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Abstract

We show that binary circular words of length n avoiding 7/3+ powers exist
for every sufficiently large n. This is not the case for binary circular words
avoiding k+ powers with k < 7/3.

1 Introduction

The word banana can be abbreviated as b(an)5/2. By this, we mean that the suffix
anana of banana consists of an, repeated two and a half times. In particular, banana
contains the square anan = (an)2. On the other hand, the word onion = (oni)5/3

contains no squares. However, if we imagine the letters of onion, not as labels in
sequence, but as labels on a necklace, onion is equivalent to ononi, which commences
with the square (on)2.

Let w be a word, w = w1w2 . . . wn where the wi are letters. We say that w is
periodic if for some p we have wi = wi+p, i = 1, 2, . . . , n − p. We call p a period
of w. Let k be a rational number. A k power is a word w of period p = w/k. A
k+ power is a word which is an r power for some r > k. A word is k+ power free
if none of its subwords is a k+ power. Traditionally, a 2 power is called a square; a
2+ power is called an overlap; a 3 power is a cube.

We denote the number of letters in w by |w|, and the number of times a specific
letter a appears in w by |w|a. When w is a binary word, that is, a word over {0, 1},
we use the notation w̄ for the binary complement of w, obtained from w by
replacing 0’s with 1’s, and vice versa.
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Figure 1: A 2+ free circular word.

Word v is a conjugate of word w if there are words x and y such that w = xy
and v = yx. Let w be a word. The circular word w is the set consisting of w and
all of its conjugates. We say that circular word w is k+ power free if all of its
elements are k+ power free; that is, all the conjugates of the ‘ordinary word’ w are
k+ power free. The conjugates of w are the subwords of ww of length |w|. It follows
that w is circular k power free if and only if ww contains no k powers of length at
most |w|.

Example 1. The set of conjugates of word 001101 is

{001101, 011010, 110100, 101001, 010011, 100110}.

Each of these is 2+ power free, so that 001101 is a circular 2+ power free word. On
the other hand, 0101101 is 2+ power free, but its conjugate 1010101 is a 7/2 power.
Thus 0101101 is not a circular 2+ power free word.

At the turn of the last century, Axel Thue showed that there are infinite sequences
over {a, b} not containing any overlaps, and infinite sequences over {a, b, c} not
containing any squares [11]. In addition to studying ordinary words, Thue studied
circular words, proving that overlap-free circular words of length m exist exactly
when m is of the form 2n or 3× 2n.

Say that xk is unavoidable on n letters if any sufficiently long string on n
letters contains a k power. Dejean generalized Thue’s work to repetitions with
fractional exponents. She conjectured [4] that

RT (n) =


2, n = 2

7/4, n = 3
7/5, n = 4

n/(n− 1), n > 4

where we define the repetitive threshold function RT by

RT (n) = sup{k : xk is unavoidable on n letters}.

It was recently shown [2] that there are ternary square-free circular words of
length n for n ≥ 18 (but not for n = 17). The authors have shown that there are
binary 5/2+ power free circular words of every length [1]. This is optimal in the
sense that no binary circular word of length 5 avoids both 5/2 powers and cubes.
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On the other hand, one feels that ‘accidental’ problems with short lengths should
perhaps be ignored.

Let L(n, s) be the set of s power free circular words over {0, 1, . . . , n − 1}.
Let L(n, s) be the set of lengths of words in L(n, s). For example, L(2, 2) =
{ε, 0, 1, 01, 10, 010, 101} and L(2, 2) = {0, 1, 2, 3}. On the other hand, if k > 5/2,
then L(2, k) is the set of non-negative integers. We wish to know for which k L(2, k)
contains all integers greater than or equal to some N0.

Define the circular repetitive threshold function by

CRT (n) = inf{s : L(n, s) ⊇ {Ns, Ns + 1, Ns + 2, . . .} for some integer Ns.}

We prove the following:

Main Theorem: CRT (2) = 7/3.

2 A few properties of the Thue-Morse substitution

The Thue-Morse word t is defined to be t = µω(0) = limn→∞ µn(0), where µ :
{0, 1}∗ → {0, 1}∗ is the substitution generated by µ(0) = 01, µ(1) = 10. Thus

t = 01101001100101101001011001101001 · · ·

The Thue-Morse word has been extensively studied. (See [5, 8, 9, 11] for exam-
ple.) We use the following facts about t:

1. Word t is 2+ power free.

2. If w is a subword of t then so is w, the binary complement of w.

3. Neither 00100 nor 11011 is a subword of t.

The following lemma is proved in [1]:

Lemma 2. Let k ≥ 6 be a positive integer. Then t contains a subword of length 4k
of the form 01101001v10010110.

If w is a binary word with period p, then µ(w) has period 2p. This means that
when w is a k power, so is µ(w). Again, if the circular word w contains a k power,
so does the circular word µ(w). Here is a partial converse [10]:

Lemma 3. Let α > 2 be a rational number. Let w be a binary word, and suppose
that µ(w) contains an α power z of period p, |z| = αp. Then w contains a word u
of period p/2, with |u| ≥ |z|/2.
Proof: Note that α > 2 is necessary, since 01 is 2 power free, but µ(01) contains the
square 11.

Write z = (z1z2 · · · zp)
nz1z2 · · · zm where the zi are letters, n, m are integers,

n ≥ 2 and m < p. Write µ(w) = xzy. If |x| is even, then for some z we can write
the even length prefix (z1z2 · · · zp)

2 of z as µ(z). We see that

p = |z|
= |µ(z)|1
= |(z1z2 · · · zp)

2|1
= 2|(z1z2 · · · zp)|1
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so that p is even. If x is odd, then |xz1| is even, and we can write (z2 · · · zpz1)
2 = µ(z)

for some z. Again we find that p is even.
Without loss of generality, assume that z is the longest subword of µ(w) having

period p. We will show that |x| is even. Suppose that |x| is odd. Write x =
µ(x)x0, where x0 is a letter, x some word. Since p is even, write xz1z2 · · · zpz1 as
µ(x)x0z1µ(z)zpz1 for some z. It follows that x0 = z̄1 = zp. Now, however, x0z has
period p, but is longer than z. This is a contradiction. We conclude that |x| must
be even. Symmetrically, |y| must be even, so that |z| is even also. This implies that
m is even and z = µ(u) where u = (z1z3 · · · zp−1)

nz1z3 · · · zm−1. We see that u has
period p/2, while |u| = |z|/2.�

Corollary 4. Let k be a rational number. Let w be a binary circular k+ power free
word. Then µ(w) is circular k+ power free.

Proof: Suppose that µ(w) is not circular k+ power free. This means that µ(w)µ(w) =
µ(ww) contains some α power z, α > k, |z| ≤ |µ(w)|. Word z has period p = |z|/α.
By the previous lemma, ww contains a word u of period p/2, with |u| = d|z|/2e ≤
|w|. Moreover, u is a β power, where β = |u|/(p/2) = d|z|/2e/(p/2) ≥ |z|/p = α.

Now ww contains a k+ power u, with |u| ≤ |w|. This means that w is not circular
k+ power free. �

3 CRT (2) ≥ 7/3

Certainly CRT (2) ≥ RT (2) = 2. Karhumäki and Shallit prove the following theo-
rem [7]:

Theorem 5. Let x be a binary word avoiding α powers, with 2 < α ≤ 7/3. Then
there exist u, v ∈ {ε, 0, 1, 00, 11} and a binary word y avoiding α powers, such that
x = uµ(y)v.

This allows the following result:

Lemma 6. Suppose 2 < α ≤ 7/3. Let x be a binary word, |x| > 6, such that every
conjugate of x avoids α powers. Then there exists a binary word y such that µ(y) is
a conjugate of x. In particular, |x| = 2|y| and all conjugates of y avoid α powers.

Proof: Suppose that there exists a binary word y such that µ(y) is a conjugate of
x. If u is a conjugate of y containing an α power, then µ(u) is a conjugate of x
containing an α power, which is impossible. It will thus suffice to show that there
exists a binary word y such that µ(y) is a conjugate of x.

If no conjugate of x contains 00 or 11 as a subword, then x is (01)|x|/2 or (10)|x|/2.
Since |x|/2 ≥ 3 > 7/3, this is impossible.

Replacing x by its binary complement if necessary, suppose that a conjugate of
x contains 11 as a subword. Since |x| > 6, and no conjugate of x can contain 111 as
a subword, assume that a conjugate z of x begins with 011. Applying the previous
theorem, write z = uµ(y′)v, some binary word y′, and some u, v ∈ {ε, 0, 1, 00, 11}.
We see that u = ε is forced, and z in fact must begin with 0110. Write z = µ(01y′′)v.
If we can show that v = ε we will be done.
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Clearly v 6= 00; otherwise the conjugate vµ(y′) of x commences 000. Since 000
is a cube, this is impossible.

Suppose v = 11. If µ(y′) ends in 01, then µ(y′)v ends in 0111, which is impossible.
We therefore deduce that µ(y′) ends in 10, and the conjugate µ(y′′)v0110 of x ends
in the 7/3 power 0110110. This is impossible.

Suppose v = 0. This implies that 01 is a suffix of µ(y′′); otherwise 10µ(y′′)v01
ends in 10001, and a conjugate of x contains the cube 000. Since µ(y′′) has 01 for a
suffix, we deduce that µ(y′′) ends in 0101 or 1001. If µ(y′′) ends in 0101, then µ(y′′)v
ends in the 5/2 power 01010; if µ(y′′) ends in 1001, then µ(y′′)v01 ends in the 7/3
power 1001001. We conclude that v 6= 0.

The last possibility to be avoided is that v = 1. Suppose this is the case. Either
µ(y′′) ends in 10, and µ(y′′)v01 ends in the 5/2 power 10101, or µ(y′′) ends in 01, so
that µ(y′′)v0110 ends in the 7/3 power 0110110. We conclude that v 6= 1.

This means that v = ε, and z = µ(y′).�

Theorem 7. Suppose 2 < α ≤ 7/3 and m is a positive integer. There is a circular
binary word of length m avoiding α powers if and only if m is of the form 2n or
3× 2n.

Proof: The if direction follows from Thue’s result on the lengths of overlap-free
binary words. There is an overlap free binary circular word of each length 2n or
3× 2n, and such an overlap free word must avoid α powers.

Now suppose that x is a circular binary word avoiding α powers. By induction
on the previous theorem, |x| has the form r×2n, where r ≤ 6, and there is a circular
binary word avoiding α powers of length r. The only positive integer 6 or less not
of the form 2n or 3n is 5. One finds that no circular binary word of length 5 avoids
5/2+ powers. Thus r 6= 5, and theorem is proved. �

Corollary 8. CRT (2) ≥ 7/3.

4 Circular 7/3+ power free words

Consider the words

• f0 = 00100

• f1 = 11011

Neither of the fi appears in the Thue-Morse word t. Note that f0 is the binary
complement of f1. Let the word B be a subword of the Thue-Morse word with
|B| ≥ 90, of the following form:

B = 1101001v1001011

Notice that f1 and B have a common prefix of length 4. A candidate for the
word B may be obtained from the word of Lemma 2 by deleting the first and last
letters. We see then that word B may be taken to have any length 4k − 2, k ≥ 23.

Let w1 be a circular word of the form Bf0f1f0. Let w3 be a circular word of the
form Bf0. We have |wi| ≡ i (mod 4), i = 1, 3.
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Lemma 9. No word of the form aBc with |ac| ≤ 15 is a k power for k > 7/3.

Proof: Suppose aBc is a k power for k > 7/3, where |ac| ≤ 15. This means that
aBc is periodic with some period p, |aBc| > 7p/3. Its subword B must also then
have period p. Since B is a subword of t, this means that |B| ≤ 2p. In total
then, 15 ≥ |ac| = |aBc| − |B| > 7p/3 − 2p = p/3, so that 45 > p. However, then
90 ≤ |B| ≤ 2p < 2× 45 = 90. This is a contradiction. �

Lemma 10. Suppose that a word of the form σb is a k power for k > 7/3, |σ| ≤ 3,
b a subword of t. Let σb have period p < 3|σb|/7. Then p ≤ 8.

Proof: We have |σb| > 7p/3, whence |σb| ≥ b7p/3c + 1. The word b has period p,
but is a subword of t. Thus, |b| ≤ 2p. Now, 3 ≥ |σ| = |σb| − |b| ≥ b7p/3c+ 1− 2p =
bp/3c+ 1. We conclude that 2 ≥ bp/3c, or p ≤ 8.�

Lemma 11. Consider a word of the form sβ where β is a prefix of B, and s is a
suffix of f0, |s| ≤ 4. Then for k > 7/3, sβ is not a k power.

Proof: Word s will be a suffix of 0100. Since 0B is a subword of t, the result is
true when s = 0. Let π1 = 1101001 0110 and let π2 = 1101001 10010. (The spaces
are for clarity; they highlight the two possible prefixes of v in B. The final 0 in π2

reflects the fact that the overlap 100110011 cannot appear in t.)

By the construction of B, one of π1, π2 is a prefix of B. It follows that either β
is a prefix of one of the πk, or one of the πk is a prefix of β.

To get a contradiction, suppose that sβ has period p, |sβ| > 7p/3. Write s = σ0.
Then b = 0β is a subword of t, so that by Lemma 10, p ≤ 8. If πk is a prefix of
β, then sπk has period p. On the other hand, if β is a prefix of πk, then sπk has a
prefix sβ, |sβ| > 7p/3. Let q be the maximal prefix of sπk with period p. For each
choice p = 1, 2, . . . , 8, and for each possibility k = 1, 2, we show two things:

1. Word q is a proper prefix of sπk. This eliminates the case where πk is a prefix
of β.

2. We have |q| ≤ 7p/3. This eliminates the case where β is a prefix of πk. We
thus obtain a contradiction.

As an example, suppose p = 6. In sπ1 = s1101001 0110, the letters in bold-face
differ. This means that prefix q of period 6 is a prefix of s1101001, which has length
|s| + 7 ≤ 11 ≤ 7p/3 = 7× 6/3 = 14. Again, in sπ2 = s1101001 1001, the letters in
bold-face differ. Any prefix of sπ2 of period 6 is thus a prefix of s110100110, which
has length at most 14.

The following table bounds |q| in the various cases. The pairs of bold-face letters
certify the given values.
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p σ 0πi |q| |q|/p
1 0 01101001 · · · 2 2

(0)10 01101001 · · · ≤ 2 ≤ 2
2 0 01101001 · · · 2 1

(010 01101001 · · · ≤ 3 ≤ 3/2
3 (01)0 01101001 · · · ≤ 5 ≤ 5/3
4 (01)0 01101001 · · · ≤ 7 ≤ 7/4
5 (01)0 01101001 · · · ≤ 7 ≤ 7/5
6 (01)0 01101001 0110 ≤ 11 ≤ 11/6

(01)0 01101001 10010 ≤ 13 ≤ 13/6
7 (01)0 01101001 · · · ≤ 10 ≤ 10/7
8 (01)0 01101001 · · · ≤ 10 ≤ 5/4

The parentheses abbreviate rows of the table. For example, cases σ = 10 and
σ = 010 are together in the second row of the table. The bold-faced pair will work
whether σ = 10 or σ = 010. We have q a proper prefix of σ, whence |q| ≤ 2.
Similarly, when p = 5, one pair works for all values of σ. Evidently, one could also
verify this lemma via computer. �

Lemma 12. Consider a word of the form βr where β is a subword of t, and |r| ≤ 4.
Then for k > 7/3, βr is not a k power.

Proof: This assertion follows from the last by symmetry. �

Corollary 13. Let w3 contain a k power z, some k > 7/3. Then z contains f0 as
a subword.

Proof: Word z is an ordinary subword of some conjugate of w3. The conjugates of
w3 have one of the forms b′′f0b

′ or f ′′Bf ′ where f0 = f ′f ′′ or B = b′b′′. We know
that z cannot be a subword of B, since t is 2+ power free. If z does not contain f0

therefore, then z has one of the forms f ′′Bf ′, f ′′β′ or β′′f ′ with |f ′|, |f ′′| ≤ 4, β′ a
prefix of B, β′′ a suffix of β′′. These possibilities are ruled out by Lemmas 9, 11 and
12 respectively. �

Lemma 14. Fix k > 2. Suppose z has period p < |z|/k. Let u be a subword of z
with |u| ≤ min(b(k − 2)pc+ 2, p). Then z contains a subword uvu for some v.

Proof: Let au be a prefix of z with a as short as possible. Because z has period p,
|a| ≤ p− 1. Write z = aub. Here

|b| = |z| − |au|
≥ bkpc+ 1− |au|
≥ bkpc+ 1− (p− 1)− [b(k − 2)pc+ 2]

= bkpc+ 1− (p− 1)− [bkpc − 2p + 2]

= p

Since |u| ≤ p and z = aub has period p, u is a subword of b. Pick v so that vu is a
prefix of b. Then uvu is a subword of z. �
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Corollary 15. Let z be a word of the form b′′f0b
′ where b′ and b′′ are a prefix and

suffix respectively of B. Suppose that z is a k power, some k > 7/3. Then the longest
period of z is at most 8.

Proof: Suppose that p > 8. Then min(b(k − 2)pc + 2, p) > min(b8/3c + 2, 8) = 4,
so that min(b(k − 2)pc + 2, p) ≥ 5. By Lemma 14 every subword of z of length 5
appears at least twice in z. However, |f0| = 5, but f0 only appears once in z. This
is a contradiction. �

Lemma 16. Let z be a word of the form b′′f0b
′ where b′ and b′′ are a prefix and

suffix respectively of B. Then z is not a 7/3+ power.

Proof: Suppose that z is a k power, some k > 7/3. By the last corollary, z has period
p ≤ 8. Word f0 does not have period 1 or 2. Therefore, p ≥ 3, and 7p/3 ≥ 7. We
find then, that z must have a subword of length 8 containing f0.This subword must
have the form b′′f0b

′ where b′ and b′′ are a prefix and suffix respectively of B. The
possible candidates are thus 01100100, 11001001, 10010011, 0010011 and 00100110.
None of these have period 1, 2, 3, 4, 5 or 6. This implies that we must in fact have
7 ≤ p ≤ 8. we find then that |z| ≥ b7p/3c + 1 ≥ 17. Certainly then, |b′| ≥ 4 or
|b′′| ≥ 4. This implies that z contains either 101100100 or 001001101 as a subword;
however, neither of these words has period 7 or 8. This is a contradiction. �

Lemma 17. Word w3 is 7/3+ power free.

Proof: Let w3 contain a k power z, some k > 7/3. By Corollary 13, z contains f0

as a subword, so that z has the form b′′f0b
′ where b′ and b′′ are a prefix and suffix

respectively of B. This is impossible by Lemma 16. �

Lemma 18. Let w1 contain a k power z, some k > 7/3. Then z contains f1.

Proof: Word z cannot contain B as a subword. Otherwise, we could write z = aBc,
where |ac| ≤ |f0f1f0| = 15. This is impossible by Lemma 9. It follows that z is a
subword of a conjugate of w1 of the form b′′f0f1f0b

′ where b′ and b′′ are a prefix and
suffix respectively of B. Suppose that z does not contain f1. This means that z is
a subword of either

• a word b′′f0f
′
1, where f ′1 is a prefix of f1, |f ′1| ≤ 4, or

• a word f ′′1 f0b
′ where f ′′1 is a suffix of f1, |f ′′1 | ≤ 4.

Recall that every prefix (suffix) of f1 of length at most 4 is also a prefix (suffix)
of B. We have thus returned to the case where k power z is a subword of a word
b′′f0b

′ where b′ and b′′ are a prefix and suffix respectively of B. This is impossible,
by Lemma 16. �

Lemma 19. Word w1 is 7/3+ power free.

Proof: Let w1 contain a k power z, some k > 7/3. Let z have period p, |z|/p > 7/3.
By the last lemma, z contains f1 as a subword. Since f1 can appear in z only once,
we find that p ≤ 8. Arguing as in Lemma 16, we find that z has period 7 or 8,
and contains either 010011011 or its reversal. (These are binary complements of
101100100 and 001001101 used in Lemma 16.) However, these words do not have
period 7 or 8. This is a contradiction. �
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Lemma 20. There exist binary circular 7/3+ power free words of every odd length
greater than or equal to 105.

Proof: The words w1 and w3 give these lengths. �

Theorem 21. There exist binary circular 7/3+ power free words of every length
greater than or equal to 210.

Proof: This follows by combining the last lemma with Corollary 4. �

Together with Theorem 7, this establishes our

Main Theorem: CRT (2) = 7/3.
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