Attainable lengths for circular binary words avoiding k powers

Ali Aberkane James D. Currie*

Abstract

We show that binary circular words of length n avoiding $7 / 3^{+}$powers exist for every sufficiently large n. This is not the case for binary circular words avoiding k^{+}powers with $k<7 / 3$.

1 Introduction

The word banana can be abbreviated as $b(a n)^{5 / 2}$. By this, we mean that the suffix anana of banana consists of an, repeated two and a half times. In particular, banana contains the square anan $=(a n)^{2}$. On the other hand, the word onion $=(o n i)^{5 / 3}$ contains no squares. However, if we imagine the letters of onion, not as labels in sequence, but as labels on a necklace, onion is equivalent to ononi, which commences with the square $(o n)^{2}$.

Let w be a word, $w=w_{1} w_{2} \ldots w_{n}$ where the w_{i} are letters. We say that w is periodic if for some p we have $w_{i}=w_{i+p}, i=1,2, \ldots, n-p$. We call p a period of w. Let k be a rational number. A k power is a word w of $\operatorname{period} p=w / k$. A k^{+}power is a word which is an r power for some $r>k$. A word is k^{+}power free if none of its subwords is a k^{+}power. Traditionally, a 2 power is called a square; a 2^{+}power is called an overlap; a 3 power is a cube.

We denote the number of letters in w by $|w|$, and the number of times a specific letter a appears in w by $|w|_{a}$. When w is a binary word, that is, a word over $\{0,1\}$, we use the notation \bar{w} for the binary complement of w, obtained from w by replacing 0 's with 1 's, and vice versa.

[^0]

Figure 1: A 2^{+}free circular word.

Word v is a conjugate of word w if there are words x and y such that $w=x y$ and $v=y x$. Let w be a word. The circular word w is the set consisting of w and all of its conjugates. We say that circular word w is k^{+}power free if all of its elements are k^{+}power free; that is, all the conjugates of the 'ordinary word' w are k^{+}power free. The conjugates of w are the subwords of $w w$ of length $|w|$. It follows that w is circular k power free if and only if $w w$ contains no k powers of length at most $|w|$.

Example 1. The set of conjugates of word 001101 is

$$
\{001101,011010,110100,101001,010011,100110\} .
$$

Each of these is 2^{+}power free, so that 001101 is a circular 2^{+}power free word. On the other hand, 0101101 is 2^{+}power free, but its conjugate 1010101 is a $7 / 2$ power. Thus 0101101 is not a circular 2^{+}power free word.

At the turn of the last century, Axel Thue showed that there are infinite sequences over $\{a, b\}$ not containing any overlaps, and infinite sequences over $\{a, b, c\}$ not containing any squares [11]. In addition to studying ordinary words, Thue studied circular words, proving that overlap-free circular words of length m exist exactly when m is of the form 2^{n} or 3×2^{n}.

Say that x^{k} is unavoidable on n letters if any sufficiently long string on n letters contains a k power. Dejean generalized Thue's work to repetitions with fractional exponents. She conjectured [4] that

$$
R T(n)=\left\{\begin{array}{cc}
2, & n=2 \\
7 / 4, & n=3 \\
7 / 5, & n=4 \\
n /(n-1), & n>4
\end{array}\right.
$$

where we define the repetitive threshold function $R T$ by

$$
R T(n)=\sup \left\{k: x^{k} \text { is unavoidable on } n \text { letters }\right\} .
$$

It was recently shown [2] that there are ternary square-free circular words of length n for $n \geq 18$ (but not for $n=17$). The authors have shown that there are binary $5 / 2^{+}$power free circular words of every length [1]. This is optimal in the sense that no binary circular word of length 5 avoids both $5 / 2$ powers and cubes.

On the other hand, one feels that 'accidental' problems with short lengths should perhaps be ignored.

Let $L(n, s)$ be the set of s power free circular words over $\{0,1, \ldots, n-1\}$. Let $\mathcal{L}(n, s)$ be the set of lengths of words in $L(n, s)$. For example, $L(2,2)=$ $\{\epsilon, 0,1,01,10,010,101\}$ and $\mathcal{L}(2,2)=\{0,1,2,3\}$. On the other hand, if $k>5 / 2$, then $\mathcal{L}(2, k)$ is the set of non-negative integers. We wish to know for which $k \mathcal{L}(2, k)$ contains all integers greater than or equal to some N_{0}.

Define the circular repetitive threshold function by

$$
C R T(n)=\inf \left\{s: \mathcal{L}(n, s) \supseteq\left\{N_{s}, N_{s}+1, N_{s}+2, \ldots\right\} \text { for some integer } N_{s} .\right\}
$$

We prove the following:
Main Theorem: $C R T(2)=7 / 3$.

2 A few properties of the Thue-Morse substitution

The Thue-Morse word t is defined to be $t=\mu^{\omega}(0)=\lim _{n \rightarrow \infty} \mu^{n}(0)$, where μ : $\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is the substitution generated by $\mu(0)=01, \mu(1)=10$. Thus

$$
t=01101001100101101001011001101001 \cdots
$$

The Thue-Morse word has been extensively studied. (See [5, 8, 9, 11] for example.) We use the following facts about t :

1. Word t is 2^{+}power free.
2. If w is a subword of t then so is \bar{w}, the binary complement of w.
3. Neither 00100 nor 11011 is a subword of t.

The following lemma is proved in [1]:
Lemma 2. Let $k \geq 6$ be a positive integer. Then t contains a subword of length $4 k$ of the form $01101001 v 10010110$.

If w is a binary word with period p, then $\mu(w)$ has period $2 p$. This means that when w is a k power, so is $\mu(w)$. Again, if the circular word w contains a k power, so does the circular word $\mu(w)$. Here is a partial converse [10]:
Lemma 3. Let $\alpha>2$ be a rational number. Let w be a binary word, and suppose that $\mu(w)$ contains an α power z of period $p,|z|=\alpha p$. Then w contains a word u of period $p / 2$, with $|u| \geq|z| / 2$.
Proof: Note that $\alpha>2$ is necessary, since 01 is 2 power free, but $\mu(01)$ contains the square 11.

Write $z=\left(z_{1} z_{2} \cdots z_{p}\right)^{n} z_{1} z_{2} \cdots z_{m}$ where the z_{i} are letters, n, m are integers, $n \geq 2$ and $m<p$. Write $\mu(w)=x z y$. If $|x|$ is even, then for some \underline{z} we can write the even length prefix $\left(z_{1} z_{2} \cdots z_{p}\right)^{2}$ of z as $\mu(\underline{z})$. We see that

$$
\begin{aligned}
p & =|\underline{z}| \\
& =|\mu(\underline{z})|_{1} \\
& =\left|\left(z_{1} z_{2} \cdots z_{p}\right)^{2}\right|_{1} \\
& =2\left|\left(z_{1} z_{2} \cdots z_{p}\right)\right|_{1}
\end{aligned}
$$

so that p is even. If x is odd, then $\left|x z_{1}\right|$ is even, and we can write $\left(z_{2} \cdots z_{p} z_{1}\right)^{2}=\mu(\underline{z})$ for some \underline{z}. Again we find that p is even.

Without loss of generality, assume that z is the longest subword of $\mu(w)$ having period p. We will show that $|x|$ is even. Suppose that $|x|$ is odd. Write $x=$ $\mu(\underline{x}) x_{0}$, where x_{0} is a letter, \underline{x} some word. Since p is even, write $x z_{1} z_{2} \cdots z_{p} z_{1}$ as $\mu(\underline{x}) x_{0} z_{1} \mu(\underline{z}) z_{p} z_{1}$ for some \underline{z}. It follows that $x_{0}=\overline{z_{1}}=z_{p}$. Now, however, $x_{0} z$ has period p, but is longer than z. This is a contradiction. We conclude that $|x|$ must be even. Symmetrically, $|y|$ must be even, so that $|z|$ is even also. This implies that m is even and $z=\mu(u)$ where $u=\left(z_{1} z_{3} \cdots z_{p-1}\right)^{n} z_{1} z_{3} \cdots z_{m-1}$. We see that u has period $p / 2$, while $|u|=|z| / 2$. \square

Corollary 4. Let k be a rational number. Let w be a binary circular k^{+}power free word. Then $\mu(w)$ is circular k^{+}power free.

Proof: Suppose that $\mu(w)$ is not circular k^{+}power free. This means that $\mu(w) \mu(w)=$ $\mu(w w)$ contains some α power $z, \alpha>k,|z| \leq|\mu(w)|$. Word z has period $p=|z| / \alpha$. By the previous lemma, $w w$ contains a word u of period $p / 2$, with $|u|=\lceil|z| / 2\rceil \leq$ $|w|$. Moreover, u is a β power, where $\beta=|u| /(p / 2)=\lceil|z| / 2\rceil /(p / 2) \geq|z| / p=\alpha$.

Now $w w$ contains a k^{+}power u, with $|u| \leq|w|$. This means that w is not circular k^{+}power free.

$3 C R T(2) \geq 7 / 3$

Certainly $C R T(2) \geq R T(2)=2$. Karhumäki and Shallit prove the following theorem [7]:

Theorem 5. Let x be a binary word avoiding α powers, with $2<\alpha \leq 7 / 3$. Then there exist $u, v \in\{\epsilon, 0,1,00,11\}$ and a binary word y avoiding α powers, such that $x=u \mu(y) v$.

This allows the following result:
Lemma 6. Suppose $2<\alpha \leq 7 / 3$. Let x be a binary word, $|x|>6$, such that every conjugate of x avoids α powers. Then there exists a binary word y such that $\mu(y)$ is a conjugate of x. In particular, $|x|=2|y|$ and all conjugates of y avoid α powers.

Proof: Suppose that there exists a binary word y such that $\mu(y)$ is a conjugate of x. If u is a conjugate of y containing an α power, then $\mu(u)$ is a conjugate of x containing an α power, which is impossible. It will thus suffice to show that there exists a binary word y such that $\mu(y)$ is a conjugate of x.

If no conjugate of x contains 00 or 11 as a subword, then x is $(01)^{|x| / 2}$ or $(10)^{|x| / 2}$. Since $|x| / 2 \geq 3>7 / 3$, this is impossible.

Replacing x by its binary complement if necessary, suppose that a conjugate of x contains 11 as a subword. Since $|x|>6$, and no conjugate of x can contain 111 as a subword, assume that a conjugate z of x begins with 011. Applying the previous theorem, write $z=u \mu\left(y^{\prime}\right) v$, some binary word y^{\prime}, and some $u, v \in\{\epsilon, 0,1,00,11\}$. We see that $u=\epsilon$ is forced, and z in fact must begin with 0110 . Write $z=\mu\left(01 y^{\prime \prime}\right) v$. If we can show that $v=\epsilon$ we will be done.

Clearly $v \neq 00$; otherwise the conjugate $v \mu\left(y^{\prime}\right)$ of x commences 000 . Since 000 is a cube, this is impossible.

Suppose $v=11$. If $\mu\left(y^{\prime}\right)$ ends in 01 , then $\mu\left(y^{\prime}\right) v$ ends in 0111 , which is impossible. We therefore deduce that $\mu\left(y^{\prime}\right)$ ends in 10 , and the conjugate $\mu\left(y^{\prime \prime}\right) v 0110$ of x ends in the $7 / 3$ power 0110110 . This is impossible.

Suppose $v=0$. This implies that 01 is a suffix of $\mu\left(y^{\prime \prime}\right)$; otherwise $10 \mu\left(y^{\prime \prime}\right) v 01$ ends in 10001, and a conjugate of x contains the cube 000 . Since $\mu\left(y^{\prime \prime}\right)$ has 01 for a suffix, we deduce that $\mu\left(y^{\prime \prime}\right)$ ends in 0101 or 1001 . If $\mu\left(y^{\prime \prime}\right)$ ends in 0101 , then $\mu\left(y^{\prime \prime}\right) v$ ends in the $5 / 2$ power 01010; if $\mu\left(y^{\prime \prime}\right)$ ends in 1001 , then $\mu\left(y^{\prime \prime}\right) v 01$ ends in the $7 / 3$ power 1001001. We conclude that $v \neq 0$.

The last possibility to be avoided is that $v=1$. Suppose this is the case. Either $\mu\left(y^{\prime \prime}\right)$ ends in 10 , and $\mu\left(y^{\prime \prime}\right) v 01$ ends in the $5 / 2$ power 10101 , or $\mu\left(y^{\prime \prime}\right)$ ends in 01 , so that $\mu\left(y^{\prime \prime}\right) v 0110$ ends in the $7 / 3$ power 0110110 . We conclude that $v \neq 1$.

This means that $v=\epsilon$, and $z=\mu\left(y^{\prime}\right)$. \square
Theorem 7. Suppose $2<\alpha \leq 7 / 3$ and m is a positive integer. There is a circular binary word of length m avoiding α powers if and only if m is of the form 2^{n} or 3×2^{n}.

Proof: The if direction follows from Thue's result on the lengths of overlap-free binary words. There is an overlap free binary circular word of each length 2^{n} or 3×2^{n}, and such an overlap free word must avoid α powers.

Now suppose that x is a circular binary word avoiding α powers. By induction on the previous theorem, $|x|$ has the form $r \times 2^{n}$, where $r \leq 6$, and there is a circular binary word avoiding α powers of length r. The only positive integer 6 or less not of the form 2^{n} or 3^{n} is 5 . One finds that no circular binary word of length 5 avoids $5 / 2^{+}$powers. Thus $r \neq 5$, and theorem is proved.

Corollary 8. $C R T(2) \geq 7 / 3$.

4 Circular $7 / 3^{+}$power free words

Consider the words

- $f_{0}=00100$
- $f_{1}=11011$

Neither of the f_{i} appears in the Thue-Morse word t. Note that f_{0} is the binary complement of f_{1}. Let the word \mathcal{B} be a subword of the Thue-Morse word with $|\mathcal{B}| \geq 90$, of the following form:

$$
\mathcal{B}=1101001 v 1001011
$$

Notice that f_{1} and \mathcal{B} have a common prefix of length 4. A candidate for the word \mathcal{B} may be obtained from the word of Lemma 2 by deleting the first and last letters. We see then that word \mathcal{B} may be taken to have any length $4 k-2, k \geq 23$.

Let w_{1} be a circular word of the form $\mathcal{B} f_{0} f_{1} f_{0}$. Let w_{3} be a circular word of the form $\mathcal{B} f_{0}$. We have $\left|w_{i}\right| \equiv i(\bmod 4), i=1,3$.

Lemma 9. No word of the form aBc with $|a c| \leq 15$ is a k power for $k>7 / 3$.

Proof: Suppose $a \mathcal{B} c$ is a k power for $k>7 / 3$, where $|a c| \leq 15$. This means that $a \mathcal{B} c$ is periodic with some period $p,|a \mathcal{B} c|>7 p / 3$. Its subword \mathcal{B} must also then have period p. Since \mathcal{B} is a subword of t, this means that $|\mathcal{B}| \leq 2 p$. In total then, $15 \geq|a c|=|a \mathcal{B} c|-|\mathcal{B}|>7 p / 3-2 p=p / 3$, so that $45>p$. However, then $90 \leq|\mathcal{B}| \leq 2 p<2 \times 45=90$. This is a contradiction.

Lemma 10. Suppose that a word of the form σb is a k power for $k>7 / 3,|\sigma| \leq 3$, b a subword of t. Let σb have period $p<3|\sigma b| / 7$. Then $p \leq 8$.

Proof: We have $|\sigma b|>7 p / 3$, whence $|\sigma b| \geq\lfloor 7 p / 3\rfloor+1$. The word b has period p, but is a subword of t. Thus, $|b| \leq 2 p$. Now, $3 \geq|\sigma|=|\sigma b|-|b| \geq\lfloor 7 p / 3\rfloor+1-2 p=$ $\lfloor p / 3\rfloor+1$. We conclude that $2 \geq\lfloor p / 3\rfloor$, or $p \leq 8$. \square

Lemma 11. Consider a word of the form s β where β is a prefix of \mathcal{B}, and s is a suffix of $f_{0},|s| \leq 4$. Then for $k>7 / 3$, s β is not a k power.

Proof: Word s will be a suffix of 0100 . Since $0 \mathcal{B}$ is a subword of t, the result is true when $s=0$. Let $\pi_{1}=11010010110$ and let $\pi_{2}=1101001$ 10010. (The spaces are for clarity; they highlight the two possible prefixes of v in \mathcal{B}. The final 0 in π_{2} reflects the fact that the overlap 100110011 cannot appear in t.)

By the construction of \mathcal{B}, one of π_{1}, π_{2} is a prefix of \mathcal{B}. It follows that either β is a prefix of one of the π_{k}, or one of the π_{k} is a prefix of β.

To get a contradiction, suppose that $s \beta$ has period $p,|s \beta|>7 p / 3$. Write $s=\sigma 0$. Then $b=0 \beta$ is a subword of t, so that by Lemma $10, p \leq 8$. If π_{k} is a prefix of β, then $s \pi_{k}$ has period p. On the other hand, if β is a prefix of π_{k}, then $s \pi_{k}$ has a prefix $s \beta,|s \beta|>7 p / 3$. Let q be the maximal prefix of $s \pi_{k}$ with period p. For each choice $p=1,2, \ldots, 8$, and for each possibility $k=1,2$, we show two things:

1. Word q is a proper prefix of $s \pi_{k}$. This eliminates the case where π_{k} is a prefix of β.
2. We have $|q| \leq 7 p / 3$. This eliminates the case where β is a prefix of π_{k}. We thus obtain a contradiction.

As an example, suppose $p=6$. In $s \pi_{1}=s 11010010110$, the letters in bold-face differ. This means that prefix q of period 6 is a prefix of $s 1101001$, which has length $|s|+7 \leq 11 \leq 7 p / 3=7 \times 6 / 3=14$. Again, in $s \pi_{2}=s 11010011001$, the letters in bold-face differ. Any prefix of $s \pi_{2}$ of period 6 is thus a prefix of $s 110100110$, which has length at most 14.

The following table bounds $|q|$ in the various cases. The pairs of bold-face letters certify the given values.

p	σ	$0 \pi_{i}$	$\mid q$		$\|q\| / p$	
1	0	01101001...		2		2
	(0)10	01101001...	\leq	2	\leq	2
2	0	01101001...		2		1
	(010	01101001...	\leq	3	\leq	$3 / 2$
3	(01)0	01101001...	\leq	5	\leq	5/3
4	(01)0	01101001...	\leq	7	\leq	7/4
5	(01)0	01101001...	\leq	7	\leq	7/5
6	(01)0	011010010110	\leq	11	\leq	11/6
	(01)0	0110100110010	\leq	13	\leq	13/6
7	(01)0	01101001...		10	\leq	10/7
8	(01)0	01101001...		10	\leq	5/4

The parentheses abbreviate rows of the table. For example, cases $\sigma=10$ and $\sigma=010$ are together in the second row of the table. The bold-faced pair will work whether $\sigma=10$ or $\sigma=010$. We have q a proper prefix of σ, whence $|q| \leq 2$. Similarly, when $p=5$, one pair works for all values of σ. Evidently, one could also verify this lemma via computer.

Lemma 12. Consider a word of the form βr where β is a subword of t, and $|r| \leq 4$. Then for $k>7 / 3$, βr is not a k power.

Proof: This assertion follows from the last by symmetry.
Corollary 13. Let w_{3} contain a k power z, some $k>7 / 3$. Then z contains f_{0} as a subword.

Proof: Word z is an ordinary subword of some conjugate of w_{3}. The conjugates of w_{3} have one of the forms $b^{\prime \prime} f_{0} b^{\prime}$ or $f^{\prime \prime} \mathcal{B} f^{\prime}$ where $f_{0}=f^{\prime} f^{\prime \prime}$ or $\mathcal{B}=b^{\prime} b^{\prime \prime}$. We know that z cannot be a subword of \mathcal{B}, since t is 2^{+}power free. If z does not contain f_{0} therefore, then z has one of the forms $f^{\prime \prime} \mathcal{B} f^{\prime}, f^{\prime \prime} \beta^{\prime}$ or $\beta^{\prime \prime} f^{\prime}$ with $\left|f^{\prime}\right|,\left|f^{\prime \prime}\right| \leq 4, \beta^{\prime}$ a prefix of $\mathcal{B}, \beta^{\prime \prime}$ a suffix of $\beta^{\prime \prime}$. These possibilities are ruled out by Lemmas 9, 11 and 12 respectively.

Lemma 14. Fix $k>2$. Suppose z has period $p<|z| / k$. Let u be a subword of z with $|u| \leq \min (\lfloor(k-2) p\rfloor+2, p)$. Then z contains a subword uvu for some v.

Proof: Let $a u$ be a prefix of z with a as short as possible. Because z has period p, $|a| \leq p-1$. Write $z=a u b$. Here

$$
\begin{aligned}
|b| & =|z|-|a u| \\
& \geq\lfloor k p\rfloor+1-|a u| \\
& \geq\lfloor k p\rfloor+1-(p-1)-[\lfloor(k-2) p\rfloor+2] \\
& =\lfloor k p\rfloor+1-(p-1)-[\lfloor k p\rfloor-2 p+2] \\
& =p
\end{aligned}
$$

Since $|u| \leq p$ and $z=a u b$ has period p, u is a subword of b. Pick v so that $v u$ is a prefix of b. Then $u v u$ is a subword of z.

Corollary 15. Let z be a word of the form $b^{\prime \prime} f_{0} b^{\prime}$ where b^{\prime} and $b^{\prime \prime}$ are a prefix and suffix respectively of \mathcal{B}. Suppose that z is a k power, some $k>7 / 3$. Then the longest period of z is at most 8 .
Proof: Suppose that $p>8$. Then $\min (\lfloor(k-2) p\rfloor+2, p)>\min (\lfloor 8 / 3\rfloor+2,8)=4$, so that $\min (\lfloor(k-2) p\rfloor+2, p) \geq 5$. By Lemma 14 every subword of z of length 5 appears at least twice in z. However, $\left|f_{0}\right|=5$, but f_{0} only appears once in z. This is a contradiction.

Lemma 16. Let z be a word of the form $b^{\prime \prime} f_{0} b^{\prime}$ where b^{\prime} and $b^{\prime \prime}$ are a prefix and suffix respectively of \mathcal{B}. Then z is not a $7 / 3^{+}$power.

Proof: Suppose that z is a k power, some $k>7 / 3$. By the last corollary, z has period $p \leq 8$. Word f_{0} does not have period 1 or 2 . Therefore, $p \geq 3$, and $7 p / 3 \geq 7$. We find then, that z must have a subword of length 8 containing f_{0}. This subword must have the form $b^{\prime \prime} f_{0} b^{\prime}$ where b^{\prime} and $b^{\prime \prime}$ are a prefix and suffix respectively of \mathcal{B}. The possible candidates are thus $01100100,11001001,10010011,0010011$ and 00100110. None of these have period $1,2,3,4,5$ or 6 . This implies that we must in fact have $7 \leq p \leq 8$. we find then that $|z| \geq\lfloor 7 p / 3\rfloor+1 \geq 17$. Certainly then, $\left|b^{\prime}\right| \geq 4$ or $\left|b^{\prime \prime}\right| \geq 4$. This implies that z contains either 101100100 or 001001101 as a subword; however, neither of these words has period 7 or 8 . This is a contradiction.

Lemma 17. Word w_{3} is $7 / 3^{+}$power free.
Proof: Let w_{3} contain a k power z, some $k>7 / 3$. By Corollary $13, z$ contains f_{0} as a subword, so that z has the form $b^{\prime \prime} f_{0} b^{\prime}$ where b^{\prime} and $b^{\prime \prime}$ are a prefix and suffix respectively of \mathcal{B}. This is impossible by Lemma 16 .

Lemma 18. Let w_{1} contain a k power z, some $k>7 / 3$. Then z contains f_{1}.
Proof: Word z cannot contain \mathcal{B} as a subword. Otherwise, we could write $z=a \mathcal{B} c$, where $|a c| \leq\left|f_{0} f_{1} f_{0}\right|=15$. This is impossible by Lemma 9 . It follows that z is a subword of a conjugate of w_{1} of the form $b^{\prime \prime} f_{0} f_{1} f_{0} b^{\prime}$ where b^{\prime} and $b^{\prime \prime}$ are a prefix and suffix respectively of \mathcal{B}. Suppose that z does not contain f_{1}. This means that z is a subword of either

- a word $b^{\prime \prime} f_{0} f_{1}^{\prime}$, where f_{1}^{\prime} is a prefix of $f_{1},\left|f_{1}^{\prime}\right| \leq 4$, or
- a word $f_{1}^{\prime \prime} f_{0} b^{\prime}$ where $f_{1}^{\prime \prime}$ is a suffix of $f_{1},\left|f_{1}^{\prime \prime}\right| \leq 4$.

Recall that every prefix (suffix) of f_{1} of length at most 4 is also a prefix (suffix) of \mathcal{B}. We have thus returned to the case where k power z is a subword of a word $b^{\prime \prime} f_{0} b^{\prime}$ where b^{\prime} and $b^{\prime \prime}$ are a prefix and suffix respectively of \mathcal{B}. This is impossible, by Lemma 16.

Lemma 19. Word w_{1} is $7 / 3^{+}$power free.
Proof: Let w_{1} contain a k power z, some $k>7 / 3$. Let z have period $p,|z| / p>7 / 3$. By the last lemma, z contains f_{1} as a subword. Since f_{1} can appear in z only once, we find that $p \leq 8$. Arguing as in Lemma 16, we find that z has period 7 or 8 , and contains either 010011011 or its reversal. (These are binary complements of 101100100 and 001001101 used in Lemma 16.) However, these words do not have period 7 or 8 . This is a contradiction.

Lemma 20. There exist binary circular $7 / 3^{+}$power free words of every odd length greater than or equal to 105.

Proof: The words w_{1} and w_{3} give these lengths.
Theorem 21. There exist binary circular $7 / 3^{+}$power free words of every length greater than or equal to 210.

Proof: This follows by combining the last lemma with Corollary 4.
Together with Theorem 7, this establishes our
Main Theorem: $C R T(2)=7 / 3$.

References

[1] A. Aberkane \& J. D. Currie, There exist binary circular $5 / 2^{+}$power free words of every length, Elec. J. Comb. To appear.
[2] J. D. Currie, There are ternary circular square-free words of length n for $n \geq 18$, Elec. J. Comb. 9(1) (2002) N10.
[3] J. D. Currie \& D. S. Fitzpatrick, Circular words avoiding patterns, Developments in Language Theory, - 6th International Conference, DLT 2002, Kyoto, Japan, Lecture Notes in Computer Science (edited by M. Ito and M. Toyama) (2003) (Springer-Verlag).
[4] F. Dejean, Sur un théorème de Thue, J. Combin. Theory Ser. A 13 (1972), 90-99.
[5] E. Fife, Binary sequences which contain no BBb, Trans. Amer. Math. Soc. 261 (1980), 115-136.
[6] D. S. Fitzpatrick, There are binary circular cube-free words of length n contained within the Thue-Morse word for all positive integers n, Ars Combinatorica. To appear.
[7] J. Karhumäki, J. Shallit, Polynomial versus exponential growth in repetitionfree binary words, , J. Combinatorial Theory Ser. A. To appear.
[8] M. Morse \& G. Hedlund, Symbolic dynamics I, Amer. J. Math. 60 (1938), 815-866.
[9] M. Morse \& G. Hedlund, Symbolic dynamics II. Sturmian Trajectories, Amer. J. Math. 62 (1940), 1-42.
[10] A. M. Shur, The structure of the set of cube-free \mathbb{Z}-words in a two-letter alphabet, Izv. Math., 2000, 64 (4), 847-871
[11] A. Thue, Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana (1912), 1-67.
[12] A. Zimin, Blocking sets of terms, Mat. Sb. (N.S.) 119 (161) (1982) 365-375, 447; Math. USSR Sbornik 47 (1984), 353-364.

Ali Aberkane
Institut de Mathematiques de Luminy
163 Avenue de Luminy
13288 Marseille, France
e-mail: aberkane@iml.univ-mrs.fr
James D. Currie
Department of Mathematics and Statistics
University of Winnipeg
Winnipeg, Manitoba R3B 2E9, Canada
e-mail: currie@uwinnipeg.ca

[^0]: *The author's research was supported by an NSERC operating grant.
 Received by the editors December 2003.
 Communicated by V. Blondel.
 1991 Mathematics Subject Classification : 68R15.
 Key words and phrases : circular words, Dejean's conjecture, Thue-Morse word.

