Journal of Integer Sequences, Vol. 18 (2015), Article 15.10.3

Binary Words Avoiding $x x^{R} x$ and Strongly Unimodal Sequences

James Currie and Narad Rampersad
Department of Mathematics and Statistics
University of Winnipeg
515 Portage Avenue
Winnipeg, Manitoba R3B 2E9
Canada
j.currie@uwinnipeg.ca
n.rampersad@uwinnipeg.ca

Abstract

In previous work, Currie and Rampersad showed that the growth of the number of binary words avoiding the pattern $x x x^{R}$ was intermediate between polynomial and exponential. We now show that the same result holds for the growth of the number of binary words avoiding the pattern $x x^{R} x$. Curiously, the analysis for $x x^{R} x$ is much simpler than that for $x x x^{R}$. We derive our results by giving a bijection between the set of binary words avoiding $x x^{R} x$ and a class of sequences closely related to the class of "strongly unimodal sequences".

1 Introduction

In this paper we give an exact characterization of the binary words avoiding the pattern $x x^{R} x$. Here the notation x^{R} denotes the reversal or mirror image of x. For example, the word 010110100101 is an instance of $x x^{R} x$, with $x=0101$. A natural language example of an instance of $x x^{R} x$ is the French word "resserres" (meaning "sheds" or "storerooms"). The

[^0]set of binary words avoiding the related pattern $x x x^{R}$ has been the subject of recent study. This study began with the work of Du, Mousavi, Schaeffer, and Shallit [3], who observed that there exist infinite periodic binary words that avoid $x x x^{R}$ and provided an example of an aperiodic infinite binary word that avoids $x x x^{R}$. Answering a question of Du et al., the present authors derived upper and lower bounds for the number of binary words of length n that avoid $x x x^{R}$ and showed that the growth of this quantity was neither polynomial nor exponential [2]. This result was the first time such an intermediate growth rate had been shown in the context of pattern avoidance.

In the present work we analyze the binary words avoiding $x x^{R} x$. A preliminary investigation, focusing on infinite words, was initiated by Du and Shallit [4]. Here we look into the enumeration of finite binary words avoiding $x x^{R} x$. Once more, we are able to show a growth rate for the number of such words that is neither polynomial nor exponential. Surprisingly, the analysis is much simpler than what was required to show the analogous result for the pattern $x x x^{R}$. Indeed we are able to obtain a complete characterization of the binary words avoiding $x x^{R} x$ by describing a correspondence between such words and sequences of integers that are very closely related to strongly unimodal sequences of integers. These latter have recently been studied by Rhoades [6]. This correspondence provides a rather pleasing connection between avoidability in words and the classical theory of partitions. Finally, we conclude this work with some remarks concerning the non-context-freeness of the languages of binary words that avoid the patterns $x x x^{R}$ and $x x^{R} x$ respectively.

2 Enumerating binary words avoiding $x x^{R} x$

Let

$$
L=\left\{w \in\{0,1\}^{*}: w \text { avoids } x x^{R} x\right\}
$$

and let $L=L_{0} \cup L_{1}$, where L_{0} (resp., L_{1}) consists of the words in L that begin with 0 (resp., $1)$, along with the empty word.

Note that the words in L avoid both 000 and 111. Observe that any $w \in\{0,1\}^{*}$ that avoids 000 and 111 has a unique representation of the form

$$
\begin{equation*}
w=A_{0} a_{1} a_{1} A_{1} a_{2} a_{2} A_{2} \cdots A_{k-1} a_{k} a_{k} A_{k} \tag{1}
\end{equation*}
$$

where each A_{i} is a prefix (possibly empty) of either $010101 \cdots$ or $101010 \cdots$ and each $a_{i} \in$ $\{0,1\}$. Given such a factorization, we define an associated sequence $f(w)=\left(n_{0}, \ldots, n_{k}\right)$, where

- $n_{0}=\left|A_{0} a_{1}\right|$,
- $n_{i}=\left|a_{i} A_{i} a_{i+1}\right|$, for $0<i<k$, and
- $n_{k}=\left|a_{k} A_{k}\right|$.

For example, if $w=010100101101010011$, then $f(w)=(5,4,6,2,1)$.
Let \hat{U} denote the set of all sequences of the form $\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ for which there exists $j \in\{1,2, \ldots, m\}$ such that either
(Type 2)

$$
\begin{align*}
& 0<d_{1}<\cdots<d_{j-1}<d_{j}>d_{j+1}>\cdots>d_{m}>0, \text { or } \tag{Type1}\\
& 0<d_{1}<\cdots<d_{j-1}=d_{j}>d_{j+1}>\cdots>d_{m}>0
\end{align*}
$$

The weight of any such sequence is the sum $d_{1}+\cdots+d_{m}$. We also include the empty sequence in \hat{U}. Type 1 sequences are called strongly unimodal sequences. ${ }^{2}$ Note that the set \hat{U} can also be equivalently defined as follows: \hat{U} consists of all sequences $\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ for which there is no j such that both $d_{j-1} \geq d_{j}$ and $d_{j} \leq d_{j+1}$.

We show the following.
Theorem 1. The map f defines a one-to-one correspondence between the words in L_{0} of length n and the sequences in \hat{U} of weight n.

Proof. Let $w \in\{0,1\}^{*}$ be a word starting with 0 . Let $f(w)=\left(n_{0}, \ldots, n_{k}\right)$ and let

$$
w=A_{0} a_{1} a_{1} A_{1} a_{2} a_{2} A_{2} \cdots A_{k-1} a_{k} a_{k} A_{k}
$$

be the factorization given in (1).
We first show that if $f(w) \notin \hat{U}$ then $w \notin L_{0}$. Since $f(w) \notin \hat{U}$ there is some j such that both $n_{j-1} \geq n_{j}$ and $n_{j} \leq n_{j+1}$. Define B_{1}, B_{2}, and B_{3} as follows:

- if $j=1$ then B_{1} is the suffix of $A_{0} a_{1}$ of length n_{1}; otherwise, B_{1} is the suffix of $a_{j-1} A_{j-1} a_{j}$ of length n_{j};
- $B_{2}=a_{j} A_{j} a_{j+1}$;
- if $j=k-1$ then B_{3} is the prefix of $a_{k} A_{k}$ of length n_{k-1}; otherwise B_{3} is the prefix of $a_{j+1} A_{j+1} a_{j+2}$ of length n_{j}.

The conditions on n_{j-1}, n_{j}, and n_{j+1} ensure that B_{1}, B_{2}, and B_{3} can be defined. However, we now see that $B_{1}=B_{2}^{R}=B_{3}$, where B_{1} is either $(01)^{n_{j} / 2}$ or $(10)^{n_{j} / 2}$. The word w thus contains an instance of $x x^{R} x$, and hence is not in L_{0}.

Next we show that if $w \notin L_{0}$, then $f(w) \notin \hat{U}$. First note that if w has a factor w^{\prime} such that $f\left(w^{\prime}\right) \notin \hat{U}$, then $f(w) \notin \hat{U}$. We may therefore suppose that $w=v v^{R} v$ and contains no smaller instance of the pattern $x x^{R} x$. Then there are indices $i<j$ such that

- $v=A_{0} a_{1} \cdots A_{i-1} a_{i}$,
- $v^{R}=a_{i} A_{i} \cdots A_{j-1} a_{j}$, and

[^1]- $v=a_{j} A_{j+1} \cdots a_{k} A_{k}$.

If $k=2$ we necessarily have $f(w)=\left(n_{0}, n_{0}, n_{0}\right) \notin \hat{U}$, so suppose $k>2$. Since w contains no smaller instance of $x x^{R} x$, we must have $n_{0}<n_{1}$. However, we also have $n_{j-1}=n_{j}=n_{0}$ and $n_{j+1}=n_{1}$. Thus, we have $n_{j-1}=n_{j}<n_{j+1}$ and so $f(w) \notin \hat{U}$.

We now turn to the enumeration of the sequences in \hat{U}. Let $\hat{u}(n)$ denote the number of sequences in \hat{U} of weight n. Recall that a partition of n is a sequence $\left(t_{1}, t_{2}, \ldots, t_{k}\right)$ such that

$$
1 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{k} \quad \text { and } \quad t_{1}+t_{2}+\cdots+t_{k}=n
$$

A partition of n into distinct parts is a partition of n where the t_{i} are all distinct. A sequence $\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ in \hat{U} can be represented by a pair (λ, μ) of partitions into distinct parts, where the partition λ gives the increasing part of the sequence and the partition μ, read in the reverse order, gives the decreasing part of the sequence. Let $p_{d}(n)$ denote the number of partitions of n into distinct parts. Then the generating function for partitions into distinct parts is given by

$$
\sum_{n \geq 0} p_{d}(n) q^{n}=\prod_{j=1}^{\infty}\left(1+q^{j}\right)
$$

The numbers $\hat{u}(n)$ are thus almost given by the coefficients of the square of this function, i.e., the function

$$
\sum_{n \geq 0} \tilde{u}(n) q^{n}=\prod_{j=1}^{\infty}\left(1+q^{j}\right)^{2}
$$

Unfortunately, the quantity $\tilde{u}(n)$ double-counts every sequence of Type 1: once for the case where the maximal element of the sequence comes from λ, and once for the case where it comes from μ. It follows then that for $n \geq 1$, we have

$$
\begin{equation*}
\tilde{u}(n) / 2 \leq \hat{u}(n) \leq \tilde{u}(n) . \tag{2}
\end{equation*}
$$

Of course $\tilde{u}(n) / 2$ is an underestimate for $\hat{u}(n)$, since, although it corrects for the doublecounting of Type 1 sequences, it halves the number of Type 2 sequences. However, intuitively one sees that the number of Type 2 sequences is relatively small, and consequently $\hat{u}(n)$ is rather close to $\tilde{u}(n) / 2$.

Let $c(n)$ be the number of words in L of length n. From (2), Theorem 1, and the fact that $c(n)=2 \hat{u}(n)$, we have the following.

Corollary 2. For $n \geq 1$, the number $c(n)$ of binary words of length n that avoid $x x^{R} x$ satisfies

$$
\tilde{u}(n) \leq c(n) \leq 2 \tilde{u}(n)
$$

Rhoades [6] has recently determined the asymptotics of $\tilde{u}(n)$; viz.,

$$
\tilde{u}(n)=\frac{\sqrt{3}}{(24 n-1)^{3 / 4}} \exp \left(\frac{\pi}{6} \sqrt{24 n-1}\right)\left(1+\frac{\left(\pi^{2}-9\right)}{4 \pi(24 n-1)^{1 / 2}}+O\left(\frac{1}{n}\right)\right) .
$$

This shows, as claimed, that the growth of $c(n)$ is intermediate between polynomial and exponential. The following table gives the values of $c(n)$ and $\tilde{u}(n)$ for small values of n.

n	0	1	2	3	4	5	6	7	8	9	10	11	12
$c(n)$	1	2	4	6	10	16	24	34	50	72	100	138	188
$\tilde{u}(n)$	1	2	3	6	9	14	22	32	46	66	93	128	176

The sequences $c(n)$ and $\tilde{u}(n)$ are sequences $\underline{A 261204}$ and $\underline{A 022567}$ respectively of The Online Encyclopedia of Integer Sequences, available online at http://oeis.org. We would also like to note that the number $c(n)$ grows significantly faster than the number of binary words of length n that avoid $x x x^{R}$, whose order of growth was previously estimated to be, roughly speaking, on the order of $e^{\log ^{2} n}[2]$.

3 Non-context-freeness of the language L

Recall that in previous work we showed that the language S of binary words avoiding $x x x^{R}$ has intermediate growth [2]. Adamczewski [1] observed that this implies that S is not a context-free language, since it is well known that context-free languages have either polynomial or exponential growth [7]. He asked if there is a "direct proof" of the non-contextfreeness of S. This seems to be difficult; we have not been able to come up with such a proof. Indeed, it even seems to be rather difficult to give a direct proof that S is not a regular language.

Adamczewski's observation applies just as well to the language L of binary words avoiding $x x^{R} x$: the intermediate growth shown above implies that L is not context-free. However, unlike for S, it is relatively easy to give a direct proof that L is not context-free. First, we observe that since the class of context-free languages is closed under intersection with regular languages and under finite transduction, if the language L is context-free then the language

$$
L \cap(01)^{+}(10)^{+}(01)^{+}(10)^{+}=\left\{(01)^{i}(10)^{j}(01)^{k}(10)^{\ell}:(i<j \text { or } k<j) \text { and }(j<k \text { or } \ell<k)\right\}
$$

is context-free, and in turn, the language

$$
L^{\prime}=\left\{a^{i} b^{j} c^{k} d^{\ell}:(i<j \text { or } k<j) \text { and }(j<k \text { or } \ell<k)\right\}
$$

is context-free. However, one can show using Ogden's lemma [5] that the latter is not context-free. A sketch of the proof is as follows. Let n be the constant of Ogden's lemma and consider the word $a^{n} b^{n+1} c^{n+2} d^{n+3} \in L^{\prime}$, where the block of a 's is "marked". The first of the two blocks to be pumped must therefore be contained in the block of a 's. If the second
block to be pumped does not contain a b, then pumping up produces a word w^{\prime} for which the number of b 's is both less than the number of a 's and less than the number of c 's. If the second block to be pumped does contain a b, then pumping up produces a word w^{\prime} for which the number of c 's is both less than the number of b 's and less than the number of d 's. In both cases the word w^{\prime} is not in L^{\prime}. Therefore L^{\prime} is not context-free, and consequently L is not context-free.

4 Acknowledgments

Both authors are supported by NSERC Discovery Grants. We would like to thank the anonymous referee for his/her helpful feedback.

References

[1] B. Adamczewski, Personal communication.
[2] J. Currie and N. Rampersad, Growth rate of binary words avoiding $x x x^{R}$. Preprint available at http://arxiv.org/abs/1502.07014.
[3] C. F. Du, H. Mousavi, L. Schaeffer, and J. Shallit, Decision algorithms for Fibonacciautomatic words, with applications to pattern avoidance. Preprint available at http://arxiv.org/abs/1406.0670.
[4] C. F. Du and J. Shallit, Avoiding patterns of morphic and antimorphic involutions. Unpublished manuscript, dated October 162013.
[5] W. Ogden, A helpful result for proving inherent ambiguity, Math. Systems Theory 2 (1968), 191-194.
[6] R. Rhoades, Asymptotics for the number of strongly unimodal sequences, Int. Math. Res. Not. IMRN (2014), no. 3, 700-719.
[7] V. I. Trofimov, Growth functions of some classes of languages (Russian), Cybernetics (1981), no. 6, i, 9-12, 149.

2010 Mathematics Subject Classification: Primary 68R15.
Keywords: pattern with reversal, avoidability in words, strongly unimodal sequence.
(Concerned with sequences A022567 and A261204.)

Received August 12 2015; revised version received August 24 2015. Published in Journal of Integer Sequences, September 142015.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ This example is due to the anonymous referee, who also provided the following literary reference: "Les resserres sont exclusivement réservées aux pigeons." (Émile Zola, Le Ventre de Paris, G. Charpentier, Paris, 1873)

[^1]: ${ }^{2}$ The "U" in \hat{U} therefore refers to "unimodal", and the "hat" to the fact that this set additionally includes the Type 2 sequences.

