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BUBBLING SOLUTIONS FOR SUPERCRITICAL PROBLEMS ON
MANIFOLDS

JUAN DAVILA, ANGELA PISTOIA, AND GIUSI VAIRA

ABSTRACT. Let (M, g) be a n—dimensional compact Riemannian manifold without boundary
and I' be a non degenerate closed geodesic of (M, g). We prove that the supercritical problem

ntl g, .
—Agu+hu=un=3"", 4 >0, in (M,g)

has a solution that concentrates along I' as € goes to zero, provided the function h and the
sectional curvatures along I' satisfy a suitable condition. A connection with the solution of a
class of periodic O.D.E.’s with singularity of attractive or repulsive type is established.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS
We deal with the semilinear elliptic equation
~Ayu+hu=uP"t u>0, in (M,g) (L.1)

where (M, g) is a n—dimensional compact Riemannian manifold without boundary, h is a
C'—real function on M such that —A, + h is coercive and p > 2.

For any p € (2,27), where 2% := 2% if n > 3 and 2}, := 400 if n = 2, problem (1.1) has a
solution, which can be found by minimization of

/{1 (IVgul® + hu?) doy

([uvam)”

over H}(M)\ {0}, using the compactness of the embedding H} (M) < LF(M).

In the critical case, i.e. p = 27, the situation turns out to be more delicate. In particular, the
existence of solutions is related to the position of the potential h with respect to the geometric
potential hy := #’_zl)Rg, where R, is the scalar curvature of the manifold.

If h = hg, then problem (1.1) is referred to as the Yamabe problem [21] and it has always a
solution. After Trudinger [19] discovered a gap in the argument in [21] and gave a proof under
some conditions on (M, g), Aubin [1,2] showed that whenever Q(M,g) < Q(S™, go), where
(S™, go) is the standard sphere and

M, = i f I * ,
Q(M,g) ueH;I(%\{O} 2: ()

Zy(u) =
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there is a solution to the problem, and proved that this holds if n > 6 and (M, g) is not locally
conformally flat. Finally, Schoen [17] gave a proof in full generality using the Positive Mass
Theorem [18].

When h < hg somewhere in M, existence of a solution is guaranteed by a minimization
argument, arguing as in Aubin [1,2]. The situation is extremely delicate when h > h, everywhere
in M, because blow-up phenomena can occur as pointed out by Druet in [8,9].

The supercritical case p > 27 is even more difficult to deal with. A first result in this direction
is a perturbative result due to Micheletti, Pistoia and Vétois [14]. They consider the almost
critical problem (1.1) when p = 2% 4+ € with € > 0. If p = 2% — € the problem (1.1) is slightly
subcritical and if p = 2% + € the problem (1.1) is slightly supercritical. They prove the following
results.

Theorem 1.1. [Micheletti, Pistoia and Vétois [14]] Assume n > 6 and & € M is a non
degenerate critical point of h — %Rg. Then

(i) if h(&) > =2 Ry(&o) then the slightly subcritical problem (1.1) with p = 2j, — 1 — €, has
a solutions ue which concentrates at & as € — 0,

(ii) if h(&) < Z2Ry(&) then the slightly supercritical problem (1.1) with p = 2 — 1 — ¢,
has a solutions u. which concentrates at & as € — 0.

Now, for any integer 0 < k < n —3 let 2}, = i(f,:_k% be the (k 4+ 1)—st critical exponent.
We remark that 27 , = 27 _, ; is nothing but the critical exponent for the Sobolev embedding
H}(N) < L}(N) in a compact (n— k)—dimensional Riemannian manifold (A, h). In particular,

250= -2n_ is the usual Sobolev critical exponent.

n—2
We can summarize the results proved by Micheletti, Pistoia and Vétois just saying that problem

(1.1) when p — 27 , (i.e. k= 0) has positive solutions blowing-up at points. Note that a point
is a 0—dimensional manifold.changed !

A natural question arises:
does problem (1.1) have solutions blowing-up at k—dimensional submanifolds when p — 20k ?

In the present paper, we give a positive answer when k& = 1. More precisely, we prove that
if p — 2; ; problem (1.1) has a solution which concentrates along a geodesic I' of the manifold
provided h satisfies a suitable condition. Let us state our main result.

We consider the problem (1.1) with p = 2 ; + € and € > 0, i.e.

—Agu+ hu = u%ie, u>0in (M,g) (1.2)

We will say that problem (1.2) is slightly 2nd—supercritical if p = 27 | + € and it is slightly
2nd—subcritical if p =27 | — €.

In order to state our main result, we need to introduce some geometric notation. Let I" be a
closed nontrivial simple geodesic in M. Given § € I there is a natural splitting Te M = T I'@ NI’
into the tangent and normal bundle over I'. It is useful to introduce a local system of coordinates
near I'. Let v : [0,2¢] — M be an arclenght parametrization of I', where 2¢ is the lenght of
I". We denote by Ey a unit tangent vector to I'. In a neighborhood of a point £ of " we give
an orthonormal basis F1,...,Exy of N,I'. We can assume that the E;’s are parallel along I,
ie. Vg, E; =0 forany ¢ =1,...,N. The geodesic condition for I' translates into the condition
VE,Eo = 0. Here V is the connection associated with the metric g. Moreover, the non degeneracy
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of T' is equivalent to say that the linear equation
J¢ = Vg,¢+ R(¢, Ey)Eg = 0 has only the trivial solution on all of T. (1.3)

Here J is the Jacobi operator on I' corresponding to the second variation of the length functional
on curves. For a generic metric g on M it is well known that all closed geodesics are non
degenerate. REFERENCE?

To parametrize a neighborhood of a point of I in M we define the Fermi coordinates

N
F(xo,x1,...,TN) = €XDy(4,) (Z xZEZ(x0)> (1.4)
i=1

where exp,,,) i the exponential map in M through the point (o).

Let us introduce the function (see also (4.20))

n—3 .. .
oan) = ) = {2 [y 50) ~ (= DRt a0}, a0))] (15)
where R, is the scalar curvature and Ric denotes the Ricci tensor.erased in normal coordinates
Let a, :== % and b, := %. erased 7 (see (4.16) and Remark (4.1))”. T don’t

looking ahead is useful here We introduce the periodic ODE problem

bn
—ﬂ—i—ana,u—;:() in [0, 24
p>0 in[0,24] (1.6)
1(0) = u(26), j2(0) = (20)
which has a singularity of attractive type at the origin and the periodic ODE problem

by, .
—ji+apop+—=0 1in[0,2/]

s 1.7
p>0 in 0,20 (1.7)
1(0) = (20), (0) = 2(20)

which has a singularity of repulsive type at the origin.

Solvability of the slightly 2nd—subcritical problem is strictly related with solvability of (1.6)
with attractive singularity, while solvability of the slightly 2nd—supercritical problem is strictly
related with solvability of (1.7) with repulsive singularity. We remark that in the subcritical side
the assumption o(s) > 0 for any s € [0, ] is enough to find a solution to problem (1.6). In this
case, using standard arguments, the solution is just a minimizer of the energy. The supercritical
side turns out to be more difficult and the only existence result for problem (1.7) was obtained
by del Pino, Mandsevich and Montero in [4] when o(s) < 0 for any s € [0, ¢] provided some extra
non-resonance conditions are satisfied (see also Proposition 2.1).

As usual in this kind of problem, we also need to assume a gap condition of the form
lek? — k2| > vV/e, k=1,2,...... (1.8)

where k > 0 is given explicitly in Lemma 6.2 and v is positive.

Now we can state our main result.

Theorem 1.2. Let n > 8. Let T' be a simple closed, non degenerate geodesic of M (see (1.3)).
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(i) Assume the problem (1.6) has a non degenerate positive solution pg. Then, for any v > 0
there exists eg > 0 such that for any € € (0, €g) which satisfies condition (1.8), the slightly
2nd—subcritical problem (1.2) with p = 2}, 1 — 1 — ¢, has a solution u. that concentrates
along I" as e — 0.

(ii) Assume the problem (1.7) has a non degenerate positive solution ug. Then, for anyv >0
there exists eg > 0 such that for any € € (0, €g) which satisfies condition (1.8), the slightly
2nd—supercritical problem (1.2) with p = 2;, ; —1+¢, has a solution u. that concentrates
along I' as e — 0.

Moreover, the solution u, can be described in Fermi coordinates as follows:

N-—2

wcl@o,a) = pe 7w (g (x — do)) + o(1),

where
ME(xO) ~ \ﬁlu()(l'o) and dfk (IO) ~ €dk($0), k= 17 ce 7N7

and pg solves either problem (1.6) in the slightly 2nd—subcritical case or problem (1.7) in the
slightly 2nd—supercritical case, the d;’s are smooth functions of o and w is the standard bubble

1
N—2)
2

(T+[yP) =

which is the radial solution of the critical problem Aw +w? = 0 in RY, with N =n — 1.

—2
)

yeRY, oy =[N(N-2)]73 (1.9)

w(y) = cn

Since the existence of solutions to singular problems (1.6) or (1.7) plays a crucial role in the
construction of the solution, in particular in the choice of the concentration parameter p., it is
important to point out that existence of solutions to problems (1.6) or (1.7) is strictly linked
with the sign of the function ¢ defined in (1.5), as it is showed in the following Theorem, whose
proof is given in Section 2.

Theorem 1.3. If

i >0
o) >0

then problem (1.6) has a non degenerate solution.

If h* € C?(M) is such that

(k + 1)7T 2 . km 2
- — " < . — | —
( Y, < i?én Oh (mo) < r{leaxah (xo) < i <0,

then for most functions h € C*(M) with ||h — h*|lcoary < 7, provided r is small enough, the
problem (1.7) has a non degenerate solution.

As far as we know, Theorem 1.2 is the first result about existence of solutions to (1.1) which
concentrate along geodesic of the manifold M when the exponent p approaches the 2nd—critical
exponent from above. Indeed, in the Euclidean setting, del Pino, Musso and Pacard in [6] built
bubbling solutions for a Dirichlet problem when the exponent is close to but less than the sec-
ond critical exponent. Solutions concentrating in higher dimensional sets and the gap condition
have been found in elliptic problems in the Euclidean setting. We mention among, among many
results, [10-13] for a Neumann singular perturbation problem and [3] for a Schédinger equation
in the plane.
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It would be interesting to find a geometric interpretation to problem (1.2). We only observe
that the geometric potential

(n—3)

Qr(x()) = m

[Rg(z0) — (n — 1) Ric(§(x0), §(0))]

introduced in (1.5) when I" reduces to a point z( is nothing but the usual geometric potential
%Rg(xo) which appears in the Yamabe problem. erased ”So it seems that when e is zero
problem (1.2) is the natural extension to higher critical exponents to the Yamabe problem.” 1
prefer to leave the reader this type of conclusion.

We conjecture that our result can be extended to higher k—dimensional minimal submanifolds I"
of M. Indeed, arguments developed by Del Pino, Mamhoudi and Musso in [5] in the Euclidean
setting for a Neumann problem could also be applied to equation (1.1). More precisely, we could
consider a supercritical problem

—Agu+ hu = uzjtgie, u>0, in (M,g)

and we could find conditions on A such that it possesses solutions which concentrate along I' as
€ goes to zero. It would interesting to determine the function or (the analogue of the function o
introduced in (1.5)) whose sign determines the existence of solutions either to the supercritical
case or to the subcritical case.

The proof of our result relies on the infinite-dimensional reduction erased ”firstly”, others were
the first developed by del Pino, Kowalczyk and Wei in [3] and successively adapted by del Pino,
Musso and Pacard in [6] to study a problem quite similar to our problem

m4l o,
—Au=um3"in Q, u =0 on 99,

where € is a bounded smooth domain in R™. We omit many details in several steps of the proof,
because they can be carried out, up to some minor modifications, as in [6]. However there is
an important difference with respecto to [6] concerning the scaling parameter ., whose choice
is crucial for building the solution. The difference is that the extra term ;% here is the main
order term, see (4.11), and leads to the ODEs (1.6) and (1.7), while in [6] it appears at a higher
order.changed the wording

The paper is organized as follows. In Section 2 we study the singular problems (1.6) and
(1.7). In Section 3 we build the approximate solution close to the geodesic and in Section 4 we
estimate the error. Then, in Section 5 we reduce the problem to a suitable infinite dimensional
set of parameters and in Section 6 we study the reduced problem. Section 7 is devoted to the
study of a linear problem.

Notation

e For sums we use the standard convention of summing terms where repeated indices

appear.
e We will denote by L33 (R), C,(R) and C3,(R) the Banach space of 2/—periodic L>, C°
and C? functions, respectively. We will set |[u||o := sup |ul, for any 2¢—periodic bounded

R

function wu.
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2. A pERIODIC ODE WITH REPULSIVE OR ATTRACTIVE SINGULARITY
Let us consider the periodic boundary value problem
—jit+op— 5 —0 in 0,2
p>0 in[0,2] (2.1)
1(0) = p(26), 1(0) = u(20)
where ¢ € R and o € C3,(R). The following existence result holds true.

Proposition 2.1. Assume either

min o(t) >0 andc>0 (2.2)
or
(k+D)m\° ) k2
_ < — .
( 57 <?é1111§10(t)\rz{1€8ﬁ§<0(t)< 57 <0andc<0 (2.3)

for some integer k. Then problem (2.1) has a periodic solution py € C2,(R).

Proof. If (2.2) holds, the claim follows by standard arguments and if (2.3) holds the claim follows
by Theorem 1.1 of [4]. O

Let us consider the linearization of problem (2.1) around g, namely the linear periodic bound-
ary value problem

—/'l+(a+02>u:0 in [0,2]
Ho

u(0) = u(20), i(0) = (20)
The solution pg is non degenerate if and only if the problem (2.4) has only the trivial solution.

(2.4)

Proposition 2.2. (i) If (2.2) holds, then the solution pg is non degenerate.
(ii) Let o* € C9,(R) and c € R as in (2.3). The set

{o € B(c™,r) : all the positive solutions of (2.1) are nondegenerate}

is a dense subset of the ball B(o*,r) := {0 € C3,(R) : |0 —0*||oc <7} provided the
radius v is small enough.

Proof. (i) follows immediately by the maximum principle.
Let us prove (ii). We shall use the following abstract transversality theorem previously used by
Quinn [15], Saut and Temam [16] and Uhlenbeck [20].

Theorem 2.3. Let X,Y,Z be three Banach spaces and U C X, V C Y open subsets. Let
F:UXxV = Z be aC*map with a > 1. Assume that
(t) foranyy eV, F(,y): U — Z is a Fredholm map of index | with | < «;
(et) 0 is a regular value of F, i.e. the operator F'(xo,y0) : X XY — Z is onto at any point
(z0,y0) such that F(zg,yo) = 0;

(ter) the map woi: F~Y(0) — Y is o—proper, i.e. F~1(0) = U;‘;’?Cn where Cy, is a closed
set and the restriction m o i‘cn is proper for any n; here i : F~1(0) — Y is the canonical
embedding and m: X XY — Y is the projection.

Then the set © := {y €V : 0 is a regular value of F(-,y)} is a residual subset of V, i.e.

V'\ © is a countable union of closet subsets without interior points.



BUBBLING SOLUTIONS FOR SUPERCRITICAL PROBLEMS ON MANIFOLDS 7

In our case the C2— function F is defined by

. c
F: C3(R) x C3y(R) = C3,(R), F(u,0):=—ji+op— I

X =C%(R)and U = {p € C3,(R) : mingp >0}, Y =Z = CY(R) and V = B(c*,r) where r
is small enough so that condition (2.3) holds for any o € V.

It is not difficult to check that for any o € V' the map u — F'(u,0) is a Fredholm map of index
0 and then assumption (¢) holds. Let us prove assumption (c2). We fix (g, 00) € U X V such
that F(uo,00) = 0. The derivative D, F(ug,00) : C3,(R) — C9,(R) is the linear map defined by
D, F(uo,00)[c] = opo and it is surjective, because pg > 0.

As far as it concerns assumption (ctr), we have that

F_l(o) = U%ozol {(Cm X Bm) N F_l(o)}
where
Cpo =11 € C2(R) : l<1vninu<maux,u<m and B,, = B o*r—l .
m 20 m\ R X R X m ) m

We can show that the restriction moi|. is proper, namely if the sequence (0,) C B,, converges
to o and the sequence (p,,) C Cpy, is such that F(u,,o0,) = 0 then there exists a subsequence of
(tn) which converges to u € C, and F(u,0) = 0.

That concludes the proof. ([

Proof of Theorem 1.3. Tt follows immediately by Proposition 2.1 and Proposition 2.2. O

3. CONSTRUCTION OF THE APPROXIMATE SOLUTION CLOSE TO THE GEODESIC

This section is devoted to the construction of an approximation for a solution to the problem
(1.2) in a neighborhood of the geodesic.

3.1. The problem near to the geodesic. Let us consider the system of Fermi coordinates
(z9, ) introduced in (1.4). In this language the geodesic I' is represented by the zo— axis. We
recall that xy denotes the arclenght of the curve, 2¢ represent the total length of the geodesic
and r = (z1,...,7x) € RV. Let us introduce a neighborhood of the geodesic I in this system of
coordinates

D= {(w0,2) ERXRY : wo e [-£,0), |z <6}, (3.1)
where § > 0 is a fixed small number. Then for a function defined in D we write
a(zo, x) = u(F(xg,x))
and we extend @ in a satisfying the following periodicity condition
w(2¢,z) = u(0, Az)

where A = (aij) is the invertible matrix defined by the requirement
N
Bi(20) = 3" ;. (0). (3.2)
=1

Therefore, if u solves equation (1.2) in the neighborhood D of the geodesic, then 4 solves

{ dooti + Agii + B(@) — hit + fe(@t) = 0 in D

w(xo + 20, ) = @(xo, Ax) for any (zg,z) € D (3.3)
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where fc(s) := (s1)PT. For the sake of simplicity, we will refer to f.(s) := (s7)P*€ as the
supercritical case and to f(s) := (sT)P~¢ as the subcritical case.
In (3.3) B is a second order linear operator defined in the following Lemma

Lemma 3.1. Let u be a smooth function. Then for any (xo,x) € D we have
Agu = Opott + At + B(?:L)

where B is a second order linear operator defined by

B(ﬂ) ZZAOano’l] + Z Aojﬁoajﬂ + Z —3 Z Ripjixpx + AY (9iaj12
J %) k,l

2 .
+ By + Z (Z (SRijik + R0j0k> Tk + Bj) dju
J

k

where the Riemann tensor R and the metric g are computed along I', depending only on xo,
while the function A*? and B® do depend on (zo,x) and enjoy the following decomposition:

00 00 . ij _ ij . 0j _ 07
AY = E Az AY = E A wpai,,; AY = E Az
k.l

k,lm k1l
B°=) Bz B =) Bz
k k,l

where AL, A A%, BY and Bj, are smooth functions depending on (g, x).

Proof. We argue exactly as in Section 4 of [6] taking into account the following expansion of the
metric ¢ in a neighborhood of the geodesic

N
goo(x) =1+ Y Ropozrz + O(|zf)
k=1
goj(x) = o(lz*, j=1,...,N. (3.4)
1 .
9ij(2) = 05 + 5 ;Rikﬂxm +0(z)*), i,j=1,...,N.
whose proof is postponed in the Appendix. O

3.2. The scaled problem. We write an approximated solution of problem (3.3). Let

(0, 2) = pelzo)™ T2 (m) , (3.5)

where the bubble w is defined in (1.9), and d. satisfies
d.(0) = Ad.(2¢), with d.(zo) = (de1(20);- -, den(20)) (3.6)

and A = (a;;) is the matrix defined by (3.2). In the sequel, C2,(R,RY) is the space of functions
d: [0,2¢] — RY which satisfy (3.6).
We will take d.(zo) of the form

dej(,ro) = Gdj(xo) with dj S ng(R), j=1...,N (37)
and the concentration parameter p.(zg) is given by

f1e(x0) = Vefie(2o), fie(wo) = po(xo) + (€Ine)u (o) + epa(xo), (3.8)
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with o, g1, 0 € C3,(R). We point out that in (3.8) and (3.7) the uo, p1, pand dj, j =1,..., N
are unknown functions which will be found in the final step of the infinite-dimensional reduc-
tion. In particular, it will turn out that po is a non degenerate solution to problem (1.6) in the
subcritical case or to problem (1.7) in the supercritical case.

Therefore, it is natural to consider the change of variables

_N-—2 —d.
Ue(20, ) = pe * v<x°,x > pi=e,. (3.9)
P’ pe
Here ve = ve(yo,y) is defined in a region of the form
L L n
D =4 (yo,y :ye[—,], y<}. 3.10
{nn s me |20 m< 2 (310)

It is clear that if @ (xo, z) solves equation (3.3), then v, = v.(yo,y) solves problem

+ N2,
(v) — p2hv+pe * “fo(v)=0in D
(yo + foy) = v(yo, Ay) for any (yo,y) € D.
LN-2, _N-z,
We agree that we take pe 2 = in the supercritical case, i.e. f.(s) = (sT)P™€ and uc > ° in the
subcritical case, i.e. fc(s) = (sT)P¢.
In (3.11) A is a second order operator of the form defined in the following Lemma, whose proof
can be obtained arguing exactly as in Lemma 5.1 of [6].

A (3.11)

Lemma 3.2. After the change of variable (3.9), the following holds true:
A(v) == agdoov + Ayv+ fi(v)7
with
ao(pyo) = p~ > pie(pyo)® = (po + p)® (3.12)
and A(v) := Zi:o A, (v) + B(v) where

2

Ao(0) =42 | Dyl + Dol + 20| 4 | Dyl + 252Dy 1

; _ . . ON—2. .
# Dyold = o7 D000l ey + ]+ 5 o™ 0] Dyl

. (N =2
— Helle < 9 v+ Dyv[y])

1
Ai(v) == — 3 Z Rikji (eyr + de) (Heyr + de) 9i5v

3
and the operator B(v) satisfies
B(U) =0 (|Mey + d6|2> AO(U) + O (|Mey + de|3) 6ijv
+0 (|.uey + de‘Z) [:u'ep7180jv + ,uepilaOrU - Dy(ajv)[de]

_ (N;?ajv + Dy(ajv)[y}> fie — Dyvld]

2
Az (v) := Z (Rijik + R0j0k> (¥ + de) peOjv

. [N =2
—fLe ( 5 v—|—Dyv[y]> —|—u€8jv} .



BUBBLING SOLUTIONS FOR SUPERCRITICAL PROBLEMS ON MANIFOLDS 10
Our approximation close to the geodesic is
O =w+wi. (3.13)

The first order approximation w is given in (3.15), while the second order approximation w; is
given in (3.25). We also set

S.(v) = A(v) — p2hv + pt = f(v). (3.14)

3.3. The ansatz: the first order approximation. We define w to be

w = (14 adw + ec(pyo) xe(y) Zo(y)- (3.15)
(=22
In the first term of (3.15), w is the bubble defined in (1.9) and @, := p ®  — 1 in the
-2
subcritical case or @ := pe ®  — 1 in the subcritical case. In the second term of (3.15),

Xe(y) == x (e%|y|) where x is a cut-off function such that x(s) = 1 if s < § and x(s) = 0 if

s > 20 with § > 0 small but fixed. Moreover, Zy denotes the first eigenfunction in L2(RY) of
the problem (see Section 7)

AZy+pwP~ ' Zy = M Zo in RY,  with A; > 0 and / Z2dy = 1. (3.16)
RN

Finally, the function e.(z¢) is given by
ec =€, €.=-¢eg+ (elne)e; + ee, (3.17)

with eg,e1,e € C%,(R). We point out that eg, e; and e are unknown functions which will be
chosen in the final step of the infinite-dimensional reduction, together with the functions pg, @
and d; introduced in (3.7) and (3.8).

Let us estimate the error S.(w) one commits by considering w a real solution to (3.11), which
is itself a function of the parameter functions u, d, e.
Assume that the functions u,d, e defined respectively in (3.8), (3.7) and (3.17), satisfy the as-
sumption

(s ds €)== [l + [|d]] + [lelle < C (3.18)
for some constant C' > 0, independent of €, where

N
el == Niilloe + Nitlloo + litlloes Nl := D lld;lloo, (3.19)

j=1
B 1.
llelle == ll€€lloo + ll€2 élloo + llelloo (3.20)
Here and in the rest of the paper, the dot denotes the derivative with respect to xg.

It is possible to compute the expansion of the error S.(w) as showed in the following Lemma
whose proof is postponed in Section 4.1.
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Lemma 3.3. If € > 0 small enough, then for any (yo,y) € D the following expansion holds
Se(w) = +ew? Inw + eXregZy — epudhw+
N(N —2)

+e [ﬂg <Dyyw[y]2 + NDywly] + 1

w) — pofloZN+1+

1 2
-l <3R¢kaykylaij“’ + <3Riﬂk + ROjOk) ykajw)]

(M

. 1 2 . ;
+e {_ﬂoaj"Udj - g,UORikjlykylaijw + 1o (3Rijik + ROjOk) dp0jw — Q,LLOajZN-i-ldj:l

.1
+ € | (p*aoé + Aie) Zo + Z did; — gRijkldkdl 0w+ Yo +
@,

o N(N -2
—2ppphw + b(pyo, 1, d, e)w? + 2figf (Dyyw[y]2 + NDywly] + (4)w) *

. . 1 2
—pofZ N1 — PiioZN+1 + 2pop <_3Rikjlykylaijw + <3Rijik + R()j()k) ykajw> +

. 1 2
—eojlopoZn+1 + Hoeo <3RikjlykylaijZ0 + <3Rijik + ROjOk) ykajZO) +

. N(N -2
i (Dol + ND,Zal) + D 20 ) < pina

5 L1 2 _ .
s |:_Majdj - gMRikjlykdlaijw — (SRijik + ROjOIc) dppjw — 200; 2N +1d;

T 2
—poeg0j Zod; — gﬂoeoRikjlykdlaijZO + poeo (BRijik: + ROjOk) di0; Zo+

. N -2 ;
—2/1p€0 <2DyZo + DyyZo[y}> [d]] + €30 (3.21)

where

- Zy is defined in (3.16) and Zn41 is defined in (3.23)
- the first term is "—ewP Inw” in the subcritical case or "+ewPlnw” in the supercritical
case.

To=plp-— 1)egw”*QZ§ + peowP InwZ, (3.22)
- © =0(yo,y) is a sum of functions of the form

hO(pyO) fl (:u7 d7 p“a d) + O(l)fQ(,U’a da ¢, ,l.l, d? éa luv d.v 6):| f3(y)

with
- hg a smooth function uniformly bounded in €
- f1 and fy smooth functions of their arguments, uniformly bounded in € when p,d
and e satisfy (3.18)
- fo depending linearly on the argument (,iLc.i., é)
- o(1) = 0 as € = 0 uniformly when u,d and e satisfy (3.18)
- supyer(1+ vV 73| fa(y)] < +o0

Now, we use formula (3.21) to compute, for each yo € [—¢/p, +¢/p], the L?(D,,) the projection
of the error S.(w) along the elements of the kernel of the linear operator Lo := Ag~ + pw?P~11
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(see Section 7), i.e. the functions

Zy(y) = 0pw(y), k=1,...,N and Zy11(y) :=y - Vw(y) + ?w(y) (3.23)

Lemma 3.4. If € > 0 small enough, then for any xo = pyo with yo € [—£/p, +£/p] the following
expansion hold:

/ S (w)Zy, dy :e%cl,uo (—dk + ZROkOldl> +€%0, foranyk=1,...,N;
D

Yo

moreover, if o solves either (1.6) or (1.7) there exist pi1, eg,e1 € C3,(R) such that

. by
/ Se(W)Zn 41 dy =€*copg |:OLN+1(:L‘0) + e3Q(xo,d) — i+ <ana F /ﬂ) 4 + €3 lneld
D

vo 0
and

/ Se(W)Zy dy =€ [eagé + Me + ag(zo) + caQ(pyo, d) + B(xo)u] + €| In€|d.
D

Yo

Here

o is defined in (1.5) and ay, b, are positive constants depending only on n defined in
(4.16)

Q(wo,d) =) (d? - %Rikadkdl)

- ¢;’s are constants which depends only on n

- «;’s and B are explicit smooth functions, uniformly bounded in € when p,d and e satisfy

(3.18)
- 0 =0(xg) denotes a sum of functions of the form

hO(mO) |:h1(,u, d7 ¢, l:L7 é, d) + 0(1)h2(/1/5 d7 ¢, /17 d7 é, /.ia d.a e)i| )

where
- hg is a smooth function uniformly bounded in €
- h1 and ho are smooth functions of their arguments, uniformly bounded in € when
u,d and e satisfy (3.18)
- he depends linearly on the argument (i, d, é)
- o(1) = 0 as € = 0 uniformly when u,d and e satisfy (3.18)

The proof is postponed in Section 4.2.

In the sequel we will use the following norms, which are motivated by the linear theory
presented in Section 7. For functions ¢, g defined on a set D as in (3.10), and for a fixed
2<v<N,let

9]« == s%p(l + y" ) B(yo, )| + S%p(l + |z["~ 1) Dé(z0, )|,
g4 == S%p(l +y1")1g(yo, )|

Therefore, from the expansion given in (3.21) we conclude that the error S¢(w), computed in
(3.21), has the properties listed in the following Lemma.
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Lemma 3.5. Let ug and eq as in Lemma 3.4 If € is small enough
S.(w) =€eSy+e€ [pZaoé + )\16] XeZo + N (3.24)
where

- Sy is a smooth function of pyg uniformly bounded in €

- Sy does not depend on u,d and e.

- nyO SoZjdy =0 for any yo € (—p~ ", p~') and for any j=0,...,N+1

[ Nolls < ce?
Here c is a positive constant independent of €. All the estimates are uniform with respect to p,d
and e which satisfy (3.18).

3.4. The ansatz: the second order approximation. Now we introduce a further correction
w1 to w, to get the final approximation @ := w + w;. The correction w; is chosen to reduce the
size of the error (3.24), killing the term €Sy and it is found in the following Lemma, whose proof
can be carried out arguing exactly as in Section 5 of [6].

Lemma 3.6. If € is small enough there exists a unique solution w1 of the problem

A(wr) = pZhwr + pwP~lw = —eSp + Z;-V:O 0;Z; in D

(3.25)
nyO w1 (y0,y)Zjdy =0 for any yo € [—%, ﬂ ,j=0,....,N+1
Moreover, the function wy satisfies
= Jwills < ce and ||Bowr ||« < ce?
- w1 depends smoothly on p and d and it is independent on e
- lwi(pa, dr) — wi(pe, d2)ll < cll(pr — p2, dy — do)|
and each function o; satisfies
- llojlloc < o(1)e?
- o0 depends smoothly on p and d and it is independent on e
- Nloj(pa,di) = o5(p2,d2) o < c€®|[ (1 — p2, di — do)|
Moreover, it holds true
N
S.(@) = €281 + ¢ [pPagé + Mie] xeZo + N1+ Y _ 0,2, (3.26)
§=0

where

- S1 is a smooth function of pyg uniformly bounded in €
- Sy depends smoothly on p,d and e.

- [[1S1(p1, duser) — Si(pz, da, e2)|lws < cf|(1 — p2,di — da, e1 — ea)|
- [N1]lss < c€?

Here c is positive constant independent of €. All the estimates are uniform with respect to u,d
and e which satisfy (3.18). Moreover, the components of Se(@) along the Z;’s satisfy the estimate
in Lemma 3.4.

4. THE ERROR S,(w)

4.1. The pointwise estimate of the error. We recall that

Selw) = Aw) — p2hew + 57 . (w)
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where by Lemma 3.2

A(w) = aodoow + Ayw + Y A(w) + B(w)

k=0

A(w)
and
w(y) = (1 + adw(y) + ec(pyo) Xxe(y) Zo(y)-
Here we recall that
W,
Qe = e ° -1

and N

A((1+ adw) + e 7 fo (14 a)w)=0  inRY,

Proof of Lemma 3.3. We use Lemma 3.2.
A straightforward computation shows that

2
Se(w) =Y Ax(w) — pZhw + ew? Inw + [p*aoée(pyo) + Mec(pyo)] XeZo
k=0

Jo
+ B(w) + agwdpoare + Aloew) — pachw

J1

e T (U agw) = fo (1+ adw)] F ew” nw

Ja

2
+ Z Aﬁ(eeXeZO) - MSGEXEZO}L

k=0
J3
+ B(eeXeZO) + eEZOAXe + QBEVXeVZO
Ja
+N -2, ,
Fpe * [felw) = fe (1 + adw)] — fo(w)eexeZo -

Js
By Lemma 3.2, we get the first term of Jy

2
ZAH(w) = 2 {Dyyw[y]2 + NDywly] + N(N_2)w}
k=0

4

. N -2 . .
+ fLe [Dyyw[y] + 2Dyw] [de] + Dyywldc]?

) (N -2
- MeDyw[de] — Helte <2w + Dyw[y]>
1
~3 > Rikjt (peyne + der) (eye + der) ijw

2
+ Z <3Rz‘jik + ROjOk) (1eyr + dei) pedjw + €O

.. 1
= 62 |:Z (dzdj - 3Rikjldkdl>:| aijw

14
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) . 1.
+ pe | —aDywl[d] — Z gMRikjlykdlaijw+

2 B . .
+ (SRijik + ROjOk) dk,uajw — 2”DyZN+1[d]]

- N(N -2 .
+p* | i? {Dyyw[y]2 + NDywly] + (4)w] — BZN 1

- 1 2
+ii? <3 Z RikjiyryiOijw + <3Rijik + ROjOk) ykajwﬂ + €20, (4.2)

where © = O(pyo, y) has the required properties.

By Lemma 3.2, we deduce that B(w) is of lower order with respect to > Ax(w). Moreover, by
definition of a. we get that o = O(e|Ine|) as e — 0. Hence o A(w) and peachw are terms
of lower order with respect to the others. Furthermore dgocre = p?O(av), so also agdoo[aecw] =
O(€%| In¢|)w. Therefore,

Jl = 63@

where © = O(pyo, ) is a sum of functions of the form ho(pyo) f1 (11, d, i, d) fo(y), with hg a smooth
function uniformly bounded in €, fi a smooth function of its arguments, homogeneous of degree
3, uniformly bounded in € and sup,cg (1 + |y[V~2)| f2(y)| < +o0.

By mean value theorem we deduce that

—2)? —2)? 1
Jy = i%(eQ Ine)w?(Inw — 1) + 2w? <(n8)(lnw —Dlnp+ 21nw>

+ O (€°|Ine]). (4.3)
By Lemma 3.2 we also get that

J3 = €é {62 [(Z did; — 3Rikjldkdl) aijZO]

- 1. (2
+ pe [uDyZo[d} - gﬂRikjlykdlaijZO + i <3Rijik + ROjOk) d0; Zo

—2ji (N;QDyzo - DyyZo[y]> [d]]

= N 1 2
+p° |:_UMZN+1 + i (_3Rikjlykylaijzo + (3Rijik + ROjOk) y/ﬂj%) +

+i? (DyyZo[y]2 +NDyZoly + N(J\ZL_Z)ZO) - [ﬂhz‘)} }

+ peé {e (2D, Zold)) + pe [~23fsDy Zoly] — (N — 2)juiiZo] |
and
J4 = 63@

where © = O(pyo, y) has the required properties.
Finally, standard estimates yield to

Js = € [p(p — DeqwP > ZF + peow? " InwZy| +€*|Inel©,

Yo

where © = O(pyo, y) is a sum of functions of the form hy(pyo)hi (i, d, e)ha(y) with kg a smooth
function, uniformly bounded in €, h; a smooth function of its arguments and sup,cg(l +
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1N 72) ha(y)| < +oo.
Collecting all the previous estimates we get the proof. O
4.2. The components of the error along the Z;’s.

Proof of Lemma 3.4. The proof consists of two steps. In the first part we compute the expansion
in € of the projection assuming that

Lhe = P, de; = ed;, €e = €€.

In the second part we will choose the e—order terms py and ey and the e¢lne-order terms p; and
e1 in the expansion of i and €.

Arguing as in the proof of Lemma 3.3, we have

2
Sc(w) = Zew?lnw — p?f*hw + Z.Ak(w) +€ [anoé + /\16] XeZo+J1+ -+ J5.
—_———
P k=0 b S
I

We stress the fact that the first term in I; is 7 + ewP Inw” in the super-critical case and 7 —
ew? Inw” in the sub-critical case.

e The projection of I.

/ LZny1dy = :I:e/ wP InwZyy1dy — p2ﬁ2 / hwZ 11 dy
D D D

Yo Yo Yo
= —eA1 4+ O(ep™) — p* i h(pyo) /N wZn 11 dy + O(p")
R

=€ [£A; — *h(pyo)A2] + O(p").

where
N
A = /RN wPlnwZyiq dy = (R /RN wPt dy > 0 (see Remark 4.1) (4.4)
and
Ag = / wZn41dy <0 (see Remark 4.1). (4.5)
RN

/ Iledy:e/ wP InwZ; dy+p2,12/ hwZ; dy
D D

Yo DyO

Yo
= e/ w? InwZ; dy + p*i*h(pyo) / wZ; dy + O(pN 1)
RN RN
N

O(pN*) for k=1,...,N.

/ L Zydy = —e/ wplanody—p2ﬂ2/ hwZy dy
D Dyo

Yo Dyo

=€ [—A; — ®h(pyo)As] + O(p"),
where

As ::/ wP InwZy dy, As :z/ wZy dy. (4.6)
RN RN
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e The projection of I5.
We use estimate (4.2).

.1
/ Iy Zny1 dy = € Z (didj - 3Rikjldkdl) / OijwZ N1 dy
’Dy0 Dyo
oY d; [ ouZniady
Dy,

1.
- gMPGZRikjldl/ YO WZ N1

Yo

+ PE,UZ < ijik + ROJOk) dk/ OjwZ N1 dy

— 2fipe Z d; /D 0jZN+1Z4N+1dy
Yo
- N(N —2
+ ,uzpz/ [Dyyw[y]2 + NDywly] + (4)w] Zny1dy

Yo

- ﬂ/jPZ / Z12v+1 dy
D

Yo

o1
2§ ZRikjl/D Yey0ijwZn 1 dy

Yo

N 2
i p? Z (3Rijik: + ROjOk) /D YeO;wZ N1 dy

Yo

—eQZ[dQ mldkdl] / OritZ 1 dy

+i%p” (SRijij + R0j0j> /RN Y 0wZn 1 dy+

~ e’ | i
Dy,

- *P ’ i’ ZRzk]l /RN YO0 wZ 1 dy
+ €30
o1
_ 2 2 -
=€ Bl Z |:dz - 3Rzk2ldkdl:|
Q(dxﬂyo)
- 1 o
+e [M2 Z <3R1’jij + ROjOj) By — MMB3]

+ &30

where the function 6 = (pyg) has the required properties and

Bl 2:/ &;,;wZNde, B2 2:/ yjaijNde < 0, Bg Z:/ ij\[+1dy. (47)
RN RN RN
Here we used the fact that
Z Rikji / UkO0ijwZn 41 dy = Z Rijiij / Y;0;wZ N1 dy,
RN RN
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because R;ij; is antisymmetric (i.e. Rixj = —Rkijl),

/ Y105 wZ N1 dy
RN

5 "
- / i <cN(N —2) " L exN(N - 2)%) Zn dy (4.8)
RN (1+yl*)= (1+y[*) ™=
d YeY1YiY; VA dy i tric.
an fRN 7(1+\y|2)N2+2 N+1 dy 1s symmetric

T 9
/ 17 dy = peji {—dk/ Z3 dy — gRiljmdl/ YmOijwZy, dy
Dy, RN RN
2
+ (BRijil + ROjOl) dl/ Zf dy}
RN

= 6%/134 [—dk + Rojo[dl} + p269,

+ pPed

where
B4::/ Zidy, j=1,...,N. (4.9)
RN
Here we used the fact that
2
_gRiljm/ymaijwzk dy
2
=-3 [Rilik/ykaiiwzk dy + R /ylaiszk dy + Ry ; /yjakjwzk dy]
fle [Riir — Ri ,]7ng R
- 3 4 ilik ilki] — 3 41404k -
. 1
/ 1,7, dy = 62 |:Z <d$ — Rikildkdl> / 8,‘in0 dy:l
D 3 RN
Yo
~ 2
+i%0” (3Rijij + ROjCj) /]RN y;j05wZo dy
51 )
- P2H2§ Z Rirji /RN Yy OjwZo dy + €r
. 1
_ 2 2 .
=€ B5 Z |:d7, - SRzkzldkdl:|
Q(d,Pyo)
5 1
+ e,u,zBG Z (SRijij + R0j0j>
+ €30,
where
B5 Z:/ [“)i,»wZo dy7 BG Z:/ yjaijO dy (410)
]RN RN

Here we used (4.8) and we argued as before.
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e The projection of I3.

/ I3ZNn11dy = 0(1)63 and / 137 dy = 0(1)63 forany k=1,..., N,
D

Yo D'yO

because of the symmetry and of the orthogonality of Zy with Zy11 and Z;.

/ I3Zydy = € [p*agé + A1€] + o(1)e?
Dy,

because [,y Z3 dy = 1.
e The projection of 1.

/ LiZn1dy = € IneDy + €2by(pyo) + €| Inelf
Dyo
/ 147, dy = €20 for any k=1,..., N.
Dyo
/ 1.7y dy = € IneDy + €ba(pyo) + €°| In €|f
Dy,
where
(V—2)° (N —2)
— Ay, Dy i =+——
16 0 16
b1, by are explicit functions and the function 6 = 6(pyp) has the required properties .

Dy =+ As (see (4.4) and (4.6)),

Hence, summing up the previous calculations we conclude that

Se(w)Zn41dy = € (A1 — pojioBs + pgg1)
the choice of g = =0
+ ¢ In€ (—jirptoBs + pa (—fioBs + 2p1091) + D1)
the choice of u; = =0
+ € (—jipoBs + 1 (—fioBs + 2p091) + B1Q(d, x0) + b1 (x0))
+ O(e*| Ine) (4.11)

DyO

where (see Remark 4.1)
1
g1(wo) := —Azh(wo) + Z <3Rz’jij + ROjOj) By = —Azo(x0) (4.12)

and

/ Se(w)Zody =€ (Aieg — As + pig)
Dy,

the choice of eg = =0
+elne (Aey + 2uou1 + Dy)

the choice of e; = =0
+ 62 (ané + )\16 + aoéo + bg(l’o) + 2,LLOILL92 + B5Q(d7 1‘0))
+ O(€*| In¢) (4.13)
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where

1
g2(wo) 1= —Ash(z0) + Y (SRijz’j + ROj0j> Bg.
More precisely, g solves the periodic O.D.E.
A
—jioBs + gipo + ;Tl =0, po > 0in [0,20].
0

which is nothing but problem (1.6) or (1.7) where (see Remark 4.1)

ap, = A >0 and b, := A > 0 (see (4.4), (4.5) and (4.7)).
Bs Bs
Moreover,
co = Az — p5ge.
A1
Finally, 11 solves the periodic O.D.E.
—ji1poBs + p1 (—fioBs + 2u0g91) +D1 = 0 in [0, 24].

Ay
= Mog1 + —5
Ho

20

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

We point out that p; does exist, because o is a non degenerate solution of (4.15) (see also

Lemma 6.1). Moreover,
_ —2popm — Do
61 —_— T.
That concludes the proof.

Remark 4.1. It holds
o g1(xg) = —Az0(x0) with Ay <0 (see (4.5))
o A1 >0 (see (4.4))

A 2(N—-1 2(n—2
A= o _<2) (le) - (n_<3)(nil) (see (4.5) and (4.7))

by = & = W-2PNod) _ (0-3P(5) g0 (4.4) and (4.7))

® a, = —

n = B A(N+2) A(n+1)

Proof. Tt is useful to point out that

Indeed, if we denote by

q e dr if
19 .= _— 1 —qg>1
2 / T

and we use the properties

p—(¢+1) +1 g+1
I, =——"Z[land I, = ———1I!
e p R T gy
a straightforward computation shows that

N (N=2)%  np
P+l gy = 2 I/
(p+1)2/RNw y=cn gy wviy >0,
2(N — 1)(N — 2)
Ay = Iy dy = —c3
? /szw N+ = TN TINN — 4)

3N =22 N
BQ = /RN y]aJ’IUZN+1 dy = —C?VmUJNIN/ <0

1=

wNIx/2 <0,

(4.19)
O
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e ) (N 22N +2)
N —2)(N +2 N/2
B3 = Z%..d Iy
’ /R Mndy =y gy en v >0,
where wy is the measure of the sphere S¥ 1. Therefore, we immediately deduce the quantities

a, and by, taking into account that N =n — 1.
Moreover, it is easy to check that

N

1
5 g Rz;z] CI"() + E R();()y lo 3 g Liji] 10 E R[)y()y lo

11 1 i,7=0
N _ . . .
= 539(370) — 5 fic (o), ¥(z0)) (4.20)
Therefore, the claim follows. O

5. THE INFINITE DIMENSIONAL REDUCTION

5.1. The gluing procedure. Here we perform a gluing procedure that reduces the full problem
(1.2) to the scaled problem (3.11) in the neighborhood of the scaled geodesic.
Since the procedure is very similar to that of [6] we briefly sketch it.

We denote by M, the scaled manifold %M , by z the original variable in M, and by & := pz
the corresponding point in M. It is clear that the function u(z) is a solution to (1.2) if and only
if the function v(z) := piE u(pz) solves the problem

Agv —p*hv + p7¥6'up7E =0 in M, (5.1)

The function @(yo,y) constructed in (3.13) defines an approximation to a solution of (1.2) near
the geodesic through the natural change of variables (3.9).

It is useful to introduce the following notation. Let f(z) be a function defined in a small neigh-
borhood of the scaled geodesic I, := %F. Through the change of variables (3.9) we denote by

N-—2

Fory) = i T (ouo)f (;F (o0, 1e(pyo) + de(pyo») , (5.2)

where the point pz = F(pyo, te(pyo) + de(pyo)) € M and fi., e and d. are defined in (3.8) and
(3.7). According this notation, we set w = w(z) the function corresponding to & = & (yo,y).
Let § > 0 be a fixed number with 4§ < §, where J is given in (3.1). We consider a smooth cut-off
function (s(s) such that (5(s) = 1if 0 < s < ¢ and (5(s) = 0 if s > 20. Let us consider the
cut-off function n§ defined on the manifold M, by
disty(€,1

W) = G ( telé D) )) for pz = € € M.
We remark that with this definition 7§(z) does not depend on the parameter functions.
We define our global first approximation of the problem (1.2) w(z) as

w(z) = n5(z)w(z). (5.3)
We look for a solution to problem (5.1) of the form v = w + ®, namely
Ay® +pwP'd + N(®) + E=0in M, (5.4)
where
N(®) = p7¥6(w + O)PE — WP — pwP 1D — p?h(w + D) (5.5)
and

E=Aw+wP™e (5.6)
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We look for a solution s of (5.4) as ® = n95¢ + ¢ where the function ¢ is such that the
corresponding function ¢ via the change of variables (5.2) is defined only in D. It is immediate
to check that ® of this form solves (5.4) if the pair (1, ¢) solves the following nonlinear coupled
system:

Agt) + (1= n55)pwP ™1 = =2V36Vgn5s — 6855 — (1 = 155) N (n35¢ + ) in M, (5.7)
and
A@) +poP ™ o = N (G350 +¢) — Se(@) — p@" ') in D, (5.8)
where N
N(@) =fic = (@+ )P —wP™ = poP'® — g2hd, & = (556 + ¢, (5.9)
Indeed, problem (5.4) in a scaled neighborhood of the geodesic looks like problem 5.8 and the
5.

error F given in (5.6) via the change of variables (5.2) is nothing but the error term S. (@) defined
n (3.26).

Civen ¢ such that ¢ is defined in D, we first solve problem (5.7) for 1 (see Section 6 of [6]).

Lemma 5.1. For any R > 0 there exists v > 0 such that for any function ¢ such that the
corresponding function ¢ is defined only in D with ||¢|. < r, there exists a unique solution

¥ = (@) of (5.7) with o
[¥lloe < Re™=[|9]l.
Moreover, the nonlinear operator ¢ satisfies a Lipschitz condition of the form

(1) = $(82) oo < c€ 7 || — dalls (5.10)

for some positive constant ¢ independent on e.

Finally, we substitute ) = ¢(¢) (via the change of variables (5.2)) in the equation (5.7) and
we reduce the full problem (1.2) to solving the following (nonlocal) problem in D:

A(@) + 02" = —N (1550 +1(9)) = Se(@) — p@~4(¢) in D. (5.11)

5.2. The nonlinear projected problem. We can solve the following projected problem associ-
ated to (5.11): given u,d and e satisfying (3.18), find functions ¢ and ¢i(yo) forj=0,...,N+1
such that ~ ~

L($) = 5@ +N@) + ;¢ Z; i D

913( + %, y) = ¢(yo, Ay)  for any (yo,y) € D, (5.12)

nyO ¢Zjdy = 0 and for any y, € [_g 4 ,j=0,1,...,N+1.
Here S (@) is given in (3.26) and
L(}) := A(¢) + pwP~1¢ (A is in Lemma 3.2 and w is in (3.5)),
N(9) = p(w ™ = &' )é — N (G5 +1(¢)) — p&" ™ h(¢) (Vs in (5.9)).

Proposition 5.2. There exists ¢ > 0 such that for all sufficiently small € and all p,d and e
satisfying (3.18), problem (5.12) has a unique solution ¢ = ¢(u,d,e) and ¢; = ¢j(p,d, e) which
satisfies

9]l < ce?. (5.13)

Moreover, ¢ depends Lipschitz continuously on u, d and e in the sense

||¢~5(M1ad17€1) ¢(H’27d2762)” 62’”(,ul M27d1 —d2,€1 _62)H
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for some positive constant ¢ independent of € and uniformly with respect to u,d and e which

satisfy (3.18).

Proof. We argue exactly as in Section 7 of [6], using a contraction mapping argument and the
linear theory developed in Proposition 7.3. 0

6. THE REDUCED PROBLEM

6.1. The reduced system. We find N +1 equations relating i, d and e to get all the coefficients
¢; in (5.12) identically equal to zero. To do this, we multiply equation (5.12) by Z;, for all
7 =0,..., N+ 1 and we integrate in y. Thus, the system

¢j(pyo) =0, j=0,1,...,N+1

is equivalent to

/Duo ks;(a;)Zjder/D (L(é)—fﬁ(é)) Zidy=0, j=0,1,... ,N+1,

Yo

for any yo € [f % .

2 it follows that

| (20 -9) 2,0y = 0.

Yo

£
P’
By Proposition 5.

where 6 = 0(pyo) is as in Lemma 3.4.
Hence the equations c¢; = 0 are equivalent to the following limit system on N + 2 nonlinear
ordinary differential equations:

Lyyi(p) == —ji+ (anU + ET%) = —ant1(xo) — c3Q(xo,d) + €| In €| Mpy41
Lk(d) = *d.kﬁ*Z;V:l Roj()kdj = \/ng, k=1,...,N (61)

L(](e) = Ga()é + )\16 = —a()($()) — C4Q({E0, d) — ﬁ(l’()),u + 6‘ 11’1 E|M()
where p,di,...,dy,e € C3,(R) and

- the functions «; and [ are explicit functions of zg, smooth and uniformly bounded in €
given in Lemma 3.4
- the operator @ is quadratic in d (see Lemma 3.4) and it is uniformly bounded in L39(R)
for (u,d, e) satisfying (3.18)
- the operators M; = M;(u,d, €) can be decomposed as M;(u, d,e) = A;(u,d, e)+K; (i, d, €)
where
- K; is uniformly bounded in L3 (R) for (u,d, e) satisfying (3.18) and it is compact
- A, depends on (u,d, e) and their first and second derivatives and it satisfies

| Ai(pz, d2, e2) — Ai(pa, diyer)]] < o(1)|[(pe — p1,de — di,ea — e1)]|
uniformly for (4, d, e) satisfying (3.18)
- the dependance on (ji,d, é) is linear

Our goal is to solve (6.1) in u,d and e. To do so, we first analyze the invertibility of the linear
operator Ly 1.
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Lemma 6.1. For any f € L3 (R), there exists a unique u € C3,(R) solution of Lny1(p) = f.
Moreover, there exists ¢ such that

[alloo + litlloe < el floo-

Proof. The non degeneracy condition of the solution pg translates into the fact that the periodic
O.D.E.

bn .
—fi+ <ano:|: 2) =10 1in [0, 2/]
Ho

has only the trivial solutions. Therefore the claim follows. (I
Next, we analyze the invertibility of the linear operator L.
Lemma 6.2. Assume

lem? — k2| > v\/€ for anym =1,2,...

for some v positive, where

+£
1
K= g\/)\l/ ds.
)

Vao(s)

For any f € C9,(R) N L2 (R), there exists a unique solution e € C3,(R) of Lo(e) = f. Moreover,
there exists ¢ such that

.. . 1
€H€||oo+\£”6”oo+H6Hoo <c [l.flloo>
NG

Finally, if f € C3,(R), then

ellélloc + Vellelloo + llellos < ¢ |l flloc + 1flloc + 1flloc] -

Proof. We argue as in in Lemma 8.2 of [6]. O

Finally, we consider the invertibility of the linear operator (Li,...,Lx).

Lemma 6.3. Assume the geodesic is non degenerate. For any f = (f1,..., fn) with fi, € L3 (R),
there exists a d = (dy,...,dy) with dy € C3,(R) such that Ly(d) = fy for any k = 1,...,N.
Moreover, there exists ¢ such that

ldllo + lldlloe + lldllos < €l flloc-

Proof. It is useful to point out that assumption (1.3) about non degeneracy of I' in normal
coordinates translates exactly into the fact that the linear system of O.D.E.’s

N
—di + Y Rojord; =0, in [0,2(], k=1,....N,

Jj=1

has only the trivial solution d = 0 satisfying the periodicity condition (3.6). Therefore, the claim
follows.
O
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6.2. The choice of parameters: the proof completed! Now, we are ready to complete the
proof, finding parameters which solve the reduced problem (6.1).

First, by Lemma 6.1 we find fig solution of

L 1(fo) = —ant1(x0), with [|jio|[leo + [|iolloc + [|20]loo < ¢
Then, by Lemma 6.2 we find ég solution of

Lo(é) = —a0 — Bjio,, with ]|éolloc + v/e[[éo|oo + [léofloc < c.
Therefore, ||(fi0,0,é0)|| < c. Let us define

= fio + fin, d=di, e =éy+éy.
The system (6.1) reduces to
Lys1(fnn) = —csQ(wo,d1) + €| In €| My 41

Li(dy) = /eMy, k=1,...,N (6.2)

Lo(é1) = —caQ(zo,d1) — B(zo)jix + €| Ine| My
Let us observe now that the linear operator

L(fir,dy,é1) = (Lny1(fnn), Ln(dy), ..., L1 (dr), Lo(é1))
is invertible with bounds for £(ji1,dy,é1) = (f, g, h) given by

(1,1, 1)) < © [Ilflloo +lglloe +e 2 oo | -

Finally, by the contraction mapping principle it follows that, the problem (6.2) has a unique
solution with

linlloe < cellnel,  fdille < Ve, flérllos < Vel lnel.
That concludes the proof.

7. THE LINEAR THEORY

Here we recall a linear theory necessary to solve problem (3.11), which has been developed in
Section 3 of [6].
Let us consider the operator Ly := Agn + pwP~1. Tt is well-known that the L?— null space of
the operator Ly is N + 1— dimensional and spanned by the functions

. N —2
Zi(y) == 0jw(y), j=1,...,Nand Zn41(y) ==y - Vw(y) + Tu}(y)

Moreover it is known that (see [6]) that the operator £y has one negative eigenvalue —\; < 0,
whose corresponding eigenfunction Zy (normalized to have L?— norm equal to 1) decays expo-
nentially at infinity with exponential order O(e~V>1l#l).

The following results (see Lemma 3.1 of [6] and also [7]) are useful in order to obtain a pri-
ori estimates and a solvability theory for problem (3.11).

Lemma 7.1. Assume that A ¢ {0, j:\/)\l}. Then for g € L (RYN), there exists a unique bounded
solution of

(Lo— NP =g
in RN . Moreover
[¥llLe < exllgllnee
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for some constant cy > 0 only depending on A.
Lemma 7.2. Let ¢ a bounded solution of
oot + Ayd +puwP o =0 in RNHL

Then ¢(yo,y) is a linear combination of the functions Z;, j = 1,...,N + 1, Zy(y) cos(v/A1yo),
Zo(y) sin(v/A1yo).

Now, we study a slightly more general problem than (3.11) that involves the essential features
needed. For any constant M > 0 we consider the domain D defined as

D:={(yo,y) ERxRY : |y|<M} (7.1)

and given a function ¢ defined on D, an operator of the form
L(¢) == b(y0)Doop + Ay + pwP '+ > bij(yo,y)dijp + Zb (Y0, ¥)0:¢ + d(yo, ).
,J

Then for a given function g we want to solve the following projected problem:
N+1 .
L(¢) =g+, ¢i(y0)Zi(y)  in D

Jp oo y)Z;(y)dy =0 forany yg €R, j=0,...,N

vo
where
Dy, = {y € RY : (yo,y) € D}.

We fix a number 2 < v < N and consider the L*>°— weighted norms
191l = sup(1 + 1" )6 (yo, y)| + sup(1 + 2]~ 1) D (o, 2],
lgll«= = sup(1 +[g1")lg(v0, y)l-
We assume that all functions involved are smooth. The following result (see Proposition 3.2 of

[6]) establishes existence and uniform a priori estimates for problem (7.2) in the above norms,
provided that appropriate bounds for the coefficients hold.

Proposition 7.3. Assume that N > 7 and N —2 < v < N. Assume that there exists m > 0
such that

m < b(yo) <m ™ for any yo € R.
There exist § > 0 and C > 0 such that if
M ||00bl o + Z (165l o0 =+ [1Dbij o) + Z 1+ yDbilloo + 111+ [y[*)dlloc <0 (7.3)
i,

then for any g with ||g|l«« < oo there exists a unique solution ¢ = T'(g) of problem (7.2) with
9|l < oo and it holds true that

[l < Cllgllsx-
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8. APPENDIX

8.1. Proof of (3.4). Let Ey, E1, ..., Ex the coordinate vectors as given in the Introduction. By
our choice of coordinates it follows that Vg E = 0 on I' for any vector field F, that is a linear
combination (with coefficients depending only on z() of the Ej’s, j =1,...,N.

In particular, for any 4,7 = 1,..., N and for any ¢t € R, we have Vg, g, (E; +tE;) =0on T,
which implies Vg, E; + Vg, E; = 0 for every 4,5 = 1,..., N.

Using the fact that E;’s are coordinate vectors for j = 1,..., N and in particular Vg, Ep = Vg, E
for all a,b = 0,..., N, we obtain that VE;E; = 0 for every ¢,j = 1,...,N. The geodesic
coordinate for I' translates precisely into VEyFEy = 0.

These facts immediately yields

8mgij = Em <Ei, EJ> <VE,,L E“ E; > <E“ VE”L > 0 (81)
on I" with 4,7, m=1,... N.
Moreover, since F,’s are coordinate vectors for a = 0,..., N, we obtain
Omgo; = Em(Eo, Ej)
= (Vg, Eo, E;) + (Eo, Vg, Ej)
= (Ve Em, Ej) + (Eo, Vg, Ej) =0 (82)

onI' withm,j=1,...,N.

Here we used the fact that Vg, E,, = 0 on I', namely that Vg, F,, has zero normal compo-
nents.
Moreover by (8.1) it follows that

Omgoo =0 on TI. (8.3)

We can also prove that the components Ro,,0; of the curvature tensor are given by

1

=Om;g00- (8.4)

Romoj = — 5

Indeed, we have

—Romo; = (R(Eo, Ej)Eo, Ep)
(Ve,EjEo, Em) — (VE;VE,Eo,

Em)
)

—(VE,Eo, Vi, En)

<V VE Ey, B, > J<VE0E0,
- <VEOVE E07 > j<vE0EOaE’m>
= (Vg,Vg,Eo, En) — EjE0)Ey, En) + Ej(Eo, Vi, Enm)
= (Vg,VEg;Ey, En) + Ej(Ey, VE,, Eo)
1
= E E(Eo, Eo) + Eo(VE,Eo, Em) — (VE; Eo, VE,Em)
1
= iamjgoo

where here we have used the above properties and the fact that
1
ijEo = VEOEj = iajgooEo =0.

By (8.2), (8.4), (8.3) and (8.1) the claim follows.
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