
considered, rather it provides significant enhancement to the
state-of-the-art approaches in description-to-permission fi-
delity. The enhancement is shown in Table Table 4. Con-
sidering many other sources of textual descriptions on app
distribution platform gives room for robustness in evaluat-
ing the fidelity of descriptions on the app market and per-
missions requested. The proposed enhancement has shown
that gathering enough textual semantics can yield better re-
sults for determining stealthy behaviours in Android appli-
cations. By considering other sources of natural language
description made available to users on app distribution plat-
forms, we can get useful insights as to the permissions the
app might require based on its advertisement.

7.1.3. Malware Sources

To ensure that the malware samples investigated in this
study are up-to-date, we gathered malware from the follow-
ing sources:

e Mal_AMD - contains 24,553 samples, categorized
in 135 varieties among 71 malware families ranging
from 2010 to 2016. The dataset provides an up-to-date
picture of the current landscape of Android malware
and is publicly shared with the community (https:
//amd.arguslab.org/).

e AndroZoo - a growing collection of Android applica-
tions collected from several sources with benign and
malicious apps(https://androzoo.uni.lu/).

e Contagio - a public repository of mobile malware
mini dump - (http://contagiomobile.deependrese
arch.org/index.html)

e Other Sources - We also analysed sources of malware
verified in literature such as:

Olukoya et al.: Preprint submitted to Elsevier

Page 11 of 21


https://amd.arguslab.org/
https://amd.arguslab.org/
https://androzoo.uni.lu/
http://contagiomobile.deependresearch.org/index.html
http://contagiomobile.deependresearch.org/index.html

Security-Oriented View of Android Applications

Table 5
Identification of Malware Using App Descriptions from {App
Market} and {UI texts} with Permission Requests

Source Size TP FN TPR
App Market | 1241 | 1074 | 167 | 86.54%
Ul Description | 1241 | 1174 67 94.60%

1. DREBIN (https://www.sec.cs.tu-bs.de/~danar
p/drebin/)

2. VirusShare (https://virusshare.com/)

3. AndroidPRAGuardDataset(http://pralab.die
e.unica.it/en/AndroidPRAGuardDataset) for
ground-truth of obfuscated malware apps.

4. Understanding android obfuscation techniques:
A large-scale investigation in the wild - for ob-
fuscated benign apps.(https://drive.google.com
/file/d/1pFEWIVNxGb_D5wk@XGaNGCQJIZiRzLfwP/vie
w) (https://drive.google.com/file/d/1bILWq8i
QU®G9quDY6thANthWMV3mT7/View)

5. MamaDroid and DroidSpan dataset (https://bi
tbucket.org/haipeng_cai/droidspan/src/maste
r/)

7.1.4. RQ3: Does an enhanced app textual description
provide useful insights into Malware Analysis
and Detection?

We gathered malware from the following sources
verified in literature - Mal_AMD (Wei et al., 2017),
Mal_DREBIN (Arp et al.,, 2014), Virus Share(Roberts,
2011) and PRAGuard Dataset (Maiorca et al., 2015). Ex-
tracting the malware textual semantics from Google Play
was challenging because the majority of such apps have been
pulled off the store and the difficulty of getting malware de-
scriptions from app distribution platforms are well docu-
mented in Gorla et al. (2014). As at the time of measure-
ment, 98.3% of the malware dataset used in the study were
no longer present in the Android market.

However, for 1241 cases in the malware data set gath-
ered, we were able to find the same package identifier on
the store. In these cases, we used the package identifier
to query Google Play API and extract the available textual
descriptions (see Section 6.1) for each app, to investigate
whether these textual semantics correlate advertised apps
with the permissions requested. To measure the correct-
ness of the proposed metric for characterizing app behaviour,
"apps without security-centric descriptions for sensitive
permissions requested are likely to be malicious", we eval-
uate the precision of the metric on the malware data set. The
precision can be seen as a measure of exactness or fidelity of
the classifier that shows what proportion of apps classified
as malicious are malware. Table 5 shows the result of the
evaluation.

The high value of the detection sensitivity (True Posi-
tive Rate - TPR) shows an indication that requesting sensi-
tive permissions without providing a functional motivation
or need for such behaviour is a strong indication of malware

behaviour. 86.54% of the malware investigated exhibit such
behaviour. This shows that an app requesting sensitive per-
missions without a clear motivation in its metadata is a reli-
able warning signal.

While our results show a good performance for the de-
tection of malware, we carefully investigated in detail the
false positives it produces. We are aware that this approach,
where only permission requests as features are considered,
may have difficulties in improving the current detection ac-
curacy. This is because while malicious apps generally do
not motivate sensitive behaviours in their descriptions, there
are still some request patterns that evade the analysis for
a mismatch. Such requests patterns include 13.46% of the
malware in the sample size: i) that do not request permis-
sions or, ii) explained the need for sensitive permissions in
their descriptions and transparent in their descriptions of the
core functionalities of the device they are accessing. In this
case, relying on only permission request against app descrip-
tion is not feasible for the detection of malware. This gets
complex if a large number of benign apps request no permis-
sions too or not clear about the sensitive capabilities of the
device they are accessing. By using only permission request
information and enhanced app description for the detection,
this may lead to false positives. Therefore, additional infor-
mation is required as features to reduce false positives. How-
ever, our analysis results strongly show evidence that the use
of permission requests and enhanced sources of app textual
description can be used as a valid warning sign to flag apps
for further investigation.

Furthermore, to investigate the contribution of our tech-
nique to community ratings on app distribution platforms,
we queried Google Play API using the package identifier for
the malware apps in our data set for the app information.
Specifically, the app information we are interested in is the
user ratings of the apps. From the results gathered, 96.42%
of the identified malware requests sensitive permissions, yet
91.86% were rated high (a rating in the range of 3.50 to 5.0)
by users. One reason for this could be that the average user
does not have the technical knowledge to fully understand
the privacy and security aspects of an application’s metadata
(Felt et al., 2012). Thus, the user rating is designed for users
to rate an app based on functionality, content, features and
benefit. For instance, if users are motivated by user ratings
of apps to adopt an app, then with a benchmark rating of 3.5,
88.33% of the malicious apps in our data set would be poten-
tially adopted. Whereas, 87% of such apps would have been
flagged using our transparency metric of behavioural ele-
ment mismatch. Since community ratings reflect how users
perceive an app in terms of functions, features, and perfor-
mance; the privacy and the security perspective can be aug-
mented with our proposed technique of behavioural element
mismatch assessment.

7.2. R4: Robustness of Textual Description

To evade this approach, malware developers may pro-
vide inaccurate app descriptions. A malicious developer
may manipulate other app’s textual description information
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to introduce subtle malicious indicators that would then be
matched against the actual permission semantics; this would
not determine any mismatch and the app would, therefore, be
flagged as benign. There are constraints, of course, but one
approach might be to compare the description against ac-
tual code patterns(Zhang et al., 2015a). The underlying tech-
nique of their approach is to associate APIs to permissions
to generate a behavioural graph that is used to automatically
generate security-sensitive descriptions. This work suffers
three known limitations - i) Runtime Permission Checks -
Maps for SDK/Frame-work >23 are incomplete due to the
fact that parts of the permission checking have been moved
to the AppOpsManager (runtime permission checks). ii)
Maps are currently missing APIs with permissions checked
in native code (CAMERA - a dangerous permission etc.).
Thus, any critical functionality implemented using these
technologies can evade behaviour analysis. These limita-
tions are well documented in the state-of-the-art Android
Permission mappings(Backes et al., 2016). iii) Benign and
Malicious apps can intentionally obfuscate their programs
via Android Packers, such that the program code cannot be
extracted for behaviour analysis(Zhang et al., 2015b). Fur-
thermore, features extracted by Android reverse engineer-
ing tools are prone to errors because they do not work in all
cases, which leads to imperfect control flow graph(Mirzaei
et al., 2019). With the changes in Android API such as dep-
recation of API calls with new API releases, monitoring app
behaviour through program code becomes a challenging en-
deavour. The conclusion is that program code cannot be ex-
tracted sometimes for behavioural analysis. If the goal is to
improve the security awareness of end-users, the two classes
of literal app information that the Android market provides
- permission requests and textual descriptions needs to be
carefully investigated. The natural language processing of
an app’s permission request with its description provides an
intuitive security-oriented view of the expected behaviour of
the app.

There are two sources of textual description available to
end-users - text provided by publishers on an app distribu-
tion platform and textual descriptions within the application
itself. The aim is to analyze the string resources which are
a representation of the UI textual description of the apps.
We leverage the string resources because these provide text
strings for the application that users interact with. These
texts often come as labels in the app that describes the func-
tions of each XML page the user is interacting with, a textual
description in form of hints for required user inputs, text, la-
bels associated with user input widgets, etc. Also, these texts
describe the action, operation or function a user can interact
with, which oftentimes indicates the use of potential permis-
sion or accessing the core functionalities of a device to re-
spond to a user action or input. For example, a Ul button
could have the following text descriptions add a contact,
delete contact, send SMS, make a phone call, upload a
file, save document etc., which all require sensitive APIs
protected by permissions. It would, therefore, be suspicious
of an app requiring such permissions without correspond-

ing motivation or text descriptions of user required actions.
These string resources provide textual semantics that is com-
bined with the permission semantics.

The advantage of our approach of using the string re-
sources for semantic resolution of permission is that it pro-
vides an accurate textual description of the sensitive device
information or core functionality the app is trying to access
that is not subject to developer inconsistencies. Since de-
velopers of both benign and malicious apps have the same
goal of obtaining accurate inputs from users, this necessi-
tates clear Ul textual descriptions. For example, GoogleMap
has edittext resource with a hint "Your location” that allows
a user to specify the starting point of navigation and a text
label "location sharing”, which clearly suggests the use of
location permission. Also, another Editor’s choice App, In-
stagram, has the following text labels on a page in the app
"Instagram’s Better with Friends. See which of your
friends are on Instagram and choose whom to follow", with
an Android widget button, with the text description Connect
Contacts. The textual description on the button suggests that
Instagram needs to find accounts on the device and read
user’s contacts, which motivates the contact permission re-
quest. Hence, assuming text descriptions on the app distribu-
tion platforms are inappropriately specified, permission re-
quest patterns can still be semantically resolved based on the
UI textual descriptions.

We compare the results of identifying known malware
using the app description on Android markets against the
string resources provided within the app itself. For each apk,
we disassemble using Androguard(Desnos, 2017) to extract
the UI textual descriptions from its resources. As shown
in Table 5, the sensitivity of the detection increased from
86.54% using description on app markets to 94.60% using
the string description within the app itself, thereby reduc-
ing false negatives by 60%. This shows that 100 malware
samples that evaded detection using description on Android
markets were detected by using the UI textual descriptions.
Evading previous analysis means that these malware apps
provided security-centric descriptions on the Android mar-
ket. The key finding is this regard is that the textual descrip-
tion on app distribution platforms can be enhanced by Ul
textual descriptions.

Furthermore, we investigated the robustness of textual
description on the different malware families provided by
Mal_AMD(Wei et al., 2017), which provides an up-to-date pic-
ture of the current landscape of Android malware, catego-
rized in 135 varieties among 71 malware families, with 47
out of the 71 malware families obfuscated by anti-analysis
techniques such as dynamic loading, native payload, string
encryption etc. The detection result achieved a true positive
rate score of 0.9872 as shown in Table 6. In addition, we
downloaded 5000 benign apps from Google Play (benignA)
and we evaluate the performance of the model using F-Score
and Balanced Accuracy.

Precision- Recall . .
The F-score 2 - 5500 2EC8 qymmarizes the precision
TP Precision+Recall

and recall of a classifier and a description of
the balance between the two. F-Score is usually used to eval-
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Table 6
Classification Performance on {Mal_AMD, benignA}, {PRaGuard,
benignB}

Table 7
Detailed Detection Results On the AMD Dataset(Wei et al.,
2017)

Datset TPR Precision | F-Score | bACC
Mal_AMD. | 9e75 | 0.96 094 | 0.92
benignA
PRaGuard, | g6 0.90 093 | 0.82
benignB

uate the performance of an unbalanced binary classification
problem where the class distribution is highly skewed and
when it is more important to correctly label an app as mali-
cious, as opposed to labelling the benign one. An F-Score
close to 1 indicates the good performance on correctly classi-
fying the classes because it conveys the balance between the
exactness (precision) and recall (completeness) of the model.

The Balanced Accuracy (bACC): Balanced Accuracy is
used to measure how accurate is the overall performance of
a model is, considering both positive and negative classes
without worrying about the imbalance of a data set (Mower,
2005). Consider a dataset of 90 negative and 10 posi-
tive samples, classifying all as negative gives 90% accuracy
score. This is because the accuracy value was highly depen-
dent on the specificity value because the positive samples
were proportionately lower than the negative samples. Bal-
anced Accuracy w overcomes this problem, by nor-
malizing true positive and true negative predictions by the
number of positive and negative samples, respectively, and
divides their sum into two. Regarding the previous exam-
ple of 90 negative and 10 positive samples, classifying all as
negative gives 50% balanced accuracy score out of the max-
imum bACC of 100%, which is equivalent to the expected
value of a random guess of a balanced data.

With Mal_aMD (17273 apks) and benignA (5000 apks), we
achieved an F-Score of 0.94 as shown in Table 6. Our analy-
sis shows that descriptions and behavioural elements (e.g.
permission requests) are a promising way of enhancing a
user perception of the expected behaviour of applications.
To the best of our knowledge, the proposed approach for
evaluating the robustness of textual descriptions for enhanc-
ing permission-based malware detection is distinctive within
the research community.

7.3. Augmenting Privacy Analysis with
Behavioural Element Mismatch

We also investigated the benefit of our approach in en-
hancing privacy analysis of mobile apps. Since the majority
of current analysis framework relies on program code anal-
ysis, recent studies have shown that obfuscation has turned
out to be a new barrier to protect Android users(Duan et al.,
2018; Dong et al., 2018; Wang and Rountev, 2017) because
of the obstacles it poses to privacy analysis of Android apps,
we aim to investigate the performance of our detection ap-
proach on obfuscated apps. To achieve this, we form a
dataset of malware and benign applications obfuscated us-
ing different techniques.

Family # TP FN | Family # TP FN
Airpush 7658 | 7487 | 171 | Mecor 1799 | 1799 | 0
AndroRAT 7 7 0 Minimob 183 183 0
Andup 26 26 0 Mmarketpay 12 12 0
Aples 2 2 0 MobileTX 12 12 0
BankBot 93 92 1 Mseg 211 210 1
Bankun 20 20 0 Mtk 60 60 0
Bogx 199 199 0 Nandrobox 76 76 0
Boxer 7 7 0 Obad 4 4 0
Cova 14 14 0 Ogel 4 4 0
Dowgin 3038 | 3038 | O Opfake 7 7 0
DroidKungFu | 190 189 1 Penetho 6 5 1
Erop 1 1 0 Ramnit 5 4 1
FakeAngry 9 9 0 Roop 30 30 0
FakeAV 1 1 0 RuMMS 8 8 0
FakeDoc 0 0 0 SimpleLocker | 21 20 1
Fakelnst 57 57 0 SlemBunk 2 2 0
FakePlayer 2 2 0 SmsKey 90 90 0
FakeTimer 1 1 0 SmsZombie 9 0 9
FakeUpdates | 5 5 0 Spambot 13 13 0
Finspy 2 2 0 SpyBubble 2 2 0
Fjcon 4 4 0 Stealer 13 13 0
Fobus 4 2 2 Steek 12 0 12
Fusob 130 129 1 Svpeng 4 4 0
GingerMaster | 105 105 0 Tesbo 5 5 0
GoldDream 46 46 0 Triada 148 146 2
Gorpo 21 21 0 Univert 3 3 0
Gumen 128 128 0 UpdtKiller 2 2 0
Jisut 24 16 8 Utchi 12 12 0
Kemoge 15 15 0 Vidro 1 1 0
Koler 41 41 0 VikingHorde | 4 4 0
Ksapp 32 32 0 Vmvol 5 5 0
Kuguo 1096 | 1096 | 0 Winge 13 13 0
Kyview 136 135 1 Youmi 1239 | 1238 | 1
Leech 5 4 1 Zitmo 4 4 0
Lnk 3 3 0 Ztor 19 19 0
Lotoor 113 106 7

SUM = 17273 TP = 17052 FN = 221

True Positive Rate (TPR) = 98.72%

We have investigated AMD Dataset as ground truth for
investigating the benefit of our approach. The dataset is la-
belled based on several behavioural criteria, including the
presence of different anti-analysis techniques in the sam-
ples of each family and variant. Finally, we have used an
additionally related dataset, known as PRAGuard (Maiorca
et al., 2015) to evaluate the performance of our approach
over obfuscated malware apks. The dataset is composed of
10,479 samples, obtained by obfuscating the MalGenome
(Jiang and Zhou, 2012) and the Contagio Mobile Malware
Minidump® datasets with seven different obfuscation tech-
niques. The final number of apps is 4982, having discarded
apps that cannot be disassembled properly with Androguard
(Desnos, 2017) from our datasets. PRaGuard classifies Ob-
fuscation strategies into two class: Trivial (TR) - an ensem-
ble of obfuscation strategies that only affects strings, with-
out changing the bytecode instructions; Non-Trivial - tech-
niques that affect both the strings and the bytecode of the
executable, such as Reflection (RE), String Encryption (SE),
Class Encryption (CE) etc. The PRaGuard dataset contains
auniform distribution of a combination of major obfuscation
techniques, which makes it ideal for validation. For exam-
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Table 8
Detailed Detection Results in PRaGuard Dataset

Obfuscation Technique(s) | Size | TP FN
CE 830 | 788 | 42
RE 843 | 807 | 36
SE 843 779 39
TR 818 | 807 | 36
TR + SE 605 | 586 | 19
TR + SE + RE 539 525 14
TR + SE + RE + CE 504 485 19
Total 4982 | 4777 | 205
True Positive Rate (TPR) = 0.96

ple, 4 out of the sample set contains a joint application of at
least two obfuscation technique, while one of the samples is
obfuscated by four different obfuscation technique as shown
in Table 8. Table 8 also shows the detection results of PRa-
Guard with the true positive rate achieved for the seven ob-
fuscation techniques applied to the dataset. The PRaGuard
dataset contains a uniform distribution of a combination of
major obfuscation techniques, which makes it ideal for val-
idation. Table 6 shows the detection recall score of 0.96
achieved for the different obfuscation technique combination
in PRaGuard.

To create a dataset of Android applications with the ob-
fuscated techniques, we gathered obfuscated benign apps
that were used as ground truth for the testing set in Dong
et al. (2018). The total number of obfuscated apps was 1084.
We present our results using the classification performance
measures as shown in Table 6.

Asides obfuscated apps being a challenge to Android
code analysis, dynamic tracking approaches may also miss
some data leaks and yield an under-approximation because
of specifically designed methods to circumvent security
tracking(Babil et al., 2013). On the other hand, static anal-
ysis approaches may yield an over-approximation because
all the application’s code is analyzed, even the code that
will never be executed at runtime. Our work can augment
these efforts by providing a highly-precise detection tech-
nique without code analysis to apps that are out of reach
due to limitations provided by obfuscation or code analy-
sis, to enable them to perform code analysis on apps without
these limitations to get better results. Thus having a mech-
anism to detect potential malware in obfuscated apps, us-
ing its string resources can contribute to saving resources
for analysis. To contribute in this direction, our proposed
technique of analysing UI textual description shows promis-
ing accuracy ratios for permission-based malware detection
in obfuscated apps.

7.4. Towards Sustainable Android Malware
Detection
While we have proposed an approach that relies on the
sensitivity of permission requested and textual descriptions,
we are also aware that the approach might deteriorate over
time due to the dynamic nature of the Android ecosystem
and evolution of permissions. For example, if malware stop

requesting sensitive permission or provides a textual de-
scription that necessitates permission request, then our ap-
proach may suffer low detection sensitivity. The same ar-
gument can be used for low detection precision when be-
nign apps request sensitive permissions that are not mo-
tivated in the textual descriptions. This performance de-
terioration is because of app evolution and has also been
the bane of long-span malware detection of state-of-the-art
malware detectors for Android. To understand the over-
time classification performance of existing malware detec-
tion solutions, we chose six state-of-the-art malware detec-
tors for Android. The baseline malware detectors for An-
droid investigated are the two state-of-the-art dynamic app
classifiers DroidSpan(Fu and Cai, 2019), Afonso(Afonso
et al., 2015) and four state-of-the-art static approaches Ma-
maDroid(Mariconti et al., 2017), DroidSieve(Suarez-Tangil
et al., 2017), DroidAPIMiner(Aafer et al., 2013), Reveal-
Droid(Garciaet al., 2018). MamaDroid and DroidAPIMiner
uses features based on API calls in an app, extracted through
static analysis. DroidSpan uses longitudinal characteriza-
tion study of Android app with a focus on their dynamic be-
haviours as features for app classification. DroidSieve uses
features computed from app resources such as the API calls,
code structure, permissions and the set of invoked compo-
nents; Afonso classifies apps based on calls to predefined
lists of APIs and system calls, and RevealDroid approaches
app classification based on apps’ usage of APIs, native code,
and reflection.

We conducted two studies: (i) to investigate the per-
formance of the proposed security-oriented view in over-
time detection settings and, (ii) to comparatively evaluate
the capabilities of the proposed approach against the re-
sults presented in MamaDroid and DroidSpan in five state-
of-the-art malware detectors for Android as baselines for
the sustainability of detector. Firstly, we compare the per-
formance of our approach to the results presented in Ma-
madroid(Mariconti et al., 2017), where the evaluation of ro-
bustness to evolution in malware development and changes
in Android API was compared with DroidAPIMiner(Aafer
etal.,2013). The comparison of our approach to the results is
useful because MamaDroid was the first work to investigate
the sustainability of Android Malware detectors to the best
of our knowledge. We evaluate our approach on the datasets
that yielded poor results due to the unsustainability of the
detectors over three-year spans. The results are F-Score val-
ues obtained when the testing dataset is one to three-year
apart from the training set. The datasets are malicious (2014,
2015, 2016) and benign (oldbenign). The 2016(M16) contains
2974 malware APKs and oldbenign(OB) contains 5879 be-
nign apks. The 2014(M14) contains 24317 malware APKs
and 2015(M15) contains 5314 malware apks. The results are
presented in Table 10, where our approach outperforms Ma-
maDroid and DroidAPIMiner in terms of sustainability of
detection accuracy.

In a similar fashion as the previous experiment, we
repeated the same procedure for the results presented in
DroidSpan. The entire study dataset includes 13,627 be-
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Table 9
Features Used in the Investigated State-of-the-art Approaches
Detector Feautures
Ours Sensitive permission requests and app
textual description
DroidSpan Longitudinal characterization study of
Android app and their dynamic
behaviours
MamaDroid API Calls
DroidAPIMiner | API-Level Behaviour
Afonso Predefined list of APl and system calls
RevealDroid APIs, native code and reflection
DroidSieve API Calls, code structure, permissions
and the set of invoked components
Table 10

Sustainability of Malware Detection in Over-Time Detection
Settings in MamaDroid

(b) Comparison of Average

(a) Classification  Perfor- Performance (F1) Among the
mance (F1) of Proposed Two Malware Detectors in
Approach for Sustainable Over-Time Detection Settings
Malware Detection. (three-year span).
Dataset F-Score Detector F-Score
OB+M14 93% Our Work 78%
OB+M15 % DroidAPIMiner 33%
OB+M16 64% MamaDroid 49%
Avg. F-Score 78%

nign and 12,705 malicious samples, for a total of 26,332
benchmarks. These benign and malicious apps were devel-
oped across the past eight years from 2010 to 2017, accord-
ing to which the entire datasets were divided into 16 yearly
datasets, depicted as M10 to M17 for malware and B10 to
B17 for benign apps. All the 16 datasets are mutually dis-
joint (there were no apps shared by any two datasets). The
datasets are the same dataset used by DroidSpan(Fu and Cai,
2019) in investigating the deterioration of learning-based
malware detectors for Android.

Table 11 lists the F1 accuracy of each of the eight inde-
pendent tests (noted in the first column) achieved by the pro-
posed four security rules. As shown, the proposed approach
achieved an average F1 of 70.11% for the datasets of any of
the past eight years. Also, the classification performance had
very small variations. In comparison, the baselines all had
relatively large variations, showing the dependence of their
performance on particular datasets. The implication of this
is that the proposed approach of using permission request
and UI textual descriptions can be useful in identifying old
and emerging malware with at least 70% accuracy while giv-
ing equal importance to the true positive rates (recall) and
precision. For over-time detection, Table 11a lists the mean
F1 accuracy of each technique with one-through seven-year
spans between training and testing data. The numbers indi-
cate our classifier performed better than the four baselines at
any of the seven spans. While DroidSpan performed better
than our approach, the gap was not very large with the seven-

Table 11
Sustainability of Malware Detection in Over-Time Detection
Settings in DroidSpan

(b) Comparison of Average
Performance (F1) Among the
Five Malware Detectors in
Over-Time Detection Settings
(seven-year span).

(a) Classification Performance
(F1) of Proposed Approach for
Sustainable Malware Detection.

Dataset F-Score Detector F-Score
B10+M10 83.84% Our Work 70.11%
B11+M11 71.30% DroidSpan 71.43%
B12+M12 75.78% MamaDroid | 63.67%
B13+M13 68.26% Afonso 49.91%
B14+M14 55.33% RevealDroid | 45.94%
B15+M15 78.16% DroidSieve 290.87%
B16+M16 76.84%

B174+M17 51.37%

Avg. F-Score | 70.11%

year (71.43% versus 70.11%). However, with all other tech-
niques, the advantages of our approach over the baselines
were much more substantial. Over the seven spans, the av-
erage F1 of our approach was the highest among the other
techniques, followed by MamaDroid, Afonso, RevealDroid,
and DroidSieve in order. These findings reveal the promise
of the proposed approach to long-span malware detection,
such that old, new and emerging malware can be detected.

The result in Table 10 and Table 11 shows that the
proposed techniques have a better chance of succeeding
where other approaches have not. Furthermore, leverag-
ing apps’ textual descriptions and sensitive permissions pro-
vide a promising vision towards predicting the expected be-
haviour of an app.

7.5. Discussion

This section provides a discussion of an overview of the
work under two main broad headings - i) the rationale for
permission and textual descriptions as a feature for Malware
Detection ii) major advantages of the proposed approach.

7.5.1. Permissions and App Descriptions as a Feature
Jor Malware Detection

Android permission is the major security mechanism for
the Android operating system. Security analysis of mobile
apps should, therefore, include analysis of the sensitive priv-
ileges a smartphone has access to. Furthermore, at the core
of every basic security concept is access control. Adopting
the core elements of an access model for mobile software
system will be similar to Figure 7. The core elements of
an access control model are Identification, Authentication
and Authorization. From Figure 7, it can be observed that
user information associated with identification and authenti-
cation in mobile settings would require graphical user inputs,
while the context for Authorization is a typical example of
smartphone privileges e.g. Android permissions. Therefore,
using Android permissions, which are user-granted privi-
leges, for analysis recognises the security problems of mo-

Olukoya et al.: Preprint submitted to Elsevier

Page 16 of 21



Security-Oriented View of Android Applications

Basic Security Concept

Y

Access Control

—

Identification

Authentication Authorization

\ 4 \ 4 \ 4
identity is
authenticated e.g.
MFA, 2FA, PIN, bank

card, fingerprint, permissions tied to a
encryption keys etc. username etc.

T~ .

Smartphone Privileges
e.g. Android
Permissions

actions allowed for
identity e.g. read,
write and execute

identify an individual

e.g. username, email
address, user id,

passport number etc.

Graphical User
Interface Inputs

Figure 7: Access Control in Mobile Software Systems

bile software systems as an authorization problem which
deals with access control.

Furthermore, the proposed approach does not just use
Android permissions alone, but in conjunction with the app’s
textual description. This is in line with the fundamental be-
haviour classification proposed in this study that detects mal-
ware based on the mismatch between the app’s advertised
behaviour and its functional behaviour. The proxy for the
app’s expected behaviour in this study is the app’s textual
description, while the proxy for its functional behaviour is
the permissions it requests. This is built on the established
problem with Android permissions where there is often a
mismatch between required permissions and requested per-
missions or inconsistencies between what an app is request-
ing and the functionality (or purpose of the app)(Sarmaet al.,
2012; Felt et al., 2011a; Lin et al., 2014; Olukoya et al.,
2019). If the goal is to improve the security awareness of
end-users, the two classes of literal app information that the
Android market provides - permission requests and textual
descriptions needs to be carefully investigated. The natural
language processing of an app’s permission request with its
description provides an intuitive security-oriented view of
the expected behaviour of the app.

While we agree that using this feature leads to false neg-
atives and positives, which is the common attribute of every
detection system. We are exploring more informative fea-
tures like those related to identification and authentication
in mobile apps, out of which we have recognised graphical
user input as the main source. We believe that the combi-
nation of features associated with identification, authentica-
tion and authorization in mobile software systems can im-
prove the performance of the detection of malware. We ar-
gue that if the goal is to improve the security of Android,
one of the major ways to view it is as an access control prob-
lem, needing exploration and investigation of user inputs and
resources associated with identification, authentication and
authorization. The current approach explores the authoriza-

tion aspect of it, and that was the motivation for adopting
Android permissions as a feature in this study. A possible
extension to the study in which we are actively investigat-
ing is evaluating permissions and GUI inputs as the basis for
mobile app analysis because, at their core, they form user in-
puts and resources associated with access control elements
in mobile software systems. Another area of a potential ex-
tension to this study is by incorporating the Android API per-
mission specification using path-sensitive analysis and graph
abstraction proposed in Aafer et al. (2018) for generating
the semantic graph for Android permissions. The precise
Android API protection specification map can be leveraged
for inferring semantic patterns to detect behavioural element
mismatch.

7.5.2. Major Advantages of the Approach

e Alternative technique for monitoring app be-
haviour - Most detection technology detects malware
by monitoring its behaviour, and they often rely on
program code analysis to monitor such behaviour. We
have argued that program code analysis cannot be ex-
tracted sometimes for behaviour analysis due to its
limitations(cf Section 7.2). Therefore, our approach
is contributing to this area by proposing an app be-
havioural analysis devoid of program code inspection.
This can augment state-of-the-art detection systems
for robust behavioural monitoring of apps.

e Sustainability of Android Malware Detectors -
Recent study has shown that existing solutions to
Android malware detection deteriorate largely and
rapidly over time, such that new and emerging mal-
ware often evade detection (Fu and Cai, 2019). We
proposed a new classification approach based on per-
mission and app description features with a focus on
sensitive behaviours. We evaluated this new approach
against the six existing detectors and our approach out-
performed five out of the six modern detectors, while
being comparable to the sixth (70.11% vs 71.43%)
over the 7 year span (cf Table 9, Table 10 and Ta-
ble 11). The main lesson learned is that studying app
behaviour in terms of its sensitive permission request
and textual description provides a promising avenue
for long-span malware detection.

¢ Informative Feature for Malware Detection: Mod-
ern detection systems e.g. DREBIN(Arp et al., 2014)
or approaches using an ensemble of classifiers e.g.
Wang et al. (2018) are exploring more informative fea-
tures to better characterize the behaviour of apps. The
proposed approach can complement this endeavours
by demonstrating strong evidence that app descrip-
tions and sensitive permission requests are an infor-
mative feature for malware detection. In conclusion,
the proposed technique has shown that analysing app
advertised behaviour against its functional behaviour
is an important feature for characterizing stealthy be-
haviour of Android apps.
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7.6. Deployment of the Proposed Technique

Figure 8 shows the process diagram for deploying the
proposed technique as a tool. It takes as input an app to
be analysed and extract the app resources. The resources
of concern are the permissions requested, string resources
(UI textual description) and the description on the app mar-
ket. These inputs are fed into the Semantic Generation en-
gine, that has in its system a database of a sensitive permis-
sions model. Based on this resource in its engine, it maps
the sensitive permissions requested by the app to the seman-
tic model of permissions and generated the specific seman-
tic model of the permissions requested by the app. Also,
based on the app descriptions supplied, it converts them into
a semantic representation using natural language processing
techniques. The outputs of the semantic generation engine
are the semantic representation of the app’s textual descrip-
tions and semantic model of its sensitive permissions. These
are fed as input into the next stage.

The next stage is the semantic correlation engine, which
already has in its memory an unsupervised learning algo-
rithm, a word embedding model, whose function is to mea-
sure the mismatch as a function of the similarity between
the app’s permission semantic representation and textual de-
scriptions. The semantic correlation engine presents as out-
put a decision metric that characterizes an app behaviour
based on the transparency metric. An app passes a trans-
parency metric and is categorized as benign, if there is.no
mismatch between its advertised behaviour (app’s textual
descriptions) and implemented behaviour (sensitive permis-
sion request). Alternatively, the app is characterized as ma-
licious.

For app distribution platform, the approach can be de-
ployed as a tool to measure the compliance and commit-
ment of applications to transparency. This can be used as

Yes

Malicious App
Behaviour

Transparency
Check Failed

End

part of the app certification process. It could also be used
as a rating of the app to augment current forms of commu-
nity ratings by providing a security perspective to ratings.
Since the low rating is bad for the adoption of an app, the
approach would allow for more transparency on app distri-
bution platforms. For app developers, this technique can be
deployed as a compliance tool for app designers to be aware
of the transparency of their design decisions. For app users,
the tool can be deployed as a reliable privacy awareness tool
that scans apps installed on the phone and users can be in-
formed of potentially malicious apps. It is a reliable privacy
awareness tool because the proposed technique has validated
that an app with inconsistencies in its advertised and func-
tional behaviour is likely malicious. This can aid user per-
ception of actual app behaviour before adoption. Hence, the
behavioural element mismatch proposed in this study nudges
the end-user towards privacy awareness, the app distribution
platform towards enhanced app ratings, and the developer
alike towards enhanced transparency.

7.7. Limitations

Most malware request sensitive permissions that allow
them to access sensitive API, code or data in the device,
while most benign apps do not(Wang et al., 2014). In-
tuitively, malware can be distinguished from benign ones
by analyzing its description and behavioural elements. We
highlight the limitations of our approach regardless of the
source of descriptions used - Android Markets or App re-
sources, which is responsible for the 5.4% false positives in
Table 5, 1.28% false positives in the 71 malware families.

First, some malware request sensitive permissions that
are motivated in their app descriptions. This gives a nega-
tive impact on false positives. Secondly, some malware does
not request any permissions, while some do not request any
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sensitive permission to be malicious, often referred to as Zero
permission apps. In this case, relying on only the static be-
havioural element is not feasible for the description of the
app behaviour, as some benign apps, exhibit the same be-
haviour. As a case study, two out of the 71 malware fami-
lies in the AMD dataset exhibit such behaviour - SmsZombie
and Steek, where our current approach could not identify
any malware belonging to this category. Also, malware with
descriptions written in other languages, asides English can
evade our analysis. This shows that the description and be-
havioural elements may not informative enough to compre-
hensively describe the behaviours of an app.

Another limitation of this approach occurs with benign
applications whose developer did not invest time in provid-
ing an accurate application description either on the app
market or actions that trigger the motivation for its sensi-
tive behaviour in the Ul textual description. In this case,
the application is marked as malicious even though benign.
In this case, the behavioural element mismatch proposed in
this study can aide developer awareness as a measure for
checking compliance. Therefore, developers can be aware
of the gap between the advertised behaviour and functional
behaviour during design time. While we have discussed how
the proposed behavioural element mismatch nudges user
towards privacy awareness, app developers can also bene-
fit from it as an enhancement tool during design for trans-
parency.

However, we argue that the capability of the analysis
technique is orthogonal to our main focus. In future work,
we are exploring more behavioural elements to reduce false
positives. One of the ways of handling such complexities
may be investigating the system-call runtime behaviour of
such apps(Tam et al., 2015; Yan and Yin, 2012; Yang et al.,
2013).

8. Conclusion

This study provides a security-oriented overview of the
expected (predicted) app behaviour, while the evaluation in-
volves validating the predicted behaviour with its actual be-
haviour by investigating the correctness of the anomaly de-
tector it in Android malware detection settings. We propose
gathering enough textual semantics from app description
and permission requests to enhance malware detection sys-
tems that rely on checking the behavioural element mismatch
in apps. Specifically, we propose a revision of the Android
permission system and investigating mismatches between
the advertised and implemented app behaviour. Our ap-
proach improves the accuracy of state-of-the-art approaches
by reducing the false negatives with Whyper, AutoCog,
CHABADA by at least 87%, and TAPVerifier by at least
57%. We also evaluated the robustness of our technique on
71 malware families and achieved a precision of 98.72%. We
also demonstrate that our approach is obfuscation resilient,
and could be applied for advancing the security of mobile ap-
plications. Finally, we demonstrate that analysing sensitive
permissions requested and UI textual descriptions provides

a promising avenue for long-span malware detection. The
key finding in this study is that app descriptions and a fine-
grained stratification of user-granted privileges (e.g. permis-
sions) are a promising way of enhancing a user perception
of the actual behaviour of Android apps and the detection of
malicious apps.

In general, the proposed approach augments existing
work and presents a complementary mechanism for enhanc-
ing the privacy of mobile device users. For example, the be-
havioural element mismatch characterization as a measure
of trustworthiness of an app can be used as a privacy risk in-
dicator to support current forms of community ratings, to aid
user comprehension of transparency. Previous studies have
shown that community ratings on distribution platforms are
not sufficient to enable users to become aware of the level
of privacy risk they are exposed to when they download
an app(Chia et al., 2012). Our study further showed that
user and community ratings on app distribution platforms
are poor indicators of security. Finally, our analysis shows
that exploring behavioural elements (app descriptions, Ul
textual descriptions and permission requests) is a promising
way of enhancing a user perception of the actual behaviour
of Android applications and the detection of malicious apps.
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