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Abstract. Let Ω ⊂ Rn be a bounded smooth open set. We prove that the

singular set of any extremal solution of the system

−∆u = µev , −∆v = λeu in Ω,

with u = v = 0 on ∂Ω, µ, λ ≥ 0, has Hausdorff dimension at most n− 10.

1. Introduction

In this article we consider the issue of partial regularity of extremal solutions to
the Liouville system

(1)


−∆u = µev in Ω,

−∆v = λeu in Ω,

u = v = 0 on ∂Ω,

with Ω a bounded smooth open subset of Rn, and λ, µ nonnegative parameters.
This system is a generalization of the equation

(2)

{−∆u = λeu in Ω,

u = 0 on ∂Ω

where λ denotes a positive parameter. It is well known that there is a maximal
parameter λ∗ > 0 for existence of solutions of (2) and for 0 < λ < λ∗ there is
a minimal solution uλ. As λ → λ∗, λ < λ∗ the solution uλ converges to the so-
called extremal solution, which turns out to be smooth for n ≤ 9, see [3, 11]. The
interested reader may find in the book [7] the developments of the theory for the
last six decades, with a particular focus on stable solutions.

Recently it was proved by K. Wang [13] that for n ≥ 10 the extremal solution of
(2) has a singular set of dimension at most n − 10. F. Da Lio [5] obtained partial
regularity for any weak stationary solution in dimension 3 (not necessarily stable).
See related results for the Lane-Emden equation in [14, 6].

Here we generalize the results of [13] to the system (1). For this system, M.
Montenegro [12] proved the existence of a nonempty open set U in the quarter plane
λ, µ > 0 such that for a couple of parameters (µ, λ) in U there is a smooth minimal
solution (u, v) and no smooth solution exists if the couple is in the complement of
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2 JUAN DÁVILA AND OLIVIER GOUBET

U . Minimality means u ≤ ũ and v ≤ ṽ in Ω for any other smooth solution (ũ, ṽ) for
the same (µ, λ).

For each slope m > 0, U intersected with the line µ = mλ is a segment {(mλ, λ) :
λ ∈ (0, λ∗(m))} and at the extremal point (mλ∗(m), λ∗(m)) ∈ ∂U there is a solution,
called the extremal solution. It is defined as the limit as λ ↑ λ∗(m) of the minimal
solution with parameters (mλ, λ) and it may be singular. In a recent work [8],
L. Dupaigne, A. Farina and B. Sirakov proved that the extremal solutions for the
Liouville system (1) are smooth if n ≤ 9. C. Cowan [1] had obtained the same
conclusion under the restrictions 3 ≤ n ≤ 9 and n−2

8 ≤ µ
λ ≤

8
n−2 . In higher

dimensions this fails at least in the radial case and for λ = µ, where (1) reduces to
(2).

Let us recall that en extremal solution (u, v) satisfies (1) in the sense that u, v ∈
L1(Ω), eu dist(·, ∂Ω), evdist(·, ∂Ω) ∈ L1(Ω), and∫

Ω

u(−∆ϕ) =

∫
Ω

µevϕ,

∫
Ω

v(−∆ϕ) =

∫
Ω

λeuϕ,

for all ϕ ∈ C2(Ω) with ϕ = 0 on ∂Ω.
We define the singular set Σ of an extremal solution (u, v) by x 6∈ Σ if there is a

neighborhood W of x such that u, v are bounded in W . By elliptic regularity, u, v
are then smooth in this neighborhood.

Theorem 1.1. Assume n ≥ 10 and let (u, v) be an extremal solution of the Liouville
system (1) and Σ be its singular set. Then the Hausdorff dimension of Σ is less or
equal than n− 10.

The rest of the article is devoted to the proof of this theorem. We first recall
a useful inequality which is valid for stable solutions of the system, obtained in C.
Cowan, N. Ghoussoub [2] and L. Dupaigne, A. Farina, B. Sirakov [8]. We then state
a comparison result between u and v. Next, we perform a Moser iteration scheme
to control the growth of some integrals of eu and ev on balls. The final step is an
adaptation of an argument of K. Wang [13] using an ε-regularity result. The result
in this paper is also closely related to the work of L. Dupaigne, M. Ghergu, O.
Goubet and G. Warnault [9] on stable solutions of ∆2u = eu in a bounded domain
or entire space.

2. Proof of Theorem 1.1

From [12] we know that for (µ, λ) ∈ U , the associated minimal solution (u, v) of
(1), which is smooth, is stable in the sense that there exist ϕ,ψ : Ω → R, smooth
and positive in Ω, satisfying

−∆ϕ− µevψ = ηϕ in Ω,

−∆ψ − λeuϕ = ηψ in Ω,

ϕ = ψ = 0 on ∂Ω,

for some η > 0. C. Cowan, N. Ghoussoub [2] and independently L. Dupaigne, A.
Farina, B. Sirakov [8] have showed that this stability condition implies the following
estimate.

Lemma 2.1. Let (u, v) be a smooth stable solution of the system (1). For any ϕ
in H1

0 (Ω)

(3)
√
λµ

∫
Ω

exp(
u+ v

2
)ϕ2 ≤

∫
Ω

|∇ϕ|2.
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2.1. Comparison. It will be useful later to have the following inequalities between
the components of a solution of (1).

Lemma 2.2. Assume λ ≥ µ. Then for any smooth solution to the Liouville system
(1) we have:

(4) u ≤ v ≤ u+ log λ− logµ.

Proof. Introduce w = v − u − log λ + logµ. Then w ≤ 0 on ∂Ω. We have −∆w =
λeu − µev = −λeu(ew − 1), and then

−∆w + λeu(
ew − 1

w
)w = 0.

Then due to the maximum principle w ≤ 0 in Ω. For the first inequality in (4)
introduce w̃ = v − u. Then −∆w̃ = λeu − µev ≥ λ(eu − ev) = −a(x)w̃ where
a(x) ≥ 0. Then by the maximum principle w̃ ≥ 0 in Ω. �

2.2. Reverse Hölder inequality. The following estimate is similar to the one
obtained in [8] and [9], see also [4] for the scalar case. We assume that (u, v) is a
smooth stable solution of (1).

Lemma 2.3. For any 0 < α < 4 there exists a constant C = C(n, α, λ, µ) such that
for any ϕ ∈ C∞c (Ω) we have

‖∇(exp(
αu

2
)ϕ)‖2L2(Ω) + ‖∇(exp(

αv

2
)ϕ)‖2L2(Ω)(5)

≤ C
∫

Ω

eαu(|∇ϕ|2 + |ϕ∆ϕ|2) + C

∫
Ω

eαv(|∇ϕ|2 + |ϕ∆ϕ|2).

Remark 1. Although the constant C depends on µ, λ it remains bounded as (µ, λ)
approaches any extremal couple on ∂U .

Proof. Multiply −∆u = µev by eαuϕ2 and integrate by parts to obtain

µ

∫
Ω

ev+αuϕ2 =

∫
Ω

∇u∇(eαuϕ2) =
4

α

∫
Ω

ϕ2|∇(e
αu
2 )|2 +

1

α

∫
Ω

∇(e
αu
2 )∇ϕ2.

This reads also

µ

∫
Ω

ev+αuϕ2 =
4

α

∫
Ω

|∇(e
αu
2 ϕ)|2 − 2

α

∫
Ω

eαu(|∇ϕ|2 − ϕ∆ϕ).

A similar equality is valid replacing respectively u by v and µ by λ. Introducing
X =

∫
Ω
|∇(e

αu
2 ϕ)|2, Y =

∫
Ω
|∇(e

αv
2 ϕ)|2, A = 2

α

∫
Ω
eαu(|∇ϕ|2 − ϕ∆ϕ), and B =

2
α

∫
Ω
eαv(|∇ϕ|2 − ϕ∆ϕ), we then have

4

α
X = µ

∫
Ω

ev+αuϕ2 +A,

4

α
Y = λ

∫
Ω

eu+αvϕ2 +B.

We combine Hölder’s inequality and the stability estimate (3) to obtain

µ

∫
Ω

ev+αuϕ2 ≤ µ(

∫
Ω

e
u+v
2 eαuϕ2)1− 1

2α (

∫
Ω

e
u+v
2 eαvϕ2)

1
2α ≤ (

µ

λ
)

1
2X1− 1

2αY
1
2α .
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Analogously, we have the same inequality replacing u by v and µ by λ. Hence we
obtain

4

α
X ≤ (

µ

λ
)

1
2X1− 1

2αY
1
2α +A,(6)

4

α
Y ≤ (

λ

µ
)

1
2X

1
2αY 1− 1

2α +B.(7)

Multiplying these inequalities leads to

(
16

α2
− 1)XY ≤ A(

λ

µ
)

1
2X

1
2αY 1− 1

2α +B(
µ

λ
)

1
2X1− 1

2αY
1
2α +AB.

Set δ = ( 16
α2 − 1). This implies that either

(
µ

λ
)

1
2X1− 1

2αY
1
2α ≤ A

δ
(1 +

√
1 + δ),(8)

or

(
λ

µ
)

1
2X

1
2αY 1− 1

2α ≤ B

δ
(1 +

√
1 + δ)(9)

hold. Assuming that (8) is true and combining with (6) we get X ≤ CA. Using
Young’s inequality in (7) we obtain Y ≤ C(A+B) so that X+Y ≤ C(A+B) holds,
which is (5). Assuming the validity of (9) we obtain the same conclusion. �

A consequence of the previous lemma is the following.

Lemma 2.4. Set 2∗ = 2n
n−2 . For any 0 < α < β < 2(2∗), if B2r(x) ⊂ Ω we have(

r−n
∫
Br(x)

(eβu + eβv)

)α/β
≤ Cr−n

∫
B2r(x)

eαu + eαv(10)

Proof. Follows from repeated applications of Lemma 2.3, using Sobolev’s embedding
and Hölder’s inequality. �

Remark 2. Lemmas 2.3 and 2.4 are independent of the boundary conditions of u
and v, and do not use the comparison of u to v of Lemma 2.2.

2.3. Integrability of solutions.

Lemma 2.5. Assume (u, v) is a stable smooth solution of (1) with parameter (µ, λ)
of the form µ = mλ for some fixed m > 0. For 1 ≤ α < 5 there is C independent
of λ such that ∫

Ω

eαu + eαv ≤ C.

We note that C in general depends on the slope m. In this lemma we need the
inequalities between u and v of Lemma 2.2. For the proof, we refer to [8] where the
following was proved.

Lemma 2.6. Assume λ ≥ µ. If (u, v) is a stable smooth solution of (1) with
parameter (µ, λ) of the form µ = mλ for some fixed m > 0, then for 1 ≤ α < 5
there is C independent of λ such that∫

Ω

eαu ≤ C.

Lemma 2.5 follows from Lemmas 2.6 and 2.2 in the case λ ≥ µ. By a symmetric
argument we obtain the same conclusion if λ ≤ µ.
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2.4. ε-regularity. A crucial step is the following ε-regularity result, whose version
for stable solutions in the scalar case is due to K. Wang [13], see also [9] for a
biharmonic equation with exponential nonlinearity.

Lemma 2.7. Let (u, v) be an extremal solution of (1). Then there is ε2 > 0 such
that if for some r0 > 0 with Br0(x) ⊂ Ω one has

r2−n
0

∫
Br0 (x)

(eu + ev) ≤ ε2

then there is a neighborhood of x such that u, v are smooth in this neighborhood.

For the proof we need the following key step, which is adapted from [13] in the
scalar case.

Lemma 2.8. There exists ε0 > 0 and θ > 0 depending only on n such that for any
0 < ε ≤ ε0, if (u, v) is a stable smooth solution of (1), Br0(x) ⊂ Ω and

r2−n
0

∫
Br0 (x)

(eu + ev) ≤ ε(11)

then

(θr0)2−n
∫
Bθr0 (x)

(eu + ev) ≤ ε.(12)

Proof. Let us assume that x = 0 by shifting coordinates. We rescale the functions
by setting

ũ(x) = u(r0x) + 2 log(r0), ṽ(x) = v(r0x) + 2 log(r0),(13)

and note that the new functions (where the ˜ in the notation will be dropped) satisfy

−∆u = µev, −∆v = λeu, in B1(0).

Let us decompose u = u1 + u2, v = v1 + v2 where

∆u1 = 0 in B1/2(0), u1 = u on ∂B1/2(0),

−∆u2 = µev in B1/2(0), u2 = 0 on ∂B1/2(0),

∆v1 = 0 in B1/2(0), v1 = v on ∂B1/2(0),

−∆v2 = λeu in B1/2(0), v2 = 0 on ∂B1/2(0).

Let γ > 0, 0 < θ < 1/4 to be fixed later on and ε > 0. Let us estimate

θ2−n
∫
Bθ(0)

eu = θ2−n
∫
Bθ(0)∩[u2≤εγ ]

eu1+u2 + θ2−n
∫
Bθ(0)∩[u2>εγ ]

eu.(14)

For the first term we proceed by noting that eu1 is subharmonic in B1/2(0) and
u2 ≥ 0, so

θ2−n
∫
Bθ(0)∩[u2≤εγ ]

eu1+u2 ≤ θ2−neε
γ

∫
Bθ(0)∩[u2≤εγ ]

eu1

≤ θ2−neε
γ

∫
Bθ(0)

eu1

≤ Cθ2eε
γ

∫
B1/2(0)

eu1

≤ Cθ2eε
γ

∫
B1/2(0)

eu ≤ Cθ2eε
γ

ε,(15)
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where we have used (11). For the second term in (14) we have

θ2−n
∫
Bθ(0)∩[u2>εγ ]

eu ≤ θ2−nε−γ
∫
Bθ(0)∩[u2>εγ ]

u2e
u

≤ θ2−nε−γ
∫
B1/2(0)

u2e
u

≤ θ2−nε−γ‖u2‖L2(B1/2(0))‖eu‖L2(B1/2(0)).(16)

To estimate ‖eu‖L2(B1/2(0)) we apply (10) with α = 1, β = 2 to get

‖eu‖L2(B1/2(0)) ≤ Cε1/2.(17)

For ‖u2‖L2(B1/2(0)), first note that

‖ev‖L2(B1/2(0)) ≤ Cε1/2.

Hence by L2 regularity theory

‖u2‖W 2,2(B1/2(0)) ≤ Cε1/2.

By using the Sobolev embedding W 2,2 ⊂ L
2n
n−4 we get

‖u2‖
L

2n
n−4 (B1/2(0))

≤ Cε1/2.(18)

By interpolation

‖u2‖L2(B1/2(0)) ≤ ‖u2‖mL1(B1/2(0))‖u2‖1−m
L

2n
n−4 (B1/2(0))

(19)

where m = 4
n+4 ∈ (0, 1). But

‖u2‖L1(B1/2(0)) ≤ Cλ‖ev‖L1(B1/2(0)) ≤ Cε,(20)

so (19) combined with (18) and (20) yields

‖u2‖L2(B1/2(0)) ≤ Cεmε(1−m)/2 = Cε
1+m

2 .(21)

Therefore, using (16), (17) and (21) we find

θ2−n
∫
Bθ(0)∩[u2>εγ ]

eu ≤ Cθ2−nε1+m/2−γ .

Combining this and (15) we obtain

θ2−n
∫
Bθ(0)

eu ≤ Cθ2eε
γ

ε+ Cθ2−nε1+m/2−γ .

Since m > 0 we may choose 0 < γ < m/2. Then fix θ > 0 so that Ceθ2 ≤ 1/2 and

then choose ε0 > 0 sufficiently small so that Cθ2−nε
m/2−γ
0 ≤ 1/2. It follows that

for any 0 < ε ≤ ε0

θ2−n
∫
Bθ(0)

eu ≤ ε.

A similar argument yields the corresponding estimate for ev. Rescaling back we
obtain (12). �

Applying the previous lemma we can prove
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Lemma 2.9. There exists ε1 > 0 and θ > 0 depending only on n such that for any
0 < ε ≤ ε1, if (u, v) is a stable smooth solution of (1), Br0(x) ⊂ Ω and

r2−n
0

∫
Br0 (x)

(eu + ev) ≤ ε

then

r2−n
∫
Br(y)

(eu + ev) ≤ 2n−2θ2−nε

for any y ∈ Br0/2(x) and any 0 < r ≤ r0/2.

Proof. By shifting coordinates we can assume that x = 0 and by the scaling (13)
that r0 = 1. Let ε0, θ be the constants of Lemma 2.8. We choose ε1 so that
2n−2ε1 = ε0. Then, for any y ∈ B1/2(0) and 0 < ε ≤ ε1 we have

(
1

2
)2−n

∫
B1/2(y)

(eu + ev) ≤ 2n−2

∫
B1(0)

(eu + ev) ≤ 2n−2ε ≤ ε0.

Applying inductively Lemma 2.8, for any integer k ≥ 1 we have

(θk)2−n
∫
B
θk

(y)

(eu + ev) ≤ 2n−2ε.

If 0 < r ≤ 1/2 is arbitrary we select k ≥ 1 an integer such that θk+1 ≤ r ≤ θk.
Then

r2−n
∫
Br(y)

(eu + ev) ≤ (θk+1)2−n
∫
B
θk

(y)

(eu + ev) ≤ 2n−2θ2−nε.

�

Proof of Lemma 2.7. The result of Lemma 2.9 holds also for any extremal solution.
This can be proved by approximating an extremal solution (u, v) of parameters
(mλ∗(m), λ∗(m)) ∈ ∂U by minimal solutions with parameters (mλ, λ) and λ ↑
λ∗(m). In this process, the constants appearing in the estimates remain bounded,
see Remark 1.

Let ε1, θ be the constants of Lemma 2.9. We take 0 < ε2 < ε1 to be fixed later
on. By the change of variables (13) we can assume that x = 0 and r0 = 1, so now
the hypothesis is ∫

B1(0)

eu + ev ≤ ε2.

Then by Lemma 2.9 we have

r2−n
∫
Br(y)

(eu + ev) ≤ 2n−2θ2−nε2

for any y ∈ B1/2(0) and any 0 < r ≤ 1/2. This says that eu, ev are in the Morrey
space Mn/2(B1/2(0)) and

‖eu‖Mn/2
+ ‖ev‖Mn/2

≤ 2n−2θ2−nε2.(22)

Let ũ, ṽ be the Newtonian potentials of euχB1/2
(0) and evχB1/2

(0) respectively.

Then by [10] Lemma 7.20 we have∫
B1(0)

eβ|ũ| + eβ|ṽ| ≤ C2(23)
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for β ≤ min( c1
‖eu‖Mn/2

, c1
‖ev‖Mn/2

) where c1, C2 > 0 depend only on dimension.

By (22), choosing ε2 > 0 small, we obtain that (23) holds for some β > n/2.
Then eu, ev ∈ Lβ(B1/4(0)) for some β > n/2. By standard Lp regularity u, v ∈
L∞(B1/8(0)). Scaling back we have the conclusion. �

2.5. Proof of Theorem 1.1.

Proof. Let 1 ≤ α < 5. We claim that

Σ ⊂
{
x ∈ Ω : lim sup

r→0
r2α−n

∫
Br(x)∩Ω

(eαu + eαv) > 0
}
.

Indeed, if x ∈ Ω and

lim
r→0

r2α−n
∫
Br(x)∩Ω

(eαu + eαv) = 0

then by Hölder’s inequality also

lim
r→0

r2−n
∫
Br(x)∩Ω

(eu + ev) = 0.

Therefore for some r0 > 0 so that Br0(x) ⊂ Ω we have

r2−n
0

∫
Br0 (x)

(eu + ev) ≤ ε2

where ε2 > 0 is the constant from Lemma 2.7. Then by the same lemma u, v are
bounded in a neighborhood of x and hence x 6∈ Σ.

Since eαu + eαv ∈ L1(Ω) by Lemma 2.5, we obtain that Hn−2α(Σ) = 0, see e.g.
[7, Theorem 5.3.4]. Letting α ↑ 5 we deduce that the Hausdorff dimension of Σ is
less or equal than n− 10. �
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