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bounded between 4 and 5, and we show that several members of the family have avoid-
ability index 5. This family is particularly interesting due to its size and the simple
structure of its members. For each k � �4,5�, there are several previously known avoid-
able formulas (without reversal) of avoidability index k, but they are small in number
and they all have rather complex structure.
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1. Preliminaries

Let Σ be a set of letters called variables. A pattern p over Σ is a finite word over
alphabet Σ. A formula φ over Σ is a finite set of patterns over Σ. Instead of set
notation, we usually use dot notation to denote formulas; that is, for p1, . . . , pn � Σ�

we let

p1 � p2 � . . . � pn � �p1, p2, . . . , pn�.
The elements of a formula φ are called the fragments of φ.

For an alphabet Σ, define the reversed alphabet ΣR
� �xR

� x � Σ�, where xR

denotes the reversal or mirror image of variable x. A pattern with reversal is a
pattern over Σ �ΣR. A formula with reversal over Σ is a formula over Σ �ΣR, i.e.
a finite set of patterns with reversal over Σ.
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For words over any alphabet A, we denote by �
R the reversal antimorphism; if

a1, a2, . . . , an � A, then

�a1a2 . . . an�R � anan�1 . . . a1.

We say that a morphism f � �Σ � ΣR�� � A� respects reversal if f�xR� � f�x�R
for all variables x � Σ. Note that any morphism f � Σ�

� A� extends uniquely to a
morphism from �Σ �ΣR�� that respects reversal.

Let p be a pattern (with reversal). An instance of p is the image of p under some
non-erasing morphism (respecting reversal). A word w avoids p if no factor of w is
an instance of p. Let φ be a binary formula (with reversal). We say that φ occurs
in w if there is a non-erasing morphism h (which respects reversal) such that the
h-image of every fragment of φ is a factor of w. In this case we say that φ occurs in
w through h, or that w encounters φ through h. If φ does not occur in w then we
say that w avoids φ. For example, the word singing avoids the pattern xyzyx, but
encounters the formula xy � yx (through several morphisms including x � in and
y � g; and x� ing and y � ing). The formula with reversal xyx � xR

� yR occurs in
the word senses through the morphism defined by x� se and y � n.

For a positive integer k, let Ak denote an alphabet on k letters. We say that
formula φ is k-avoidable if there are infinitely many words of A�

k which avoid φ;
or equivalently, if there is an ω-word w over Ak such that every finite prefix of w
avoids φ. If φ is not k-avoidable we say that φ is k-unavoidable. We say that φ is
avoidable if it is k-avoidable for some k � N; otherwise, we say that φ is unavoidable.
Finally, the avoidability index of φ, denoted ind�φ�, is the least k � N such that φ
is k-avoidable if φ is avoidable, and is � if φ is unavoidable.

An open question in pattern avoidance is whether patterns of arbitrarily high
avoidability index exist. At the time of writing it is unknown whether any patterns of
avoidability index strictly greater than 5 exist. Formulas have been important to the
search for patterns with high avoidability index because of the following connection
between patterns and formulas. For every formula, there is an associated pattern
of the same avoidability index obtained by replacing every dot with a new distinct
letter (this fact was first proven in [4], and a similar argument demonstrates the
truth of this fact for formulas with reversal as well). Indeed, this was the primary
reason that formulas were introduced, as they are somewhat easier to analyze than
the associated patterns.

While the fact that the pattern xx has avoidability index 3 is a well-known
classical result, the first known pattern of avoidability index 4, presented by Baker,
McNulty, and Taylor in [2] arises from the much longer formula ab�ba�ac�ca�bc. Later,
Clark [5] demonstrated that every avoidable formula on at most three variables
is 4-avoidable, but found several formulas on four or more variables that have
avoidability index 5. All of these formulas are rather long and complex.

Relatively little is known about the possible values of the avoidability index
of patterns with reversal. Currie and Lafrance [6] found the avoidability index of
every binary pattern with reversal; that is, every pattern on Σ �ΣR where �Σ� � 2.
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In particular, they found that every avoidable binary pattern with reversal has
avoidability index at most 3. Currie and Rampersad have shown that the growth
of the number of binary words avoiding the formula xxRx is intermediate between
polynomial and exponential [7], a surprising result which they have also shown
to hold for the formula xxxR [8]. These are the first known instances of such an
intermediate growth rate in the context of pattern avoidance, and this suggests that
patterns with reversal may be quite different from patterns in the usual sense (i.e.
without reversal).

In this paper, we present an infinite family of formulas with reversal whose
avoidability index is bounded between 4 and 5, and we show that several members
of the family have avoidability index 5. This family is actually part of a larger
family of formulas with reversal whose members are shown to have avoidability
index between 4 and 7 in general (although we suspect that the true upper bound
is 5). The simplicity of our examples makes their high avoidability index all the more
surprising, as the previously known formulas (without reversal) of avoidability index
4 or 5 are quite complex.

For each k � 1, define

ψk � xy1y2 . . . ykx � y1
R
� y2

R
� . . . � yk

R.

In Sec. 2, we show that ind�ψ1� � 4 and ind�ψ2� � 5. Then we move on to general
bounds on the avoidability index of ψk for k � 3. In Sec. 3, we bound the avoid-
ability index of ψk from above for all k � 3. We show that ind�ψ3k� � 5 for k � 1,
ind�ψ3k�1� � 6 for all k � 1, and ind�ψ3k�2� � 6 for all k � 2. The only remaining
case is ψ5, for which we demonstrate ind�ψ5� � 7. While we can use backtracking to
show that ind�ψk� � 5 for all 3 � k � 6 (so in particular ind�ψ3� � ind�ψ6� � 5), this
method becomes impractical for larger values of k. In Sec. 4, we present a general
argument that shows ind�ψk� � 4 for all k � 7.

2. The Avoidability Index of ψ1 and ψ2

This section is devoted to proving that ind�ψ1� � 4 and ind�ψ2� � 5. First of all, one
can demonstrate that ψ1 is 3-unavoidable and that ψ2 is 4-unavoidable by using a
standard backtracking algorithm. A longest word on three letters avoiding ψ1 has
length 14 while a longest word on four letters avoiding ψ2 has length 45. It remains
to show that ψ1 is 4-avoidable and ψ2 is 5-avoidable. In fact, we show that there
are exponentially many words on four letters that avoid ψ1 and exponentially many
words on five letters that avoid ψ2. Below we define words that have a particular
cyclic structure as they will be used in the constructions that follow.

Definition 2.1. Let k � 1 and let w � w1w2 . . . be a word in �1, . . . , k��. Define
the �a1, . . . , am�-cyclic w-word c

�w�
m on distinct letters a1, . . . , am by

c�w�
m � aw1

1 aw2
2 . . . awm

m awm�1
1 awm�2

2 . . . aw2m
m . . . .

Any word isomorphic to c�w�
m is called an m-cyclic w-word.
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We will find infinitely many words for which the corresponding 4-cyclic word
avoids ψ1, and infinitely many words for which the corresponding 5-cyclic word
avoids ψ2. Further, we will show that the growth of the number of these words is
exponential in each case. We begin with a lemma that gives a condition on a word
w � �1, . . . , k � 1�� that is satisfied if and only if c�w�

m avoids ψk (with m � k � 2).
Hence this lemma allows us to determine whether a given m-cyclic w-word avoids
ψk by considering w alone.

Lemma 2.2. Let k � 1 and m � k � 2. If w � �1, . . . , k � 1�� then the m-cyclic
w-word c

�w�
m avoids ψk if and only if for all j � �1, . . . , k�, w has no factor of the

form x�α1α2 . . . αjx
��, where

� �αi� � 1 for all i � �1, . . . , j�, i.e. αi � �1, . . . , k � 1�;
� �

j
i�1 αi � k �in Z�;

� �x�� � �x��� � n with n �m � j �mod m�; and
� if x� � x�1 . . . x

�

n and x�� � x��1 . . . x
��

n then x�1 � x��1 , x
��

n � x��n, and x�i � x��i for all
i � �2, . . . , n � 1�.

Proof. First suppose that w has a factor u of the form x�α1 . . . αjx
�� for some

j � �1, . . . , k� satisfying the conditions of the lemma statement. We have

c�u�m � a
x�

1
1 a

x�

2
2 . . . a

x�

n

m�ja
α1
m�j�1 . . . a

αj
m a

x��

1
1 a

x��

2
2 . . . a

x��

n

m�j,

and this word occurs as a factor of c�w�
m (up to a shifting of the letters a1, . . . , am).

Note that n is not necessarily equal to m � j here, but that the factors of c�u�m

corresponding to x� and x�� must end in am�j since n � m � j �mod m�. For each
i � �2, . . . , n � 1�, we have x�i � x

��

i , so define xi � x
�

i � x
��

i . Notice that the factor

a
x��

1
1 ax2

2 . . . axn�1
m�j�1a

x�

n

m�j

appears on either side of aα1
m�j�1 . . . a

αj
m in c�u�m , since x��1 � x�1 and x�n � x��n. Further,

the facts that j � k and �j
i�1 αi � k (in Z) allow us to factor aα1

m�j�1 . . . a
αj
m into k

nonempty words each of which is a power of a single letter. We conclude that the
formula ψk occurs in c�u�m , and hence also occurs in c�w�

m .

For the converse, suppose that ψk occurs in c�w�
m through the morphism h. First

note that h�xy1 . . . ykx� cannot be a power of a single letter, as the powers in
c
�w�
m come from w � �1, . . . , k�1��. However, for each i � �1, . . . , k�, h�yi� must be a

power of a single letter, as these are the only reversible factors of c�w�
m (since m � 3).

Suppose without loss of generality that h�y1� � ap
1 and h�yk� � aq

j . We necessarily

have j � k due to the cyclic ordering of letters in c
�w�
m . We also see that we must

have h�x� � ar
jva

s
1, for some r, s � 0, and

v � at1
j�1a

t2
j�2 . . . a

tn
m

with n � m � j �mod m�, ti � �1, . . . , k � 1� for all i � �1, . . . , n�. Define morphism
h� by h��x� � v, h��y1� � as

1h�y1�, h��yk� � h�yk�ar
j , and h��yi� � h�yi� for all

i � �2, . . . , k � 1�. Then h� is also an occurrence of ψk in c�w�
m .
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Now if we write h��y1 . . . yk� � aα1
1 aα2

2 . . . a
αj

j , then each instance of the factor

h��xy1 . . . ykx� � vh��y1 . . . yk�v in c�w�
m corresponds to a factor

u � t�1 t2t3 . . . tnα1α2 . . . αjt1t2 . . . t
�

n

of w, where t�1 � t1 and t�n � tn (since we do not know what happens to the left and
right of an instance of h��xy1 . . . ykx� in c

�w�
m ). The factor u clearly has the form

x�α1 . . . αjx
�� described in the lemma statement.

We are now ready to prove that ψ1 is 4-avoidable. The proof relies on an 8-
uniform morphism f that takes any square-free ternary word v to a binary word
f�v� for which the associated 4-cyclic word avoids ψ1. From here, the exponential
growth of the number of words avoiding ψ1 is straightforward to prove using the
fact that v can be any square-free ternary word.

Theorem 2.3. The formula ψ1 is 4-avoidable. Further, the growth of the number
of words on four letters avoiding ψ1 is exponential.

Proof. Define a morphism f � �0,1,2�� � �1,2�� by

f�0� � 11112122,

f�1� � 12112222, and

f�2� � 21111222.

We claim that if v is a square-free ternary word, then f�v� has no factor of the
form x�αx��, where �α� � 1, �x�� � �x��� � n with n � 3 �mod 4�, and x� � x�� except
possibly at the first and last letters (and thus c�f�v��4 avoids ψ1 by Lemma 2.2). We
prove the contrapositive of this claim below.

Let w � f�v� � w0w1w2 . . . and suppose that for some k � n, the factor

wk�n . . . wk�1wkwk�1 . . . wk�n

has the form x�αx�� described above. In particular, n � 3 �mod 4�, wk�n � wk�1,

wk�1 � wk�n, andwk�n�i � wk�1�i for all i � �1, . . . , n�2�.Note that here k represents
the position of α in the reading of x�αx�� as a factor of w. We have verified that no
factor of this form occurs in the image of any square-free ternary word of length
2, so we may assume that n � 3. In what follows, we refer to the image of a single
letter of v as a code word in w.

We first demonstrate that if wk�n . . . wk�n has the form x�αx�� described above,
then n � 7 �mod 8�. By assumption, n � 3 �mod 4�, so it suffices to show that n �� 3
�mod 8�. Suppose toward a contradiction that n � 3 �mod 8�. Using the assumption
that n � 3, in particular we have

wk�n�1wk�n�2wk�n�3 � wk�2wk�3wk�4. (2.1)

Note that the third and fourth letters of every code word are 1 while the seventh
and eighth letters are 2. Some letter from wk�n�1wk�n�2wk�n�3 must sit in either
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the third, fourth, seventh, or eighth position of a code word. However, since n�1 � 4
�mod 8� the letter in the corresponding position in wk�2wk�3wk�4 has the opposite
identity. This contradicts (2.1).

Now we may assume that n � 7 �mod 8�. A key observation used below is that
if two code words match at their first and second letters, then they are equal. This
follows directly from the fact that f�0�, f�1�, and f�2� all have distinct prefixes
of length 2. Similarly, if two code words match at their fifth and sixth letters, then
they are equal. Finally, since f is 8-uniform we can tell exactly where code words
begin and end in wk�n . . . wk�n from the value of k mod 8.

Case I: If k � 0 �mod 8� then the code words

wk�n�1 . . . wk�n�6 and wk . . . wk�7

are equal since they match at their fifth and sixth letters. If n � 7 we are
done, as we have two identical code words in a row, which must have
come from a square (of length 2) in w. Otherwise, the code words

wk�8 . . . wk�1 and wk�n�7 . . . wk�n

are also equal since they match at their fifth and sixth letters. Altogether
we have

wk�n�1 . . . wk�1 � wk . . . wk�n,

and hence the preimage of wk�n�1 . . . wk�n in f is a square. The same
argument works when k � 7 �mod 8� with all indices shifted to the right
by 1.

Case II: If k � 1 �mod 8� then the code words

wk�n�2 . . . wk�n�5 and wk�1 . . . wk�6

are equal since they match at their fifth and sixth letters. Thus we have

wk�n�2 . . . wk�2 � wk�1 . . . wk�n�1,

and hence the preimage of wk�n�2 . . . wk�n�1 in f is a square. The same
argument works when k � 2 �mod 8� with all indices shifted to the left
by 1.

Case III: If k � 3 �mod 8�, then the code words

wk�3 . . . wk�4 and wk�n�2 . . . wk�n�5

are equal since they match at their first and second letters. Thus we
have

wk�n�4 . . . wk�4 � wk�5 . . . wk�n�5,

and hence the preimage of wk�n�4 . . . wk�n�5 in f is a square. The same
argument works when k � 4, 5, and 6 �mod 8� with all indices shifted
to the left by 1, 2, and 3, respectively.



2nd Reading

July 7, 2017 9:34 WSPC/S0218-1967 132-IJAC 1750024

Formulas with reversal of high avoidability index 7

Therefore, if v � �0,1,2�� is square-free, then the binary word f�v� avoids
factors of the form x�αx��. By Lemma 2.2, the 4-cyclic f�v�-word c�f�v��4 avoids ψ1.

Since there are infinitely many square-free ternary words, we conclude that ψ1 is
4 avoidable. It remains to show that the growth of the number of words on four
letters avoiding ψ1 is exponential.

It is well known that the number of square-free ternary words grows exponen-
tially [3]. However, this does not immediately imply that the number of words on
four letters avoiding ψ1 grows exponentially, because there are square-free words u
and v in �0,1,2�� of the same length for which c

�f�u��
4 and c

�f�v��
4 have different

lengths. We would like f�u� and f�v� to have the same number of 1’s and 2’s so
that we have �c�f�u��4 � � �c�f�v��4 �. One way to ensure this is to start with words u and
v that have the letters 0, 1, and 2 in the same proportions. Fortunately, the number
of square-free ternary words in which each alphabet letter occurs with proportion
exactly 1�3 grows exponentially (while not explicitly stated there, this fact can eas-
ily be gleaned from [10, Sec. 4.1]; apply any of the Brinkhuis triples given there
starting from initial word abc). From this fact we may conclude that the number of
words on four letters avoiding ψ1 grows exponentially.

Next we show that ψ2 is 5-avoidable. The proof is much shorter than the preced-
ing proof that ψ1 is 4-avoidable because we make use of automatic theorem-proving
software. We show that there is an infinite binary word w such that the 5-cyclic
w-word c�w�

5 avoids ψ2.

Theorem 2.4. The formula ψ2 is 5-avoidable.

Proof. Define morphism ρ � �1,2�� � �1,2�� by ρ�1� � 22 and ρ�2� � 21. Let

w � ρ��2� � 21222121 . . . .

We claim that c�w�
5 avoids ψ2. We prove this claim using the automatic theorem-

proving software Walnut [9]. A description of this method is given in Appendix A.

The fact that the number of words avoiding ψ2 grows exponentially follows
fairly easily from Theorem 2.4. Essentially, we can replace a fixed number of 2’s
in ρk�2� by 3’s, and this change does not introduce any occurrence of ψ2 to the
corresponding 5-cyclic word. This gives us a set of words avoiding ψ2 which we
show grows exponentially in size.

Corollary 2.5. The growth of the number of words on five letters avoiding ψ2 is
exponential.

Proof. From the proof of Theorem 2.4, the infinite word

ρ��2� � 21222121 . . .

has no factor of the form x�α1x
�� or x�α1α2x

�� satisfying the conditions listed in
Lemma 2.2. Consider the finite prefix ρk�2� for some k � 2 and let n � 2k

� �ρk�2��.
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Note that �ρk�2��2 � n
2
. Note also that any word obtained from ρk�2� by changing

any number of 2’s to 3’s still has no factors of the form x�α1x
�� or x�α1α2x

��.

Let Uk be the set containing all words obtained from ρk�2� by replacing exactly
n
4

of the 2’s by 3’s. Clearly no word in Uk has a factor of the form x�α1x
�� or

x�α1α2x
��, as this would imply that ρk�2� has such a factor. Thus for any word

u � Uk, the 5-cyclic w-word c
�u�
5 avoids ψ2 by Lemma 2.2. Further, any two words

u, v �Wk have �u�i � �v�i for all i � �1,2,3�, so that every word in the set

�c�u�5 � u � Uk�
has the same length, which is at most 3n. Since there are at least �n�2

n�4
� words in

Uk, we conclude that the growth of the number of words on five letters avoiding ψ2

is exponential.

After discovering that ind�ψ1� � 4 and ind�ψ2� � 5, we were led to wonder
whether ind�ψk� grows indefinitely along with k. We provide a negative answer to
this question in the next section.

3. An Upper Bound on ind�ψk� for k � 3

Our main result in this section is a general construction that shows the 5-
avoidability of ψ3k for all k � 1. This leads us to believe that ψk is 5-avoidable for all
k � 3. Although we are unable to verify this conjecture, we adapt our construction
for ψ3k to show that ψ3k�1 is 6-avoidable for k � 1 and ψ3k�2 is 6-avoidable for k � 2.
Finally, we address the only remaining formula ψ5, showing that it is 7-avoidable.

We start with the main result concerning ψ3k. The proof makes use of some new
terminology for ease of reading. A reversed variable in a formula φ is a variable z
such that z and zR both appear in φ. In particular, in ψk the reversed variables are
y1, . . . , yk.

Theorem 3.1. For all k � 1, the formula ψ3k is 5-avoidable. Further, the number
of words on five letters avoiding ψ3k grows exponentially.

Proof. Fix k � 1 and let w � w0w1 . . . be a word in �0,1,2��. Define the morphism
dk � �0,1,2�� � �0,1,2�� by i � ik�1 for all i � �0,1,2� and the morphism g �

�0,1,2�� � �0,1,2, a, b�� by i� iab for all i � �0,1,2�. We claim that if ψ3k occurs
in g�dk�w��, then w contains a square.

Suppose that ψ3k occurs in g�dk�w�� through morphism h. Several observations
can be made from the fact that g�dk�w�� alternates between a letter from �0,1,2�
and the factor ab:

� the h-image of each reversed variable in ψ3k must have length 1, as these are the
only reversible factors of g�dk�w��;

� exactly k of the 3k reversed variables have h-image in �0,1,2�; and
� �h�x�� � 0 �mod 3�, hence h�x� contains at least one letter from �0,1,2�.
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Let u be the word obtained by dropping all a’s and b’s from h�x� and let v be
the word obtained by dropping all a’s and b’s from h�y1 . . . y3k�. Clearly uvu is a
factor of dk�w� as we are essentially taking a preimage in g, and by the remarks
above we have �u� � 1 and �v� � k. Up to relabeling of letters, we have either v � 0k

or v � 0i1j with i, j positive and i�j � k. We show below that in each of these cases
the factor uvu extends to a factor in dk�w� that can only have come from a square
in w.

Case I: v � 0k.
If the factor 00 occurs in w, then we are done. So we may assume that
0k�2 is not a factor of uvu. Hence u must either start with a single 0
and end with a different letter or end with a single 0 and start with a
different letter. But then uvu appears internally as 0ku0ku or u0ku0k,

respectively. The preimage in dk of each of these factors is a square in w.

Case II: v � 0i1j for positive i, j with i � j � k.
In this case, the factor uvu in dk�w� always appears inside the factor

1ju0i1ju0i,

whose preimage is a square in w.

We conclude that if w is square-free, then g�dk�w�� avoids the formula ψ3k.

Since the growth of the number of square-free words on �0,1,2�� is exponential [3],
we conclude that the number of words avoiding ψ3k grows exponentially as well, as
�g�dk�w��� � �3k � 3��w�, i.e. g�dk�w�� is only a constant factor longer than w.

Now we obtain an upper bound on ind�ψ3k�1� and ind�ψ3k�2� using a similar
idea to the one used above to show ind�ψ3k� � 5. It is easily verified that any long
enough word of the form g�dk�w�� encounters both ψ3k�1 and ψ3k�2 whether w is
square-free or not, so the exact construction used for ψ3k will not work for ψ3k1

or ψ3k�2. However, it turns out that we only need to make a slight modification to
g�dk�w�� to make it avoid ψ3k�1 (or ψ3k�2) whenever w is square-free. All we need
to do is add a new letter c to g�dk�w�� at certain carefully chosen locations. The
details are given in the corollaries presented below.

Corollary 3.2. For all k � 1, the formula ψ3k�1 is 6-avoidable and the number of
words on six letters avoiding ψ3k�1 grows exponentially.

Proof. Let w be a word in �0,1,2�� and let dk and g be as in Theorem 3. From
g�dk�w��, create a word uw on alphabet �0,1,2, a, b, c�� by inserting the letter c
after every 3k letters of g�dk�w��. Now if ψ3k�1 occurs in uw through morphism h,

it is easily verified that the following conditions hold:

� the h-image of each reversed variable has length 1;
� exactly k of the 3k � 1 reversed variables have h-image in �0,1,2�; and
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� h�x� contains at least one letter from �0,1,2�.
Therefore, by arguments very similar to those used in Theorem 3, if w is square-free
then uw avoids ψ3k�1, and it follows that there are exponentially many words on
six letters avoiding ψ3k�1.

Corollary 3.3. For all k � 2, the formula ψ3k�2 is 6-avoidable and the number of
words on six letters avoiding ψ3k�2 grows exponentially.

Proof. Let w be a word in �0,1,2�� and let dk and g be as in Theorem 3. From
g�dk�w��, create a word vw on alphabet �0,1,2, a, b, c�� by inserting the letter c
after an appearance of the letter b whenever the total number of b’s that have
occurred so far is equivalent to 0 or 1 modulo k. Then in any factor of length 3k�2
of vw we have exactly k appearances of letters from �0,1,2�, k appearances of a, k
appearances of b, and two appearances of c. The remainder of the proof is analogous
to that of Corollary 3.2, and is omitted.

The construction of Corollary 3.3 does not work for k � 1 (that is, for ψ5).
We show below that ind�ψ5� � 7 using a construction similar to the ones we have
already seen. This does not seem optimal, but we have not found a construction
using fewer letters.

Corollary 3.4. The formula ψ5 is 7-avoidable and the number of words on seven
letters avoiding ψ5 grows exponentially.

Proof. Let w be a word in �0,1,2�� and let d2 be as in Theorem 3. Define morphism
g� � �0,1,2�� � �0,1,2, a, b, c, d�� by i� iabcd for all i � �0,1,2�. By arguments sim-
ilar to those already seen in Theorem 3, if w is square-free then g��d2�w�� avoids
ψ5, and it follows that there are exponentially many words on 7 letters avoiding ψ5.

Now that we have an upper bound on ind�ψk� for all k � 3, we prove a nontrivial
lower bound on ind�ψk� in the next section.

4. A Lower Bound on ind�ψk� for k � 3

It is trivially true that ind�ψk� � 2 for all k � 1 since we have proven that ψk is
avoidable and it is obvious that ψk is 1-unavoidable (this is of course true for every
formula with reversal). Using a standard backtracking algorithm, we have found
that ψk is 4-unavoidable for 2 � k � 6. Table 1 shows the length of a longest word
on four letters avoiding ψk for 2 � k � 6.

The issue with our backtracking calculation is that it gets more computationally
intensive as the value of k grows, becoming infeasible rather quickly. The main result
of this section is that ind�ψk� � 3 for the remaining cases k � 7. We begin with a
lemma that will be required to prove this main result.
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Table 1. Length of a

longest word on four letters
avoiding ψk for 2 � k � 6.

k Length of a longest
word avoiding ψk

2 45
3 34
4 29
5 29
6 41

Lemma 4.1. For any k,n � 1, the 3-cyclic w-word c
�w�
3 encounters ψk for any

word w � �1, . . . , n�ω.

Proof. Let w � w0w1 . . . and let c�w�
3 � 0w01w12w20w3 . . . in this proof for ease of

reading. We have three cases, one for each possible value of k mod 3.

Case I: k � 2 �mod 3�.
In this case the formula ψk occurs in c�w�

3 as follows:

0	
�
x

1w1

�

y1

. . . 2wk

�

yk

0	
�
x

.

Case II: k � 0 �mod 3�.
First of all, if w � 1ω then ψk occurs in c�w�

3 as follows:

012

�
x

0	
�

y1

1	
�

y2

. . . 2	
�

yk

012

�
x

.

We may now assume that some letter of w is greater than 1. By shifting
the index if necessary, we may assume that w1 � 1. Then ψk occurs in
c
�w�
3 as follows:

0	
�
x

1	
�

y1

1w1�1�
�

y2

2w2

�

y3

0w3

�

y4

. . . 2wk�1�
�

yk

0	
�
x

.

Case III: k � 1 �mod 3�.
We have already demonstrated by backtracking that ψ1 is 3-unavoidable,
so certainly it occurs in every infinite word of the form c

�w�
3 . We now

handle k � 4. First of all, if w � 1ω then ψk occurs in c�w�
3 as follows:

01�
�
x

2	
�

y1

0	
�

y2

. . . 2	
�

yk

01�
�
x

.

Not it suffices to show that ψk occurs in c
�w�
3 whenever some letter

of w is at least 2. First suppose that some letter of w is strictly greater



2nd Reading

July 7, 2017 9:34 WSPC/S0218-1967 132-IJAC 1750024

12 J. Currie, L. Mol & N. Rampersad

than 2. By shifting the index if necessary, we can assume w1 � 2. Then
ψk occurs in c�w�

3 as follows:

0	
�
x

1	
�

y1

1	
�

y2

1w1�2�
�

y3

2w2

�

y4

0w3

�

y5

. . . 2wk�2�
�

yk

0	
�
x

.

Suppose now that w contains the factor 22. By shifting the index
if necessary we may assume w1 � w2 � 2. Then ψk occurs in c

�w�
3 as

follows:

0	
�
x

1	
�

y1

1w1�1�
�

y2

2	
�

y3

2w2�1�
�

y4

0w3

�

y5

1w4

�

y6

. . . 2wk�2�
�

yk

0	
�
x

.

Now suppose that w contains the letter 2; by shifting the index if
necessary we may assume w0 � 2. Further, we can take w1 � 1 since
we have shown that any w with the factor 22 encounters ψk. Finally,
since we have shown that any w with a letter strictly greater than 2
encounters ψk, we can take wk�2 � 2 � w0. Thus, we see that ψk occurs
in c�w�

m as follows:

0wk�21��������������
�
x

2w2

�

y1

0w3

�

y2

. . . 2wk�1�
�

yk

0wk�21��������������
�
x

.

We conclude that c�w�
3 encounters ψk for every word w � �1, . . . , n�ω.

In other words, Lemma 4.1 demonstrates that any ω-word on three letters avoid-
ing ψk has at least one reversible factor containing two distinct letters. This fact
will be important to the proof of the following theorem, the main result of this
section.

Theorem 4.2. For all k � 1, the formula ψk is 3-unavoidable.

Proof. We have shown by backtracking that ψk is 3-unavoidable for k � 6, so it
remains to verify the theorem statement for k � 7. We proceed by induction on k.

Suppose for some k � 6 that ψk is 3-unavoidable. Suppose toward a contradiction
that w � �0,1,2�ω is a recurrent word that avoids ψk�1.

By the induction hypothesis, we know that ψk occurs in w, say through mor-
phism h. We claim that h must be 1-uniform. First suppose that �h�x�� � 1. Let
h�x� � va, where v � ε and �a� � 1. Then ψk�1 occurs in w through g defined by

x � v, and

yi � �a if i � 1,
h�yi�1� if i � 1.

Now suppose that �h�yj�� � 1 for some j � �1, . . . , k�. Let h�yj� � va, where v � ε

and �a� � 1. Since h�yj� is reversible in w by the fact that h is an occurrence of
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ψk, v must also be reversible in w, and we see that ψk�1 occurs in w through g

defined by

x � h�x�, and

yi �

���������������

h�yi� if i � j,
v if i � j,
a if i � j � 1,
h�yi�1� if i � j � 1.

Thus h must be 1-uniform as claimed.
Now take an instance of the fragment xy1 . . . ykx under some occurrence of ψk

in w through a 1-uniform morphism. Without loss of generality we may assume
that x� 0, so an instance of xy1 . . . ykx has the form

0a1 . . . ak0,

where ai � �0,1,2�. First note that this factor cannot be preceded or followed by a 0
in w as this gives an obvious occurrence of ψk�1. Thus this factor appears internally
in w as either 10a1 . . . ak01 or 10a1 . . . ak02 (up to relabeling of letters).

Consider the former possibility 10a1 . . . ak01. If a1 � 0 or a1 � 1, then the factor
0a1 is reversible, so ψk�1 occurs in w as follows:

1	
�
x

0a1

�

y1

a2	
�

y2

. . . ak�
�

yk

0	
�

yk�1

1	
�
x

.

Thus we may assume that a1 � 2. By a symmetric argument, we may assume that
ak � 2. However, then ψk�1 occurs in w as follows:

1	
�
x

02�
�

y1

a2	
�

y2

. . . ak�1�
�

yk�1

2	
�

yk

0	
�

yk�1

1	
�
x

.

We may now assume that 0a1 . . . ak0 appears internally as 10a1 . . . ak02. In fact,
we can demonstrate that it must appear internally as 10a1 . . . ak02t1 for some t � 1.
Otherwise, ψk�1 occurs in w as follows:

0	
�
x

a1	
�

y1

a2	
�

y2

. . . ak�
�

yk

02t

�

yk�1

0	
�
x

.

Now to reach a contradiction it suffices to show that 0a1a2 . . . ak0 can be factored
as b1b2 . . . bk, where bi � ε and is reversible for each i � �1, . . . , k�. If this is the case
then ψk occurs in 10a1 . . . ak02t1 as follows:

1	
�
x

b1	
�

y1

b2	
�

y2

. . . bk	
�

yk

2t	
�

yk�1

1	
�
x

.

Clearly if 0a1 . . . ak0 contains a length 3 reversible factor then it can be factored
into k reversible factors. Hence we may assume that 0a1 . . . ak0 contains no factors
of the form c3, cdc, or cddc for c, d � �0,1,2� (the first two factors are length 3
reversible factors while in the third factor cdd is reversible).
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Case I: 0a1 . . . ak0 contains at least two squares of length 2.
Clearly we can factor 0a1 . . . ak0 into k reversible factors by choosing
any two length 2 squares.

Case II: 0a1 . . . ak contains no squares of length 2.
By the assumption that 0a1 . . . ak0 has no factors of the form cdc with
c, d � �0,1,2�, we necessarily have k � 2 �mod 3� and 0a1 . . . ak0 must
have the cyclic form 021021 . . .0. In particular, we must have k � 2
�mod 3�. By Lemma 4.1, we know that the entire ω-word w cannot have
cyclic form, so that at least one of the factors 02, 21, and 10 is reversible
in w. Each factor 02, 21, and 10 appears at least twice in 0a1 . . . ak0
(since k � 6), meaning that there will be at least two nonoverlapping
reversible factors of length 2 in 0a1 . . . ak0, allowing us to factor it into
k reversible factors.

Case III: 0a1 . . . ak0 contains exactly one square of length 2.
By the assumption that 0a1 . . . ak0 has no factors of the form cdc or
cddc with c, d � �0,1,2�, we see that 0a1 . . . ak0 must have the cyclic
form 0p12p21p30p42p51p6 . . . 0pk�1 where pi � 2 for some i � �1, . . . , k � 1�
and pj � 1 for all j � i. In particular, we must have k � 0 �mod 3�. Again,
by Lemma 4.1 we know that at least one of the factors 02, 21, and 10
must be reversible in w. It is easy to verify that each of these factors
appears at least once in 0p12p21p30p4 . . . 0pk�1 without overlapping the
square of length 2 (again, recall k � 6). Thus we can factor 0a1 . . . ak0
into k reversible factors.

We have shown that ψk�1 occurs in w, a contradiction. By induction, we conclude
that ψk is 3-unavoidable for all k � 1.

While we conjecture that ψk is actually 4-unavoidable for all k � 2, the proof
technique used for Theorem 4.2 does not seem tractable on a 4-letter alphabet.
It appears that a different technique will be necessary in order to show that this
conjecture holds.

5. Conclusion

The family �ψk� k � 1� is the first infinite family of avoidable formulas (with
reversal) that we know of whose members are all 3-unavoidable. While we have
shown that ind�ψ1� � 4 and ind�ψk� � 5 for k � �2,3,6�, we have only demonstrated
bounds on the avoidability index of the remaining formulas. It would be nice to know
the exact avoidability index of ψk for all k � 2; we suspect that it is 5.

After discovering such simple formulas with reversal of avoidability index 5, it
seems plausible to us that there are avoidable formulas with reversal of avoidabil-
ity index 6 which can be found. This would be especially interesting as there are
currently no known formulas (with or without reversal) of avoidability index 6.
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Appendix A. Walnut Predicates for Theorem 2.4

Let ρ � �1,2�� � �1,2�� be given by ρ�1� � 22 and ρ�2� � 21, and let w � ρ��2�. We
show that c�w�

5 avoids ψ2. By Lemma 2.2, it suffices to show that w avoids factors
of the following two forms:

� x�α1x
��, where

– α1 � 2,
– �x�� � �x��� � n with n � 4 �mod 5�, and
– if x� � x�1 . . . x

�

n and x�� � x��1 . . . x
��

n, then x�1 � x��1 , x
�

n � x��n, and x�i � x
��

i for all
i � �2, . . . , n � 1�.

� x�α1α2x
��, where

– α1, α2 � �1,2�,
– �x�� � �x��� � n with n � 3 �mod 5�, and
– if x� � x�1 . . . x

�

n and x�� � x��1 . . . x
��

n, then x�1 � x��1 , x
�

n � x��n, and x�i � x
��

i for all
i � �2, . . . , n � 1�.

Throughout, our automata take a binary representation of a number as input,
and read the binary digits from most significant to least significant. Since w is a
fixed point of a 2-uniform morphism, w is 2-automatic, and is generated by the
deterministic finite automaton with output shown in Fig. 1 (see the proof of [1,
Theorem 6.3.2] for details). This automaton generates w � w0w1 . . . in the following
manner: given a binary representation of a number i, if we begin at the initial state
2 and follow the transitions indicated by reading the binary digits of i from most
significant to least significant, halting when we reach the end of i, then we will have
halted at state wi. In other words, given input i, the automaton outputs wi.

2

0

1

1
0
1

Fig. 1. The deterministic finite automaton with output that generates w.
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0

0 1
1

2

0 3

1

1

4

0

0

1

0

1

Fig. 2. The deterministic finite automaton is4mod5base2.

We first create a text file which defines this automaton for use in Walnut. The
text is as follows:

msd_2

0 2

0 -> 0

1 -> 1

1 1

0 -> 0

1 -> 0

We save this file as “w.txt” in the directory “/Walnut/Word Automata Library/”,
which allows us to refer to this automaton in later predicates. Explicitly, “w[i]” in
a Walnut predicate returns wi.

Next, we construct two deterministic finite automata for use in later predicates:
one that accepts binary numbers equivalent to 4 modulo 5, and another that accepts
binary numbers equivalent to 3 modulo 5. These automata are constructed by the
following predicates, respectively:

def is4mod5base2 "?msd_2 Ei n=5*i+4";

def is3mod5base2 "?msd_2 Ei n=5*i+3";

To be completely clear, given input the binary number n, the automaton
is4mod5base2 reads n from left to right and accepts n if and only if n � 4 �mod 5�.
The automaton is4mod5base2 is pictured in Fig. 2. The automaton is3mod5base2
behaves analogously, accepting n if and only if n � 3 �mod 5�.

Now we construct an automaton Case1 with the following predicate:

eval Case1 "?msd_2 $is4mod5base2(n)

& (Ei w[i]>=w[i+n+1] & w[i+n-1]<=w[i+2*n]

& Aj (j>0 & j<n-1) => w[i+j]=w[i+n+j+1]

& w[i+n]=w[0])";
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Given the binary number n, the automaton Case1 reads n from left to right and
accepts n if and only if

� n � 4 �mod 5�; and
� there exists an integer i such that

– wi � wi�n�1,
– wi�n�1 � wi�2n,
– wi�j � wi�n�j�1 for all j � �1, . . . , n � 2�, and
– wi�n � w0 � 2.

In other words, it accepts n if and only if there is some factor wi . . . wi�2n of w
of the form x�α1x

�� described above; explicitly, x� � wi . . . wi�n�1, α1 � wi�n, and
x�� � wi�n�1 . . . wi�2n. The automaton with a single, nonaccepting state is returned,
meaning that w has no factors of this form.

Finally, we construct an automaton Case2 with the following predicate:

eval Case2 "?msd_2 $is3mod5base2(n)

& (Ei w[i]>=w[i+n+2] & w[i+n-1]<=w[i+2*n+1]

& Aj (j>0 & j<n-1) => w[i+j]=w[i+n+j+2])";

The automaton Case2 accepts all natural numbers n for which w has a factor of
the form x�α1α2x

�� described above. The automaton with a single, nonaccepting
state is returned, meaning that w has no factors of this form.
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